WO2003091683A1 - Displacement based pressure sensor measuring unsteady pressure in a pipe - Google Patents

Displacement based pressure sensor measuring unsteady pressure in a pipe Download PDF

Info

Publication number
WO2003091683A1
WO2003091683A1 PCT/GB2002/001893 GB0201893W WO03091683A1 WO 2003091683 A1 WO2003091683 A1 WO 2003091683A1 GB 0201893 W GB0201893 W GB 0201893W WO 03091683 A1 WO03091683 A1 WO 03091683A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
displacement
pressure
sensor
unsteady
Prior art date
Application number
PCT/GB2002/001893
Other languages
French (fr)
Inventor
Daniel L. Gysling
Original Assignee
Weatherford/Lamb, Inc.
Asquith, Julian, Peter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weatherford/Lamb, Inc., Asquith, Julian, Peter filed Critical Weatherford/Lamb, Inc.
Priority to PCT/GB2002/001893 priority Critical patent/WO2003091683A1/en
Priority to AU2002249456A priority patent/AU2002249456A1/en
Publication of WO2003091683A1 publication Critical patent/WO2003091683A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means

Definitions

  • This invention relates to sensing pressure in pipes and more particularly to a non-intrusive displacement based pressure sensor for measuring pressures of a medium within pipes.
  • Objects of the present invention include provision of a non-intrusive pressure sensor for measuring unsteady pressure in pipes.
  • a pressure sensor for measuring unsteady pressure in at least one axial location along a pipe comprises a displacement based sensor disposed on a surface of the pipe.
  • the surface of the pipe provides a radial displacement response to the unsteady pressures within the pipe and the displacement-based sensors measure the magnitude of the response and provide a signal proportional to the unsteady pressure.
  • the displacement based sensor may measure the acceleration, velocity or displacement of the surface of the pipe in response to the unsteady pressure.
  • a signal processor provides a signal indicative of the unsteady pressure.
  • the present invention provides a significant improvement over the prior art by providing a non-intrusive pressure sensor for the measurement of unsteady (ac or dynamic) pressure in a fluid within a pipe using displacement based sensors.
  • the present invention enables real time pressure measurement for oil and gas exploration and production or for other applications where a fluid (liquid or gas) is flowing in a pipe or conduit.
  • Fig. 1 is a side view of a displacement based pressure sensor disposed on a pipe, in accordance with the present invention
  • Fig. 2 is a cross-sectional end view of a pipe and a pressure sensor showing inside pressure Pin and outside pressures Pout, in accordance with the present invention
  • Fig. 3 is a side view of a displacement based pressure sensor disposed on a pipe showing a charge amplifier, in accordance with the present invention
  • Fig. 4 is a side view of a displacement based pressure sensor disposed on a pipe showing a signal processor, in accordance with the present invention
  • Fig. 5 is a side view of a pipe with a plurality of displacement based pressure sensors disposed at different axial positions along the pipe, in accordance with the present invention
  • Fig. 6 is an end view of a pipe with a plurality of displacement based pressure sensors disposed around the circumference of the pipe, in accordance with the present invention.
  • a pipe (or conduit) 12 is provided with a non-intrusive displacement based pressure sensors 14 disposed on pipe 12.
  • Displacement based pressure sensor 14 may comprise an accelerometer, a velocity measuring device or a direct displacement measuring device capable of sensing unsteady pressures within a moving fluid in pipe 12 as will be more fully described hereinafter.
  • the pressure sensor 14 measures the physical response of wall 62 in the radial direction represented by arrows 60. The pipe wall displaces radially due to elastic expansion and contraction of the diameter of the pipe 12 in response to internal pressure P, n changes, as indicated by the arrows 60.
  • the magnitude of displacement in the radial direction 60 is determined by the hoop strength of the pipe 12, the internal pressure P ⁇ n , the external pressure P out outside the pipe 12, the thickness Tw of the pipe wall 62, and the rigidity or modulus of the pipe material.
  • the pipe responds in the radial direction, which causes the pressure sensor 14 to output a signal proportional to the response and the magnitude of the pressure change.
  • Displacement based sensor 14 may comprises a uni-axial type sensor or a multi- axis type sensor. In order to optimize the sensitivity of the sensor, one of the measurement axes of the sensor should be closely aligned with the radial response of the pipe 12 in the direction indicated by arrows 60.
  • the pressure sensor may measure the unsteady (or dynamic or ac) pressure variations P ⁇ n inside the pipe 12 by measuring the acceleration of the surface of pipe 12 in a radial direction, as represented by arrows 60.
  • the acceleration of the surface of pipe 12 is measured at the location of the accelerometer 14 as the internal pressure P ⁇ n changes, and thus measures the local elastic dynamic response of the wall 62 of the pipe.
  • Sensor 14 outputs a signal on line 40 which is proportional to the magnitude of the ac pressure sensed within pipe 12 as will be discussed more fully herein below.
  • the magnitude of the acceleration response of pipe wall 62 is variously dependent upon the hoop strength of the pipe 12, the internal pressure P ⁇ r ⁇ , the external pressure P out outside the pipe 12, the thickness T w of the pipe wall 62, and the rigidity or modulus of the pipe material.
  • the thickness of the pipe wall 62 and the pipe material in the sensor location may be set based on the desired sensitivity of the sensor and other factors and may be different from the wall thickness or material of the pipe 12 outside the sensor mounting region.
  • Accelerometer 14 may comprise any known form of accelerometer including a bonded or an unbonded strain gage accelerometer, a semiconductor strain gage accelerometer, a liquid damped differential-transformer accelerometer, a piezoelectric accelerometer, a geophone, etc.
  • accelerometer 14 may be of the deflection type or null-balance type. With reference to Fig. 3, accelerometer 14 may comprise a high impedance device, requiring an external charge amplifier 30 within line 40 or may comprise a low impedance device that does not require further amplification.
  • a pressure sensing system 1 including pressure sensor 14, line 40 and signal processor 50 to convert the output signal of the sensor as described hereinabove.
  • an output signal is generated on line 40 that is directly proportional to the unsteady pressure within pipe 12.
  • Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51.
  • some or all of the functions within the signal processor 50 may be implemented in software (using a microprocessor or computer) and/or firmware, or may be implemented using analog and/or digital hardware, having sufficient memory, interfaces, and capacity to perform the functions described herein.
  • signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12. Velocity or displacement information may be obtained through known integration techniques performed on the acceleration information provided by accelerometer 14.
  • pressure sensor 14 may comprise an absolute displacement pickup which measures the vibratory displacement of pipe wall 62 directly in response to unsteady pressure within the pipe 12. Similar to that described herein above with respect to accelerometers, the displacement sensor 14 outputs a signal on line 40 that is directly proportional to the unsteady pressure within pipe 12. Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51. For instance, signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12. In this particular embodiment, the displacement having been measured directly, acceleration or velocity information may be obtained through known differential techniques.
  • pressure sensor 14 may comprise an absolute velocity pickup which measures the velocity of the displacement of pipe wall 62 directly in response to unsteady pressure within the pipe 12. Similar to that described herein above with respect to accelerometers, the displacement sensor 14 outputs a signal on line 40 that is directly proportional to the unsteady pressure within pipe 12.
  • Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51. For instance, signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12.
  • the velocity having been measured directly, acceleration or information may be obtained through known differential techniques and displacement information may be obtained through known integration techniques performed. Referring to Fig.
  • the present invention further includes a plurality of displacement based pressure sensors 14-18 disposed on pipe 12 as shown.
  • the array 38 of sensors 14-18 measure the local unsteady pressures at various axial positions along pipe 12 and output signals proportional to the pressures P1-P5 on lines 40-45, respectively.
  • the relative distances XI -X4 may or may not be uniform depending on the output desired from the array 38.
  • the sensors 14-18 pressure sensors may comprise any of the displacement based pressure sensors described herein including various types in a single array 38.
  • the present invention may comprise a circumferential array 39 of sensors 14-17 disposed about the circumference of pipe 12.
  • the array 39 of sensors 14-17 measure the local unsteady pressures at various circumferential positions around pipe 12 and output signals proportional to the pressures P1-P4 on lines 40-44, respectively.
  • the angular relationships between sensors 14-17 may or may not be uniform depending on the output desired from the array 38.
  • the sensors 14-17 may comprise any of the displacement based pressure sensors described herein including various types in a single array 39.
  • the sensors may be both axially and circumferentially distributed along pipe 12.
  • the pressure sensors may be removably or permanently attached to the pipe by adhesive, glue, epoxy, tape, magnets, wax, or other suitable attachment means and their equivalents to ensure suitable contact between the sensor and the pipe 12.
  • the sensors may alternatively be removable or permanently attached via known mechanical techniques such as by mechanical fasteners, by a spring loaded arrangement, by clamping, by a clamshell arrangement, by strapping, or by other equivalents.
  • the displacement based pressure sensor should be mounted rigidly over the frequency range of interest. Referring to Fig. 6 sensor 14 is mounted to pipe 12 via mounting pad 20.
  • Mounting pad 20 may comprise any shape that conforms to pipe 12 (or other shaped conduit) and that ensures suitable displacement sensing contact between sensor 14 and the pipe 12 within the range of frequencies desired.
  • the sensors may be simply disposed on the surface of the pipe by a magnet 21 as shown with respect to sensor 15.
  • the present invention may be used to measure any parameter (or characteristic) of the contents of the pipe which is related to pressure.
  • the present invention may be used to measure when a slug of liquid or solid passes through the pipe by the sensor due to the pressure wave which is created.
  • any conduit for carrying a fluid (where a fluid is defined as a liquid or a gas) may be used if desired.
  • a fluid where a fluid is defined as a liquid or a gas
  • the present invention may be used in optical reflection and/or transmission. Also, even though the invention has been illustrated using three pressure sensors, it should be understood that more or less sensors may be used, depending on the application.

Abstract

A non-intrusive pressure sensor (14) for measuring pressures within a pipe (12) includes a displacement based sensor disposed on a surface of the pipe (12). The displacement based sensor (14) measures the radial displacement response of the surface of the pipe (12) to the unsteady pressure. The displacement based sensor may comprise an accelerometer, an absolute velocity sensor, or an absolute displacement sensor. One or more of sensors (14-18) may be axially distributed along the pipe (12) or alternatively the sensors (14-17) may be circumferentially distributed about the pipe (12).

Description

Displacement Based Pressure Sensor Measuring Unsteady Pressure in a Pipe
Technical Field This invention relates to sensing pressure in pipes and more particularly to a non-intrusive displacement based pressure sensor for measuring pressures of a medium within pipes.
Background Art It is known in the oil and gas industry that the measurement of fluid pressure in a down-hole pipe is useful to exploration and production of oil and gas. However, typical pressure sensors require that a hole be drilled in the pipe to port the pressure to the sensor, or that the sensor or portion thereof be deployed in the pipe. Drilling holes in the pipes can be costly and add failure modes to the system. Accordingly, it would be desirable to measure pressure in a pipe in a non-invasive manner.
Summary of the Invention
Objects of the present invention include provision of a non-intrusive pressure sensor for measuring unsteady pressure in pipes. According to the present invention, a pressure sensor for measuring unsteady pressure in at least one axial location along a pipe, comprises a displacement based sensor disposed on a surface of the pipe.
According still further to the present invention, the surface of the pipe provides a radial displacement response to the unsteady pressures within the pipe and the displacement-based sensors measure the magnitude of the response and provide a signal proportional to the unsteady pressure. According still further to the present invention, the displacement based sensor may measure the acceleration, velocity or displacement of the surface of the pipe in response to the unsteady pressure. According still further to the present invention, a signal processor provides a signal indicative of the unsteady pressure.
The present invention provides a significant improvement over the prior art by providing a non-intrusive pressure sensor for the measurement of unsteady (ac or dynamic) pressure in a fluid within a pipe using displacement based sensors. Thus, the present invention enables real time pressure measurement for oil and gas exploration and production or for other applications where a fluid (liquid or gas) is flowing in a pipe or conduit.
The foregoing and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of exemplary embodiments thereof.
Brief Description of the Drawings
Fig. 1 is a side view of a displacement based pressure sensor disposed on a pipe, in accordance with the present invention;
Fig. 2 is a cross-sectional end view of a pipe and a pressure sensor showing inside pressure Pin and outside pressures Pout, in accordance with the present invention;
Fig. 3 is a side view of a displacement based pressure sensor disposed on a pipe showing a charge amplifier, in accordance with the present invention; Fig. 4 is a side view of a displacement based pressure sensor disposed on a pipe showing a signal processor, in accordance with the present invention;
Fig. 5 is a side view of a pipe with a plurality of displacement based pressure sensors disposed at different axial positions along the pipe, in accordance with the present invention; and Fig. 6 is an end view of a pipe with a plurality of displacement based pressure sensors disposed around the circumference of the pipe, in accordance with the present invention.
Best Mode for Carrying Out the Invention Referring to Fig. 1, a pipe (or conduit) 12 is provided with a non-intrusive displacement based pressure sensors 14 disposed on pipe 12. Displacement based pressure sensor 14 may comprise an accelerometer, a velocity measuring device or a direct displacement measuring device capable of sensing unsteady pressures within a moving fluid in pipe 12 as will be more fully described hereinafter. Referring to Fig. 2, the pressure sensor 14 measures the physical response of wall 62 in the radial direction represented by arrows 60. The pipe wall displaces radially due to elastic expansion and contraction of the diameter of the pipe 12 in response to internal pressure P,n changes, as indicated by the arrows 60. The magnitude of displacement in the radial direction 60 is determined by the hoop strength of the pipe 12, the internal pressure Pιn, the external pressure Pout outside the pipe 12, the thickness Tw of the pipe wall 62, and the rigidity or modulus of the pipe material. As the internal pressure P,n changes, the pipe responds in the radial direction, which causes the pressure sensor 14 to output a signal proportional to the response and the magnitude of the pressure change.
Displacement based sensor 14 may comprises a uni-axial type sensor or a multi- axis type sensor. In order to optimize the sensitivity of the sensor, one of the measurement axes of the sensor should be closely aligned with the radial response of the pipe 12 in the direction indicated by arrows 60.
Referring to Fig. 2 and Fig. 1 , in an embodiment that employs an accelerometer 14 as a pressure sensor, the pressure sensor may measure the unsteady (or dynamic or ac) pressure variations Pιn inside the pipe 12 by measuring the acceleration of the surface of pipe 12 in a radial direction, as represented by arrows 60. The acceleration of the surface of pipe 12 is measured at the location of the accelerometer 14 as the internal pressure Pιn changes, and thus measures the local elastic dynamic response of the wall 62 of the pipe. Sensor 14 outputs a signal on line 40 which is proportional to the magnitude of the ac pressure sensed within pipe 12 as will be discussed more fully herein below. The magnitude of the acceleration response of pipe wall 62 is variously dependent upon the hoop strength of the pipe 12, the internal pressure Pιrι, the external pressure Pout outside the pipe 12, the thickness Tw of the pipe wall 62, and the rigidity or modulus of the pipe material. Thus, the thickness of the pipe wall 62 and the pipe material in the sensor location may be set based on the desired sensitivity of the sensor and other factors and may be different from the wall thickness or material of the pipe 12 outside the sensor mounting region.
Accelerometer 14 may comprise any known form of accelerometer including a bonded or an unbonded strain gage accelerometer, a semiconductor strain gage accelerometer, a liquid damped differential-transformer accelerometer, a piezoelectric accelerometer, a geophone, etc. In addition, accelerometer 14 may be of the deflection type or null-balance type. With reference to Fig. 3, accelerometer 14 may comprise a high impedance device, requiring an external charge amplifier 30 within line 40 or may comprise a low impedance device that does not require further amplification.
Referring to Fig. 4, a pressure sensing system 1 is shown including pressure sensor 14, line 40 and signal processor 50 to convert the output signal of the sensor as described hereinabove. In an embodiment which utilizes an accelerometer as pressure sensor 14 an output signal is generated on line 40 that is directly proportional to the unsteady pressure within pipe 12. Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51. Also, some or all of the functions within the signal processor 50 may be implemented in software (using a microprocessor or computer) and/or firmware, or may be implemented using analog and/or digital hardware, having sufficient memory, interfaces, and capacity to perform the functions described herein. For instance, signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12. Velocity or displacement information may be obtained through known integration techniques performed on the acceleration information provided by accelerometer 14.
In another embodiment of the present invention, pressure sensor 14 may comprise an absolute displacement pickup which measures the vibratory displacement of pipe wall 62 directly in response to unsteady pressure within the pipe 12. Similar to that described herein above with respect to accelerometers, the displacement sensor 14 outputs a signal on line 40 that is directly proportional to the unsteady pressure within pipe 12. Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51. For instance, signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12. In this particular embodiment, the displacement having been measured directly, acceleration or velocity information may be obtained through known differential techniques.
In yet another embodiment the present invention, pressure sensor 14 may comprise an absolute velocity pickup which measures the velocity of the displacement of pipe wall 62 directly in response to unsteady pressure within the pipe 12. Similar to that described herein above with respect to accelerometers, the displacement sensor 14 outputs a signal on line 40 that is directly proportional to the unsteady pressure within pipe 12. Signal processor 50 receives the signal from line 40 and converts the signal to any suitably usable form and provides an output pressure signal on line 51. For instance, signal processor 50 may provide output on line 51 indicative of the pressure, acceleration, velocity or displacement of pipe wall 62 in response to unsteady pressure within pipe 12. In this particular embodiment, the velocity having been measured directly, acceleration or information may be obtained through known differential techniques and displacement information may be obtained through known integration techniques performed. Referring to Fig. 5, the present invention further includes a plurality of displacement based pressure sensors 14-18 disposed on pipe 12 as shown. The array 38 of sensors 14-18 measure the local unsteady pressures at various axial positions along pipe 12 and output signals proportional to the pressures P1-P5 on lines 40-45, respectively. The relative distances XI -X4 may or may not be uniform depending on the output desired from the array 38. The sensors 14-18 pressure sensors may comprise any of the displacement based pressure sensors described herein including various types in a single array 38.
Referring to Fig. 6, alternatively, the present invention may comprise a circumferential array 39 of sensors 14-17 disposed about the circumference of pipe 12. The array 39 of sensors 14-17 measure the local unsteady pressures at various circumferential positions around pipe 12 and output signals proportional to the pressures P1-P4 on lines 40-44, respectively. The angular relationships between sensors 14-17 may or may not be uniform depending on the output desired from the array 38. The sensors 14-17 may comprise any of the displacement based pressure sensors described herein including various types in a single array 39. In addition, the sensors may be both axially and circumferentially distributed along pipe 12.
For any of the embodiments described herein, the pressure sensors may be removably or permanently attached to the pipe by adhesive, glue, epoxy, tape, magnets, wax, or other suitable attachment means and their equivalents to ensure suitable contact between the sensor and the pipe 12. The sensors may alternatively be removable or permanently attached via known mechanical techniques such as by mechanical fasteners, by a spring loaded arrangement, by clamping, by a clamshell arrangement, by strapping, or by other equivalents. To optimize performance of the present invention, the displacement based pressure sensor should be mounted rigidly over the frequency range of interest. Referring to Fig. 6 sensor 14 is mounted to pipe 12 via mounting pad 20. Mounting pad 20 may comprise any shape that conforms to pipe 12 (or other shaped conduit) and that ensures suitable displacement sensing contact between sensor 14 and the pipe 12 within the range of frequencies desired. In embodiments where the pipe is ferromagnetic, the sensors may be simply disposed on the surface of the pipe by a magnet 21 as shown with respect to sensor 15.
The present invention may be used to measure any parameter (or characteristic) of the contents of the pipe which is related to pressure. For example, the present invention may be used to measure when a slug of liquid or solid passes through the pipe by the sensor due to the pressure wave which is created.
Also, instead of a pipe, any conduit for carrying a fluid (where a fluid is defined as a liquid or a gas) may be used if desired. Further, it should be understood that the present invention may be used in optical reflection and/or transmission. Also, even though the invention has been illustrated using three pressure sensors, it should be understood that more or less sensors may be used, depending on the application.
It should be understood that any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein.
Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.

Claims

Claims
1. An apparatus for measuring an unsteady pressure of a fluid within a pipe, the apparatus comprising: a displacement type sensor disposed on a surface of the pipe measuring a displacement response of said pipe to said unsteady pressure and providing a signal proportional to said unsteady pressure.
2. The apparatus of claim 1, wherein said displacement type sensor comprises an accelerometer and wherein said displacement response is a radial acceleration of said pipe surface.
3. The apparatus of claim 1, wherein said displacement type sensor comprises an absolute velocity sensor and wherein said displacement response is a radial velocity of said pipe surface.
4. The apparatus of claim 1, wherein said displacement type sensor comprises an absolute displacement sensor and wherein said displacement response is a radial displacement of said pipe surface.
5. The apparatus of claim 1, wherein said sensor is disposed on an outside surface of said pipe.
6. The apparatus of claim 1, further comprising a mounting pad disposed on said surface of said pipe, said mounting pad conforming to a circumference of said pipe and wherein said sensor is disposed on said mounting pad.
7. The apparatus of claim 1, further comprising a signal processor receiving said signal proportional to said unsteady signal and providing a signal indicative of said unsteady pressure.
8. An apparatus for measuring an unsteady pressure of a fluid within a pipe, the apparatus comprising: a plurality of displacement type sensors disposed on a surface of the pipe, each said sensor measuring a displacement response of said pipe to said unsteady pressure and providing a signal proportional to said unsteady pressure.
9. The apparatus of claim 8, wherein said displacement type sensors are each disposed at a different axial position along said pipe and measure said displacement response at each said axial position.
10. The apparatus of claim 8, wherein said displacement type sensors are each disposed at a different circumferential position along said pipe and measure said displacement response at each said circumferential position
11. The apparatus of claim 8, wherein said displacement type sensors comprise any combination of accelerometers, absolute velocity sensors, or absolute displacement sensors.
12. The apparatus of claim 8, wherein said sensors are disposed on an outside surface of said pipe.
13. The apparatus of claim 8, further comprising a mounting pad disposed on said surface of said pipe, said mounting pad conforming to a circumference of said pipe and wherein said sensor is disposed on said mounting pad.
14. The apparatus of claim 8, further comprising a signal processor receiving said signal proportional to said unsteady signal and providing a signal indicative of said unsteady pressure.
15. A method for measuring unsteady pressure of a fluid within a pipe, the method comprising: measuring a displacement response of a surface of said pipe to said unsteady pressure; and providing a signal proportional to said unsteady pressure.
16. The method of claim 15, wherein said surface is an outside surface of said pipe.
17. The method of claim 15, wherein the pressure is pressure outside the pipe.
18. The method of claim 15, wherein said method further comprising: calculating a value of said unsteady pressure from said proportional signal; and providing a signal indicative of said unsteady pressure.
PCT/GB2002/001893 2002-04-24 2002-04-24 Displacement based pressure sensor measuring unsteady pressure in a pipe WO2003091683A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/GB2002/001893 WO2003091683A1 (en) 2002-04-24 2002-04-24 Displacement based pressure sensor measuring unsteady pressure in a pipe
AU2002249456A AU2002249456A1 (en) 2002-04-24 2002-04-24 Displacement based pressure sensor measuring unsteady pressure in a pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2002/001893 WO2003091683A1 (en) 2002-04-24 2002-04-24 Displacement based pressure sensor measuring unsteady pressure in a pipe

Publications (1)

Publication Number Publication Date
WO2003091683A1 true WO2003091683A1 (en) 2003-11-06

Family

ID=29266189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/001893 WO2003091683A1 (en) 2002-04-24 2002-04-24 Displacement based pressure sensor measuring unsteady pressure in a pipe

Country Status (2)

Country Link
AU (1) AU2002249456A1 (en)
WO (1) WO2003091683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159934A (en) * 2019-06-11 2019-08-23 中国石油天然气股份有限公司 Strain transducer and pipe safety method of discrimination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844173A (en) * 1973-04-19 1974-10-29 Atomic Energy Commission Method and apparatus for measuring pressures in fluid lines
US5218197A (en) * 1991-05-20 1993-06-08 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for the non-invasive measurement of pressure inside pipes using a fiber optic interferometer sensor
WO2001002810A1 (en) * 1999-07-02 2001-01-11 Cidra Corporation Flow rate measurement using unsteady pressures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844173A (en) * 1973-04-19 1974-10-29 Atomic Energy Commission Method and apparatus for measuring pressures in fluid lines
US5218197A (en) * 1991-05-20 1993-06-08 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for the non-invasive measurement of pressure inside pipes using a fiber optic interferometer sensor
WO2001002810A1 (en) * 1999-07-02 2001-01-11 Cidra Corporation Flow rate measurement using unsteady pressures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159934A (en) * 2019-06-11 2019-08-23 中国石油天然气股份有限公司 Strain transducer and pipe safety method of discrimination

Also Published As

Publication number Publication date
AU2002249456A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US6463813B1 (en) Displacement based pressure sensor measuring unsteady pressure in a pipe
JP5719921B2 (en) Pressure sensor based on resonance frequency
US6216533B1 (en) Apparatus for measuring downhole drilling efficiency parameters
Pinnington et al. Externally applied sensor for axisymmetric waves in a fluid filled pipe
JP4864888B2 (en) Vibration sensor
JPS5838738B2 (en) pressure gauge
US6351987B1 (en) Fiber optic pressure sensor for DC pressure and temperature
CN107966169A (en) For determining the probe of soil property
Knapp et al. Measurement of shock events by means of strain gauges and accelerometers
US2580407A (en) Pressure operated resistor
JP3325879B2 (en) Relative pressure sensor
US20110198711A1 (en) System and method for an integrated electronic and optical mems based sensor
JP2000120611A (en) Fluid pressure cylinder device
WO2003091683A1 (en) Displacement based pressure sensor measuring unsteady pressure in a pipe
CN108330941A (en) A kind of pressure-compensated feeler inspection probe and ocean static cone penetration equipment
US8943900B2 (en) Method and apparatus for differential pressure measurement
JPH03113337A (en) Accelerometer integrated type pressure sensor
Brown et al. High-sensitivity, fiber-optic, flexural disk hydrophone with reduced acceleration response
US3427885A (en) Differential pressure transducer
US3270565A (en) Omnidirectional acceleration device
Briscoe et al. Axisymmetric vibrational power measurement in empty and fluid filled pipes
US3293920A (en) Omnidirectional acceleration device
RU2087884C1 (en) Instrument converter of pressure difference
RU2816252C1 (en) Downhole tool vibration measuring device
CN219084038U (en) Bridge structure deformation detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP