WO2011048278A1 - Stereoscopic vision by wearing a polarized glass - Google Patents

Stereoscopic vision by wearing a polarized glass Download PDF

Info

Publication number
WO2011048278A1
WO2011048278A1 PCT/FR2009/001242 FR2009001242W WO2011048278A1 WO 2011048278 A1 WO2011048278 A1 WO 2011048278A1 FR 2009001242 W FR2009001242 W FR 2009001242W WO 2011048278 A1 WO2011048278 A1 WO 2011048278A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
vision
glass
polarized
polarization
Prior art date
Application number
PCT/FR2009/001242
Other languages
French (fr)
Inventor
François SCHABANEL
Gwenael Le Goff
Claude Annie Perrichon
François Giry
Plerre Piccaluga
Original Assignee
Schabanel Francois
Gwenael Le Goff
Claude Annie Perrichon
Giry Francois
Plerre Piccaluga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schabanel Francois, Gwenael Le Goff, Claude Annie Perrichon, Giry Francois, Plerre Piccaluga filed Critical Schabanel Francois
Priority to PCT/FR2009/001242 priority Critical patent/WO2011048278A1/en
Publication of WO2011048278A1 publication Critical patent/WO2011048278A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present patent application is a novelty by the simplification of implementation, which can be used also in direct vision, in the street, in the case of aircraft control, or in the automobile, thus allowing to have, in difficult conditions of fog or nightfall, a correct vision and more realistic on the accentuated relief, or become visible again. Indeed, special conditions sometimes suppress the perspective of vision, when the air is saturated with moisture, for example. This is the case of airmen who land on aircraft carriers where the distinction of bridge and water is impossible. For people with poor vision, or wearing glasses, correction is highly appreciated. We go beyond the scope of image reproduction and actually implement a useful correction of the direct vision, according to the conditions of visibilities, or climatic, or altered personal physiology.
  • the set of systems makes it possible to measure and identify the leaking through both eyes, which inform the optic nerves.
  • the light information which is electromagnetic radiation
  • light waves of different colors are wave trains identified by categories in phase or out of phase, which allows the sensitivity and perception of distances reinforced.
  • the damping of the information determines the optical distances where the fugitives end up getting confused, the relief is lost.
  • the directing eye corresponds to this physiological state of the intention of the gaze which is established naturally, according to each individual.
  • Contact lenses with a polarized contact lens allow the same effect as adding a polarized lens, thus avoiding the wearing of more bulky glasses.
  • the present method is to provide a device for direct vision, which increases the sensory perception of different lightwave trains, by at least placing a polarized lens, or a contact lens on an eye which is enough to excite the attention of the brain. Indeed, the phase differences read are different between the free eye and the eye receiving polarized light. There are, indeed, for the same image several types of information additional to the normal direct vision of the two eyes.
  • the polarization can be done by a chromatic treatment of different shades applied on the glass or the lens which sort the differences in wavelength, which fulfills the conditions to strengthen and select the light rays, without the disadvantages of polarization which with some screens also polarized, gives a very dark vision.
  • the apparatus, FIG. 1, as a nonlimiting example of embodiment of the method, is a pair of spectacles (1) provided with a completely transparent glass (2) without any correction, and the other lens (3) is polarized, but as transparent as possible, without coloration.
  • the glasses may also undergo color filtering treatments, such as sunglasses and / or adopt eye-sighting specific correctives adapted by its view. It is obvious that the polarized lens is rather directed to the directing eye, which, in general, does not generate fatigue.

Abstract

Said sensory reactivity of a raised pattern is natural and only needs to be revealed by means of comparison. Accordingly, a single polarized glass lens over an eye enables reading and the attention of the brain to be heightened. The second eye, either the right or left, in this case, depends on the person and his or her visual acuity; however the dominant eye generally takes precedence. The dominant eye corresponds to said physiological state aimed at the eyes, which is established naturally for each individual. Contact lenses having one polarized contact lens enable the same effect as the addition of a polarized glass, avoiding more cumbersome eyeglasses from being worn. The present method consists in putting an apparatus into place which relates to direct vision, thereby increasing the sensory perception of the various trains of light waves, by means of installing at least one polarized glass, or a contact lens over one eye, which suffices to further arouse the attention of the brain. The polarization can be produced by means of a chromatic treatment of the various tints applied to the glass or lens, which sort the differences in wavelength, thereby meeting the requirements of strengthening and selecting the light rays, without the disadvantages of polarization which, with some likewise polarized screens, provide very dark vision.

Description

VISION EN RELIEF PAR PORT DE VERRE POLARISE  VISION IN RELIEF BY PORT OF GLASS POLARIZED
Dans la vision normale, la trois dimension est naturelle par l'éloignement des objets. Dans la reproduction d'image, un seul plan porte tous les objets et la vision trois dimension est perdue, les fuyantes de la perspective naturelle sont absentes. Une hyper définition s'impose sur la reproduction d'image, mais le relief n'est pas au rendez-vous. Plusieurs systèmes de compensation optique existent, notamment le port de lunettes, ou de verres colorés et polarisés. Ces cas d'usage sont réalisés pour la vision de films en relief. Des multi-projections par plusieurs projecteurs existent également. Nous sommes dans les cas de reproduction d'images. La présente demande de brevet constitue une nouveauté par la simplification de mise en oeuvre, qui peut être utilisée aussi dans la vision directe, dans la rue, dans le cas de pilotage d'avions, ou en automobile, permettant ainsi d'avoir, dans des conditions difficiles de brouillard ou de tombée de la nuit, une vision correcte et des plus réalistes sur le relief accentué, ou redevenu visible. En effet, les conditions particulières suppriment parfois la perspective de la vision, quand l'air est saturé d'humidité, par exemple. C'est le cas des aviateurs qui appontent sur les porte-avions où la distinction du pont et des eaux est impossible. Pour les gens atteints d'une mauvaise vision, ou portant des lunettes, la correction est fortement appréciée. Nous sortons du cadre de la reproduction d'image et mettons en oeuvre en fait une correction utile de la vision directe, suivant les conditions de visibilités, ou climatiques, ou de physiologie personnelle altérée. Ainsi proposé, nous corrigeons toutes les visions quelque soit la reproduction d'image, au cinéma, en télévision, ou en externe de la vision directe de façon naturelle. Les conditions de la vision sont réalisées par différents opérateurs qui sont les deux yeux, le cerveau, et les objets vus. Il y a donc quatre facteurs essentiels, sans compter les lunettes de correction pour ceux qui en ont besoin. L'ensemble des systèmes permet de mesurer et d'identifier les fuyantes par les deux yeux, qui informent les nerfs optiques. Les informations lumineuses, qui sont des rayons électromagnétiques, des ondes lumineuses, de couleurs différentes sont des trains d'ondes identifiés par catégories en phases ou en déphasage, ce qui permet la sensibilité et la perception des distances renforcée. Les amortissements des informations déterminent les distances optiques où les fuyantes finissent par se confondre, le relief est perdu. Dans un premier cas, nous ne considérons pas les couleurs ni leurs incidences, mais nous mettons en évidence une hyper sélection des trains d'ondes que nous révélons par l'usage d'un verre polarisé pour un des deux yeux. Le cerveau, lui, une fois cette information révélée va automatiquement changer sa vitesse de balayage, c'est à dire, la résolution de vision par un seul œil, sera plus précise comme s'il y avait une attention plus forte plus précise, comme quand on y met une intention plus dense. Cette réactivité sensorielle est naturelle et nécessite seulement une mise en évidence par comparaison. De ce fait, une seule lentille verre polarisé sur un œil permet de lire et de monter l'attention du cerveau. Le deuxième œil, indifféremment droit ou gauche, et, en ce cas, cela dépend de la personne et de son acuité visuelle, le port sur l'œil directeur s'impose en général. L'œil directeur correspond à cet état physiologique de l'intention du regard qui s'établit naturellement, suivant chaque individu. Des lentilles de contact avec une lentille de contact polarisée permettent le même effet que adjonction d'un verre polarisé, évitant alors le port de lunettes plus encombrantes. Le présent procédé est de mettre en place un appareil traitant la vision directe, qui augmente la perception sensorielle des différents trains d'ondes lumineuses, par au moins la mise en place d'un verre polarisé, ou une lentille de contact sur un œil qui suffit à exciter davantage l'attention du cerveau. En effet, les écarts de phases lus sont différents entre l'œil libre et l'œil recevant la lumière polarisée. Il y a, en effet, pour une même image plusieurs types d'informations supplémentaires à la vision directe normale des deux yeux. C'est donc un apport d'hyper sensibilité visuelle capté par un des deux yeux qui est amené au cerveau, donc, un balayage d'informations de la lumière plus important qui augmente la définition de perception, sa lecture et son interprétation. Si l'on utilise pour chaque œil un verre polarisé, suivant l'angle relatif utilisé, on augmente les effets mais on perd la qualité des couleurs, cependant la vision générale est altérée mais l'effet des distances est maintenu. Le cerveau ne mesure et ne constate que les valeurs différentielles, mais il ne faut pas tomber dans les excès, sauf si nécessités techniques ou d'usages sont requises. Avec un seul verre polarisant, c'est un apport d'information tout en gardant la vision globale naturelle de référence directe. Pour les paires de lunettes, et par logique souci d'esthétique, l'autre verre est neutre, sans aucune modification optique. La polarisation peut se faire par un traitement chromatique de différentes teintes appliquées sur le verre ou la lentille qui trient les différences de longueur d'onde, ce qui remplit les conditions de renforcer et de sélectionner les rayons lumineux, sans les inconvénients de la polarisation qui avec certains écrans également polarisés, donne une vision très sombre. L'appareil, Fig.1 , en exemple non limitatif de réalisation du procédé, est une paire de lunettes (1) muni d'un verre (2) totalement transparent sans aucune correction, et l'autre verre (3) est polarisé, mais le plus transparent possible, sans coloration. Les verres peuvent également subir des traitements de filtrage de couleurs, comme des lunettes de soleil et/ou adopter les corrections de vue spécifiques au porteur de lunettes adaptées par sa vue. Il est évident que le verre polarisé s'adresse plutôt à l'œil directeur, ce qui, en général, ne génère pas de fatigue. In normal vision, the three dimensions are natural by the distance of objects. In image reproduction, a single plane carries all the objects and the three dimensional vision is lost, the evasions of the natural perspective are absent. A hyper definition is needed on the image reproduction, but the relief is not at the rendezvous. Several optical compensation systems exist, including the wearing of glasses, or colored and polarized glasses. These use cases are made for the vision of relief films. Multi-projections by multiple projectors also exist. We are in the case of image reproduction. The present patent application is a novelty by the simplification of implementation, which can be used also in direct vision, in the street, in the case of aircraft control, or in the automobile, thus allowing to have, in difficult conditions of fog or nightfall, a correct vision and more realistic on the accentuated relief, or become visible again. Indeed, special conditions sometimes suppress the perspective of vision, when the air is saturated with moisture, for example. This is the case of airmen who land on aircraft carriers where the distinction of bridge and water is impossible. For people with poor vision, or wearing glasses, correction is highly appreciated. We go beyond the scope of image reproduction and actually implement a useful correction of the direct vision, according to the conditions of visibilities, or climatic, or altered personal physiology. Thus proposed, we correct all the visions whatever the image reproduction, in the cinema, in television, or externally of the direct vision of natural way. The conditions of vision are realized by different operators who are the two eyes, the brain, and the objects seen. So there are four essential factors, not to mention corrective glasses for those who need them. The set of systems makes it possible to measure and identify the leaking through both eyes, which inform the optic nerves. The light information, which is electromagnetic radiation, light waves of different colors are wave trains identified by categories in phase or out of phase, which allows the sensitivity and perception of distances reinforced. The damping of the information determines the optical distances where the fugitives end up getting confused, the relief is lost. In the first case, we do not consider the colors or their effects, but we highlight a hyper selection of wave trains that we reveal by using a polarized lens for one of the two eyes. The brain, once revealed this information will automatically change its scanning speed, ie, the resolution of vision by one eye, will be more precise as if there was attention stronger more precise, as when one puts a more dense intention. This sensory reactivity is natural and only needs to be highlighted by comparison. As a result, a single polarized glass lens on one eye can read and raise the brain's attention. The second eye, indifferently right or left, and in this case, it depends on the person and his visual acuity, the port on the directing eye is needed in general. The directing eye corresponds to this physiological state of the intention of the gaze which is established naturally, according to each individual. Contact lenses with a polarized contact lens allow the same effect as adding a polarized lens, thus avoiding the wearing of more bulky glasses. The present method is to provide a device for direct vision, which increases the sensory perception of different lightwave trains, by at least placing a polarized lens, or a contact lens on an eye which is enough to excite the attention of the brain. Indeed, the phase differences read are different between the free eye and the eye receiving polarized light. There are, indeed, for the same image several types of information additional to the normal direct vision of the two eyes. It is therefore a contribution of hyper-visual sensitivity captured by one of the two eyes that is brought to the brain, thus, a scan of information of the more important light which increases the definition of perception, its reading and its interpretation. If one uses a polarized lens for each eye, according to the relative angle used, one increases the effects but one loses the quality of the colors, however the general vision is altered but the effect of the distances is maintained. The brain only measures and observes the differential values, but one must not fall into the excesses, unless technical necessities or uses are required. With a single polarizing lens, it is a contribution of information while keeping the natural global vision of direct reference. For the pairs of glasses, and by logic concern of aesthetics, the other glass is neutral, without any optical modification. The polarization can be done by a chromatic treatment of different shades applied on the glass or the lens which sort the differences in wavelength, which fulfills the conditions to strengthen and select the light rays, without the disadvantages of polarization which with some screens also polarized, gives a very dark vision. The apparatus, FIG. 1, as a nonlimiting example of embodiment of the method, is a pair of spectacles (1) provided with a completely transparent glass (2) without any correction, and the other lens (3) is polarized, but as transparent as possible, without coloration. The glasses may also undergo color filtering treatments, such as sunglasses and / or adopt eye-sighting specific correctives adapted by its view. It is obvious that the polarized lens is rather directed to the directing eye, which, in general, does not generate fatigue.

Claims

REVENDICATIONS
- Procédé pour augmenter la vision du relief par au moins un verre polarisé pour l'un des deux yeux, un oeil pour capter et apporter l'information au cerveau, qui reçoit des informations supplémentaires différentielles de l'information globale, afin d'obtenir la vision en relief dans la reproduction d'image, tout comme en condition de vision naturelle non altérée, ou renforcée.  - Method for increasing the vision of the relief by at least one polarized lens for one of the two eyes, an eye for capturing and supplying the information to the brain, which receives additional differential information from the overall information, in order to obtain relief vision in image reproduction, as well as in unaltered or enhanced natural vision condition.
2° - Appareil qui est une paire de lunettes dont un seul verre apporte une polarisation très fine de l'image perçue, afin d'augmenter de renforcer la vision en relief dans des conditions difficiles de visibilité tel que brouillard ou en condition de la reproduction d'image ; l'autre verre, par souci d'esthétique, reste neutre, sans aucune modification optique.  2 ° - Apparatus which is a pair of glasses of which only one glass brings a very fine polarization of the perceived image, in order to increase to strengthen the vision in relief in difficult conditions of visibility such as fog or in condition of the reproduction image; the other glass, for aesthetic reasons, remains neutral, without any optical modification.
3°- Appareil, suivant la revendication 2, qui est caractérisé par le fait que le verre est une lentille de contact, souple ou rigide, appliquée directement sur l'œil.  3 ° - Apparatus according to claim 2, which is characterized in that the glass is a contact lens, flexible or rigid, applied directly to the eye.
4°- Appareil, suivant la revendication 2, caractérisé par le fait que la polarisation peut se faire par un traitement chromatique de différentes teintes qui trient les différences de longueurs d'ondes, ce qui remplit les conditions de renforcer et de sélectionner les rayons lumineux. 4 ° - Apparatus according to claim 2, characterized in that the polarization can be done by a color treatment of different shades that sort the differences in wavelengths, which meets the conditions to strengthen and select the light rays .
5°- Appareil suivant la revendication 2 ou 3 ou 4 ou 2 et 3 et 4, caractérisé par un traitement pour le filtrage des couleurs, comme les lunettes de soleil, par exemple.  5 ° - Apparatus according to claim 2 or 3 or 4 or 2 and 3 and 4, characterized by a treatment for filtering colors, such as sunglasses, for example.
PCT/FR2009/001242 2009-10-23 2009-10-23 Stereoscopic vision by wearing a polarized glass WO2011048278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/001242 WO2011048278A1 (en) 2009-10-23 2009-10-23 Stereoscopic vision by wearing a polarized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/001242 WO2011048278A1 (en) 2009-10-23 2009-10-23 Stereoscopic vision by wearing a polarized glass

Publications (1)

Publication Number Publication Date
WO2011048278A1 true WO2011048278A1 (en) 2011-04-28

Family

ID=42224143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001242 WO2011048278A1 (en) 2009-10-23 2009-10-23 Stereoscopic vision by wearing a polarized glass

Country Status (1)

Country Link
WO (1) WO2011048278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060654A1 (en) * 2012-10-18 2014-04-24 Schabanel François Direct reading of the sensory envelope in three dimensions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414476A (en) * 1993-04-26 1995-05-09 Pavelle; Richard Ophthalmic device using a single linearly polarizing element
WO2000029898A1 (en) * 1998-11-18 2000-05-25 Paul Rolf Preussner Ski goggles for improving spatial orientation
US20050099588A1 (en) * 2003-05-28 2005-05-12 Helpern Joseph A. Lens arrangements that are polarized and oriented for glare reduction and enhanced visualization of light emitted by liquid crystal displays
FR2868554A1 (en) * 2004-04-02 2005-10-07 Essilor Int TRANSPARENT AND POLARIZING VISION ELEMENT HAVING A ZONE ASSOCIATED WITH AN OBLIQUE-ORIENTED POLARIZATION FILTER
EP1884819A1 (en) * 2006-08-02 2008-02-06 Swiss Medical Technology GmbH Eyewear with segmented look-through elements
US20090213459A1 (en) * 2008-02-04 2009-08-27 Washington, University Of Contact lens for three dimensional visualization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414476A (en) * 1993-04-26 1995-05-09 Pavelle; Richard Ophthalmic device using a single linearly polarizing element
WO2000029898A1 (en) * 1998-11-18 2000-05-25 Paul Rolf Preussner Ski goggles for improving spatial orientation
US20050099588A1 (en) * 2003-05-28 2005-05-12 Helpern Joseph A. Lens arrangements that are polarized and oriented for glare reduction and enhanced visualization of light emitted by liquid crystal displays
FR2868554A1 (en) * 2004-04-02 2005-10-07 Essilor Int TRANSPARENT AND POLARIZING VISION ELEMENT HAVING A ZONE ASSOCIATED WITH AN OBLIQUE-ORIENTED POLARIZATION FILTER
EP1884819A1 (en) * 2006-08-02 2008-02-06 Swiss Medical Technology GmbH Eyewear with segmented look-through elements
US20090213459A1 (en) * 2008-02-04 2009-08-27 Washington, University Of Contact lens for three dimensional visualization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060654A1 (en) * 2012-10-18 2014-04-24 Schabanel François Direct reading of the sensory envelope in three dimensions
WO2014060652A1 (en) * 2012-10-18 2014-04-24 Schabanel François Electronic control of images for three-dimensional vision
WO2014060653A1 (en) * 2012-10-18 2014-04-24 Schabanel François Three-dimensional vision for a monoprojector or monocamera

Similar Documents

Publication Publication Date Title
JP7074478B2 (en) Methods and systems for augmented reality
JP7300996B2 (en) Ocular imaging device using diffractive optical elements
KR102309257B1 (en) Methods and systems for augmented reality
US10642044B2 (en) Near-eye display system having a pellicle as a combiner
JP3429320B2 (en) Image combining system for eyeglasses and face mask
CN107015362B (en) Head-mounted display device
TWI641868B (en) Head-mounted display device with vision correction function
EP3270208B1 (en) Method for supplying a display device for an electronic information device
JP7269326B2 (en) System and method for ambient light management
CA2560679A1 (en) Transparent and polarizing vision element having areas which are associated with polarization filters that are respectively vertically and horizontally oriented
WO2021149423A1 (en) Display device
CA2932485A1 (en) Device and method for measuring subjective refraction
FR2985323A1 (en) VISION EQUIPMENT IN INCREASED REALITY COMPRISING A MASK
Guillaumée et al. Curved holographic combiner for color head worn display
WO2011048278A1 (en) Stereoscopic vision by wearing a polarized glass
FR2985322A1 (en) VISION EQUIPMENT IN INCREASED REALITY WITH A SELF-ADAPTIVE STRUCTURE FOR SETTING UP SOMEONE OF THE HEAD MORPHOLOGY OF THE USER
EP2866750B1 (en) Device for viewing and for protection against optical radiation and solid or liquid spray
EP1544661A1 (en) Optical apparatus
WO2001011398A1 (en) Optical system for increasing contrast of object viewed through it
US20140313556A1 (en) Portable augmented vision device
US20210141245A1 (en) Eyewear having polarizers
FR3026852A1 (en) SEMI-TRANSPARENT SCREEN DISPLAY SYSTEM SHARED BY TWO OBSERVERS
WO1991008506A1 (en) Stenopaic spectacles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09805715

Country of ref document: EP

Kind code of ref document: A1