WO2011058156A1 - Device for displaying images stacked over an image of a surrounding scene, and associated manufacturing method - Google Patents

Device for displaying images stacked over an image of a surrounding scene, and associated manufacturing method Download PDF

Info

Publication number
WO2011058156A1
WO2011058156A1 PCT/EP2010/067428 EP2010067428W WO2011058156A1 WO 2011058156 A1 WO2011058156 A1 WO 2011058156A1 EP 2010067428 W EP2010067428 W EP 2010067428W WO 2011058156 A1 WO2011058156 A1 WO 2011058156A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
image
platelets
scene
plates
Prior art date
Application number
PCT/EP2010/067428
Other languages
French (fr)
Inventor
Laetitia Landais
Philippe Patry
Original Assignee
Sagem Defense Securite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite filed Critical Sagem Defense Securite
Publication of WO2011058156A1 publication Critical patent/WO2011058156A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/147Beam splitting or combining systems operating by reflection only using averaging effects by spatially variable reflectivity on a microscopic level, e.g. polka dots, chequered or discontinuous patterns, or rapidly moving surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility

Definitions

  • Image display device superimposed on an image of a surrounding scene, and method of manufacturing the same
  • the present invention relates to a display device according to the preamble of claim 1.
  • the invention also relates to a method of manufacturing a device mentioned above.
  • a device 1 for viewing images superimposed on an image of a surrounding scene comprising:
  • a blade 10 made of a material transparent to the image of the scene, and having two parallel faces, and
  • the device 1 allows the transport of images to be superimposed on the image of the scene, the images being taken from a source 2 of images.
  • Source 2 may consist of an LCD pixel array or any light image source. These images are projected to infinity and the collimated beam, consisting of images, enters the device 1 by an injection section 3. The beam is then transported in the device over an arbitrary length.
  • the light beam is guided by both sides and propagates by total reflection in the blade. If the index of the transparent material constituting the blade 10 is greater than that of the surrounding media, total internal reflections occur naturally when the angle of incidence of the beam rays is sufficiently large compared to the normal incidence on the face of the blade.
  • the beam then arrives on the lamellae 20 at least partially reflecting.
  • the slats 20 allow the beam to emerge from the blade to be guided to an eye of a user, for example an infantryman.
  • the beam is then superimposed on the image of the scene for the user.
  • the strips 20 generate a modulation of the image of the scene, which is called a "louver” effect.
  • WO 01/27685 and US 2007/008624 disclose devices comprising such slats of great length.
  • the invention proposes to overcome at least one of these disadvantages.
  • the invention also relates to a method of manufacturing a device mentioned above.
  • the invention has many advantages.
  • the louver effect is suppressed or greatly diminished.
  • the field seen by the eye of the observer is the same as if the eye was placed at the output of the source of images, but the platelets being of small dimensions and being distributed over a large part of the blade, the eye of the observer does not have the need to locate precisely in space with respect to the blade to be able to observe the images, unlike the situation of the prior art.
  • the invention can be applied to many fields and uses, such as the visualization of images consisting of symbols, information or video images mainly during the day, without losing contact with the backdrop so as to facilitate communication or the action within the framework of a mission which can be civil or military.
  • the device can of course be used at night to view video images or superimposed symbols of the scene in direct view or even in addition to the use of a night vision binocular.
  • FIG. 2 diagrammatically represents a first possible embodiment of a device according to the invention
  • FIG. 3 diagrammatically represents a second possible embodiment of a device according to the invention.
  • FIG. 4 schematically show the main steps of a method of manufacturing a device according to the invention
  • FIG. 5 schematically represents the distribution of platelets along a guideline in the device according to the invention.
  • FIGS. 6A to 6C show schematically the definition of a characteristic dimension of a wafer.
  • Figures 2 and 3 show diagrammatically two possible embodiments of an image viewing device 1 superimposed on an image 4 of a surrounding scene.
  • the images 5 come from a source 2 of images.
  • Source 2 can consist of a matrix of LCD pixels (liquid crystal display) or
  • OLED organic light-emitting diode
  • any other source of light image OLED (organic light-emitting diode) or any other source of light image.
  • the images consist of symbols, information or any video images for a wide variety of applications.
  • the source 2 also has an objective 8, making it possible to collimate the images 5.
  • the device 1 mainly comprises a combination blade 10 consisting of a material transparent to the image 4 of the scene, and exhibiting two faces 1 1 and 12 parallel to each other. An observer 7 can thus see the scene without deformation or magnification through the blade 10.
  • the device 1 also comprises platelets 20 at least semi-reflective to the images 5 to be superimposed on the image 4 of the scene, arranged inclined with respect to the faces 1 1 and 12.
  • the plates 20 are semi-transparent in the image 4, the image 4 of the scene is less attenuated, but the images 5 from the source 2 are on the other hand more strongly attenuated. In the case where the plates 20 are totally reflective, they form micro-mirrors.
  • the rays 51, 52 and 53 for example, composing an image 5, and emerging from the pupil of the objective 8, propagate in the blade 10 in the manner of a waveguide, that is to say by successive internal reflections.
  • a spoke 51, 52 or 53 meets a wafer 20, it is reflected and the emerging ray leaves the blade 10 with the same angle with respect to the optical axis, defined by the eye of the observer 7, that at the exit of the objective 8 of collimation.
  • the field seen by the eye of the observer 7 is therefore the same as if the eye was placed at the exit of the objective 8, but the plates 20 being distributed over a large part of the blade 10, the eye of the observer 7 does not have the need to locate precisely in space with respect to the blade 10 to be able to observe the image 5.
  • the distribution and size of the wafers 20 within the optical material of the blade 10 are made so as to optimize the quality of the transmitted images.
  • the wafers 20 have a characteristic dimension, i.e., a larger dimension of each wafer 20, which is small relative to a dimension D characteristic of the wafer 10, i.e. larger 10.
  • the wafers 20 may have various shapes, such as any shape, square, circular or elliptical.
  • the width and length of each wafer 20 are of the same order of magnitude.
  • the characteristic dimension D of the blade 10 is for example its height in the case of a very elongated blade, but preferably its diameter or its diagonal (that is to say the largest dimension), and is of the order 10 mm, such as 50mm or more.
  • the characteristic dimension d of the plates 20 is between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm, to facilitate the visualization of the image 4 by the observer 7.
  • the ratio between the characteristic dimension of the platelets 20 and the dimension D characteristic of the plate 10 is between 0.002 and 0.5, preferably between 0.01 and 0.2.
  • the plates 20 are flat and parallel to each other in the blade 10, as shown in FIGS. 2 and 3.
  • the wafers 20 may also be non-planar, and have a curvature, so that they can be associated with an optical power.
  • the plates 20 may be non-parallel to each other in the blade 10, depending on the desired optical power.
  • platelets no longer intervene only as mirrors but participate in the collimation (endless reference) of the image source 2.
  • the density of platelets 20 at the surface in the plate 10 is between 20% and 80%, and is preferably of the order of 50%.
  • the source 2 must have sufficient luminance so that after reflection on the wafers 20, the images 5 supplied to the eye of the observer 7 are brighter than the image 4 of the scene seen through the blade 10. This depends on reflection coefficient of the plates 20, as well as their surface relative to that of the blade 10.
  • the platelet transmission rate may vary depending on their position in the blade 10.
  • the platelet transmission rate as a function of their Z location in the blade 10 may also be homogeneous or variable.
  • platelets 20 are distributed in blade 10 along a line 13 with respect to faces 11 and 12. do not mask each other vis-à-vis the rays of the image 5.
  • the arrangement of the platelets 20 can also be any, that is to say pseudo-random in the blade 10.
  • the distribution of platelets 20 can also be homogeneous according to the Z dimension, or vary according to a predetermined pattern (more platelets 20 at the bottom of the blade 10, for example at the top of the blade 10, or vice versa).
  • the ocular domain volume in which the eye sees the image correctly
  • This is to be compared with the approximately 10 mm diameter ocular ring offered by conventional eyepieces.
  • the two embodiments of Figures 2 and 3 are equivalent, and can be adapted to the final application.
  • the device further comprises an injection mirror 6. It is understood that the inclination of the plates 20 with respect to the faces 1 1 and 12 depends on the inclination of the source 2 and the mirror 6.
  • the blade 10 may be inclined or parallel to the eye of the observer 7, depending on the desired applications.
  • a plurality of pins 100 is placed on one of the faces 1 10 of a block 101 made of a transparent moldable optical material of the family of glasses or plastics.
  • the pins 100 are for example of circular cross section, and have a diameter of between 0.5 mm and 2 mm. Other forms are possible.
  • the pins 100 are then machined, for example by diamond machining, in parallel planes forming a constant angle with the face 1 of the block 101 and at heights h which are identical or different with respect to the face 1. 10, so as to mechanically realize the platelet field 20. It is understood that if the pins 100 have a circular cross section, the plates 20 have an elliptical shape.
  • a totally or partially reflective thin layer deposit, possibly dichroic, is then applied by vacuum deposition techniques commonly used in optics on the pins 100 in order to make the plates 20. This must be done by protecting the face 1 10 of the block 101 located at the base of the pins 100 to avoid reducing the transmission between the image of the scene and the eye of the observer 7 by the presence of the deposit at this location.
  • the block 101 is then completed by an optically transparent and polymerizable material, preferably cold so as not to damage the pins 100 (such as for example an adhesive), and with a very similar index of the material of the block. 101 to finish making the blade 10 with parallel faces 1 1 and 12.
  • an optically transparent and polymerizable material preferably cold so as not to damage the pins 100 (such as for example an adhesive), and with a very similar index of the material of the block. 101 to finish making the blade 10 with parallel faces 1 1 and 12.
  • an alternative embodiment consists in producing reflective plates that are no longer flat but curved in order to create optical power. In this case the plates no longer intervene only as mirrors but participate in the collimation (reference to infinity) of the image source. Lithography processes known to those skilled in the art make it possible to give the plates 20 a curvature.

Abstract

The invention relates to a device (1) for displaying images (5) stacked over an image (4) of a surrounding scene, comprising: a combining leaf (10) consisting of a material transparent to the image (4) of the scene, and having two surfaces (11, 12) parallel to one another, and plates (20) which are at least semi-reflective of the images (5) being stacked over the image (4) of the scene, and which are arranged at an angle relative to surfaces (11, 12) and parallel to one another in the leaf (10), the device being characterized in that the plates (20) have a characteristic size (d) which is small relative to a characteristic size of the leaf (10). The invention also relates to a method for manufacturing the aforesaid device.

Description

Dispositif de visualisation d'images superposées à une image d'une scène environnante, et procédé de fabrication associé  Image display device superimposed on an image of a surrounding scene, and method of manufacturing the same
DOMAINE TECHNIQUE GENERAL GENERAL TECHNICAL FIELD
La présente invention concerne un dispositif de visualisation selon le préambule de la revendication 1 . The present invention relates to a display device according to the preamble of claim 1.
L'invention concerne également un procédé de fabrication d'un dispositif précité.  The invention also relates to a method of manufacturing a device mentioned above.
ETAT DE L'ART STATE OF THE ART
Comme le montre la figure 1 , on connaît un dispositif 1 de visualisation d'images superposées à une image d'une scène environnante, comportant : As shown in FIG. 1, there is known a device 1 for viewing images superimposed on an image of a surrounding scene, comprising:
- une lame 10 constituée d'un matériau transparent à l'image de la scène, et présentant deux faces parallèles, et  a blade 10 made of a material transparent to the image of the scene, and having two parallel faces, and
- des lamelles 20 réfléchissantes ou semi-réfléchissantes aux images à superposer à l'image de la scène, et disposées sur toute la largeur de la lame 10, de façon inclinée dans la lame 10.  reflective or semi-reflecting lamellae to the images to be superimposed on the image of the scene, and arranged over the entire width of the blade 10, inclined in the blade 10.
Le dispositif 1 permet le transport d'images à superposer à l'image de la scène, les images étant issues d'une source 2 d'images. La source 2 peut consister en une matrice de pixels LCD ou toute source d'image lumineuse. Ces images sont projetées à l'infini et le faisceau collimaté, constitué des images, entre dans le dispositif 1 par une section d'injection 3. Le faisceau est alors transporté dans le dispositif sur une longueur arbitraire.  The device 1 allows the transport of images to be superimposed on the image of the scene, the images being taken from a source 2 of images. Source 2 may consist of an LCD pixel array or any light image source. These images are projected to infinity and the collimated beam, consisting of images, enters the device 1 by an injection section 3. The beam is then transported in the device over an arbitrary length.
Le faisceau lumineux est guidé par les deux faces et se propage par réflexion totale dans la lame. Si l'indice du matériau transparent, composant la lame 10, est supérieur à ceux des milieux qui l'entourent, des réflexions internes totales se produisent naturellement dès lors que l'angle d'incidence des rayons du faisceau est suffisamment grand par rapport à l'incidence normale sur la face de la lame.  The light beam is guided by both sides and propagates by total reflection in the blade. If the index of the transparent material constituting the blade 10 is greater than that of the surrounding media, total internal reflections occur naturally when the angle of incidence of the beam rays is sufficiently large compared to the normal incidence on the face of the blade.
Le faisceau arrive alors sur les lamelles 20 au moins partiellement réfléchissantes. Les lamelles 20 permettent au faisceau de ressortir de la lame pour être guidé vers un œil d'un utilisateur, par exemple un fantassin. Le faisceau est alors superposé à l'image de la scène pour l'utilisateur. Le dispositif précédent présente cependant des inconvénients. The beam then arrives on the lamellae 20 at least partially reflecting. The slats 20 allow the beam to emerge from the blade to be guided to an eye of a user, for example an infantryman. The beam is then superimposed on the image of the scene for the user. The foregoing device, however, has disadvantages.
Comme on le constate aisément sur la figure 1 , les lamelles 20 engendrent une modulation de l'image de la scène, qu'on appelle effet « persienne ».  As can easily be seen in FIG. 1, the strips 20 generate a modulation of the image of the scene, which is called a "louver" effect.
WO 01/27685 et US 2007/008624 divulguent des dispositifs comportant de telles lamelles de grande longueur.  WO 01/27685 and US 2007/008624 disclose devices comprising such slats of great length.
PRESENTATION DE L'INVENTION PRESENTATION OF THE INVENTION
L'invention propose de pallier au moins un de ces inconvénients.  The invention proposes to overcome at least one of these disadvantages.
A cet effet, on propose selon l'invention un dispositif selon la revendication 1 .  For this purpose, there is provided according to the invention a device according to claim 1.
L'invention est avantageusement complétée par les caractéristiques des revendications 2 à 8, prises seules ou en une quelconque de leur combinaison techniquement possible.  The invention is advantageously completed by the features of claims 2 to 8, taken alone or in any of their technically possible combination.
L'invention concerne également un procédé de fabrication d'un dispositif précité.  The invention also relates to a method of manufacturing a device mentioned above.
L'invention présente de nombreux avantages.  The invention has many advantages.
L'effet persienne est supprimé ou grandement diminué.  The louver effect is suppressed or greatly diminished.
Du fait de la répartition des plaquettes de petite taille dans toute la lame, le champ vu par l'œil de l'observateur est le même que si l'œil se plaçait en sortie de la source d'images, mais les plaquettes étant de petites dimensions et étant réparties sur une part importante de la lame, l'œil de l'observateur n'a pas la nécessité de se localiser avec précision dans l'espace par rapport à la lame pour pouvoir observer les images, contrairement à la situation de l'art antérieur.  Because of the distribution of small platelets throughout the blade, the field seen by the eye of the observer is the same as if the eye was placed at the output of the source of images, but the platelets being of small dimensions and being distributed over a large part of the blade, the eye of the observer does not have the need to locate precisely in space with respect to the blade to be able to observe the images, unlike the situation of the prior art.
L'invention peut être appliquée à de nombreux domaines et usages, comme la visualisation d'images constituées de symboles, d'informations ou d'images vidéo principalement de jour, sans perdre le contact avec le fond de scène de façon à faciliter la communication ou l'action dans le cadre d'une mission qui peut être civile ou militaire.  The invention can be applied to many fields and uses, such as the visualization of images consisting of symbols, information or video images mainly during the day, without losing contact with the backdrop so as to facilitate communication or the action within the framework of a mission which can be civil or military.
Le dispositif peut bien évidemment être utilisé de nuit pour visualiser des images vidéo ou des symboles en superposition de la scène en vue directe ou même en complément de l'utilisation d'une jumelle de vision nocturne. PRESENTATION DES FIGURES The device can of course be used at night to view video images or superimposed symbols of the scene in direct view or even in addition to the use of a night vision binocular. PRESENTATION OF FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :  Other features, objects and advantages of the invention will emerge from the description which follows, which is purely illustrative and nonlimiting, and which should be read with reference to the appended drawings in which:
- la figure 1 , déjà commentée, représente schématiquement une vue de face d'un dispositif connu comportant des lamelles ;  - Figure 1, already commented, schematically shows a front view of a known device with lamellae;
- la figure 2 représente schématiquement un premier mode de réalisation possible d'un dispositif selon l'invention ;  FIG. 2 diagrammatically represents a first possible embodiment of a device according to the invention;
- la figure 3 représente schématiquement un deuxième mode de réalisation possible d'un dispositif selon l'invention ; FIG. 3 diagrammatically represents a second possible embodiment of a device according to the invention;
- les figures 4 représentent schématiquement les principales étapes d'un procédé de fabrication d'un dispositif selon l'invention ;  - Figures 4 schematically show the main steps of a method of manufacturing a device according to the invention;
- la figure 5 représente schématiquement la répartition des plaquettes selon une ligne directrice dans le dispositif selon l'invention, et  FIG. 5 schematically represents the distribution of platelets along a guideline in the device according to the invention, and
- les figures 6A à 6C représentent schématiquement la définition d'une dimension caractéristique d'une plaquette.  FIGS. 6A to 6C show schematically the definition of a characteristic dimension of a wafer.
Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.  In all the figures, similar elements bear identical reference numerals.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
Les figures 2 et 3 montrent schématiquement deux modes de réalisation possibles d'un dispositif 1 de visualisation d'images 5 superposées à une image 4 d'une scène environnante.  Figures 2 and 3 show diagrammatically two possible embodiments of an image viewing device 1 superimposed on an image 4 of a surrounding scene.
Les images 5 sont issues d'une source 2 d'images. La source 2 peut consister en une matrice de pixels LCD (affichage à cristaux liquides) ou The images 5 come from a source 2 of images. Source 2 can consist of a matrix of LCD pixels (liquid crystal display) or
OLED (diode électroluminescente organique) ou toute autre source d'image lumineuse. OLED (organic light-emitting diode) or any other source of light image.
Les images sont constituées de symboles, d'informations ou d'images vidéo quelconques, pour des applications les plus variées.  The images consist of symbols, information or any video images for a wide variety of applications.
La source 2 comporte également un objectif 8, permettant de collimater les images 5.  The source 2 also has an objective 8, making it possible to collimate the images 5.
Le dispositif 1 comporte principalement une lame 10 de combinaison constituée d'un matériau transparent à l'image 4 de la scène, et présentant deux faces 1 1 et 12 parallèles entre elles. Un observateur 7 peut ainsi voir la scène sans déformation ni grossissement à travers la lame 10. The device 1 mainly comprises a combination blade 10 consisting of a material transparent to the image 4 of the scene, and exhibiting two faces 1 1 and 12 parallel to each other. An observer 7 can thus see the scene without deformation or magnification through the blade 10.
Le dispositif 1 comporte également des plaquettes 20 au moins semi- réfléchissantes aux images 5 à superposer à l'image 4 de la scène, disposées de façon inclinée par rapport aux faces 1 1 et 12.  The device 1 also comprises platelets 20 at least semi-reflective to the images 5 to be superimposed on the image 4 of the scene, arranged inclined with respect to the faces 1 1 and 12.
On comprend que si les plaquettes 20 sont semi-transparentes à l'image 4, l'image 4 de la scène est moins atténuée, mais les images 5 en provenance de la source 2 sont en revanche plus fortement atténuées. Dans le cas où les plaquettes 20 sont totalement réfléchissantes, elles forment des micro-miroirs.  It is understood that if the plates 20 are semi-transparent in the image 4, the image 4 of the scene is less attenuated, but the images 5 from the source 2 are on the other hand more strongly attenuated. In the case where the plates 20 are totally reflective, they form micro-mirrors.
Les rayons 51 , 52 et 53 par exemple, composant une image 5, et sortant de la pupille de l'objectif 8, se propagent dans la lame 10 à la manière d'un guide d'onde, c'est-à-dire par réflexions internes successives. Quand un rayon 51 , 52 ou 53 rencontre une plaquette 20, il est réfléchi et le rayon émergeant sort de la lame 10 avec le même angle par rapport à l'axe optique, défini par l'œil de l'observateur 7, qu'à la sortie de l'objectif 8 de collimation.  The rays 51, 52 and 53, for example, composing an image 5, and emerging from the pupil of the objective 8, propagate in the blade 10 in the manner of a waveguide, that is to say by successive internal reflections. When a spoke 51, 52 or 53 meets a wafer 20, it is reflected and the emerging ray leaves the blade 10 with the same angle with respect to the optical axis, defined by the eye of the observer 7, that at the exit of the objective 8 of collimation.
Le champ vu par l'œil de l'observateur 7 est donc le même que si l'œil se plaçait en sortie de l'objectif 8, mais les plaquettes 20 étant réparties sur une part importante de la lame 10, l'œil de l'observateur 7 n'a pas la nécessité de se localiser avec précision dans l'espace par rapport à la lame 10 pour pouvoir observer l'image 5.  The field seen by the eye of the observer 7 is therefore the same as if the eye was placed at the exit of the objective 8, but the plates 20 being distributed over a large part of the blade 10, the eye of the observer 7 does not have the need to locate precisely in space with respect to the blade 10 to be able to observe the image 5.
La distribution et la dimension des plaquettes 20 à l'intérieur du matériau optique de la lame 10 sont faites de manière à optimiser la qualité des images 5 transmises.  The distribution and size of the wafers 20 within the optical material of the blade 10 are made so as to optimize the quality of the transmitted images.
Les plaquettes 20 ont une dimension d caractéristique, c'est-à-dire une plus grande dimension de chaque plaquette 20, qui est petite par rapport à une dimension D caractéristique de la lame 10, c'est-à-dire une plus grande dimension de la lame 10. Les plaquettes 20 peuvent avoir des formes variées, comme par exemple une forme quelconque, carrée, circulaire ou elliptique. La largeur et la longueur de chaque plaquette 20 sont du même ordre de grandeur. Comme l'indiquent les figures 6, on peut toujours définir une dimension d caractéristique des plaquettes 20, comme par exemple la diagonale (figure 6A), son plus grand axe dans le cas d'une ellipse (figure 6B) ou le diamètre, ou la plus grande distance traversant la plaquette 20 (figure 6C) par exemple. On constate donc que la dimension caractéristique correspond à la plus grande dimension de la plaquette 20, quelle que soit sa forme, même irrégulière. The wafers 20 have a characteristic dimension, i.e., a larger dimension of each wafer 20, which is small relative to a dimension D characteristic of the wafer 10, i.e. larger 10. The wafers 20 may have various shapes, such as any shape, square, circular or elliptical. The width and length of each wafer 20 are of the same order of magnitude. As indicated in FIG. 6, it is still possible to define a characteristic dimension of the plates 20, such as for example the diagonal (FIG. 6A), its largest axis in the case of an ellipse (FIG. 6B) or the diameter, or the greatest distance through the wafer 20 (Figure 6C) for example. It is therefore found that the characteristic dimension corresponds to the largest dimension of the wafer 20, whatever its shape, even irregular.
La dimension caractéristique D de la lame 10 est par exemple sa hauteur dans le cas d'une lame très allongée, mais préférentiellement son diamètre ou sa diagonale (c'est-à-dire la plus grande dimension), et est de l'ordre de 10 mm, comme par exemple 50mm, voire plus.  The characteristic dimension D of the blade 10 is for example its height in the case of a very elongated blade, but preferably its diameter or its diagonal (that is to say the largest dimension), and is of the order 10 mm, such as 50mm or more.
Dans toutes les définitions de d, la dimension caractéristique d des plaquettes 20 est comprise entre 0.1 mm et 5 mm, préférentiellement entre 0.5 mm et 2 mm, pour faciliter la visualisation de l'image 4 par l'observateur 7.  In all the definitions of d, the characteristic dimension d of the plates 20 is between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm, to facilitate the visualization of the image 4 by the observer 7.
Le ratio entre la dimension d caractéristique des plaquettes 20 et la dimension D caractéristique de la lame 10 est compris entre 0,002 et 0,5, préférentiellement compris entre 0,01 et 0,2.  The ratio between the characteristic dimension of the platelets 20 and the dimension D characteristic of the plate 10 is between 0.002 and 0.5, preferably between 0.01 and 0.2.
De préférence, les plaquettes 20 sont planes et parallèles entre elles dans la lame 10, ce que montrent les figures 2 et 3.  Preferably, the plates 20 are flat and parallel to each other in the blade 10, as shown in FIGS. 2 and 3.
Les plaquettes 20 peuvent également être non planes, et présenter une courbure, pour que puisse leur être associée une puissance optique. Dans le cas de plaquettes non planes, les plaquettes 20 peuvent être non parallèles entre elles dans la lame 10, en fonction de la puissance optique souhaitée. Dans le cas de plaquettes non planes, les plaquettes n'interviennent plus uniquement comme miroirs mais participent à la collimation (renvoi à l'infini) de la source 2 d'images.  The wafers 20 may also be non-planar, and have a curvature, so that they can be associated with an optical power. In the case of non-flat plates, the plates 20 may be non-parallel to each other in the blade 10, depending on the desired optical power. In the case of non-flat platelets, platelets no longer intervene only as mirrors but participate in the collimation (endless reference) of the image source 2.
La densité de plaquettes 20 en surface dans la lame 10 est comprise entre 20% et 80%, et est préférentiellement de l'ordre de 50%.  The density of platelets 20 at the surface in the plate 10 is between 20% and 80%, and is preferably of the order of 50%.
Du point de vue de la photométrie, la source 2 doit avoir une luminance suffisante pour qu'après réflexion sur les plaquettes 20, les images 5 fournies à l'œil de l'observateur 7 soient plus lumineuses que l'image 4 de la scène vue au travers de la lame 10. Ceci dépend du coefficient de réflexion des plaquettes 20, ainsi que de leur surface relative à celle de la lame 10. From the point of view of photometry, the source 2 must have sufficient luminance so that after reflection on the wafers 20, the images 5 supplied to the eye of the observer 7 are brighter than the image 4 of the scene seen through the blade 10. This depends on reflection coefficient of the plates 20, as well as their surface relative to that of the blade 10.
Le taux de transmission des plaquettes 20 peut varier en fonction de leur position dans la lame 10. Par exemple, le taux de transmission des plaquettes 20 en fonction de leur localisation en Z dans la lame 10 peut également être homogène ou variable.  The platelet transmission rate may vary depending on their position in the blade 10. For example, the platelet transmission rate as a function of their Z location in the blade 10 may also be homogeneous or variable.
Comme le montre la figure 5, pour augmenter la surface relative des plaquettes 20 par rapport à celle de la lame 10, les plaquettes 20 sont réparties dans la lame 10 selon une ligne directrice 13 par rapport aux faces 1 1 et 12. Les plaquettes ne se masquent alors pas les unes les autres vis-à- vis des rayons de l'image 5.  As shown in FIG. 5, in order to increase the relative area of platelets 20 with respect to that of blade 10, platelets 20 are distributed in blade 10 along a line 13 with respect to faces 11 and 12. do not mask each other vis-à-vis the rays of the image 5.
La disposition des plaquettes 20 peut également être quelconque, c'est-à-dire pseudo-aléatoire dans la lame 10.  The arrangement of the platelets 20 can also be any, that is to say pseudo-random in the blade 10.
Par ailleurs, la répartition des plaquettes 20 peut aussi être homogène selon la dimension Z, ou varier selon un schéma prédéterminé (plus de plaquettes 20 en bas de la lame 10 par exemple qu'en haut de la lame 10, ou inversement).  Furthermore, the distribution of platelets 20 can also be homogeneous according to the Z dimension, or vary according to a predetermined pattern (more platelets 20 at the bottom of the blade 10, for example at the top of the blade 10, or vice versa).
Avec tous ces paramètres, on dispose d'un espace de placement de l'œil de l'observateur 7 défini sur la figure 3 par exemple par :  With all these parameters, there is a space for placing the eye of the observer 7 defined in FIG. 3 for example by:
- X en éloignement par rapport à la lame 10, correspondant à un tirage pupillaire, X étant de l'ordre de 10 à 40 mm  - X away from the blade 10, corresponding to a pupillaire draw, X being of the order of 10 to 40 mm
- H en tolérance sur la hauteur, de l'ordre de 30 à 60 mm, et  - H in tolerance on the height, of the order of 30 to 60 mm, and
- L sur la largeur, de l'ordre de 20 à 50 mm  - L on the width, of the order of 20 to 50 mm
qui est plus important que dans le cas de l'utilisation directe d'un oculaire, ce qui confère un avantage ergonomique au dispositif. Le domaine oculaire (volume dans lequel l'œil voit correctement l'image) permet ainsi une bonne visualisation de la scène et des images 5 même lorsque l'observateur court par exemple. Ceci est à comparer avec les 10 mm de diamètre environ d'anneau oculaire qu'offrent les oculaires classiques. which is more important than in the case of the direct use of an eyepiece, which confers an ergonomic advantage to the device. The ocular domain (volume in which the eye sees the image correctly) thus allows a good visualization of the scene and the images 5 even when the observer runs for example. This is to be compared with the approximately 10 mm diameter ocular ring offered by conventional eyepieces.
Optiquement, les deux modes de réalisation des figures 2 et 3 sont équivalents, et permettent de s'adapter selon l'application finale. Dans le mode de réalisation de la figure 2, le dispositif comporte en outre un miroir 6 d'injection. On comprend que l'inclinaison des plaquettes 20 par rapport aux faces 1 1 et 12 dépend de l'inclinaison de la source 2 et du miroir 6. Optically, the two embodiments of Figures 2 and 3 are equivalent, and can be adapted to the final application. In the embodiment of Figure 2, the device further comprises an injection mirror 6. It is understood that the inclination of the plates 20 with respect to the faces 1 1 and 12 depends on the inclination of the source 2 and the mirror 6.
De même, la lame 10 peut être inclinée ou parallèle par rapport à l'œil de l'observateur 7, en fonction des applications souhaitées.  Similarly, the blade 10 may be inclined or parallel to the eye of the observer 7, depending on the desired applications.
Les développements qui suivent concernent une mise en œuvre possible d'un procédé de fabrication d'un dispositif précité, en référence aux figures 4.  The following developments relate to a possible implementation of a method of manufacturing a device mentioned above, with reference to FIGS.
Comme le montre la figure 4A, une pluralité de picots 100 est placée sur l'une des faces 1 10 d'un bloc 101 réalisé dans un matériau optique transparent moulable de la famille des verres ou des plastiques.  As shown in Figure 4A, a plurality of pins 100 is placed on one of the faces 1 10 of a block 101 made of a transparent moldable optical material of the family of glasses or plastics.
Les picots 100 sont par exemple de section droite circulaire, et ont un diamètre compris entre 0.5 mm et 2 mm. D'autres formes sont possibles.  The pins 100 are for example of circular cross section, and have a diameter of between 0.5 mm and 2 mm. Other forms are possible.
Comme le montre la figure 4B, les picots 100 sont ensuite usinés, par exemple par usinage diamant, selon des plans parallèles faisant un angle constant avec la face 1 10 du bloc 101 et à des hauteurs h identiques ou différentes par rapport à la face 1 10, de façon à réaliser mécaniquement le champ de plaquettes 20. On comprend que si les picots 100 ont une section droite circulaire, les plaquettes 20 ont une forme elliptique.  As shown in FIG. 4B, the pins 100 are then machined, for example by diamond machining, in parallel planes forming a constant angle with the face 1 of the block 101 and at heights h which are identical or different with respect to the face 1. 10, so as to mechanically realize the platelet field 20. It is understood that if the pins 100 have a circular cross section, the plates 20 have an elliptical shape.
Un dépôt de couche mince totalement ou partiellement réfléchissante, éventuellement dichroïque, est ensuite appliqué par des techniques de dépôt sous vide couramment utilisées en optique sur les picots 100 afin de réaliser les plaquettes 20. Ceci doit se faire en protégeant la face 1 10 du bloc 101 situé à la base des picots 100 pour éviter de diminuer la transmission entre l'image de la scène et l'œil de l'observateur 7 par la présence du dépôt à cet endroit.  A totally or partially reflective thin layer deposit, possibly dichroic, is then applied by vacuum deposition techniques commonly used in optics on the pins 100 in order to make the plates 20. This must be done by protecting the face 1 10 of the block 101 located at the base of the pins 100 to avoid reducing the transmission between the image of the scene and the eye of the observer 7 by the presence of the deposit at this location.
Comme le montre la figure 4C, le bloc 101 est ensuite complété par un matériau optiquement transparent et polymérisable, de préférence à froid pour ne pas endommager les picots 100 (comme par exemple une colle), et d'indice très voisin du matériau du bloc 101 pour finir de réaliser la lame 10 à faces parallèles 1 1 et 12.  As shown in FIG. 4C, the block 101 is then completed by an optically transparent and polymerizable material, preferably cold so as not to damage the pins 100 (such as for example an adhesive), and with a very similar index of the material of the block. 101 to finish making the blade 10 with parallel faces 1 1 and 12.
Du fait que les indices des deux matériaux sont très proches, il n'y a pas de réflexion de Fresnel à la transition et on obtient alors une lame 10 à faces parallèles avec des plaquettes 20 noyées à l'intérieur du matériau. On rappelle qu'une variante de réalisation consiste à réaliser des plaquettes réfléchissantes non plus planes mais courbes, afin de créer une puissance optique. Dans ce cas les plaquettes n'interviennent plus uniquement comme miroirs mais participent à la collimation (renvoi à l'infini) de la source d'image. Des procédés de lithographie connus de l'homme du métier permettent de donner une courbure aux plaquettes 20. Since the indices of the two materials are very close, there is no Fresnel reflection at the transition and a parallel-sided plate 10 is then obtained with plates 20 embedded inside the material. It is recalled that an alternative embodiment consists in producing reflective plates that are no longer flat but curved in order to create optical power. In this case the plates no longer intervene only as mirrors but participate in the collimation (reference to infinity) of the image source. Lithography processes known to those skilled in the art make it possible to give the plates 20 a curvature.

Claims

REVENDICATIONS
1 . Dispositif (1 ) de visualisation d'images (5) superposées à une image (4) d'une scène environnante, comportant 1. An image viewing device (5) superimposed on an image (4) of a surrounding scene, comprising
- une lame (10) de combinaison constituée d'un matériau transparent à l'image (4) de la scène, et présentant deux faces (1 1 , 12) parallèles entre elles et une plus grande dimension (D), et a combination blade (10) made of a material transparent to the image (4) of the scene, and having two faces (1 1, 12) parallel to each other and a larger dimension (D), and
- des plaquettes (20) au moins semi-réfléchissantes aux images (5) à superposer à l'image (4) de la scène, disposées de façon inclinée par rapport aux faces (1 1 , 12) dans la lame (10), chaque plaquette (20) présentant une plus grande dimension (d),  platelets (20) at least semi-reflective to the images (5) to be superimposed on the image (4) of the scene, arranged inclined with respect to the faces (1 1, 12) in the blade (10), each wafer (20) having a larger dimension (d),
le dispositif étant caractérisé en ce que le ratio entre la plus grande dimension (d) des plaquettes (20) et la plus grande dimension (D) de la lame (10) est compris entre 0,002 et 0,5, de sorte que les plaquettes (20) ont une plus grande dimension (d) petite par rapport à une plus grande dimension (D) de la lame (10). the device being characterized in that the ratio between the largest dimension (d) of the platelets (20) and the largest dimension (D) of the blade (10) is between 0.002 and 0.5, so that the platelets (20) have a larger dimension (d) smaller than a larger dimension (D) of the blade (10).
2. Dispositif (1 ) selon la revendication 1 , dans lequel la plus grande dimension (d) des plaquettes (20) est comprise entre 0.1 mm et 5 mm, de préférence comprise entre 0.5 mm et 2 mm, le ratio entre la plus grande dimension (d) des plaquettes (20) et la plus grande dimension (D) de la lame (10) étant compris entre 0,01 et 0,20. 2. Device (1) according to claim 1, wherein the largest dimension (d) of the plates (20) is between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm, the ratio between the largest dimension (d) of the wafers (20) and the largest dimension (D) of the blade (10) being between 0.01 and 0.20.
3. Dispositif (1 ) selon l'une des revendications 1 ou 2, dans lequel la densité de plaquettes (20) en surface dans la lame (10) est comprise entre 20% et3. Device (1) according to one of claims 1 or 2, wherein the density of platelets (20) at the surface in the blade (10) is between 20% and
80%, et est préférentiellement de l'ordre de 50%. 80%, and is preferably of the order of 50%.
4. Dispositif (1 ) selon l'une des revendications 1 à 3, dans lequel les plaquettes sont planes et parallèles entre elles. 4. Device (1) according to one of claims 1 to 3, wherein the platelets are flat and parallel to each other.
5. Dispositif (1 ) selon l'une des revendications 1 à 3, dans lequel chaque plaquette (20) présente une courbure. 5. Device (1) according to one of claims 1 to 3, wherein each wafer (20) has a curvature.
6. Dispositif (1 ) selon l'une des revendications 1 à 5, dans lequel les plaquettes (20) sont réparties dans la lame (10) selon une ligne directrice (13) par rapport aux faces (1 1 , 12). 6. Device (1) according to one of claims 1 to 5, wherein the plates (20) are distributed in the blade (10) in a direction line (13) relative to the faces (1 1, 12).
7. Dispositif (1 ) selon l'une des revendications 1 à 6, dans lequel le taux de transmission des plaquettes varie en fonction de leur position dans la lame (10). 7. Device (1) according to one of claims 1 to 6, wherein the platelet transmission rate varies according to their position in the blade (10).
8. Dispositif (1 ) selon l'une des revendications 1 à 7, comportant en outre un miroir (6) d'injection. 8. Device (1) according to one of claims 1 to 7, further comprising a mirror (6) of injection.
9. Procédé de fabrication d'un dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte les étapes selon lesquelles : 9. A method of manufacturing a device according to one of claims 1 to 8, characterized in that it comprises the steps according to which:
- on assemble une pluralité de picots (100) sur l'une des faces d'un bloc (101 ) réalisé dans un matériau optique moulable transparent, de la famille des verres ou des plastiques ;  - A plurality of pins (100) is assembled on one of the faces of a block (101) made of a transparent moldable optical material, of the family of glasses or plastics;
- on forme l'extrémité des picots (100) de façon à réaliser les plaquettes (20) ;  the tips of the pins (100) are formed so as to form the plates (20);
- on traite les plaquettes (20) en protégeant la face (1 10) du bloc (101 ) ;  the platelets (20) are treated while protecting the face (1 10) of the block (101);
- on complète le bloc (101 ) par un matériau optiquement transparent et polymérisable d'indice très voisin du matériau du bloc (101 ) pour finir de réaliser la lame (10) à faces parallèles (1 1 , 12).  the block (101) is completed by an optically transparent and polymerizable material of index very close to the material of the block (101) to finish making the blade (10) with parallel faces (1 1, 12).
10. Procédé selon la revendication 9, comportant une étape de lithographie pour donner une courbure aux plaquettes (20). The method of claim 9, including a lithography step for curving the wafers (20).
PCT/EP2010/067428 2009-11-16 2010-11-15 Device for displaying images stacked over an image of a surrounding scene, and associated manufacturing method WO2011058156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958065 2009-11-16
FR0958065A FR2952728B1 (en) 2009-11-16 2009-11-16 DEVICE FOR VISUALIZING IMAGES SUPERIMPOSED TO AN IMAGE OF AN ENVIRONMENTAL SCENE, AND METHOD OF MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
WO2011058156A1 true WO2011058156A1 (en) 2011-05-19

Family

ID=42173786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067428 WO2011058156A1 (en) 2009-11-16 2010-11-15 Device for displaying images stacked over an image of a surrounding scene, and associated manufacturing method

Country Status (2)

Country Link
FR (1) FR2952728B1 (en)
WO (1) WO2011058156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206785A4 (en) * 2020-09-09 2024-03-20 Letinar Co Ltd Optical device for augmented reality, having optical structure arranged in straight line, and method for manufacturing optical means

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936605A (en) * 1972-02-14 1976-02-03 Textron, Inc. Eyeglass mounted visual display
US4099841A (en) * 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
WO1996005533A1 (en) * 1994-08-10 1996-02-22 Lawrence Vandewalle Method and apparatus for direct retinal projection
WO2001027685A2 (en) 1999-10-14 2001-04-19 Stratos Product Development Company Llc Virtual imaging system
US6356392B1 (en) * 1996-10-08 2002-03-12 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
WO2003016032A1 (en) * 2001-08-14 2003-02-27 Essilor International (Compagnie Generale D'optique) Process for moulding a lens having an insert
WO2006085309A1 (en) * 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
US20070008624A1 (en) 2004-03-12 2007-01-11 Nikon Corporation Optical image display system and image display unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936605A (en) * 1972-02-14 1976-02-03 Textron, Inc. Eyeglass mounted visual display
US4099841A (en) * 1976-06-30 1978-07-11 Elliott Brothers (London) Limited Head up displays using optical combiner with three or more partially reflective films
WO1996005533A1 (en) * 1994-08-10 1996-02-22 Lawrence Vandewalle Method and apparatus for direct retinal projection
US6356392B1 (en) * 1996-10-08 2002-03-12 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
WO2001027685A2 (en) 1999-10-14 2001-04-19 Stratos Product Development Company Llc Virtual imaging system
WO2003016032A1 (en) * 2001-08-14 2003-02-27 Essilor International (Compagnie Generale D'optique) Process for moulding a lens having an insert
US20070008624A1 (en) 2004-03-12 2007-01-11 Nikon Corporation Optical image display system and image display unit
WO2006085309A1 (en) * 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206785A4 (en) * 2020-09-09 2024-03-20 Letinar Co Ltd Optical device for augmented reality, having optical structure arranged in straight line, and method for manufacturing optical means

Also Published As

Publication number Publication date
FR2952728B1 (en) 2012-06-15
FR2952728A1 (en) 2011-05-20

Similar Documents

Publication Publication Date Title
EP2695017B1 (en) Optical light guiding device and method of manufacturing the device
EP3074809B1 (en) Device for extending the exit pupil and head up display comprising said device
EP3203316B1 (en) System for displaying an image on a windscreen
EP3063468B1 (en) Optical guide suitable for creating two luminous imprints
EP3185051B1 (en) Printed optical members
EP2277074B1 (en) Informative eyeglasses
EP3215884B1 (en) Head-mounted display with crossed optics
EP2960715B1 (en) Device for projecting an image
FR2948775A1 (en) PLANAR OPTICAL POLYCHROMATIC IMAGING SYSTEM WITH BROAD FIELD OF VISION
EP3470728A1 (en) Light module for a motor vehicle
WO2011058156A1 (en) Device for displaying images stacked over an image of a surrounding scene, and associated manufacturing method
CA2870922A1 (en) Compact head-up display having a large exit pupil
FR3065818A1 (en) LUMINOUS MODULE FOR A CONFIGURED MOTOR VEHICLE FOR PROJECTING A LIGHT BEAM FORMING A PIXELIZED IMAGE
EP4067950A1 (en) Optical guide and corresponding manufacturing method
EP2990867A1 (en) Screen and device for back-projection display
WO2017191053A1 (en) Device for generating a multicolour image and heads-up display including such a device
EP3452865A1 (en) Device for generating images and head-up display including such a device
FR2858068A1 (en) Head-up display visor has image source comprising imager, optical projection and diffusing screen
WO2016162632A1 (en) System for displaying a floating image
FR3091931A1 (en) Motor vehicle display device
EP2808724A1 (en) Display assembly of the augmented-reality type
EP3017333B1 (en) Head-up display
EP2808734B1 (en) Screen and device for back-projection display
FR2769994A1 (en) Image distortion correction mechanism for aircraft helmet displays
FR3004816A1 (en) IMAGE GENERATOR FOR DISPLAY, IN PARTICULAR HIGH HEAD DISPLAY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10776718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10776718

Country of ref document: EP

Kind code of ref document: A1