USRE43742E1 - Method and system for enhanced detail-in-context viewing - Google Patents

Method and system for enhanced detail-in-context viewing Download PDF

Info

Publication number
USRE43742E1
USRE43742E1 US12/580,540 US58054009A USRE43742E US RE43742 E1 USRE43742 E1 US RE43742E1 US 58054009 A US58054009 A US 58054009A US RE43742 E USRE43742 E US RE43742E
Authority
US
United States
Prior art keywords
region
interest
lens
resolution
presentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12/580,540
Inventor
David J. P. Baar
David J. Cowperthwaite
Mark H. A. Tigges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACCESSIFY, LLC
Original Assignee
Noregin Assets NV LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noregin Assets NV LLC filed Critical Noregin Assets NV LLC
Priority to US12/580,540 priority Critical patent/USRE43742E1/en
Assigned to NOREGIN ASSETS N.V., L.L.C. reassignment NOREGIN ASSETS N.V., L.L.C. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IDELIX SOFTWARE INC.
Application granted granted Critical
Publication of USRE43742E1 publication Critical patent/USRE43742E1/en
Assigned to CALLAHAN CELLULAR L.L.C. reassignment CALLAHAN CELLULAR L.L.C. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NOREGIN ASSETS N.V., L.L.C.
Anticipated expiration legal-status Critical
Assigned to INTELLECTUAL VENTURES ASSETS 186 LLC reassignment INTELLECTUAL VENTURES ASSETS 186 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALLAHAN CELLULAR L.L.C.
Assigned to INTELLECTUAL VENTURES ASSETS 191 LLC, INTELLECTUAL VENTURES ASSETS 186 LLC reassignment INTELLECTUAL VENTURES ASSETS 191 LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIND FUSION, LLC
Assigned to MIND FUSION, LLC reassignment MIND FUSION, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTELLECTUAL VENTURES ASSETS 186 LLC
Assigned to ACCESSIFY, LLC reassignment ACCESSIFY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIND FUSION, LLC
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04805Virtual magnifying lens, i.e. window or frame movable on top of displayed information to enlarge it for better reading or selection

Definitions

  • the invention relates to the field of computer graphics processing, more specifically, the invention relates to the display of visual information including portable document format (PDF) files on a display screen of a computer.
  • PDF portable document format
  • Display screens are the primary visual display interface to a computer.
  • One problem with these visual display screens is that they are limited in size, thus presenting a challenge to user interface design, particularly when larger amounts of information is to be displayed. This problem is normally referred to as the “screen real estate problem”.
  • a representation is a formal system, or mapping, for specifying raw information or data that is stored in a computer or data processing system.
  • a digital map of a city is a representation of raw data including street names and the relative geographic location of streets and utilities. Such a representation may be displayed visually on computer screen or printed on paper.
  • a presentation is a spatial organization of a given representation that is appropriate for the task at hand.
  • a presentation of a representation organizes such things as the point of view and the relative emphasis of different parts or regions of the representation. For example, a digital map of a city may be presented with a region magnified to reveal street names.
  • Detail-in-context presentations allow for magnification of a particular region of interest (the “focal region”) in a representation while preserving visibility of the surrounding representation.
  • focal regions are presented with an increased level of detail without the removal of contextual information from the original representation.
  • a detail-in-context presentation may be considered as a distorted view (or distortion) of a portion of the original representation where the distortion is the result of the application of a “lens” like distortion function to the original representation.
  • a detailed review of various detail-in-context presentation techniques may be found in a publication by Carpendale, Marianne S. T., titled “A Framework for Elastic Presentation Space” (Burnaby, British Columbia: Simon Fraser University, 1999) and incorporated herein by reference.
  • detail-in-context presentations of data using techniques such as Elastic Presentation Space (“EPS”) are useful in presenting large amounts of information on limited-size display surfaces.
  • Detail-in-context views allow magnification of a particular region of interest (the “focal region”) in a data presentation while preserving visibility of the surrounding information.
  • Development of increasingly powerful computing devices has lead to new possibilities for applications of detail-in-context viewing.
  • the development of new compact, mobile computing platforms such as handheld computers, typically with reduced computing performance and smaller display surfaces as compared to desktop or mainframe computers, has motivated research into alternate implementation techniques and performance improvements to detail-in-context data presentation technologies.
  • an improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer comprises the steps of: applying a transitional transformation to the visual information, the transitional transformation requiring reduced calculations for transforming the visual information to transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.
  • a method for displaying the transition between regions of interest within visual information on a display screen of a computer comprises the steps of: selecting a first region of interest within the visual information; applying a first transformation to the visual information to improve the visual detail in the first region of interest; and displaying the first transformed visual information on the display screen. Selecting a second region of interest within the visual information applying a second transformation to the visual information to improve the visual detail in the second region of interest; and displaying the second transformed visual information on the display screen.
  • a method for displaying visual information on a display screen of a computer comprising the steps of: selecting a region of interest within the visual information; applying a transformation to the visual information for improving visual detail and presentation quality in the region of interest, the transformation for overlaying the visual information on a lens surface, the lens surface having predetermined shape for the region of interest. Projecting the lens surface with the overlaid visual information onto a plane. Increasing resolution of the visual information in the region of interest. Decreasing resolution of the visual information outside the region of interest, and displaying the transformed visual information on the display screen.
  • a data carrier having stored thereon instructions for improving display of a transitional region while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer.
  • the instructions comprise the steps of: applying a transitional transformation to the visual information, the transitional transformation having a reduced a number of calculations required for rendering the transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.
  • a method for displaying visual information in portable document format (PDF) files on a display screen of a computer comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen.
  • PDF portable document format
  • the step of applying a transformation further comprising the steps of: creating a lens surface of predetermined shape for the region of interest; and, creating a transformed representation by overlaying the scaled representation on the lens surface and projecting the lens surface with the overlaid scaled representation onto a plane.
  • a method for displaying visual information on a display screen of a computer for displaying visual information in portable document format (PDF) files comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen.
  • PDF portable document format
  • a method for generating a presentation of a region of interest in an original image for display on a display screen comprising: applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image.
  • the method may further include displaying the presentation on the display screen.
  • the lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.
  • a system for generating a presentation of a region of interest in an original image for display on a display screen comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image.
  • the system may further include a module for displaying the presentation on the display screen.
  • the lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.
  • a system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by: establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen.
  • the transformation may transform only a portion of the visual information in the region of interest.
  • the portion may be the border of the region of interest.
  • the border region may be a periphery of the region of interest.
  • the lens surface for the border region may be defined by a distortion function.
  • the lens surface for the border region may be defined by a predetermined portion of a lens surface for rendering the region of interest.
  • the predetermined portion may be a border region of the lens surface for rendering the region of interest.
  • the predetermined portion may be a periphery of the lens surface for rendering the region of interest.
  • the system may further include a module for establishing a path between the first and second locations for the region of interest.
  • the path may be established automatically by a predetermined program.
  • the path may be established by user selection.
  • the system may further include a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest.
  • the transformation may provide a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest.
  • the blending may be performed by averaging the increased and decreased resolution visual information.
  • the blending may be performed by admixing the increased and decreased resolution visual information.
  • the system may further include a module for transmitting the presentation over a network to a remote computer.
  • the visual information may include a portable document format (PDF) document.
  • PDF portable document format
  • the lens surface for rendering the region of interest may be defined by the distortion function.
  • the region of interest, the lens surface, and the lens surface shape may include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively.
  • the visual information may include one or more of newspapers, magazines, telephone directories, and maps.
  • the visual information may include web page content.
  • the display screen may be contained in a handheld device.
  • the visual information may be a newspaper page.
  • the newspaper page may include one or more of a plurality of headlines, columns, articles, graphics, and advertisements.
  • the region of interest may include one or more of a headline, a column, an article, a graphic, and an advertisement.
  • the lens surface shape may have a shape corresponding to that of the region of interest.
  • the lens surface shape may have a shape corresponding to a column.
  • the transformation may increase the font size within a portion of the column.
  • the lens surface shape may be tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text.
  • the system may further include a module for scaling the visual information to fit on the display screen.
  • FIG. 1 is a perspective view of a 3D perspective viewing frustum in accordance with known elastic presentation space graphics technology
  • FIG. 2 is a cross-sectional view of a presentation in accordance with known elastic presentation space graphics technology
  • FIG. 3 is a block diagram of an exemplary data processing system for implementing an embodiment of the invention.
  • FIG. 4 is a screen capture of a PDF file for a newspaper page that has been shrunk to fit a display surface in accordance with one embodiment of the invention.
  • FIG. 5 is a flow chart illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer in accordance with one embodiment of the invention.
  • PDF portable document format
  • PDF Portable Document Format
  • Elastic Presentation Space or “EPS” is used herein to refer to techniques that allow for the adjustment of a visual presentation without interfering with the information content of the representation.
  • the adjective “elastic” is included in the term as it implies the capability of stretching and deformation and subsequent return to an original shape.
  • EPS graphics technology is described by Carpendale in A Framework for Elastic Presentation Space (Carpendale, Marianne S. T., A Framework for Elastic Presentation Space (Burnaby, British Columbia: Simon Fraser University, 1999)) which is incorporated herein by reference.
  • EPS graphics technology a two-dimensional visual representation is placed onto a surface; this surface is placed in three-dimensional space; the surface, containing the representation, is viewed through perspective projection; and the surface is manipulated to effect the reorganization of image details.
  • the presentation transformation is separated into two steps: surface manipulation or distortion and perspective projection.
  • like numerals refer to like structures or processes.
  • FIG. 1 there is shown a perspective view 100 of a 3D perspective viewing frustum 220 in accordance with known elastic presentation space (“EPS”) graphics technology.
  • EPS elastic presentation space
  • detail-in-context views of 2D visual representations are created with sight-line aligned distortions of a 2D information presentation surface within a 3D perspective viewing frustum 220 .
  • magnification of regions of interest and the accompanying compression of the context region to accommodate this change in scale are produced by the movement of regions of the surface towards the viewpoint 240 located at the apex of the pyramidal shape 220 containing the frustum.
  • the process of projecting these transformed layouts via a perspective projection results in a new 2D layout which includes the zoomed and compressed regions.
  • the use of the third dimension and perspective distortion to provide magnification in EPS provides a meaningful metaphor for the process of distorting the information presentation surface.
  • the 3D manipulation of the information presentation surface in such a system is an intermediate step in the process of creating a new 2D layout of the information.
  • EPS graphics technology employs viewer-aligned perspective projections to produce detail-in-context presentations in a reference view plane 201 which may be viewed on a display.
  • Undistorted 2D data points are located in a basal plane 210 of a 3D perspective viewing volume or frustum 220 which is defined by extreme rays 221 and 222 and the basal plane 210 .
  • a viewpoint (“VP”) 240 is located above the centre point of the basal plane 210 and reference view plane 201 . Points in the basal plane 210 are displaced upward onto a distorted surface 230 which is defined by a general 3D distortion function (i.e.
  • the direction of the viewer-aligned perspective projection corresponding to the distorted surface 230 is indicated by the line FPo-FP 231 drawn from a point FPo 232 in the basal plane 210 through the point FP 233 which corresponds to the focus or focal region or focal point of the distorted surface 230 .
  • EPS refers to a collection of know-how and techniques for performing “detail-in-context viewing” (also known as “multi-scale viewing” and “distortion viewing”) of information such as images, maps, and text, using a projection technique summarized below.
  • EPS is applicable to multidimensional data and is well suited to implementation on a computer for dynamic detail-in-context display on an electronic display surface such as a monitor.
  • EPS is typically characterized by magnification of areas of an image where detail is desired, in combination with compression of a restricted range of areas of the remaining information (the “context”), the end result typically giving the appearance of a lens having been applied to the display surface.
  • EPS has numerous advantages over conventional zoom, pan, and scroll technologies, including the capability of preserving the visibility of information outside the local region of interest.
  • EPS In general, in EPS, the source image to be viewed is located in the basal plane. Magnification and compression are achieved through elevating elements of the source image relative to the basal plane, and then projecting the resultant distorted surface onto the reference view plane.
  • EPS performs detail-in-context presentation of n-dimensional data through the use of a procedure wherein the data is mapped into a region in an (n+l) dimensional space, manipulated through perspective projections in the (n+l) dimensional space, and then finally transformed back into n-dimensional space for presentation.
  • EPS can be implemented through the projection of an image onto a reference plane 201 in the following manner.
  • the source image is located on a basal plane 210 , and those regions of interest 233 of the image for which magnification is desired are elevated so as to move them closer to a reference plane situated between the reference viewpoint 240 and the reference view plane (RVP) 201 .
  • Magnification of the “focal region” 233 closest to the RVP varies inversely with distance from the RVP 201 . As shown in FIGS.
  • compression of regions outside the focal region 233 is a function of both distance from the RVP 201 , and the gradient of the function describing the vertical distance from the RVP 201 with respect to horizontal distance from the focal region 233 .
  • the resultant combination of magnification and compression of the image as seen from the reference viewpoint 240 results in a lens-like effect similar to that of a magnifying glass applied to the image, and the resultant distorted image may be referred to as a “pliable display surface”.
  • the various functions used to vary the magnification and compression of the image via vertical displacement from the basal plane 210 are described as lenses, lens types, or lens functions. Lens functions that describe basic lens types with point and circular focal regions, as well as certain more complex lenses and advanced capabilities such as folding, have previously been described by Carpendale.
  • the data processing system 300 is suitable for implementing EPS technology and for viewing PDF files.
  • the data processing system 300 includes an input device 310 , a central processing unit or CPU 320 , memory 330 , and a display 340 .
  • the input device 310 may be a keyboard, mouse, trackball, or similar device.
  • the CPU 320 may include dedicated coprocessors and memory devices.
  • the memory 330 may include RAM, ROM, databases, or disk devices.
  • the display 340 may include a computer screen or terminal device.
  • the data processing system 300 has stored therein data representing sequences of instructions which when executed cause the method described herein to be performed.
  • the data processing system 300 may contain additional software and hardware a description of which is not necessary for understanding the invention.
  • EPS is applied to the electronic and online (i.e. Internet) presentation of Portable Document Format (“PDF”) files.
  • PDF is a file format that captures the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else.
  • PDF files are created using software products such as Adobe Acrobat®.
  • Adobe Acrobat Reader® is typically used.
  • PDF files are especially useful for documents such as newspaper and magazine articles, product brochures, or flyers where it is desired to preserve the original graphic appearance online.
  • a PDF file may be used for the online distribution of a printed document where it is desirable to preserve its printed appearance.
  • EPS and detail-in-context viewing can be used to enhance the viewing of PDF file. This is affected by the electronic scaling of the document content to a size that allows presentation of the full content on the display surface, with the use of specialized EPS lenses to enlarge regions of interest 233 to make them readable to the user.
  • This method can be used to achieve the more effective presentation of PDF file content on small display surfaces including handheld computers.
  • This aspect of the invention can be implemented with pre-placed EPS lenses on important content components including headlines, feature articles, tables of contents, and advertisements. Interaction with the reader is such that articles in the reader's region of interest 233 are enlarged automatically via EPS lenses of complex shape to suit the shape of the article or other area of interest.
  • FIG. 4 there is shown a screen capture 400 of a PDF file for a newspaper page that has been effectively shrunk to fit a display surface 340 according to one embodiment of the invention.
  • a lens 410 has been used in the fifth column to increase the font size in the reader's region of interest 233 .
  • the top 420 and bottom 430 of the lens 410 are tapered to provide a continuous transition to the unmagnified text 440 .
  • Partial overwriting of neighboring columns 450 and images 460 by the lens 410 rather than a lateral distortion, is performed to blend the lens 410 into the undistorted regions 470 , and provide enough space for the lens 410 while preserving the spatial orientation of the neighboring columns.
  • pre-placed lenses can be achieved as follows.
  • items of interest such as article headlines, whole articles, or advertisements can have lenses 410 in place when the document is first viewed.
  • This can be implemented, for example, through the use of special lens locating information (i.e. locating tags) embedded within the source file or in a separate data layer, indicating the characteristics, location and/or bounds of the lens.
  • FIG. 5 there is shown a flow chart 500 illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer according to one embodiment of the invention.
  • the method starts.
  • the visual information is scaled to produce a scaled representation to fit on the display screen.
  • the scaled representation generally contains the entire content of the visual information.
  • a region of interest is selected within the scaled representation.
  • a transformation is applied to the scaled representation to improve the visual detail in the region of interest.
  • the transformed representation is displayed on the display screen.
  • the method ends.
  • elastic presentation space methodology can be used for displaying visual information in portable document format (PDF) files on a display screen of a computer.
  • a restricted portion of the region of interest (i.e. the “lens”) 233 is rendered to a display 340 during the movement of the lens about the data space.
  • the movement of the lens 410 may be user initiated or automated.
  • the computations required for lens movement and rendering are minimized while a presentation of the changing location of the lens is maintained.
  • movement of the lens ceases, by user or automated means, a full rendering of the lens in its new location can be displayed. In this way, the number of computations required during the movement of the lens 410 is reduced and hence performance is improved which is especially important for systems 300 with limited computational speed.
  • an increase in the spatial resolution or level of detail within the region of interest 233 , 410 can be provided as can a smooth visual transition from the region of interest to surrounding regions 440 , 470 .
  • an increase in resolution within the region of interest 233 , 410 of a detail-in-context presentation is provided by the selective high resolution rendering to a display 340 of data within the region of interest 233 , 410 and neighbouring regions 420 , 430 of a detail-in-context lens while the remaining data 440 , 470 in the presentation is rendered at low resolution.
  • resolution within and about the region of interest 233 , 410 can be increased with a minimum of computing resources (i.e. processing time and processor memory).
  • a smooth visual transition from the region of interest 233 , 410 to surrounding regions 440 , 470 is provided by the blending of low and high resolution regions 410 , 420 , 430 , 440 , 470 .
  • This blending can be accomplished by averaging or admixing of the high and low resolution regions described above.
  • a smooth visual transition can be provided from the region of interest to surrounding regions with a minimum of computing resources (i.e. processing time and processor memory).
  • the client device on which the data is viewed is located apart from the data source (e.g. connected via the Internet)
  • the data source e.g. connected via the Internet
  • sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in a computer software product according to one embodiment of the invention.
  • This computer software product can be loaded into and run by the exemplary data processing system of FIG. 3 .
  • sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in an integrated circuit product including a coprocessor or memory according to one embodiment of the invention.
  • This integrated circuit product can be installed in the exemplary data processing system of FIG. 3 .

Abstract

An improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprising the steps of applying a transitional transformation to the visual information and displaying the transitional transformed visual information on the display screen. The transitional transformation requiring a reduced calculation for transforming the visual information in the transitional region.

Description

This application is a continuation of U.S. patent application Ser. No. 10/021,313, filed Dec. 19, 2001, now U.S. Pat. No. 7,106,349 the disclosure of which is incorporated herein by reference.
This application claims priority from Canadian Patent Application No. 2,328,795, filed Dec. 19, 2000. The invention relates to the field of computer graphics processing, more specifically, the invention relates to the display of visual information including portable document format (PDF) files on a display screen of a computer.
BACKGROUND OF THE INVENTION
Display screens are the primary visual display interface to a computer. One problem with these visual display screens is that they are limited in size, thus presenting a challenge to user interface design, particularly when larger amounts of information is to be displayed. This problem is normally referred to as the “screen real estate problem”.
Well known solutions to this problem include panning, zooming, scrolling or combinations thereof. While these solutions are suitable for a large number of visual display applications, these solutions become less effective where the visual information is spatially related, such as maps, newspapers and such like. In this type of information display, panning, zooming and/or scrolling is not as effective as much of the context of the panned, zoomed or scrolled display is hidden.
A recent solution to this problem is the application of “detail-in-context” presentation techniques to the display of large surface area media, such as maps. Detail-in-context presentation techniques take on many forms and are useful for displaying large amounts of information on limited size computer screens, and are becoming more important with the increased use of hand held computing devices such as personal digital assistance (PDA's) and cell phones.
Now, in the detail-in-context discourse, differentiation is often made between the terms “representation” and “presentation”. A representation is a formal system, or mapping, for specifying raw information or data that is stored in a computer or data processing system. For example, a digital map of a city is a representation of raw data including street names and the relative geographic location of streets and utilities. Such a representation may be displayed visually on computer screen or printed on paper. On the other hand, a presentation is a spatial organization of a given representation that is appropriate for the task at hand. Thus, a presentation of a representation organizes such things as the point of view and the relative emphasis of different parts or regions of the representation. For example, a digital map of a city may be presented with a region magnified to reveal street names.
Detail-in-context presentations allow for magnification of a particular region of interest (the “focal region”) in a representation while preserving visibility of the surrounding representation. In other words, in detail-in-context presentations focal regions are presented with an increased level of detail without the removal of contextual information from the original representation. In general, a detail-in-context presentation may be considered as a distorted view (or distortion) of a portion of the original representation where the distortion is the result of the application of a “lens” like distortion function to the original representation. A detailed review of various detail-in-context presentation techniques may be found in a publication by Carpendale, Marianne S. T., titled “A Framework for Elastic Presentation Space” (Burnaby, British Columbia: Simon Fraser University, 1999) and incorporated herein by reference.
Thus, detail-in-context presentations of data using techniques such as Elastic Presentation Space (“EPS”) are useful in presenting large amounts of information on limited-size display surfaces. Detail-in-context views allow magnification of a particular region of interest (the “focal region”) in a data presentation while preserving visibility of the surrounding information. Development of increasingly powerful computing devices has lead to new possibilities for applications of detail-in-context viewing. At the same time, the development of new compact, mobile computing platforms such as handheld computers, typically with reduced computing performance and smaller display surfaces as compared to desktop or mainframe computers, has motivated research into alternate implementation techniques and performance improvements to detail-in-context data presentation technologies. Consequently, one shortcoming of current EPS graphics technology and detail-in-context presentation methods is that being computationally inefficient, they are not optimized for newer compact, mobile computing platforms (e.g. handheld computers) that have reduced computing power. Considerable computer processing is required to distort a given presentation so as to produce a detail-in-context “lens”, and to move the lens through the data with adequate performance to provide an acceptable level of interactivity to the user.
A need therefore exists for a method and system that will allow for the effective implementation of EPS graphics technology on computing platforms having variable levels of computing power. Consequently, it is an object of the present invention to obviate or mitigate at least some of the above-mentioned disadvantages.
SUMMARY OF THE INVENTION
In accordance with an aspect of the invention, there is provided an improved method for display of a transitional region of interest while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The method comprises the steps of: applying a transitional transformation to the visual information, the transitional transformation requiring reduced calculations for transforming the visual information to transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.
In accordance with a further aspect of the invention, there is provided a method for displaying the transition between regions of interest within visual information on a display screen of a computer. The method comprises the steps of: selecting a first region of interest within the visual information; applying a first transformation to the visual information to improve the visual detail in the first region of interest; and displaying the first transformed visual information on the display screen. Selecting a second region of interest within the visual information applying a second transformation to the visual information to improve the visual detail in the second region of interest; and displaying the second transformed visual information on the display screen. Selecting a transitional region of interest on a path between the first region of interest and the second region of interest within the visual information; applying a transitional transformation to the visual information to improve the visual detail in a predetermined portion of the transitional region of interest; and displaying the transitional transformed visual information on the display screen.
In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information on a display screen of a computer. The method comprising the steps of: selecting a region of interest within the visual information; applying a transformation to the visual information for improving visual detail and presentation quality in the region of interest, the transformation for overlaying the visual information on a lens surface, the lens surface having predetermined shape for the region of interest. Projecting the lens surface with the overlaid visual information onto a plane. Increasing resolution of the visual information in the region of interest. Decreasing resolution of the visual information outside the region of interest, and displaying the transformed visual information on the display screen.
In accordance with yet a further aspect of the invention, there is provided a data carrier having stored thereon instructions for improving display of a transitional region while transitioning between a first region of interest and a second region of interest within visual information on a display screen of a computer. The instructions comprise the steps of: applying a transitional transformation to the visual information, the transitional transformation having a reduced a number of calculations required for rendering the transitional transformed visual information; and displaying the transitional transformed visual information on the display screen.
In accordance with yet a further aspect of the invention, there is provided a method for displaying visual information in portable document format (PDF) files on a display screen of a computer is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen. The step of applying a transformation further comprising the steps of: creating a lens surface of predetermined shape for the region of interest; and, creating a transformed representation by overlaying the scaled representation on the lens surface and projecting the lens surface with the overlaid scaled representation onto a plane.
In accordance with yet a further aspect of the invention, there is provided the use of a method for displaying visual information on a display screen of a computer for displaying visual information in portable document format (PDF) files is provided. The method comprising the steps of: scaling the visual information to produce a scaled representation to fit on the display screen, the scaled representation generally containing the entire content of the visual information; selecting a region of interest within the scaled representation; applying a transformation to the scaled representation to improve the visual detail in the region of interest; and, displaying the transformed representation on the display screen.
According to one aspect of the invention, there is provided a method for generating a presentation of a region of interest in an original image for display on a display screen, comprising: applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The method may further include displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.
According to another aspect of the invention, there is provided a system for generating a presentation of a region of interest in an original image for display on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens and the viewpoint remain constant while transitioning between first and second locations for the region of interest in the original image. The system may further include a module for displaying the presentation on the display screen. The lens may have a magnified region for the border region. And, the magnified region may have a diminishing magnification.
According to another aspect of the invention, there is provided a system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising: a processor coupled to memory and the display screen; and, modules within the memory and executed by the processor, the modules including: a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by: establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen. The transformation may transform only a portion of the visual information in the region of interest. The portion may be the border of the region of interest. The border region may be a periphery of the region of interest. The lens surface for the border region may be defined by a distortion function. The lens surface for the border region may be defined by a predetermined portion of a lens surface for rendering the region of interest. The predetermined portion may be a border region of the lens surface for rendering the region of interest. The predetermined portion may be a periphery of the lens surface for rendering the region of interest. The system may further include a module for establishing a path between the first and second locations for the region of interest. The path may be established automatically by a predetermined program. The path may be established by user selection. The system may further include a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest. The transformation may provide a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest. The blending may be performed by averaging the increased and decreased resolution visual information. The blending may be performed by admixing the increased and decreased resolution visual information. The system may further include a module for transmitting the presentation over a network to a remote computer. The visual information may include a portable document format (PDF) document. The lens surface for rendering the region of interest may be defined by the distortion function. The region of interest, the lens surface, and the lens surface shape may include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively. The visual information may include one or more of newspapers, magazines, telephone directories, and maps. The visual information may include web page content. The display screen may be contained in a handheld device. The visual information may be a newspaper page. The newspaper page may include one or more of a plurality of headlines, columns, articles, graphics, and advertisements. The region of interest may include one or more of a headline, a column, an article, a graphic, and an advertisement. The lens surface shape may have a shape corresponding to that of the region of interest. The lens surface shape may have a shape corresponding to a column. The transformation may increase the font size within a portion of the column. The lens surface shape may be tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text. And, the system may further include a module for scaling the visual information to fit on the display screen.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may best be understood by referring to the following description and accompanying drawings which illustrate the invention. In the drawings:
FIG. 1 is a perspective view of a 3D perspective viewing frustum in accordance with known elastic presentation space graphics technology;
FIG. 2 is a cross-sectional view of a presentation in accordance with known elastic presentation space graphics technology;
FIG. 3 is a block diagram of an exemplary data processing system for implementing an embodiment of the invention;
FIG. 4 is a screen capture of a PDF file for a newspaper page that has been shrunk to fit a display surface in accordance with one embodiment of the invention; and,
FIG. 5 is a flow chart illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer in accordance with one embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known software, circuits, structures and techniques have not been described or shown in detail in order not to obscure the invention. The term “data processing system” is used herein to refer to any machine for processing data, including the computer systems and network arrangements described herein. The term “PDF” (Portable Document Format) is used herein to refer to a file format that captures all the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. The term “Elastic Presentation Space” or “EPS” is used herein to refer to techniques that allow for the adjustment of a visual presentation without interfering with the information content of the representation. The adjective “elastic” is included in the term as it implies the capability of stretching and deformation and subsequent return to an original shape. EPS graphics technology is described by Carpendale in A Framework for Elastic Presentation Space (Carpendale, Marianne S. T., A Framework for Elastic Presentation Space (Burnaby, British Columbia: Simon Fraser University, 1999)) which is incorporated herein by reference. In EPS graphics technology, a two-dimensional visual representation is placed onto a surface; this surface is placed in three-dimensional space; the surface, containing the representation, is viewed through perspective projection; and the surface is manipulated to effect the reorganization of image details. The presentation transformation is separated into two steps: surface manipulation or distortion and perspective projection. In the drawings, like numerals refer to like structures or processes. Referring to FIG. 1, there is shown a perspective view 100 of a 3D perspective viewing frustum 220 in accordance with known elastic presentation space (“EPS”) graphics technology. In EPS, detail-in-context views of 2D visual representations are created with sight-line aligned distortions of a 2D information presentation surface within a 3D perspective viewing frustum 220. In EPS, magnification of regions of interest and the accompanying compression of the context region to accommodate this change in scale are produced by the movement of regions of the surface towards the viewpoint 240 located at the apex of the pyramidal shape 220 containing the frustum. The process of projecting these transformed layouts via a perspective projection results in a new 2D layout which includes the zoomed and compressed regions. The use of the third dimension and perspective distortion to provide magnification in EPS provides a meaningful metaphor for the process of distorting the information presentation surface. The 3D manipulation of the information presentation surface in such a system is an intermediate step in the process of creating a new 2D layout of the information.
Referring to FIG. 2, there is shown a cross-sectional view of a presentation 200 in accordance with known EPS graphics technology. EPS graphics technology employs viewer-aligned perspective projections to produce detail-in-context presentations in a reference view plane 201 which may be viewed on a display. Undistorted 2D data points are located in a basal plane 210 of a 3D perspective viewing volume or frustum 220 which is defined by extreme rays 221 and 222 and the basal plane 210. A viewpoint (“VP”) 240 is located above the centre point of the basal plane 210 and reference view plane 201. Points in the basal plane 210 are displaced upward onto a distorted surface 230 which is defined by a general 3D distortion function (i.e. a detail-in-context distortion basis function). The direction of the viewer-aligned perspective projection corresponding to the distorted surface 230 is indicated by the line FPo-FP 231 drawn from a point FPo 232 in the basal plane 210 through the point FP 233 which corresponds to the focus or focal region or focal point of the distorted surface 230.
To reiterate, EPS refers to a collection of know-how and techniques for performing “detail-in-context viewing” (also known as “multi-scale viewing” and “distortion viewing”) of information such as images, maps, and text, using a projection technique summarized below. EPS is applicable to multidimensional data and is well suited to implementation on a computer for dynamic detail-in-context display on an electronic display surface such as a monitor. In the case of two dimensional data, EPS is typically characterized by magnification of areas of an image where detail is desired, in combination with compression of a restricted range of areas of the remaining information (the “context”), the end result typically giving the appearance of a lens having been applied to the display surface. EPS has numerous advantages over conventional zoom, pan, and scroll technologies, including the capability of preserving the visibility of information outside the local region of interest.
In general, in EPS, the source image to be viewed is located in the basal plane. Magnification and compression are achieved through elevating elements of the source image relative to the basal plane, and then projecting the resultant distorted surface onto the reference view plane. EPS performs detail-in-context presentation of n-dimensional data through the use of a procedure wherein the data is mapped into a region in an (n+l) dimensional space, manipulated through perspective projections in the (n+l) dimensional space, and then finally transformed back into n-dimensional space for presentation.
For example, and referring to FIGS. 1 and 2, in two dimensions, EPS can be implemented through the projection of an image onto a reference plane 201 in the following manner. The source image is located on a basal plane 210, and those regions of interest 233 of the image for which magnification is desired are elevated so as to move them closer to a reference plane situated between the reference viewpoint 240 and the reference view plane (RVP) 201. Magnification of the “focal region” 233 closest to the RVP varies inversely with distance from the RVP 201. As shown in FIGS. 1 and 2, compression of regions outside the focal region 233 is a function of both distance from the RVP 201, and the gradient of the function describing the vertical distance from the RVP 201 with respect to horizontal distance from the focal region 233. The resultant combination of magnification and compression of the image as seen from the reference viewpoint 240 results in a lens-like effect similar to that of a magnifying glass applied to the image, and the resultant distorted image may be referred to as a “pliable display surface”. Hence, the various functions used to vary the magnification and compression of the image via vertical displacement from the basal plane 210 are described as lenses, lens types, or lens functions. Lens functions that describe basic lens types with point and circular focal regions, as well as certain more complex lenses and advanced capabilities such as folding, have previously been described by Carpendale.
System.
Referring to FIG, 3, there is shown a block diagram of an exemplary data processing system 300 for implementing an embodiment of the invention. The data processing system is suitable for implementing EPS technology and for viewing PDF files. The data processing system 300 includes an input device 310, a central processing unit or CPU 320, memory 330, and a display 340. The input device 310 may be a keyboard, mouse, trackball, or similar device. The CPU 320 may include dedicated coprocessors and memory devices. The memory 330 may include RAM, ROM, databases, or disk devices. And, the display 340 may include a computer screen or terminal device. The data processing system 300 has stored therein data representing sequences of instructions which when executed cause the method described herein to be performed. Of course, the data processing system 300 may contain additional software and hardware a description of which is not necessary for understanding the invention.
Presentation of PDF Files Using EPS.
According to one aspect of the invention, EPS is applied to the electronic and online (i.e. Internet) presentation of Portable Document Format (“PDF”) files. PDF is a file format that captures the elements of a printed document as an electronic image that a user can view, navigate, print, or forward to someone else. PDF files are created using software products such as Adobe Acrobat®. To view and use a PDF file, a product such as Adobe Acrobat Reader® is typically used. PDF files are especially useful for documents such as newspaper and magazine articles, product brochures, or flyers where it is desired to preserve the original graphic appearance online. For example, a PDF file may be used for the online distribution of a printed document where it is desirable to preserve its printed appearance.
EPS and detail-in-context viewing can be used to enhance the viewing of PDF file. This is affected by the electronic scaling of the document content to a size that allows presentation of the full content on the display surface, with the use of specialized EPS lenses to enlarge regions of interest 233 to make them readable to the user. This method can be used to achieve the more effective presentation of PDF file content on small display surfaces including handheld computers. This aspect of the invention can be implemented with pre-placed EPS lenses on important content components including headlines, feature articles, tables of contents, and advertisements. Interaction with the reader is such that articles in the reader's region of interest 233 are enlarged automatically via EPS lenses of complex shape to suit the shape of the article or other area of interest.
Referring to FIG. 4, there is shown a screen capture 400 of a PDF file for a newspaper page that has been effectively shrunk to fit a display surface 340 according to one embodiment of the invention. A lens 410 has been used in the fifth column to increase the font size in the reader's region of interest 233. The top 420 and bottom 430 of the lens 410 are tapered to provide a continuous transition to the unmagnified text 440. Partial overwriting of neighboring columns 450 and images 460 by the lens 410, rather than a lateral distortion, is performed to blend the lens 410 into the undistorted regions 470, and provide enough space for the lens 410 while preserving the spatial orientation of the neighboring columns.
The implementation of pre-placed lenses can be achieved as follows. In order to provide the user with an immediate view of certain regions of a file, items of interest such as article headlines, whole articles, or advertisements can have lenses 410 in place when the document is first viewed. This can be implemented, for example, through the use of special lens locating information (i.e. locating tags) embedded within the source file or in a separate data layer, indicating the characteristics, location and/or bounds of the lens.
Method and Use.
Referring to FIG. 5, there is shown a flow chart 500 illustrating a general method for displaying visual information in portable document format (PDF) files on a display screen of a computer according to one embodiment of the invention. At step 501, the method starts. At step 502, the visual information is scaled to produce a scaled representation to fit on the display screen. The scaled representation generally contains the entire content of the visual information. At step 503, a region of interest is selected within the scaled representation. At step 504, a transformation is applied to the scaled representation to improve the visual detail in the region of interest. At step 505, the transformed representation is displayed on the display screen. At step 506, the method ends. Thus, elastic presentation space methodology can be used for displaying visual information in portable document format (PDF) files on a display screen of a computer.
Restricted Rendering of Lens During Lens Motion.
According to another aspect of the invention, a restricted portion of the region of interest (i.e. the “lens”) 233, for example the border or periphery 420, 430 of a lens 410, is rendered to a display 340 during the movement of the lens about the data space. The movement of the lens 410 may be user initiated or automated. By rendering only a portion of the lens 410, the computations required for lens movement and rendering are minimized while a presentation of the changing location of the lens is maintained. When movement of the lens ceases, by user or automated means, a full rendering of the lens in its new location can be displayed. In this way, the number of computations required during the movement of the lens 410 is reduced and hence performance is improved which is especially important for systems 300 with limited computational speed.
Blending and Selective Use of Data at Multiple Resolutions.
To improve detail-in-context presentation quality, an increase in the spatial resolution or level of detail within the region of interest 233, 410 can be provided as can a smooth visual transition from the region of interest to surrounding regions 440, 470.
According to another aspect of the invention, an increase in resolution within the region of interest 233, 410 of a detail-in-context presentation is provided by the selective high resolution rendering to a display 340 of data within the region of interest 233, 410 and neighbouring regions 420, 430 of a detail-in-context lens while the remaining data 440, 470 in the presentation is rendered at low resolution. In this way, resolution within and about the region of interest 233, 410 can be increased with a minimum of computing resources (i.e. processing time and processor memory).
According to another aspect of the invention, a smooth visual transition from the region of interest 233, 410 to surrounding regions 440, 470 is provided by the blending of low and high resolution regions 410, 420, 430, 440, 470. This blending can be accomplished by averaging or admixing of the high and low resolution regions described above. In this way, a smooth visual transition can be provided from the region of interest to surrounding regions with a minimum of computing resources (i.e. processing time and processor memory).
In the case where the client device on which the data is viewed is located apart from the data source (e.g. connected via the Internet), it is an advantage of the present invention that by increasing the resolution within the region of interest and smoothing the visual transition from the region of interest to surrounding regions as described, the amount of data that has to be transferred from the data source (e.g. server) to the viewer (e.g. client) is minimized.
Computer Software Product.
The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in a computer software product according to one embodiment of the invention. This computer software product can be loaded into and run by the exemplary data processing system of FIG. 3.
Integrated Circuit Product.
The sequences of instructions which when executed cause the method described herein to be performed by the exemplary data processing system of FIG. 3 can be contained in an integrated circuit product including a coprocessor or memory according to one embodiment of the invention. This integrated circuit product can be installed in the exemplary data processing system of FIG. 3.
Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.

Claims (65)

1. A method for generating a presentation of a region of interest in an original image for display on a display screen, comprising:
applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the lens remains constant while transitioning between first and second locations for the region of interest in the original image; and,
displaying the presentation on the display screen.
2. The method of claim 1 wherein the viewpoint remains constant while transitioning between the first and second locations.
3. The method of claim 2 wherein the lens has a magnified region for the border region.
4. The method of claim 3 wherein the magnified region has a diminishing magnification.
5. A system for generating a presentation of a region of interest in an original image for display on a display screen, comprising:
a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including: a module for applying a lens to a border region of the region of interest in the original image by displacing the border region onto the lens and projecting the displacing onto a plane in a uniform direction aligned with a viewpoint, wherein the viewpoint remains constant while transitioning between first and second locations for the region of interest in the original image; and,
a module for displaying the presentation on the display screen.
6. The system of claim 5 wherein the lens remains constant while transitioning between the first and second locations.
7. The system of claim 6 wherein the lens has a magnified region for the border region.
8. The system of claim 7 wherein the magnified region has a diminishing magnification.
9. A system for displaying a region of interest while transitioning between first and second locations for the region of interest within visual information on a display screen, comprising:
a processor coupled to memory and the display screen; and,
modules within the memory and executed by the processor, the modules including:
a module for applying a transformation to a border region of the region of interest in the visual information to improve visual detail in the border region of the region of interest by:
establishing a lens surface for the border region having a lens surface shape; and, generating a presentation by overlaying the visual information on the lens surface and projecting the lens surface with the visual information onto a plane in a uniform direction aligned with a viewpoint, wherein at least one of the lens surface shape and the viewpoint remain constant during the transitioning between the first and second locations; and, a module for displaying the presentation on the display screen.
10. The system of claim 9 wherein the transformation transforms only a portion of the visual information in the region of interest.
11. The system of claim 10 wherein the portion is the border of the region of interest.
12. The system of claim 9 wherein the border region is a periphery of the region of interest.
13. The system of claim 9 wherein the lens surface for the border region is defined by a distortion function.
14. The system of claim 9 wherein the lens surface for the border region is defined by a predetermined portion of a lens surface for rendering the region of interest.
15. The system of claim 14 wherein the predetermined portion is a border region of the lens surface for rendering the region of interest.
16. The system of claim 15 wherein the predetermined portion is a periphery of the lens surface for rendering the region of interest.
17. The system of claim 14 wherein the lens surface for rendering the region of interest is defined by the distortion function.
18. The system of claim 9 and further comprising a module for establishing a path between the first and second locations for the region of interest.
19. The system of claim 18 wherein the path is established automatically by a predetermined program.
20. The system of claim 18 wherein the path is established by user selection.
21. The system of claim 9 and further comprising a module for at least one of: increasing resolution of the visual information in the region of interest; and, decreasing resolution of the visual information outside the region of interest.
22. The system of claim 21 wherein the transformation provides a smooth transition to the region of interest from an adjacent region by blending increased and decreased resolution visual information in predefined regions adjacent to the region of interest.
23. The system of claim 22 wherein the blending is performed by averaging the increased and decreased resolution visual information.
24. The system of claim 22 wherein the blending is performed by admixing the increased and decreased resolution visual information.
25. The system of claim 9 and further comprising a module for transmitting the presentation over a network to a remote computer.
26. The system of claim 9 wherein the visual information includes a portable document format (PDF) document.
27. The system of claim 26 and further comprising a module for scaling the visual information to fit on the display screen.
28. The system of claim 9 wherein the region of interest, the lens surface, and the lens surface shape include a plurality of regions of interest, a plurality of lens surfaces, and a plurality of lens surface shapes, respectively.
29. The system of claim 9 wherein the visual information includes one or more of newspapers, magazines, telephone directories, and maps.
30. The system of claim 9 wherein the visual information includes web page content.
31. The system of claim 9 wherein the display screen is contained in a handheld device.
32. The system of claim 9 wherein the visual information is a newspaper page.
33. The system of claim 32 wherein the newspaper page includes one or more of a plurality of headlines, columns, articles, graphics, and advertisements.
34. The system of claim 33 wherein the region of interest includes one or more of a headline, a column, an article, a graphic, and an advertisement.
35. The system of claim 34 wherein the lens surface shape has a shape corresponding to that of the region of interest.
36. The system of claim 35 wherein the lens surface shape has a shape corresponding to a column.
37. The system of claim 36 wherein the transformation increases the font size within a portion of the column.
38. The system of claim 37 wherein the lens surface shape is tapered to provide a continuous transition on at least one side of the portion of the column to undistorted text.
39. A method comprising:
applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that keeps the appearance of the lens constant while transitioning between first and second locations for the region in the original image on a display screen of the data processing system,
wherein said displaying comprises rendering the appearance of the lens at a first resolution and rendering the original image outside of the lens at a second resolution that is lower than the first resolution.
40. The method of claim 39 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction.
41. The method of claim 40 wherein the uniform direction is aligned with a viewpoint.
42. The method of claim 41 wherein the viewpoint remains constant while transitioning between the first and second locations.
43. The method of claim 40 wherein the lens has a magnified region for the border region.
44. The method of claim 43 wherein the magnified region has a diminishing magnification.
45. A method comprising:
applying a function by a data processing system to give an appearance of a lens to a region in an original image; and
displaying a presentation of the appearance of the lens that restricts rendering of the presentation while transitioning between first and second locations for the region in the original image on a display screen of the data processing system such that a portion of the appearance of the lens is not rendered during the transitioning,
wherein the portion of the appearance of the lens that is not rendered during the transitioning is within a border of the appearance of the lens.
46. A method of claim 45 wherein the border of the appearance of the lens is rendered during the transitioning.
47. The method of claim 45 wherein the applying includes displacing a border region of the region in the original image onto the lens and projecting the displaying onto a plane in a uniform direction that is aligned with a viewpoint.
48. The method of claim 45 further comprising displaying the presentation of the appearance of the lens such as not to be restricted when the appearance of the lens is not being transitioned in the original image on the display screen.
49. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by fully rendering the appearance of the lens if the appearance is not being transitioned.
50. The method of claim 45 wherein the displaying of the presentation of the appearance of the lens is performed by rendering the portion of the appearance of the lens if the appearance is not being transitioned.
51. A client device comprising a processor and memory having instructions that are executable on a processor to receive data via an Internet from a server of an original image having a function applied to give an appearance of a lens to a region of the original image provided by selective high resolution rendering to display data within the region of interest and neighboring regions of the appearance of the lens while remaining data in the original image is rendered at a low resolution,
wherein the function causes a border region of the region in the original image to be displaced onto the lens and displayed onto a plane in a uniform direction.
52. The client device of claim 51 wherein the function causes the neighboring regions of the appearance of the lens to give an appearance of a smooth transition from the high resolution rendering of the region to the remaining data in the original image.
53. The client device of claim 52 wherein the function causes the transition by blending of a low resolution rendering of the remaining data in the original image with the selective high resolution rendering of the region.
54. The client device of claim 53 wherein the blending includes admixing or averaging.
55. The client device of claim 56, wherein the uniform direction is aligned with a viewpoint.
56. A method comprising:
displaying an image on a display of a computing device;
specifying a region of interest in the image;
displaying, on the display, the region of interest at a first resolution while displaying, on the display, one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution; and
updating display of the region of interest as the region of interest transitions from the first position to the second position, wherein said updating renders only a periphery of the region of interest as the region of interest transitions from the first position to the second position.
57. The method of claim 56, further comprising scaling the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest, wherein
said displaying the region of interest comprises displaying the magnified presentation of the region of interest.
58. The method of claim 56, wherein said displaying the region of interest occludes a portion of the image.
59. The method of claim 56, further comprising receiving input that specifies movement of the region of interest from a first position to a second position.
60. The method of claim 56, further comprising smoothing a resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.
61. The method of claim 56, wherein said specifying includes embedding locating information for the region of interest in a source of the image.
62. A computing device, comprising
an input device configured to receive input that specifies a region of interest in an image; and
a processor configured to cause a display to display the region of interest at a first resolution and one or more portions from the image that lie outside the region of interest at a second resolution that is less than the first resolution,
wherein the processor is further configured to cause the display to update display of the region of interest as the region of interest transitions from the first position to the second position, and to only update a periphery of the region of interest as the region of interest transitions from the first position to the second position.
63. The computing device of claim 62, wherein the processor is further configured to:
scale the region of interest to obtain a magnified presentation of the region of interest having a greater scale than the one or more portions that lie outside the region of interest; and
cause the display to display the magnified presentation of the region of interest such that the magnified presentation occludes a portion of the image.
64. The computing device of claim 62, wherein the input device is further configured to receive additional input that specifies movement of the region of interest from a first position to a second position.
65. The computing device of claim 62, wherein said processor is further configured to cause the display to display a smoothed resolution transition between the region of interest displayed at the first resolution and the one or more other portions displayed at the second resolution.
US12/580,540 2000-12-19 2009-10-16 Method and system for enhanced detail-in-context viewing Expired - Lifetime USRE43742E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/580,540 USRE43742E1 (en) 2000-12-19 2009-10-16 Method and system for enhanced detail-in-context viewing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA002328795A CA2328795A1 (en) 2000-12-19 2000-12-19 Applications and performance enhancements for detail-in-context viewing technology
US10/021,313 US7106349B2 (en) 2000-12-19 2001-12-19 Method and system for enhanced detail-in-context viewing
US11/444,478 US7283141B2 (en) 2000-12-19 2006-06-01 Method and system for enhanced detail-in-context viewing
US12/580,540 USRE43742E1 (en) 2000-12-19 2009-10-16 Method and system for enhanced detail-in-context viewing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/444,478 Reissue US7283141B2 (en) 2000-12-19 2006-06-01 Method and system for enhanced detail-in-context viewing

Publications (1)

Publication Number Publication Date
USRE43742E1 true USRE43742E1 (en) 2012-10-16

Family

ID=4167947

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/021,313 Expired - Lifetime US7106349B2 (en) 2000-12-19 2001-12-19 Method and system for enhanced detail-in-context viewing
US11/444,478 Ceased US7283141B2 (en) 2000-12-19 2006-06-01 Method and system for enhanced detail-in-context viewing
US12/580,540 Expired - Lifetime USRE43742E1 (en) 2000-12-19 2009-10-16 Method and system for enhanced detail-in-context viewing

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/021,313 Expired - Lifetime US7106349B2 (en) 2000-12-19 2001-12-19 Method and system for enhanced detail-in-context viewing
US11/444,478 Ceased US7283141B2 (en) 2000-12-19 2006-06-01 Method and system for enhanced detail-in-context viewing

Country Status (4)

Country Link
US (3) US7106349B2 (en)
AU (1) AU2002215785A1 (en)
CA (1) CA2328795A1 (en)
WO (1) WO2002050654A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567628B2 (en) 2018-07-05 2023-01-31 International Business Machines Corporation Cognitive composition of multi-dimensional icons

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2328795A1 (en) 2000-12-19 2002-06-19 Advanced Numerical Methods Ltd. Applications and performance enhancements for detail-in-context viewing technology
US8416266B2 (en) 2001-05-03 2013-04-09 Noregin Assetts N.V., L.L.C. Interacting with detail-in-context presentations
CA2345803A1 (en) 2001-05-03 2002-11-03 Idelix Software Inc. User interface elements for pliable display technology implementations
US7084886B2 (en) 2002-07-16 2006-08-01 Idelix Software Inc. Using detail-in-context lenses for accurate digital image cropping and measurement
US9760235B2 (en) 2001-06-12 2017-09-12 Callahan Cellular L.L.C. Lens-defined adjustment of displays
US7213214B2 (en) 2001-06-12 2007-05-01 Idelix Software Inc. Graphical user interface with zoom for detail-in-context presentations
CA2361341A1 (en) 2001-11-07 2003-05-07 Idelix Software Inc. Use of detail-in-context presentation on stereoscopically paired images
US7843437B1 (en) * 2002-01-14 2010-11-30 Palm, Inc. Hand-held browser transcoding
CA2370752A1 (en) 2002-02-05 2003-08-05 Idelix Software Inc. Fast rendering of pyramid lens distorted raster images
US20070064018A1 (en) * 2005-06-24 2007-03-22 Idelix Software Inc. Detail-in-context lenses for online maps
US8120624B2 (en) 2002-07-16 2012-02-21 Noregin Assets N.V. L.L.C. Detail-in-context lenses for digital image cropping, measurement and online maps
CA2393887A1 (en) 2002-07-17 2004-01-17 Idelix Software Inc. Enhancements to user interface for detail-in-context data presentation
US7310439B2 (en) * 2002-07-29 2007-12-18 Hewlett-Packard Development Company, L.P. Robot having an imaging capability
CA2406047A1 (en) 2002-09-30 2004-03-30 Ali Solehdin A graphical user interface for digital media and network portals using detail-in-context lenses
CA2449888A1 (en) * 2003-11-17 2005-05-17 Idelix Software Inc. Navigating large images using detail-in-context fisheye rendering techniques
US20110069086A1 (en) * 2002-10-10 2011-03-24 Shoemaker Garth B D Detail-in-Context Presentations in Client/Server Systems
CA2411898A1 (en) 2002-11-15 2004-05-15 Idelix Software Inc. A method and system for controlling access to detail-in-context presentations
US20040125114A1 (en) * 2002-12-31 2004-07-01 Hauke Schmidt Multiresolution image synthesis for navigation
US7173636B2 (en) * 2004-03-18 2007-02-06 Idelix Software Inc. Method and system for generating detail-in-context lens presentations for elevation data
US9335884B2 (en) 2004-03-25 2016-05-10 Microsoft Technology Licensing, Llc Wave lens systems and methods for search results
US7486302B2 (en) 2004-04-14 2009-02-03 Noregin Assets N.V., L.L.C. Fisheye lens graphical user interfaces
US8106927B2 (en) 2004-05-28 2012-01-31 Noregin Assets N.V., L.L.C. Graphical user interfaces and occlusion prevention for fisheye lenses with line segment foci
US9317945B2 (en) 2004-06-23 2016-04-19 Callahan Cellular L.L.C. Detail-in-context lenses for navigation
US7714859B2 (en) 2004-09-03 2010-05-11 Shoemaker Garth B D Occlusion reduction and magnification for multidimensional data presentations
US7995078B2 (en) 2004-09-29 2011-08-09 Noregin Assets, N.V., L.L.C. Compound lenses for multi-source data presentation
US7676760B1 (en) * 2005-02-25 2010-03-09 Adobe Systems Incorporated Methods and apparatus for analysis of access logs
US7580036B2 (en) 2005-04-13 2009-08-25 Catherine Montagnese Detail-in-context terrain displacement algorithm with optimizations
US8225231B2 (en) 2005-08-30 2012-07-17 Microsoft Corporation Aggregation of PC settings
US8031206B2 (en) 2005-10-12 2011-10-04 Noregin Assets N.V., L.L.C. Method and system for generating pyramid fisheye lens detail-in-context presentations
US7983473B2 (en) 2006-04-11 2011-07-19 Noregin Assets, N.V., L.L.C. Transparency adjustment of a presentation
US20080238947A1 (en) * 2007-03-27 2008-10-02 Keahey T Alan System and method for non-linear magnification of images
US20090013264A1 (en) * 2007-06-28 2009-01-08 Anand Ganesh Basawapatna Enhanced interactive electronic meeting system
US9026938B2 (en) 2007-07-26 2015-05-05 Noregin Assets N.V., L.L.C. Dynamic detail-in-context user interface for application access and content access on electronic displays
US8427502B2 (en) * 2008-08-08 2013-04-23 Cadence Design Systems, Inc. Context-aware non-linear graphic editing
US20100107100A1 (en) 2008-10-23 2010-04-29 Schneekloth Jason S Mobile Device Style Abstraction
US8411046B2 (en) 2008-10-23 2013-04-02 Microsoft Corporation Column organization of content
US8238876B2 (en) 2009-03-30 2012-08-07 Microsoft Corporation Notifications
US8175653B2 (en) 2009-03-30 2012-05-08 Microsoft Corporation Chromeless user interface
US20120159395A1 (en) 2010-12-20 2012-06-21 Microsoft Corporation Application-launching interface for multiple modes
US20120159383A1 (en) 2010-12-20 2012-06-21 Microsoft Corporation Customization of an immersive environment
US8689123B2 (en) 2010-12-23 2014-04-01 Microsoft Corporation Application reporting in an application-selectable user interface
US8612874B2 (en) 2010-12-23 2013-12-17 Microsoft Corporation Presenting an application change through a tile
US9423951B2 (en) * 2010-12-31 2016-08-23 Microsoft Technology Licensing, Llc Content-based snap point
US9383917B2 (en) 2011-03-28 2016-07-05 Microsoft Technology Licensing, Llc Predictive tiling
US9658766B2 (en) 2011-05-27 2017-05-23 Microsoft Technology Licensing, Llc Edge gesture
US8893033B2 (en) 2011-05-27 2014-11-18 Microsoft Corporation Application notifications
US9104307B2 (en) 2011-05-27 2015-08-11 Microsoft Technology Licensing, Llc Multi-application environment
US9104440B2 (en) 2011-05-27 2015-08-11 Microsoft Technology Licensing, Llc Multi-application environment
US9158445B2 (en) 2011-05-27 2015-10-13 Microsoft Technology Licensing, Llc Managing an immersive interface in a multi-application immersive environment
US8687023B2 (en) 2011-08-02 2014-04-01 Microsoft Corporation Cross-slide gesture to select and rearrange
US8681181B2 (en) 2011-08-24 2014-03-25 Nokia Corporation Methods, apparatuses, and computer program products for compression of visual space for facilitating the display of content
US20130057587A1 (en) 2011-09-01 2013-03-07 Microsoft Corporation Arranging tiles
US9557909B2 (en) 2011-09-09 2017-01-31 Microsoft Technology Licensing, Llc Semantic zoom linguistic helpers
US10353566B2 (en) 2011-09-09 2019-07-16 Microsoft Technology Licensing, Llc Semantic zoom animations
US8922575B2 (en) 2011-09-09 2014-12-30 Microsoft Corporation Tile cache
US9146670B2 (en) 2011-09-10 2015-09-29 Microsoft Technology Licensing, Llc Progressively indicating new content in an application-selectable user interface
US8933952B2 (en) 2011-09-10 2015-01-13 Microsoft Corporation Pre-rendering new content for an application-selectable user interface
US9244802B2 (en) 2011-09-10 2016-01-26 Microsoft Technology Licensing, Llc Resource user interface
US9223472B2 (en) 2011-12-22 2015-12-29 Microsoft Technology Licensing, Llc Closing applications
US9128605B2 (en) 2012-02-16 2015-09-08 Microsoft Technology Licensing, Llc Thumbnail-image selection of applications
US20140208263A1 (en) * 2013-01-24 2014-07-24 Victor Maklouf System and method for dynamically displaying characters over a screen of a computerized mobile device
US9450952B2 (en) 2013-05-29 2016-09-20 Microsoft Technology Licensing, Llc Live tiles without application-code execution
KR102298602B1 (en) 2014-04-04 2021-09-03 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 Expandable application representation
EP3129846A4 (en) 2014-04-10 2017-05-03 Microsoft Technology Licensing, LLC Collapsible shell cover for computing device
EP3129847A4 (en) 2014-04-10 2017-04-19 Microsoft Technology Licensing, LLC Slider cover for computing device
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
WO2016018062A1 (en) 2014-07-31 2016-02-04 Samsung Electronics Co., Ltd. Method and device for providing content
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10642365B2 (en) 2014-09-09 2020-05-05 Microsoft Technology Licensing, Llc Parametric inertia and APIs
CN106662891B (en) 2014-10-30 2019-10-11 微软技术许可有限责任公司 Multi-configuration input equipment

Citations (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201546A (en) 1961-07-24 1965-08-17 Hart Mfg Canada Ltd Power controlling device for electrical heating elements
US3704938A (en) 1970-10-01 1972-12-05 Hyman Fanselow Punch card viewer
US3739739A (en) 1972-08-24 1973-06-19 R Brase Instrument for isolating rows of printed matter for reading
US3762799A (en) 1971-08-27 1973-10-02 J Shapiro Magnifying indicator for a burette
US4581647A (en) 1983-09-19 1986-04-08 Vye Richard A Computerized automatic focusing control system for multiple television cameras
US4630110A (en) 1984-02-15 1986-12-16 Supervision Control Systems, Inc. Surveillance system
US4688181A (en) 1982-12-22 1987-08-18 International Business Machines Corporation Image transformations on an interactive raster scan or matrix display
US4757616A (en) 1987-10-26 1988-07-19 Educational Insights Ruler with magnifying cursor
US4790028A (en) 1986-09-12 1988-12-06 Westinghouse Electric Corp. Method and apparatus for generating variably scaled displays
US4800379A (en) * 1986-05-12 1989-01-24 Crosfield Electronics Limited Image display with movable magnification
US4885702A (en) 1985-07-27 1989-12-05 Sony Corporation Method of forming curved surfaces and the apparatus
US4888713A (en) 1986-09-05 1989-12-19 Cdi Technologies, Inc. Surface detail mapping system
US4970028A (en) 1987-09-24 1990-11-13 Lever Brothers Company Composition for softening fabrics
US4985849A (en) 1987-06-12 1991-01-15 Canon Kabushiki Kaisha Image processing system for forming a slantwise-mapped or rotated modified image of an original image
US4992866A (en) 1989-06-29 1991-02-12 Morgan Jack B Camera selection and positioning system and method
US5031918A (en) 1990-04-24 1991-07-16 Fred Silber Compamy Magnifying marker for a game board
US5048077A (en) 1988-07-25 1991-09-10 Reflection Technology, Inc. Telephone handset with full-page visual display
US5175808A (en) 1989-09-12 1992-12-29 Pixar Method and apparatus for non-affine image warping
US5185599A (en) 1987-10-26 1993-02-09 Tektronix, Inc. Local display bus architecture and communications method for Raster display
US5185667A (en) 1991-05-13 1993-02-09 Telerobotics International, Inc. Omniview motionless camera orientation system
US5200818A (en) 1991-03-22 1993-04-06 Inbal Neta Video imaging system with interactive windowing capability
US5206721A (en) 1990-03-08 1993-04-27 Fujitsu Limited Television conference system
US5227771A (en) 1991-07-10 1993-07-13 International Business Machines Corporation Method and system for incrementally changing window size on a display
US5250934A (en) 1990-12-31 1993-10-05 Xerox Corporation Method and apparatus for thinning printed images
US5258837A (en) 1991-01-07 1993-11-02 Zandar Research Limited Multiple security video display
US5269687A (en) 1990-08-01 1993-12-14 Atari Games Corporation System and method for recursive driver training
US5275019A (en) 1991-06-26 1994-01-04 C.T.P. S.P.A. Functional ring
US5309279A (en) 1992-08-21 1994-05-03 Halstead Madeline C Script view a curved convex magnifying device
US5321807A (en) 1991-11-27 1994-06-14 Mumford Christopher J Accelerated graphics display method
US5329310A (en) 1992-06-30 1994-07-12 The Walt Disney Company Method and apparatus for controlling distortion of a projected image
US5341466A (en) 1991-05-09 1994-08-23 New York University Fractal computer user centerface with zooming capability
US5369527A (en) 1992-12-03 1994-11-29 Mccracken; Robert Melanoma detection device
US5416900A (en) 1991-04-25 1995-05-16 Lotus Development Corporation Presentation manager
US5432895A (en) 1992-10-01 1995-07-11 University Corporation For Atmospheric Research Virtual reality imaging system
US5451998A (en) 1994-04-04 1995-09-19 Hamrick; Daniel C. Home shopping video catalog
US5459488A (en) 1990-07-21 1995-10-17 Robert Bosch Gmbh Graphical user interface with fisheye adaptation principle
US5473740A (en) 1993-12-29 1995-12-05 International Business Machines Corporation Method and apparatus for interactively indicating image boundaries in digital image cropping
US5521634A (en) 1994-06-17 1996-05-28 Harris Corporation Automatic detection and prioritized image transmission system and method
US5523783A (en) 1992-10-19 1996-06-04 Fuji Photo Optical Co., Ltd. Pan head control system for TV camera
US5528289A (en) 1993-10-20 1996-06-18 Videoconferencing Systems, Inc. Method for automatically adjusting a videoconferencing system camera to center an object
US5539534A (en) 1992-06-03 1996-07-23 Hitachi, Ltd. Method of scaling an image capable of line width preservation
US5581670A (en) 1993-07-21 1996-12-03 Xerox Corporation User interface having movable sheet with click-through tools
US5583977A (en) 1993-10-21 1996-12-10 Taligent, Inc. Object-oriented curve manipulation system
US5588098A (en) 1991-11-22 1996-12-24 Apple Computer, Inc. Method and apparatus for direct manipulation of 3-D objects on computer displays
US5594859A (en) 1992-06-03 1997-01-14 Digital Equipment Corporation Graphical user interface for video teleconferencing
US5596690A (en) 1993-07-21 1997-01-21 Xerox Corporation Method and apparatus for operating on an object-based model data structure to produce a second image in the spatial context of a first image
US5598297A (en) 1993-08-26 1997-01-28 Sharp Kabushiki Kaisha Image display unit
US5610653A (en) 1992-02-07 1997-03-11 Abecassis; Max Method and system for automatically tracking a zoomed video image
US5613032A (en) 1994-09-02 1997-03-18 Bell Communications Research, Inc. System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US5638523A (en) 1993-01-26 1997-06-10 Sun Microsystems, Inc. Method and apparatus for browsing information in a computer database
US5644758A (en) 1994-12-13 1997-07-01 Microsoft Corporation Bitmap block transfer image conversion
US5651107A (en) 1992-12-15 1997-07-22 Sun Microsystems, Inc. Method and apparatus for presenting information in a display system using transparent windows
US5652851A (en) 1993-07-21 1997-07-29 Xerox Corporation User interface technique for producing a second image in the spatial context of a first image using a model-based operation
US5657246A (en) 1995-03-07 1997-08-12 Vtel Corporation Method and apparatus for a video conference user interface
US5670984A (en) 1993-10-26 1997-09-23 Xerox Corporation Image lens
US5680524A (en) 1994-04-21 1997-10-21 Sandia Corporation Synthetic environment employing a craft for providing user perspective reference
US5682489A (en) 1991-06-04 1997-10-28 Digital Equipment Corporation, Inc. Method and device for monitoring, manipulating, and viewing system information
US5689287A (en) 1993-10-27 1997-11-18 Xerox Corporation Context-preserving display system using a perspective sheet
US5689628A (en) 1994-04-14 1997-11-18 Xerox Corporation Coupling a display object to a viewpoint in a navigable workspace
US5696531A (en) * 1991-02-05 1997-12-09 Minolta Camera Kabushiki Kaisha Image display apparatus capable of combining image displayed with high resolution and image displayed with low resolution
US5721853A (en) 1995-04-28 1998-02-24 Ast Research, Inc. Spot graphic display element with open locking and periodic animation
US5726670A (en) * 1992-07-20 1998-03-10 Olympus Optical Co., Ltd. Display apparatus to be mounted on the head or face of an individual
US5729673A (en) 1995-04-07 1998-03-17 Avid Technology, Inc. Direct manipulation of two-dimensional moving picture streams in three-dimensional space
US5731805A (en) 1996-06-25 1998-03-24 Sun Microsystems, Inc. Method and apparatus for eyetrack-driven text enlargement
US5742272A (en) 1996-04-29 1998-04-21 Ati Technologies Inc. Accelerated full screen video playback
US5745166A (en) 1994-07-26 1998-04-28 Maxpro Systems Pty Ltd Video security system field of the invention
US5751289A (en) 1992-10-01 1998-05-12 University Corporation For Atmospheric Research Virtual reality imaging system with image replay
US5754348A (en) 1996-05-14 1998-05-19 Planetweb, Inc. Method for context-preserving magnification of digital image regions
US5764139A (en) 1995-11-06 1998-06-09 Toyota Jidosha Kabushiki Kaisha Information display apparatus for vehicles
US5786814A (en) 1995-11-03 1998-07-28 Xerox Corporation Computer controlled display system activities using correlated graphical and timeline interfaces for controlling replay of temporal data representing collaborative activities
US5798752A (en) 1993-07-21 1998-08-25 Xerox Corporation User interface having simultaneously movable tools and cursor
US5808670A (en) 1995-02-17 1998-09-15 Nec System Integration & Construction, Ltd. Method and system for camera control with monitoring area view
US5812111A (en) 1994-08-30 1998-09-22 Nec Corporation Bifocal picture display system
US5818455A (en) 1993-07-21 1998-10-06 Xerox Corporation Method and apparatus for operating on the model data structure of an image to produce human perceptible output using a viewing operation region having explicit multiple regions
US5848231A (en) 1996-02-12 1998-12-08 Teitelbaum; Neil System configuration contingent upon secure input
US5852440A (en) 1994-04-13 1998-12-22 International Business Machines Corporation Method and system for facilitating the selection of icons
US5909219A (en) 1996-06-28 1999-06-01 Cirrus Logic, Inc. Embedding a transparency enable bit as part of a resizing bit block transfer operation
US5926209A (en) 1995-07-14 1999-07-20 Sensormatic Electronics Corporation Video camera apparatus with compression system responsive to video camera adjustment
US5950216A (en) 1996-11-12 1999-09-07 International Business Machines Corporation Method and system for marking and subsequently retrieving a collection of objects within a multipage compound document utilizing selectable page numbered dialog boxes
US5949430A (en) 1997-05-20 1999-09-07 Microsoft Corporation Peripheral lenses for simulating peripheral vision on a display device
US5959605A (en) 1995-11-22 1999-09-28 Picker International, Inc. Video magnifier
US5969706A (en) 1995-10-16 1999-10-19 Sharp Kabushiki Kaisha Information retrieval apparatus and method
US5973694A (en) 1995-06-02 1999-10-26 Chatham Telecommunications, Inc., Method of communication using sized icons, text, and audio
US5991877A (en) 1997-04-03 1999-11-23 Lockheed Martin Corporation Object-oriented trusted application framework
US5999879A (en) 1996-04-26 1999-12-07 Pioneer Electronic Corporation Navigation apparatus with shape change display function
US6005611A (en) 1994-05-27 1999-12-21 Be Here Corporation Wide-angle image dewarping method and apparatus
US6037939A (en) 1995-09-27 2000-03-14 Sharp Kabushiki Kaisha Method for enabling interactive manipulation of data retained in computer system, and a computer system for implementing the method
US6052110A (en) 1998-05-11 2000-04-18 Sony Corporation Dynamic control of zoom operation in computer graphics
US6057844A (en) 1997-04-28 2000-05-02 Adobe Systems Incorporated Drag operation gesture controller
US6064401A (en) 1998-05-28 2000-05-16 Ncr Corporation User interface controls for adjusting the display of multi-dimensional graphical plots
US6067372A (en) 1996-02-22 2000-05-23 University Of Pittsburgh Method and system to enhance robust identification of abnormal regions in radiographs
US6073036A (en) 1997-04-28 2000-06-06 Nokia Mobile Phones Limited Mobile station with touch input having automatic symbol magnification function
US6072501A (en) 1997-06-27 2000-06-06 Xerox Corporation Method and apparatus for composing layered synthetic graphics filters
US6075531A (en) 1997-12-15 2000-06-13 International Business Machines Corporation Computer system and method of manipulating multiple graphical user interface components on a computer display with a proximity pointer
US6081277A (en) 1995-09-28 2000-06-27 Sony Corporation Apparatus and method for controlling image display
US6084598A (en) 1998-04-23 2000-07-04 Chekerylla; James Apparatus for modifying graphic images
US6091771A (en) 1997-08-01 2000-07-18 Wells Fargo Alarm Services, Inc. Workstation for video security system
US6108005A (en) 1996-08-30 2000-08-22 Space Corporation Method for producing a synthesized stereoscopic image
US6128024A (en) 1997-12-18 2000-10-03 Hewlett-Packard Company Polar controller for defining and generating spiral-like shapes
US6133914A (en) 1998-01-07 2000-10-17 Rogers; David W. Interactive graphical user interface
US6147709A (en) 1997-04-07 2000-11-14 Interactive Pictures Corporation Method and apparatus for inserting a high resolution image into a low resolution interactive image to produce a realistic immersive experience
US6154840A (en) 1998-05-01 2000-11-28 Northern Telecom Limited System and method for transferring encrypted sections of documents across a computer network
US6160553A (en) 1998-09-14 2000-12-12 Microsoft Corporation Methods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and in which object occlusion is avoided
US6184859B1 (en) 1995-04-21 2001-02-06 Sony Corporation Picture display apparatus
US6198484B1 (en) 1996-06-27 2001-03-06 Kabushiki Kaisha Toshiba Stereoscopic display system
US6201548B1 (en) 1998-02-24 2001-03-13 Hewlett-Packard Company Graphical user interface for image editing
US6201546B1 (en) 1998-05-29 2001-03-13 Point Cloud, Inc. Systems and methods for generating three dimensional, textured models
US6204845B1 (en) 1994-12-16 2001-03-20 International Business Machines Corporation Ergonomic viewable object processor
US6204850B1 (en) 1997-05-30 2001-03-20 Daniel R. Green Scaleable camera model for the navigation and display of information structures using nested, bounded 3D coordinate spaces
US6215491B1 (en) 1992-12-14 2001-04-10 Monkeymedia, Inc. Computer user interface with non-salience deemphasis
US6241609B1 (en) 1998-01-09 2001-06-05 U.S. Philips Corporation Virtual environment viewpoint control
US6249281B1 (en) 2000-02-28 2001-06-19 Presenter.Com On-demand presentation graphical user interface
US6256115B1 (en) 1997-02-21 2001-07-03 Worldquest Network, Inc. Facsimile network
US6256043B1 (en) 1997-09-26 2001-07-03 Lucent Technologies Inc. Three dimensional virtual reality enhancement techniques
US6256737B1 (en) 1999-03-09 2001-07-03 Bionetrix Systems Corporation System, method and computer program product for allowing access to enterprise resources using biometric devices
US6266082B1 (en) 1995-12-19 2001-07-24 Canon Kabushiki Kaisha Communication apparatus image processing apparatus communication method and image processing method
US6271854B1 (en) 1997-12-15 2001-08-07 Intel Corporation Method and apparatus for facilitating navigation in three-dimensional graphic scenes
US6278443B1 (en) 1998-04-30 2001-08-21 International Business Machines Corporation Touch screen with random finger placement and rolling on screen to control the movement of information on-screen
US6278450B1 (en) 1998-06-17 2001-08-21 Microsoft Corporation System and method for customizing controls on a toolbar
US6288702B1 (en) 1996-09-30 2001-09-11 Kabushiki Kaisha Toshiba Information device having enlargement display function and enlargement display control method
US6304271B1 (en) 1999-02-05 2001-10-16 Sony Corporation Apparatus and method for cropping an image in a zooming graphical user interface
US6307612B1 (en) 2000-06-08 2001-10-23 Three-Five Systems, Inc. Liquid crystal display element having a precisely controlled cell gap and method of making same
US20010040585A1 (en) 1998-08-18 2001-11-15 Stephen A Hartford Resizing multi-dimensionally rendered graphical images
US20010040636A1 (en) 1994-11-17 2001-11-15 Eiji Kato Camera control and display device using graphical user interface
US6320599B1 (en) 1998-05-11 2001-11-20 Sony Corporation Zooming scale indicator in computer graphics
US20010048447A1 (en) 2000-06-05 2001-12-06 Fuji Photo Film Co., Ltd. Image croppin and synthesizing method, and imaging apparatus
US20010055030A1 (en) 2000-06-22 2001-12-27 Lc Electronics Inc. Apparatus and method for correcting keyston distortion
US6337709B1 (en) 1995-02-13 2002-01-08 Hitachi, Ltd. Image display device
US6346962B1 (en) 1998-02-27 2002-02-12 International Business Machines Corporation Control of video conferencing system with pointing device
US6346938B1 (en) 1999-04-27 2002-02-12 Harris Corporation Computer-resident mechanism for manipulating, navigating through and mensurating displayed image of three-dimensional geometric model
US6359615B1 (en) 1999-05-11 2002-03-19 Ericsson Inc. Movable magnification icons for electronic device display screens
US20020033837A1 (en) 2000-01-10 2002-03-21 Munro James A. Multiple-image viewer
US20020038257A1 (en) 1994-04-28 2002-03-28 Kuriacose Joseph Apparatus for transmitting and receiving executable applications as for a multimedia system
US20020044154A1 (en) 2000-10-18 2002-04-18 Baar David J. P. Elastic presentation space
US6381583B1 (en) 1997-04-15 2002-04-30 John A. Kenney Interactive electronic shopping system and method
US6384849B1 (en) 1997-07-14 2002-05-07 Microsoft Corporation Method for displaying controls in a system using a graphical user interface
US6392661B1 (en) 1998-06-17 2002-05-21 Trident Systems, Inc. Method and apparatus for improving situational awareness using multiple map displays employing peripheral range bands
US20020062245A1 (en) 2000-03-09 2002-05-23 David Niu System and method for generating real-time promotions on an electronic commerce world wide website to increase the likelihood of purchase
US6396962B1 (en) 1999-01-29 2002-05-28 Sony Corporation System and method for providing zooming video
US6396648B1 (en) 1999-03-30 2002-05-28 Nec Corporation Image reader which can shorten focal length in optical system having optical lens while keeping predetermined image reading width
US20020063711A1 (en) * 1999-05-12 2002-05-30 Imove Inc. Camera system with high resolution image inside a wide angle view
US6400848B1 (en) 1999-03-30 2002-06-04 Eastman Kodak Company Method for modifying the perspective of a digital image
US6407747B1 (en) 1999-05-07 2002-06-18 Picsurf, Inc. Computer screen image magnification system and method
US20020075280A1 (en) 2000-12-19 2002-06-20 Tigges Mark H. A. Method and system for inversion of detail-in-context presentations
US6411274B2 (en) 1997-06-02 2002-06-25 Sony Corporation Digital map display zooming method, digital map display zooming device, and storage medium for storing digital map display zooming program
US20020087894A1 (en) 2001-01-03 2002-07-04 Foley James M. Method and apparatus for enabling a user to select an authentication method
US6416186B1 (en) 1999-08-23 2002-07-09 Nec Corporation Projection display unit
US6417867B1 (en) 1999-05-27 2002-07-09 Sharp Laboratories Of America, Inc. Image downscaling using peripheral vision area localization
US20020089520A1 (en) 2000-12-19 2002-07-11 Baar David J.P. Method and system for enhanced detail-in-context viewing
US20020093567A1 (en) 2001-01-12 2002-07-18 International Business Machines Corporation Method and system for generating a digital photographic proof
US20020101396A1 (en) 2000-04-14 2002-08-01 Huston James R. Balanced binary color drive method for graphical displays and system implementing same
US6438576B1 (en) 1999-03-29 2002-08-20 International Business Machines Corporation Method and apparatus of a collaborative proxy system for distributed deployment of object rendering
US20020122038A1 (en) 2000-09-06 2002-09-05 David Cowperthwaite Occlusion reducing transformations for three-dimensional detail-in-context viewing
US20020143826A1 (en) 2001-03-29 2002-10-03 International Business Machines Corporation Method, apparatus, and program for magnifying the text of a link while still retaining browser function in the magnified display
CA2350342A1 (en) 2001-05-03 2002-11-03 Idelix Software Inc. Extension of detail-in-context data presentation with interface to full zoom function
US20020171644A1 (en) 2001-03-31 2002-11-21 Reshetov Alexander V. Spatial patches for graphics rendering
US6487497B2 (en) 1998-03-25 2002-11-26 Navigation Technologies Corporation Method and system for route calculation in a navigation application
US20020180801A1 (en) 2001-05-03 2002-12-05 Michael Doyle Graphical user interface for detail-in-context presentations
US20020180759A1 (en) * 1999-05-12 2002-12-05 Imove Inc. Camera system with both a wide angle view and a high resolution view
US6491585B1 (en) 1996-09-24 2002-12-10 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
US6504535B1 (en) 1998-06-30 2003-01-07 Lucent Technologies Inc. Display techniques for three-dimensional virtual reality
US20030007006A1 (en) 2001-06-12 2003-01-09 David Baar Graphical user interface with zoom for detail-in-context presentations
US20030006995A1 (en) 2001-06-15 2003-01-09 Smith Randall B. Orthogonal magnifier within a computer system display
US6515678B1 (en) 1999-11-18 2003-02-04 Gateway, Inc. Video magnifier for a display of data
US6515663B1 (en) 1999-03-19 2003-02-04 Asustek Computer Inc. Apparatus for and method of processing three-dimensional images
US6522341B1 (en) 1999-06-02 2003-02-18 Matsushita Electric Industrial Co., Ltd. Multi-layer image mixing apparatus
US6523024B1 (en) 1994-03-18 2003-02-18 Hitachi, Ltd. Methods for retrieving database with image information
US20030048447A1 (en) 2001-09-07 2003-03-13 Raimo Harju Accurate instrumetation for optical measurement of samples
US20030052896A1 (en) 2000-03-29 2003-03-20 Higgins Darin Wayne System and method for synchronizing map images
US20030052900A1 (en) 2000-12-21 2003-03-20 Card Stuart Kent Magnification methods, systems, and computer program products for virtual three-dimensional books
US20030061211A1 (en) 2000-06-30 2003-03-27 Shultz Troy L. GIS based search engine
US6542191B1 (en) 1996-04-23 2003-04-01 Canon Kabushiki Kaisha Image display apparatus, camera control apparatus and method
US6549215B2 (en) * 1999-05-20 2003-04-15 Compaq Computer Corporation System and method for displaying images using anamorphic video
US6552737B1 (en) 1999-02-18 2003-04-22 Fujitsu Limited Control of window size in response to user operation
US20030076363A1 (en) 2001-10-18 2003-04-24 Murphy Killian D. Digital image magnification for internet appliance
US6559813B1 (en) 1998-07-01 2003-05-06 Deluca Michael Selective real image obstruction in a virtual reality display apparatus and method
US20030100326A1 (en) 2001-11-27 2003-05-29 Grube Gary W. Group location and route sharing system for communication units in a trunked communication system
US20030103063A1 (en) 2001-12-03 2003-06-05 Tempest Microsystems Panoramic imaging and display system with canonical magnifier
US20030105795A1 (en) 2001-11-30 2003-06-05 Anderson Jeff M. Image editing via batch commands
US6577319B1 (en) 1998-09-18 2003-06-10 Sharp Kabushiki Kaisha Method for controlling data display
US6577311B1 (en) 1999-12-16 2003-06-10 Picture Iq Corporation Techniques for automatically providing a high-resolution rendering of a low resolution digital image in a distributed network
US20030112503A1 (en) 2001-11-07 2003-06-19 Maria Lantin Method and system for displaying stereoscopic detail-in-context presentations
US6584237B1 (en) 1999-08-23 2003-06-24 Pentax Corporation Method and apparatus for expanding image data
US20030118223A1 (en) 2001-08-10 2003-06-26 Rahn J. Richard Method and apparatus for three-dimensional imaging in the fourier domain
US6590568B1 (en) 2000-11-20 2003-07-08 Nokia Corporation Touch screen drag and drop input technique
US20030137525A1 (en) 2002-01-24 2003-07-24 Smith Randall B. Method and apparatus for facilitating motion-coupled magnification
US20030151626A1 (en) 2002-02-05 2003-08-14 Robert Komar Fast rendering of pyramid lens distorted raster images
US20030151625A1 (en) 2002-02-05 2003-08-14 Shoemaker Garth B.D. Fast and accurate rendering of pliable display technology distortions using pre-calculated texel coverages
US6608631B1 (en) 2000-05-02 2003-08-19 Pixar Amination Studios Method, apparatus, and computer program product for geometric warps and deformations
US6612930B2 (en) 1998-11-19 2003-09-02 Nintendo Co., Ltd. Video game apparatus and method with enhanced virtual camera control
US20030174146A1 (en) 2002-02-04 2003-09-18 Michael Kenoyer Apparatus and method for providing electronic image manipulation in video conferencing applications
US20030179237A1 (en) 2002-03-22 2003-09-25 Nelson Lester D. System and method for arranging, manipulating and displaying objects in a graphical user interface
US20030179198A1 (en) 1999-07-08 2003-09-25 Shinji Uchiyama Stereoscopic image processing apparatus and method, stereoscopic vision parameter setting apparatus and method, and computer program storage medium information processing method and apparatus
US20030179219A1 (en) 2002-03-08 2003-09-25 International Business Machines Corporation Image display device, image display method, and image display program
US6631205B1 (en) 1999-01-13 2003-10-07 Canon Kabushiki Kaisha Stereoscopic imaging in a portable document format
US6633305B1 (en) 2000-06-05 2003-10-14 Corel Corporation System and method for magnifying and editing images
US20030196114A1 (en) 2002-04-10 2003-10-16 International Business Machines Persistent access control of protected content
US20030210281A1 (en) 2002-05-07 2003-11-13 Troy Ellis Magnifying a thumbnail image of a document
CA2386560A1 (en) 2002-05-15 2003-11-15 Idelix Software Inc. Controlling optical hardware and dynamic data viewing systems with detail-in-context viewing tools
US20030231177A1 (en) 2002-05-17 2003-12-18 Catherine Montagnese Method and system for inversion of detail-in-context presentations with folding
CA2393708A1 (en) 2002-07-16 2004-01-16 Idelix Software Inc. Applications of multiple lenses in detail-in-context data presentations
CA2394119A1 (en) 2002-07-18 2004-01-18 Idelix Software Inc. Cropping and measuring with a single lens
US6690387B2 (en) 2001-12-28 2004-02-10 Koninklijke Philips Electronics N.V. Touch-screen image scrolling system and method
US20040026521A1 (en) 2002-05-22 2004-02-12 Alex Colas Linear proportional valve
US6704034B1 (en) 2000-09-28 2004-03-09 International Business Machines Corporation Method and apparatus for providing accessibility through a context sensitive magnifying glass
US20040056898A1 (en) 2002-07-17 2004-03-25 Zeenat Jetha Graphical user interface having an attached toolbar for drag and drop editing in detail-in-context lens presentations
US20040056869A1 (en) 2002-07-16 2004-03-25 Zeenat Jetha Using detail-in-context lenses for accurate digital image cropping and measurement
US6720971B1 (en) 1998-05-29 2004-04-13 Canon Kabushiki Kaisha Image processing method and apparatus, and storage medium
US6721655B1 (en) 2001-03-14 2004-04-13 Mitsubishi Denki Kabushiki Kaisha Vehicle travel guide device and vehicle travel guide method
US6731315B1 (en) 1999-11-30 2004-05-04 International Business Machines Corporation Method for selecting display parameters of a magnifiable cursor
US6731285B2 (en) 2001-01-11 2004-05-04 International Business Machines Corporation System and method for providing high performance image magnification in a web browser
US6744430B1 (en) 1999-07-21 2004-06-01 Sega Enterprises, Ltd. Image processing method and its apparatus
US6747611B1 (en) 2000-07-27 2004-06-08 International Business Machines Corporation Compact optical system and packaging for head mounted display
US6747610B1 (en) 1997-07-22 2004-06-08 Sanyo Electric Co., Ltd. Stereoscopic image display apparatus capable of selectively displaying desired stereoscopic image
US20040111332A1 (en) 2002-09-30 2004-06-10 David Baar Detail-in-context lenses for interacting with objects in digital image presentations
US20040125138A1 (en) 2002-10-10 2004-07-01 Zeenat Jetha Detail-in-context lenses for multi-layer images
US6760020B1 (en) 1998-06-30 2004-07-06 Canon Kabushiki Kaisha Image processing apparatus for displaying three-dimensional image
US20040150664A1 (en) 2003-02-03 2004-08-05 Microsoft Corporation System and method for accessing remote screen content
US20040194014A1 (en) 2000-04-14 2004-09-30 Picsel Technologies Limited User interface systems and methods for viewing and manipulating digital documents
US20040240709A1 (en) 2003-04-22 2004-12-02 Garth Shoemaker Method and system for controlling detail-in-context lenses through eye and position tracking
US20040257380A1 (en) 2003-06-20 2004-12-23 Herbert Leslie B. Imaging method and system
US6842175B1 (en) 1999-04-22 2005-01-11 Fraunhofer Usa, Inc. Tools for interacting with virtual environments
US6874126B1 (en) 2001-11-30 2005-03-29 View Space Technologies Method and apparatus for controlling content display by the cursor motion
US6882755B2 (en) 2001-10-19 2005-04-19 Hewlett-Packard Development Company, L.P. Image transmission for low bandwidth with region of interest
US6906643B2 (en) 2003-04-30 2005-06-14 Hewlett-Packard Development Company, L.P. Systems and methods of viewing, modifying, and interacting with “path-enhanced” multimedia
US20050134610A1 (en) 2003-11-17 2005-06-23 Michael Doyle Navigating digital images using detail-in-context lenses
US6911975B2 (en) 2000-09-11 2005-06-28 Canon Kabushiki Kaisha Stereo image display apparatus and method, and storage medium
US6919921B1 (en) 1997-06-10 2005-07-19 Canon Kabushiki Kaisha Camera control using scroll bar for tilt control and having display of tilting direction and controllable range information
US6938218B1 (en) 2000-04-28 2005-08-30 James Nolen Method and apparatus for three dimensional internet and computer file interface
US6956590B1 (en) 2001-02-28 2005-10-18 Navteq North America, Llc Method of providing visual continuity when panning and zooming with a map display
US6975335B2 (en) 1999-12-28 2005-12-13 International Business Machines Corporation Method of displaying magnified and reduced areas and apparatus thereof
US20050278378A1 (en) 2004-05-19 2005-12-15 Metacarta, Inc. Systems and methods of geographical text indexing
US20050285861A1 (en) 2004-06-23 2005-12-29 Idelix Software, Inc. Detail-in-context lenses for navigation
US6985865B1 (en) 2001-09-26 2006-01-10 Sprint Spectrum L.P. Method and system for enhanced response to voice commands in a voice command platform
US20060022955A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Visual expander
US20060026521A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Gestures for touch sensitive input devices
US20060036629A1 (en) 2003-01-28 2006-02-16 Microsoft Corporation System and process for identifying objects and/or points nearby a given object or point
US20060059432A1 (en) 2004-09-15 2006-03-16 Matthew Bells User interface having viewing area with non-transparent and semi-transparent regions
US20060082901A1 (en) 2004-10-14 2006-04-20 Idelix Software Inc. Interacting with detail-in-context presentations
US7038680B2 (en) 2002-01-09 2006-05-02 Xerox Corporation System for graphical display and interactive exploratory analysis of data and data relationships
US20060098028A1 (en) 2004-09-29 2006-05-11 Idelix Software Inc. Compound lenses for multi-source data presentation
US7055095B1 (en) 2000-04-14 2006-05-30 Picsel Research Limited Systems and methods for digital document processing
US20060139375A1 (en) 2004-03-23 2006-06-29 Rasmussen Jens E Secondary map in digital mapping system
US7071971B2 (en) 1997-08-25 2006-07-04 Elbex Video Ltd. Apparatus for identifying the scene location viewed via remotely operated television camera
US7133054B2 (en) 2004-03-17 2006-11-07 Seadragon Software, Inc. Methods and apparatus for navigating an image
US7134092B2 (en) 2000-11-13 2006-11-07 James Nolen Graphical user interface method and apparatus
US7158878B2 (en) 2004-03-23 2007-01-02 Google Inc. Digital mapping system
US7173636B2 (en) 2004-03-18 2007-02-06 Idelix Software Inc. Method and system for generating detail-in-context lens presentations for elevation data
US20070033543A1 (en) 2005-08-04 2007-02-08 Microsoft Corporation Virtual magnifying glass with intuitive use enhancements
US7194697B2 (en) 2002-09-24 2007-03-20 Microsoft Corporation Magnification engine
US20070064018A1 (en) 2005-06-24 2007-03-22 Idelix Software Inc. Detail-in-context lenses for online maps
US7197718B1 (en) 1999-10-18 2007-03-27 Sharp Laboratories Of America, Inc. Interactive virtual area browser for selecting and rescaling graphical representations of displayed data
US20070097109A1 (en) 2005-10-18 2007-05-03 Idelix Software Inc. Method and system for generating detail-in-context presentations in client/server systems
US7233942B2 (en) 2000-10-10 2007-06-19 Truelocal Inc. Method and apparatus for providing geographically authenticated electronic documents
US7246109B1 (en) 1999-10-07 2007-07-17 Koninklijke Philips Electronics N.V. Method and apparatus for browsing using position information
US7312806B2 (en) 2004-01-28 2007-12-25 Idelix Software Inc. Dynamic width adjustment for detail-in-context lenses
US7321824B1 (en) 2002-12-30 2008-01-22 Aol Llc Presenting a travel route using more than one presentation style
US7423660B2 (en) 2003-09-26 2008-09-09 Canon Kabushiki Kaisha Image display apparatus, method and program
US7443396B2 (en) 2000-11-29 2008-10-28 National Instruments Corporation Instrument having a virtual magnifying glass for displaying magnified portions of a signal waveform
US7450114B2 (en) 2000-04-14 2008-11-11 Picsel (Research) Limited User interface systems and methods for manipulating and viewing digital documents
US7486302B2 (en) 2004-04-14 2009-02-03 Noregin Assets N.V., L.L.C. Fisheye lens graphical user interfaces
US7493572B2 (en) 2000-12-21 2009-02-17 Xerox Corporation Navigation methods, systems, and computer program products for virtual three-dimensional books
US20090172587A1 (en) 2007-07-26 2009-07-02 Idelix Software Inc. Dynamic detail-in-context user interface for application access and content access on electronic displays
US7580036B2 (en) 2005-04-13 2009-08-25 Catherine Montagnese Detail-in-context terrain displacement algorithm with optimizations
US20090284542A1 (en) 2001-06-12 2009-11-19 Noregin Assets N.V., L.L.C. Lens-defined adjustment of displays
US20100026718A1 (en) 2002-07-16 2010-02-04 Noregin Assets N.V., L.L.C. Detail-in-context lenses for digital image cropping, measurement and online maps
US7698653B2 (en) 1999-11-04 2010-04-13 Roman Kendyl A Graphical user interface including zoom control box representing image and magnification of displayed image
US7714859B2 (en) 2004-09-03 2010-05-11 Shoemaker Garth B D Occlusion reduction and magnification for multidimensional data presentations
US7761713B2 (en) 2002-11-15 2010-07-20 Baar David J P Method and system for controlling access in detail-in-context presentations
US20100262907A1 (en) 2001-05-03 2010-10-14 Shoemaker Garth B D Interacting with Detail-in-Context Presentations

Patent Citations (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201546A (en) 1961-07-24 1965-08-17 Hart Mfg Canada Ltd Power controlling device for electrical heating elements
US3704938A (en) 1970-10-01 1972-12-05 Hyman Fanselow Punch card viewer
US3762799A (en) 1971-08-27 1973-10-02 J Shapiro Magnifying indicator for a burette
US3739739A (en) 1972-08-24 1973-06-19 R Brase Instrument for isolating rows of printed matter for reading
US4688181A (en) 1982-12-22 1987-08-18 International Business Machines Corporation Image transformations on an interactive raster scan or matrix display
US4581647A (en) 1983-09-19 1986-04-08 Vye Richard A Computerized automatic focusing control system for multiple television cameras
US4630110A (en) 1984-02-15 1986-12-16 Supervision Control Systems, Inc. Surveillance system
US4885702A (en) 1985-07-27 1989-12-05 Sony Corporation Method of forming curved surfaces and the apparatus
US4800379A (en) * 1986-05-12 1989-01-24 Crosfield Electronics Limited Image display with movable magnification
US4888713A (en) 1986-09-05 1989-12-19 Cdi Technologies, Inc. Surface detail mapping system
US4888713B1 (en) 1986-09-05 1993-10-12 Cdi Technologies, Inc. Surface detail mapping system
US4790028A (en) 1986-09-12 1988-12-06 Westinghouse Electric Corp. Method and apparatus for generating variably scaled displays
US4985849A (en) 1987-06-12 1991-01-15 Canon Kabushiki Kaisha Image processing system for forming a slantwise-mapped or rotated modified image of an original image
US4970028A (en) 1987-09-24 1990-11-13 Lever Brothers Company Composition for softening fabrics
US5185599A (en) 1987-10-26 1993-02-09 Tektronix, Inc. Local display bus architecture and communications method for Raster display
US4757616A (en) 1987-10-26 1988-07-19 Educational Insights Ruler with magnifying cursor
US5048077A (en) 1988-07-25 1991-09-10 Reflection Technology, Inc. Telephone handset with full-page visual display
US4992866A (en) 1989-06-29 1991-02-12 Morgan Jack B Camera selection and positioning system and method
US5175808A (en) 1989-09-12 1992-12-29 Pixar Method and apparatus for non-affine image warping
US5206721A (en) 1990-03-08 1993-04-27 Fujitsu Limited Television conference system
US5031918A (en) 1990-04-24 1991-07-16 Fred Silber Compamy Magnifying marker for a game board
US5459488A (en) 1990-07-21 1995-10-17 Robert Bosch Gmbh Graphical user interface with fisheye adaptation principle
US5269687A (en) 1990-08-01 1993-12-14 Atari Games Corporation System and method for recursive driver training
US5250934A (en) 1990-12-31 1993-10-05 Xerox Corporation Method and apparatus for thinning printed images
US5258837A (en) 1991-01-07 1993-11-02 Zandar Research Limited Multiple security video display
US5696531A (en) * 1991-02-05 1997-12-09 Minolta Camera Kabushiki Kaisha Image display apparatus capable of combining image displayed with high resolution and image displayed with low resolution
US5844545A (en) * 1991-02-05 1998-12-01 Minolta Co., Ltd. Image display apparatus capable of combining image displayed with high resolution and image displayed with low resolution
US5200818A (en) 1991-03-22 1993-04-06 Inbal Neta Video imaging system with interactive windowing capability
US5416900A (en) 1991-04-25 1995-05-16 Lotus Development Corporation Presentation manager
US5341466A (en) 1991-05-09 1994-08-23 New York University Fractal computer user centerface with zooming capability
US5185667A (en) 1991-05-13 1993-02-09 Telerobotics International, Inc. Omniview motionless camera orientation system
US5682489A (en) 1991-06-04 1997-10-28 Digital Equipment Corporation, Inc. Method and device for monitoring, manipulating, and viewing system information
US5275019A (en) 1991-06-26 1994-01-04 C.T.P. S.P.A. Functional ring
US5227771A (en) 1991-07-10 1993-07-13 International Business Machines Corporation Method and system for incrementally changing window size on a display
US5588098A (en) 1991-11-22 1996-12-24 Apple Computer, Inc. Method and apparatus for direct manipulation of 3-D objects on computer displays
US5321807A (en) 1991-11-27 1994-06-14 Mumford Christopher J Accelerated graphics display method
US5610653A (en) 1992-02-07 1997-03-11 Abecassis; Max Method and system for automatically tracking a zoomed video image
US5539534A (en) 1992-06-03 1996-07-23 Hitachi, Ltd. Method of scaling an image capable of line width preservation
US5594859A (en) 1992-06-03 1997-01-14 Digital Equipment Corporation Graphical user interface for video teleconferencing
US5329310A (en) 1992-06-30 1994-07-12 The Walt Disney Company Method and apparatus for controlling distortion of a projected image
US5726670A (en) * 1992-07-20 1998-03-10 Olympus Optical Co., Ltd. Display apparatus to be mounted on the head or face of an individual
US5309279A (en) 1992-08-21 1994-05-03 Halstead Madeline C Script view a curved convex magnifying device
US5432895A (en) 1992-10-01 1995-07-11 University Corporation For Atmospheric Research Virtual reality imaging system
US5751289A (en) 1992-10-01 1998-05-12 University Corporation For Atmospheric Research Virtual reality imaging system with image replay
US5523783A (en) 1992-10-19 1996-06-04 Fuji Photo Optical Co., Ltd. Pan head control system for TV camera
US5369527A (en) 1992-12-03 1994-11-29 Mccracken; Robert Melanoma detection device
US6219052B1 (en) 1992-12-14 2001-04-17 Monkeymedia, Inc. Computer user interface with non-salience deemphasis
US6215491B1 (en) 1992-12-14 2001-04-10 Monkeymedia, Inc. Computer user interface with non-salience deemphasis
US5651107A (en) 1992-12-15 1997-07-22 Sun Microsystems, Inc. Method and apparatus for presenting information in a display system using transparent windows
US5638523A (en) 1993-01-26 1997-06-10 Sun Microsystems, Inc. Method and apparatus for browsing information in a computer database
US5596690A (en) 1993-07-21 1997-01-21 Xerox Corporation Method and apparatus for operating on an object-based model data structure to produce a second image in the spatial context of a first image
US5652851A (en) 1993-07-21 1997-07-29 Xerox Corporation User interface technique for producing a second image in the spatial context of a first image using a model-based operation
US5818455A (en) 1993-07-21 1998-10-06 Xerox Corporation Method and apparatus for operating on the model data structure of an image to produce human perceptible output using a viewing operation region having explicit multiple regions
US5798752A (en) 1993-07-21 1998-08-25 Xerox Corporation User interface having simultaneously movable tools and cursor
EP0635779B1 (en) 1993-07-21 2000-10-18 Xerox Corporation User interface having movable sheet with click-through tools
US5581670A (en) 1993-07-21 1996-12-03 Xerox Corporation User interface having movable sheet with click-through tools
US5598297A (en) 1993-08-26 1997-01-28 Sharp Kabushiki Kaisha Image display unit
US5528289A (en) 1993-10-20 1996-06-18 Videoconferencing Systems, Inc. Method for automatically adjusting a videoconferencing system camera to center an object
US5583977A (en) 1993-10-21 1996-12-10 Taligent, Inc. Object-oriented curve manipulation system
US5670984A (en) 1993-10-26 1997-09-23 Xerox Corporation Image lens
EP0650144B1 (en) 1993-10-26 2001-10-04 Xerox Corporation Image lens
US5689287A (en) 1993-10-27 1997-11-18 Xerox Corporation Context-preserving display system using a perspective sheet
US5473740A (en) 1993-12-29 1995-12-05 International Business Machines Corporation Method and apparatus for interactively indicating image boundaries in digital image cropping
US6523024B1 (en) 1994-03-18 2003-02-18 Hitachi, Ltd. Methods for retrieving database with image information
US5451998A (en) 1994-04-04 1995-09-19 Hamrick; Daniel C. Home shopping video catalog
US5852440A (en) 1994-04-13 1998-12-22 International Business Machines Corporation Method and system for facilitating the selection of icons
US5689628A (en) 1994-04-14 1997-11-18 Xerox Corporation Coupling a display object to a viewpoint in a navigable workspace
US5680524A (en) 1994-04-21 1997-10-21 Sandia Corporation Synthetic environment employing a craft for providing user perspective reference
US20020038257A1 (en) 1994-04-28 2002-03-28 Kuriacose Joseph Apparatus for transmitting and receiving executable applications as for a multimedia system
US6005611A (en) 1994-05-27 1999-12-21 Be Here Corporation Wide-angle image dewarping method and apparatus
US5521634A (en) 1994-06-17 1996-05-28 Harris Corporation Automatic detection and prioritized image transmission system and method
US5745166A (en) 1994-07-26 1998-04-28 Maxpro Systems Pty Ltd Video security system field of the invention
US5923364A (en) 1994-07-26 1999-07-13 Maxpro Systems Pty Ltd Video security system
US5812111A (en) 1994-08-30 1998-09-22 Nec Corporation Bifocal picture display system
US5613032A (en) 1994-09-02 1997-03-18 Bell Communications Research, Inc. System and method for recording, playing back and searching multimedia events wherein video, audio and text can be searched and retrieved
US20010040636A1 (en) 1994-11-17 2001-11-15 Eiji Kato Camera control and display device using graphical user interface
US5644758A (en) 1994-12-13 1997-07-01 Microsoft Corporation Bitmap block transfer image conversion
US6204845B1 (en) 1994-12-16 2001-03-20 International Business Machines Corporation Ergonomic viewable object processor
US6337709B1 (en) 1995-02-13 2002-01-08 Hitachi, Ltd. Image display device
US5808670A (en) 1995-02-17 1998-09-15 Nec System Integration & Construction, Ltd. Method and system for camera control with monitoring area view
US5872922A (en) 1995-03-07 1999-02-16 Vtel Corporation Method and apparatus for a video conference user interface
US5657246A (en) 1995-03-07 1997-08-12 Vtel Corporation Method and apparatus for a video conference user interface
US5729673A (en) 1995-04-07 1998-03-17 Avid Technology, Inc. Direct manipulation of two-dimensional moving picture streams in three-dimensional space
US6184859B1 (en) 1995-04-21 2001-02-06 Sony Corporation Picture display apparatus
US5721853A (en) 1995-04-28 1998-02-24 Ast Research, Inc. Spot graphic display element with open locking and periodic animation
US5973694A (en) 1995-06-02 1999-10-26 Chatham Telecommunications, Inc., Method of communication using sized icons, text, and audio
US5926209A (en) 1995-07-14 1999-07-20 Sensormatic Electronics Corporation Video camera apparatus with compression system responsive to video camera adjustment
US6037939A (en) 1995-09-27 2000-03-14 Sharp Kabushiki Kaisha Method for enabling interactive manipulation of data retained in computer system, and a computer system for implementing the method
US6081277A (en) 1995-09-28 2000-06-27 Sony Corporation Apparatus and method for controlling image display
US5969706A (en) 1995-10-16 1999-10-19 Sharp Kabushiki Kaisha Information retrieval apparatus and method
US5786814A (en) 1995-11-03 1998-07-28 Xerox Corporation Computer controlled display system activities using correlated graphical and timeline interfaces for controlling replay of temporal data representing collaborative activities
US5764139A (en) 1995-11-06 1998-06-09 Toyota Jidosha Kabushiki Kaisha Information display apparatus for vehicles
US5959605A (en) 1995-11-22 1999-09-28 Picker International, Inc. Video magnifier
US6266082B1 (en) 1995-12-19 2001-07-24 Canon Kabushiki Kaisha Communication apparatus image processing apparatus communication method and image processing method
US5848231A (en) 1996-02-12 1998-12-08 Teitelbaum; Neil System configuration contingent upon secure input
US6067372A (en) 1996-02-22 2000-05-23 University Of Pittsburgh Method and system to enhance robust identification of abnormal regions in radiographs
US6542191B1 (en) 1996-04-23 2003-04-01 Canon Kabushiki Kaisha Image display apparatus, camera control apparatus and method
US5999879A (en) 1996-04-26 1999-12-07 Pioneer Electronic Corporation Navigation apparatus with shape change display function
US5742272A (en) 1996-04-29 1998-04-21 Ati Technologies Inc. Accelerated full screen video playback
US6590583B2 (en) 1996-05-14 2003-07-08 Planetweb, Inc. Method for context-preserving magnification of digital image regions
US5754348A (en) 1996-05-14 1998-05-19 Planetweb, Inc. Method for context-preserving magnification of digital image regions
EP0816983A3 (en) 1996-06-25 1998-06-10 Sun Microsystems, Inc. Method and apparatus for eyetrack-driven text enlargement
US5731805A (en) 1996-06-25 1998-03-24 Sun Microsystems, Inc. Method and apparatus for eyetrack-driven text enlargement
US6198484B1 (en) 1996-06-27 2001-03-06 Kabushiki Kaisha Toshiba Stereoscopic display system
US5909219A (en) 1996-06-28 1999-06-01 Cirrus Logic, Inc. Embedding a transparency enable bit as part of a resizing bit block transfer operation
US6108005A (en) 1996-08-30 2000-08-22 Space Corporation Method for producing a synthesized stereoscopic image
US6491585B1 (en) 1996-09-24 2002-12-10 Nintendo Co., Ltd. Three-dimensional image processing apparatus with enhanced automatic and user point of view control
US6288702B1 (en) 1996-09-30 2001-09-11 Kabushiki Kaisha Toshiba Information device having enlargement display function and enlargement display control method
US5950216A (en) 1996-11-12 1999-09-07 International Business Machines Corporation Method and system for marking and subsequently retrieving a collection of objects within a multipage compound document utilizing selectable page numbered dialog boxes
US6256115B1 (en) 1997-02-21 2001-07-03 Worldquest Network, Inc. Facsimile network
US5991877A (en) 1997-04-03 1999-11-23 Lockheed Martin Corporation Object-oriented trusted application framework
US6147709A (en) 1997-04-07 2000-11-14 Interactive Pictures Corporation Method and apparatus for inserting a high resolution image into a low resolution interactive image to produce a realistic immersive experience
US6381583B1 (en) 1997-04-15 2002-04-30 John A. Kenney Interactive electronic shopping system and method
US6057844A (en) 1997-04-28 2000-05-02 Adobe Systems Incorporated Drag operation gesture controller
US6246411B1 (en) 1997-04-28 2001-06-12 Adobe Systems Incorporated Drag operation gesture controller
US6073036A (en) 1997-04-28 2000-06-06 Nokia Mobile Phones Limited Mobile station with touch input having automatic symbol magnification function
US5949430A (en) 1997-05-20 1999-09-07 Microsoft Corporation Peripheral lenses for simulating peripheral vision on a display device
US6204850B1 (en) 1997-05-30 2001-03-20 Daniel R. Green Scaleable camera model for the navigation and display of information structures using nested, bounded 3D coordinate spaces
US20020135601A1 (en) 1997-06-02 2002-09-26 Sony Corporation Digital map display zooming method, digital map display zooming device, and storage medium for storing digital map display zooming program
US6411274B2 (en) 1997-06-02 2002-06-25 Sony Corporation Digital map display zooming method, digital map display zooming device, and storage medium for storing digital map display zooming program
US6919921B1 (en) 1997-06-10 2005-07-19 Canon Kabushiki Kaisha Camera control using scroll bar for tilt control and having display of tilting direction and controllable range information
US6072501A (en) 1997-06-27 2000-06-06 Xerox Corporation Method and apparatus for composing layered synthetic graphics filters
US6384849B1 (en) 1997-07-14 2002-05-07 Microsoft Corporation Method for displaying controls in a system using a graphical user interface
US6747610B1 (en) 1997-07-22 2004-06-08 Sanyo Electric Co., Ltd. Stereoscopic image display apparatus capable of selectively displaying desired stereoscopic image
US6091771A (en) 1997-08-01 2000-07-18 Wells Fargo Alarm Services, Inc. Workstation for video security system
US7071971B2 (en) 1997-08-25 2006-07-04 Elbex Video Ltd. Apparatus for identifying the scene location viewed via remotely operated television camera
US6256043B1 (en) 1997-09-26 2001-07-03 Lucent Technologies Inc. Three dimensional virtual reality enhancement techniques
US6271854B1 (en) 1997-12-15 2001-08-07 Intel Corporation Method and apparatus for facilitating navigation in three-dimensional graphic scenes
US6075531A (en) 1997-12-15 2000-06-13 International Business Machines Corporation Computer system and method of manipulating multiple graphical user interface components on a computer display with a proximity pointer
US6128024A (en) 1997-12-18 2000-10-03 Hewlett-Packard Company Polar controller for defining and generating spiral-like shapes
US6133914A (en) 1998-01-07 2000-10-17 Rogers; David W. Interactive graphical user interface
US6241609B1 (en) 1998-01-09 2001-06-05 U.S. Philips Corporation Virtual environment viewpoint control
US6201548B1 (en) 1998-02-24 2001-03-13 Hewlett-Packard Company Graphical user interface for image editing
US6346962B1 (en) 1998-02-27 2002-02-12 International Business Machines Corporation Control of video conferencing system with pointing device
US6487497B2 (en) 1998-03-25 2002-11-26 Navigation Technologies Corporation Method and system for route calculation in a navigation application
US6084598A (en) 1998-04-23 2000-07-04 Chekerylla; James Apparatus for modifying graphic images
US6278443B1 (en) 1998-04-30 2001-08-21 International Business Machines Corporation Touch screen with random finger placement and rolling on screen to control the movement of information on-screen
US6154840A (en) 1998-05-01 2000-11-28 Northern Telecom Limited System and method for transferring encrypted sections of documents across a computer network
US6052110A (en) 1998-05-11 2000-04-18 Sony Corporation Dynamic control of zoom operation in computer graphics
US6320599B1 (en) 1998-05-11 2001-11-20 Sony Corporation Zooming scale indicator in computer graphics
US6064401A (en) 1998-05-28 2000-05-16 Ncr Corporation User interface controls for adjusting the display of multi-dimensional graphical plots
US6720971B1 (en) 1998-05-29 2004-04-13 Canon Kabushiki Kaisha Image processing method and apparatus, and storage medium
US6201546B1 (en) 1998-05-29 2001-03-13 Point Cloud, Inc. Systems and methods for generating three dimensional, textured models
US6278450B1 (en) 1998-06-17 2001-08-21 Microsoft Corporation System and method for customizing controls on a toolbar
US6392661B1 (en) 1998-06-17 2002-05-21 Trident Systems, Inc. Method and apparatus for improving situational awareness using multiple map displays employing peripheral range bands
US6504535B1 (en) 1998-06-30 2003-01-07 Lucent Technologies Inc. Display techniques for three-dimensional virtual reality
US6760020B1 (en) 1998-06-30 2004-07-06 Canon Kabushiki Kaisha Image processing apparatus for displaying three-dimensional image
US6559813B1 (en) 1998-07-01 2003-05-06 Deluca Michael Selective real image obstruction in a virtual reality display apparatus and method
US20010040585A1 (en) 1998-08-18 2001-11-15 Stephen A Hartford Resizing multi-dimensionally rendered graphical images
US6160553A (en) 1998-09-14 2000-12-12 Microsoft Corporation Methods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and in which object occlusion is avoided
US6577319B1 (en) 1998-09-18 2003-06-10 Sharp Kabushiki Kaisha Method for controlling data display
US6612930B2 (en) 1998-11-19 2003-09-02 Nintendo Co., Ltd. Video game apparatus and method with enhanced virtual camera control
US6631205B1 (en) 1999-01-13 2003-10-07 Canon Kabushiki Kaisha Stereoscopic imaging in a portable document format
US6396962B1 (en) 1999-01-29 2002-05-28 Sony Corporation System and method for providing zooming video
US6304271B1 (en) 1999-02-05 2001-10-16 Sony Corporation Apparatus and method for cropping an image in a zooming graphical user interface
US6552737B1 (en) 1999-02-18 2003-04-22 Fujitsu Limited Control of window size in response to user operation
US6256737B1 (en) 1999-03-09 2001-07-03 Bionetrix Systems Corporation System, method and computer program product for allowing access to enterprise resources using biometric devices
US6515663B1 (en) 1999-03-19 2003-02-04 Asustek Computer Inc. Apparatus for and method of processing three-dimensional images
US6438576B1 (en) 1999-03-29 2002-08-20 International Business Machines Corporation Method and apparatus of a collaborative proxy system for distributed deployment of object rendering
US6400848B1 (en) 1999-03-30 2002-06-04 Eastman Kodak Company Method for modifying the perspective of a digital image
US6396648B1 (en) 1999-03-30 2002-05-28 Nec Corporation Image reader which can shorten focal length in optical system having optical lens while keeping predetermined image reading width
US6842175B1 (en) 1999-04-22 2005-01-11 Fraunhofer Usa, Inc. Tools for interacting with virtual environments
US6346938B1 (en) 1999-04-27 2002-02-12 Harris Corporation Computer-resident mechanism for manipulating, navigating through and mensurating displayed image of three-dimensional geometric model
US6407747B1 (en) 1999-05-07 2002-06-18 Picsurf, Inc. Computer screen image magnification system and method
US6359615B1 (en) 1999-05-11 2002-03-19 Ericsson Inc. Movable magnification icons for electronic device display screens
US20020180759A1 (en) * 1999-05-12 2002-12-05 Imove Inc. Camera system with both a wide angle view and a high resolution view
US20020063711A1 (en) * 1999-05-12 2002-05-30 Imove Inc. Camera system with high resolution image inside a wide angle view
US6549215B2 (en) * 1999-05-20 2003-04-15 Compaq Computer Corporation System and method for displaying images using anamorphic video
US6417867B1 (en) 1999-05-27 2002-07-09 Sharp Laboratories Of America, Inc. Image downscaling using peripheral vision area localization
US6522341B1 (en) 1999-06-02 2003-02-18 Matsushita Electric Industrial Co., Ltd. Multi-layer image mixing apparatus
US20030179198A1 (en) 1999-07-08 2003-09-25 Shinji Uchiyama Stereoscopic image processing apparatus and method, stereoscopic vision parameter setting apparatus and method, and computer program storage medium information processing method and apparatus
US6744430B1 (en) 1999-07-21 2004-06-01 Sega Enterprises, Ltd. Image processing method and its apparatus
US6584237B1 (en) 1999-08-23 2003-06-24 Pentax Corporation Method and apparatus for expanding image data
US6416186B1 (en) 1999-08-23 2002-07-09 Nec Corporation Projection display unit
US7246109B1 (en) 1999-10-07 2007-07-17 Koninklijke Philips Electronics N.V. Method and apparatus for browsing using position information
US7197718B1 (en) 1999-10-18 2007-03-27 Sharp Laboratories Of America, Inc. Interactive virtual area browser for selecting and rescaling graphical representations of displayed data
US7698653B2 (en) 1999-11-04 2010-04-13 Roman Kendyl A Graphical user interface including zoom control box representing image and magnification of displayed image
US6515678B1 (en) 1999-11-18 2003-02-04 Gateway, Inc. Video magnifier for a display of data
US6731315B1 (en) 1999-11-30 2004-05-04 International Business Machines Corporation Method for selecting display parameters of a magnifiable cursor
US6577311B1 (en) 1999-12-16 2003-06-10 Picture Iq Corporation Techniques for automatically providing a high-resolution rendering of a low resolution digital image in a distributed network
US6975335B2 (en) 1999-12-28 2005-12-13 International Business Machines Corporation Method of displaying magnified and reduced areas and apparatus thereof
US20020033837A1 (en) 2000-01-10 2002-03-21 Munro James A. Multiple-image viewer
US6249281B1 (en) 2000-02-28 2001-06-19 Presenter.Com On-demand presentation graphical user interface
US20020062245A1 (en) 2000-03-09 2002-05-23 David Niu System and method for generating real-time promotions on an electronic commerce world wide website to increase the likelihood of purchase
US20030052896A1 (en) 2000-03-29 2003-03-20 Higgins Darin Wayne System and method for synchronizing map images
US20020101396A1 (en) 2000-04-14 2002-08-01 Huston James R. Balanced binary color drive method for graphical displays and system implementing same
US7055095B1 (en) 2000-04-14 2006-05-30 Picsel Research Limited Systems and methods for digital document processing
US7450114B2 (en) 2000-04-14 2008-11-11 Picsel (Research) Limited User interface systems and methods for manipulating and viewing digital documents
US20040194014A1 (en) 2000-04-14 2004-09-30 Picsel Technologies Limited User interface systems and methods for viewing and manipulating digital documents
US6938218B1 (en) 2000-04-28 2005-08-30 James Nolen Method and apparatus for three dimensional internet and computer file interface
US6608631B1 (en) 2000-05-02 2003-08-19 Pixar Amination Studios Method, apparatus, and computer program product for geometric warps and deformations
US20010048447A1 (en) 2000-06-05 2001-12-06 Fuji Photo Film Co., Ltd. Image croppin and synthesizing method, and imaging apparatus
US6633305B1 (en) 2000-06-05 2003-10-14 Corel Corporation System and method for magnifying and editing images
US6307612B1 (en) 2000-06-08 2001-10-23 Three-Five Systems, Inc. Liquid crystal display element having a precisely controlled cell gap and method of making same
US20010055030A1 (en) 2000-06-22 2001-12-27 Lc Electronics Inc. Apparatus and method for correcting keyston distortion
US20030061211A1 (en) 2000-06-30 2003-03-27 Shultz Troy L. GIS based search engine
US6747611B1 (en) 2000-07-27 2004-06-08 International Business Machines Corporation Compact optical system and packaging for head mounted display
US7280105B2 (en) 2000-09-06 2007-10-09 Idelix Software Inc. Occlusion reducing transformations for three-dimensional detail-in-context viewing
US20020122038A1 (en) 2000-09-06 2002-09-05 David Cowperthwaite Occlusion reducing transformations for three-dimensional detail-in-context viewing
US6798412B2 (en) 2000-09-06 2004-09-28 Idelix Software Inc. Occlusion reducing transformations for three-dimensional detail-in-context viewing
US20040257375A1 (en) 2000-09-06 2004-12-23 David Cowperthwaite Occlusion reducing transformations for three-dimensional detail-in-context viewing
US6911975B2 (en) 2000-09-11 2005-06-28 Canon Kabushiki Kaisha Stereo image display apparatus and method, and storage medium
US6704034B1 (en) 2000-09-28 2004-03-09 International Business Machines Corporation Method and apparatus for providing accessibility through a context sensitive magnifying glass
US7233942B2 (en) 2000-10-10 2007-06-19 Truelocal Inc. Method and apparatus for providing geographically authenticated electronic documents
JP4410465B2 (en) 2000-10-18 2010-02-03 イデリックス ソフトウェア インコーポレイテッド Display method using elastic display space
US20050041046A1 (en) 2000-10-18 2005-02-24 Baar David J.P. Elastic presentation space
US7256801B2 (en) 2000-10-18 2007-08-14 Idelix Software Inc. Elastic presentation space
US20020044154A1 (en) 2000-10-18 2002-04-18 Baar David J. P. Elastic presentation space
US6768497B2 (en) 2000-10-18 2004-07-27 Idelix Software Inc. Elastic presentation space
US20040217979A1 (en) 2000-10-18 2004-11-04 Baar David J. P. Elastic presentation space
US7134092B2 (en) 2000-11-13 2006-11-07 James Nolen Graphical user interface method and apparatus
US6590568B1 (en) 2000-11-20 2003-07-08 Nokia Corporation Touch screen drag and drop input technique
US7443396B2 (en) 2000-11-29 2008-10-28 National Instruments Corporation Instrument having a virtual magnifying glass for displaying magnified portions of a signal waveform
US6727910B2 (en) 2000-12-19 2004-04-27 Idelix Software Inc. Method and system for inversion of detail-in-context presentations
US7106349B2 (en) 2000-12-19 2006-09-12 Idelix Software Inc. Method and system for enhanced detail-in-context viewing
US7173633B2 (en) 2000-12-19 2007-02-06 Idelix Software Inc. Method and system for inversion of detail-in-context presentations
US20020089520A1 (en) 2000-12-19 2002-07-11 Baar David J.P. Method and system for enhanced detail-in-context viewing
US7283141B2 (en) 2000-12-19 2007-10-16 Idelix Software Inc. Method and system for enhanced detail-in-context viewing
US20060214951A1 (en) 2000-12-19 2006-09-28 Baar David J Method and system for enhanced detail-in-context viewing
US20020075280A1 (en) 2000-12-19 2002-06-20 Tigges Mark H. A. Method and system for inversion of detail-in-context presentations
US6924822B2 (en) 2000-12-21 2005-08-02 Xerox Corporation Magnification methods, systems, and computer program products for virtual three-dimensional books
US20030052900A1 (en) 2000-12-21 2003-03-20 Card Stuart Kent Magnification methods, systems, and computer program products for virtual three-dimensional books
US7493572B2 (en) 2000-12-21 2009-02-17 Xerox Corporation Navigation methods, systems, and computer program products for virtual three-dimensional books
US20060033762A1 (en) 2000-12-21 2006-02-16 Xerox Corporation Magnification methods, systems, and computer program products for virtual three-dimensional books
US20020087894A1 (en) 2001-01-03 2002-07-04 Foley James M. Method and apparatus for enabling a user to select an authentication method
US6731285B2 (en) 2001-01-11 2004-05-04 International Business Machines Corporation System and method for providing high performance image magnification in a web browser
US20020093567A1 (en) 2001-01-12 2002-07-18 International Business Machines Corporation Method and system for generating a digital photographic proof
US6956590B1 (en) 2001-02-28 2005-10-18 Navteq North America, Llc Method of providing visual continuity when panning and zooming with a map display
US6721655B1 (en) 2001-03-14 2004-04-13 Mitsubishi Denki Kabushiki Kaisha Vehicle travel guide device and vehicle travel guide method
US20020143826A1 (en) 2001-03-29 2002-10-03 International Business Machines Corporation Method, apparatus, and program for magnifying the text of a link while still retaining browser function in the magnified display
US20020171644A1 (en) 2001-03-31 2002-11-21 Reshetov Alexander V. Spatial patches for graphics rendering
US20100262907A1 (en) 2001-05-03 2010-10-14 Shoemaker Garth B D Interacting with Detail-in-Context Presentations
US7197719B2 (en) 2001-05-03 2007-03-27 Idelix Software Inc. Graphical user interface for detail-in-context presentations
US20020180801A1 (en) 2001-05-03 2002-12-05 Michael Doyle Graphical user interface for detail-in-context presentations
CA2350342A1 (en) 2001-05-03 2002-11-03 Idelix Software Inc. Extension of detail-in-context data presentation with interface to full zoom function
US7213214B2 (en) 2001-06-12 2007-05-01 Idelix Software Inc. Graphical user interface with zoom for detail-in-context presentations
US20090284542A1 (en) 2001-06-12 2009-11-19 Noregin Assets N.V., L.L.C. Lens-defined adjustment of displays
US20030007006A1 (en) 2001-06-12 2003-01-09 David Baar Graphical user interface with zoom for detail-in-context presentations
US20030006995A1 (en) 2001-06-15 2003-01-09 Smith Randall B. Orthogonal magnifier within a computer system display
US20030118223A1 (en) 2001-08-10 2003-06-26 Rahn J. Richard Method and apparatus for three-dimensional imaging in the fourier domain
US20030048447A1 (en) 2001-09-07 2003-03-13 Raimo Harju Accurate instrumetation for optical measurement of samples
US6985865B1 (en) 2001-09-26 2006-01-10 Sprint Spectrum L.P. Method and system for enhanced response to voice commands in a voice command platform
US20030076363A1 (en) 2001-10-18 2003-04-24 Murphy Killian D. Digital image magnification for internet appliance
US6882755B2 (en) 2001-10-19 2005-04-19 Hewlett-Packard Development Company, L.P. Image transmission for low bandwidth with region of interest
US20060192780A1 (en) 2001-11-07 2006-08-31 Maria Lantin Method and system for displaying stereoscopic detail-in-context presentations
US20100201785A1 (en) 2001-11-07 2010-08-12 Maria Lantin Method and system for displaying stereoscopic detail-in-context presentations
US7737976B2 (en) 2001-11-07 2010-06-15 Maria Lantin Method and system for displaying stereoscopic detail-in-context presentations
US20030112503A1 (en) 2001-11-07 2003-06-19 Maria Lantin Method and system for displaying stereoscopic detail-in-context presentations
US7088364B2 (en) 2001-11-07 2006-08-08 Idelix Software Inc. Method and system for displaying stereoscopic detail-in-context presentations
US20030100326A1 (en) 2001-11-27 2003-05-29 Grube Gary W. Group location and route sharing system for communication units in a trunked communication system
US6874126B1 (en) 2001-11-30 2005-03-29 View Space Technologies Method and apparatus for controlling content display by the cursor motion
US20030105795A1 (en) 2001-11-30 2003-06-05 Anderson Jeff M. Image editing via batch commands
US7274381B2 (en) 2001-12-03 2007-09-25 Tempest Microsystems, Inc. Panoramic imaging and display system with canonical magnifier
US20030103063A1 (en) 2001-12-03 2003-06-05 Tempest Microsystems Panoramic imaging and display system with canonical magnifier
US20050259118A1 (en) 2001-12-03 2005-11-24 Michael Mojaver Panoramic imaging and display system with canonical magnifier
US6833843B2 (en) 2001-12-03 2004-12-21 Tempest Microsystems Panoramic imaging and display system with canonical magnifier
US6690387B2 (en) 2001-12-28 2004-02-10 Koninklijke Philips Electronics N.V. Touch-screen image scrolling system and method
US7038680B2 (en) 2002-01-09 2006-05-02 Xerox Corporation System for graphical display and interactive exploratory analysis of data and data relationships
US20030137525A1 (en) 2002-01-24 2003-07-24 Smith Randall B. Method and apparatus for facilitating motion-coupled magnification
US20030174146A1 (en) 2002-02-04 2003-09-18 Michael Kenoyer Apparatus and method for providing electronic image manipulation in video conferencing applications
US7275219B2 (en) 2002-02-05 2007-09-25 Idelix Software Inc. Fast and accurate rendering of pliable display technology distortions using pre-calculated texel coverages
US20030151626A1 (en) 2002-02-05 2003-08-14 Robert Komar Fast rendering of pyramid lens distorted raster images
US20030151625A1 (en) 2002-02-05 2003-08-14 Shoemaker Garth B.D. Fast and accurate rendering of pliable display technology distortions using pre-calculated texel coverages
US7667699B2 (en) 2002-02-05 2010-02-23 Robert Komar Fast rendering of pyramid lens distorted raster images
US20030179219A1 (en) 2002-03-08 2003-09-25 International Business Machines Corporation Image display device, image display method, and image display program
US20030179237A1 (en) 2002-03-22 2003-09-25 Nelson Lester D. System and method for arranging, manipulating and displaying objects in a graphical user interface
US20030196114A1 (en) 2002-04-10 2003-10-16 International Business Machines Persistent access control of protected content
US20030210281A1 (en) 2002-05-07 2003-11-13 Troy Ellis Magnifying a thumbnail image of a document
US20030227556A1 (en) 2002-05-15 2003-12-11 Michael Doyle Method and system for generating detail-in-context video presentations using a graphical user interface
US7411610B2 (en) 2002-05-15 2008-08-12 Idelix Software Inc. Method and system for generating detail-in-context video presentations using a graphical user interface
CA2386560A1 (en) 2002-05-15 2003-11-15 Idelix Software Inc. Controlling optical hardware and dynamic data viewing systems with detail-in-context viewing tools
US20030231177A1 (en) 2002-05-17 2003-12-18 Catherine Montagnese Method and system for inversion of detail-in-context presentations with folding
US6961071B2 (en) 2002-05-17 2005-11-01 Idelix Software Inc. Method and system for inversion of detail-in-context presentations with folding
US20040026521A1 (en) 2002-05-22 2004-02-12 Alex Colas Linear proportional valve
US20090147023A1 (en) 2002-07-16 2009-06-11 Noregin Assets N.V., L.L.C. Detail-in-context lenses for digital image cropping and measurement
US20040056869A1 (en) 2002-07-16 2004-03-25 Zeenat Jetha Using detail-in-context lenses for accurate digital image cropping and measurement
US20100026718A1 (en) 2002-07-16 2010-02-04 Noregin Assets N.V., L.L.C. Detail-in-context lenses for digital image cropping, measurement and online maps
US7489321B2 (en) 2002-07-16 2009-02-10 Noregin Assets N.V., L.L.C. Using detail-in-context lenses for accurate digital image cropping and measurement
CA2393708A1 (en) 2002-07-16 2004-01-16 Idelix Software Inc. Applications of multiple lenses in detail-in-context data presentations
US7084886B2 (en) 2002-07-16 2006-08-01 Idelix Software Inc. Using detail-in-context lenses for accurate digital image cropping and measurement
US20090265656A1 (en) 2002-07-17 2009-10-22 Noregin Assets N.V., L.L.C. Graphical user interface having an attached toolbar for drag and drop editing in detail-in-context lens presentations
US20040056898A1 (en) 2002-07-17 2004-03-25 Zeenat Jetha Graphical user interface having an attached toolbar for drag and drop editing in detail-in-context lens presentations
US7472354B2 (en) 2002-07-17 2008-12-30 Noregin Assets N.V., L.L.C. Graphical user interface having an attached toolbar for drag and drop editing in detail-in-context lens presentations
CA2394119A1 (en) 2002-07-18 2004-01-18 Idelix Software Inc. Cropping and measuring with a single lens
US7194697B2 (en) 2002-09-24 2007-03-20 Microsoft Corporation Magnification engine
US20040111332A1 (en) 2002-09-30 2004-06-10 David Baar Detail-in-context lenses for interacting with objects in digital image presentations
US20100033503A1 (en) 2002-09-30 2010-02-11 David Baar Detail-in-Context Lenses for Interacting with Objects in Digital Image Presentations
US7310619B2 (en) 2002-09-30 2007-12-18 Idelix Software Inc. Detail-in-context lenses for interacting with objects in digital image presentations
US20040125138A1 (en) 2002-10-10 2004-07-01 Zeenat Jetha Detail-in-context lenses for multi-layer images
US7761713B2 (en) 2002-11-15 2010-07-20 Baar David J P Method and system for controlling access in detail-in-context presentations
US7321824B1 (en) 2002-12-30 2008-01-22 Aol Llc Presenting a travel route using more than one presentation style
US20060036629A1 (en) 2003-01-28 2006-02-16 Microsoft Corporation System and process for identifying objects and/or points nearby a given object or point
US20040150664A1 (en) 2003-02-03 2004-08-05 Microsoft Corporation System and method for accessing remote screen content
US20040240709A1 (en) 2003-04-22 2004-12-02 Garth Shoemaker Method and system for controlling detail-in-context lenses through eye and position tracking
US6906643B2 (en) 2003-04-30 2005-06-14 Hewlett-Packard Development Company, L.P. Systems and methods of viewing, modifying, and interacting with “path-enhanced” multimedia
US20040257380A1 (en) 2003-06-20 2004-12-23 Herbert Leslie B. Imaging method and system
US7423660B2 (en) 2003-09-26 2008-09-09 Canon Kabushiki Kaisha Image display apparatus, method and program
US20100045702A1 (en) 2003-11-17 2010-02-25 Noregin Assets N.V., L.L.C. Navigating Digital Images using Detail-in-context Lenses
US20050134610A1 (en) 2003-11-17 2005-06-23 Michael Doyle Navigating digital images using detail-in-context lenses
US7495678B2 (en) 2003-11-17 2009-02-24 Noregin Assets N.V., L.L.C. Navigating digital images using detail-in-context lenses
US7312806B2 (en) 2004-01-28 2007-12-25 Idelix Software Inc. Dynamic width adjustment for detail-in-context lenses
US7133054B2 (en) 2004-03-17 2006-11-07 Seadragon Software, Inc. Methods and apparatus for navigating an image
US7173636B2 (en) 2004-03-18 2007-02-06 Idelix Software Inc. Method and system for generating detail-in-context lens presentations for elevation data
US7158878B2 (en) 2004-03-23 2007-01-02 Google Inc. Digital mapping system
US20060139375A1 (en) 2004-03-23 2006-06-29 Rasmussen Jens E Secondary map in digital mapping system
US20090141044A1 (en) 2004-04-14 2009-06-04 Noregin Assets N.V., L.L.C. Fisheye lens graphical user interfaces
US7486302B2 (en) 2004-04-14 2009-02-03 Noregin Assets N.V., L.L.C. Fisheye lens graphical user interfaces
US7773101B2 (en) 2004-04-14 2010-08-10 Shoemaker Garth B D Fisheye lens graphical user interfaces
US20050278378A1 (en) 2004-05-19 2005-12-15 Metacarta, Inc. Systems and methods of geographical text indexing
US20050285861A1 (en) 2004-06-23 2005-12-29 Idelix Software, Inc. Detail-in-context lenses for navigation
US20060022955A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Visual expander
US20060026521A1 (en) 2004-07-30 2006-02-02 Apple Computer, Inc. Gestures for touch sensitive input devices
US7714859B2 (en) 2004-09-03 2010-05-11 Shoemaker Garth B D Occlusion reduction and magnification for multidimensional data presentations
US20100208968A1 (en) 2004-09-03 2010-08-19 Shoemaker Garth B D Occlusion Reduction and Magnification for Multidimensional Data Presentations
US20060059432A1 (en) 2004-09-15 2006-03-16 Matthew Bells User interface having viewing area with non-transparent and semi-transparent regions
US20060098028A1 (en) 2004-09-29 2006-05-11 Idelix Software Inc. Compound lenses for multi-source data presentation
US20060082901A1 (en) 2004-10-14 2006-04-20 Idelix Software Inc. Interacting with detail-in-context presentations
US7580036B2 (en) 2005-04-13 2009-08-25 Catherine Montagnese Detail-in-context terrain displacement algorithm with optimizations
US20070064018A1 (en) 2005-06-24 2007-03-22 Idelix Software Inc. Detail-in-context lenses for online maps
US20070033543A1 (en) 2005-08-04 2007-02-08 Microsoft Corporation Virtual magnifying glass with intuitive use enhancements
US20070097109A1 (en) 2005-10-18 2007-05-03 Idelix Software Inc. Method and system for generating detail-in-context presentations in client/server systems
US20090172587A1 (en) 2007-07-26 2009-07-02 Idelix Software Inc. Dynamic detail-in-context user interface for application access and content access on electronic displays

Non-Patent Citations (108)

* Cited by examiner, † Cited by third party
Title
"Advisory Action", U.S. Appl. No. 10/705,199, (Aug. 18, 2009), 3 pages.
"Advisory Action", U.S. Appl. No. 11/249,493, (Aug. 11, 2009), 5 pages.
"Advisory Action", U.S. Appl. No. 11/249,493, (Sep. 14, 2009), 4 pages.
"Advisory Action", U.S. Appl. No. 11/541,778, (Feb. 1, 2010), 3 pages.
"Advisory Action", U.S. Appl. No. 11/673,038, (Mar. 25, 2010), 3 pages.
"Advisory Action", U.S. Appl. No. 11/935,222, (Feb. 4, 2010), 3 pages.
"BPAI Decision", U.S. Appl. No. 10/682,298, (Dec. 30, 2009), 14 pages.
"Electronic Magnifying Glasses", IBM Technical Disclosure Bulletin, IBM Corp., New York, US, vol. 37, No. 3; XP000441501, ISSN: 0018-8689 the whole document; (Mar. 1, 1994), pp. 353-354.
"Final Office Action", U.S. Appl. No. 10/705,199, (May 12, 2009), 13 pages.
"Final Office Action", U.S. Appl. No. 11/159,20, (Oct. 6, 2010), 16 pages.
"Final Office Action", U.S. Appl. No. 11/159,205, (Mar. 25, 2010), 16 pages.
"Final Office Action", U.S. Appl. No. 11/410,024, (Mar. 11, 2009), 20 pages.
"Final Office Action", U.S. Appl. No. 11/541,778, (Dec. 4, 2009), 12 pages.
"Final Office Action", U.S. Appl. No. 11/673,038, (Jan. 8, 2010), 33 pages.
"Final Office Action", U.S. Appl. No. 11/691,686, (Sep. 1, 2010), 16 pages.
"Final Office Action", U.S. Appl. No. 11/935,222, (Nov. 24, 2009), 8 pages.
"Foreign Office Action", U.S. Appl. No. 2002-536993, (Mar. 11, 2009), 2 pages.
"Non Final Office Action", U.S. Appl. No. 10/358,394, (Mar. 13, 2009),36 pages.
"Non Final Office Action", U.S. Appl. No. 11/138,979, (Sep. 17, 2010), 11 pages.
"Non Final Office Action", U.S. Appl. No. 11/159,205, (Jul. 27, 2009), 13 pages.
"Non Final Office Action", U.S. Appl. No. 11/236,694, (Oct. 13, 2010), 16 pages.
"Non Final Office Action", U.S. Appl. No. 11/410,024, (Jul. 20, 2009), 12 pages.
"Non Final Office Action", U.S. Appl. No. 11/541,778, (Jun. 19, 2009), 11 pages.
"Non Final Office Action", U.S. Appl. No. 11/541,778, (Sep. 29, 2010), 10 pages.
"Non Final Office Action", U.S. Appl. No. 11/542,120, (Jan. 22, 2009),1 2 pages.
"Non Final Office Action", U.S. Appl. No. 11/673,038, (Jul. 13, 2009), 30 pages.
"Non Final Office Action", U.S. Appl. No. 11/673,038, (Jul. 22, 2010), 39 pages.
"Non Final Office Action", U.S. Appl. No. 11/691,686, (Mar. 18, 2010), 17 pages.
"Non Final Office Action", U.S. Appl. No. 11/695,104, (Oct. 1, 2010), 9 pages.
"Non Final Office Action", U.S. Appl. No. 11/935,222, (Feb. 20, 2009), 8 pages.
"Non Final Office Action", U.S. Appl. No. 12/368,263, (Apr. 30, 2010), 8 pages.
"Non Final Office Action", U.S. Appl. No. 12/368,267, (Jun. 11, 2010), 12 pages.
"Non Final Office Action", U.S. Appl. No. 12/388,437, (Jun. 23, 2010), 7 pages.
"Non Final Office Action", U.S. Appl. No. 12/764,724, (Jul. 1, 2010), 20 pages.
"Non-Final Office Action", U.S. Appl. No. 11/236,694, (Apr. 20, 2010), 9 pages.
"Non-Final Office Action", U.S. Appl. No. 12/364,450, (Sep. 30, 2009), 10 pages.
"Notice of Allowability", U.S. Appl. No. 12/364,451, (Jun. 18, 2010), 2 pages.
"Notice of Allowance & Examiner's Amendment", U.S. Appl. No. 11/401,349, (Apr. 17, 2009), 10 pages.
"Notice of Allowance", U.S. Appl. No. 10/358,394, (Oct. 8, 2009), 7 pages.
"Notice of Allowance", U.S. Appl. No. 10/705,199, (Mar. 10, 2010), 18 pages.
"Notice of Allowance", U.S. Appl. No. 11/214,886, (Dec. 15, 2009), 16 pages.
"Notice of Allowance", U.S. Appl. No. 11/410,024, (Jan. 4, 2010), 7 pages.
"Notice of Allowance", U.S. Appl. No. 12/364,450, (Apr. 19, 2010), 4 pages.
"Presentation for CGDI Workshop", Retrieved from: http://www.geoconnections.org/developersCorner/devCorner-devNetwork/meetings/2002.05.30/IDELIX-CGDI-20020530-dist.pdf, (May 2002), 19 pages.
"Restriction Requirement", U.S. Appl. No. 11/935,222, (Aug. 20, 2009), 6 pages.
"Restriction Requirement", U.S. Appl. No. 12/368,263, (Mar. 9, 2010), 7 pages.
"Final Office Action", U.S. Appl. No. 11/691,686, (Nov. 22, 2010), 16 pages.
"Final Office Action", U.S. Appl. No. 12/368,263, (Nov. 5, 2010), 7 pages.
"Final Office Action", U.S. Appl. No. 12/764,724, (Nov. 9, 2010), 21 pages.
Baudisch, P. et al., "Halo: a Technique for Visualizing Off-Screen Locations", CHI; Retrieved from: <www.patrickbaudisch.com/.../2003-Baudisch-CHI03-Halo.pdf<, (Apr. 5-10, 2003), 8 pages.
Baudisch, Patrick et al., "Drag-And-Pop: Techniques for Accessing Remote Screen Content On Touch-And-Pen-Operated Systems", Interact '03 (2003), pp. 57-64.
Bier, Eric A., et al., "The Movable Filter as a User Interface Tool-The Video", Conference on Human Factors in Computing Systems Conference companion on Human factors in computing systems, (1995), pp. 413-414.
Bier, Eric A., et al., "Toolglass and Magic Lenses-The See-Through Interface", International Conference on Computer Graphics and Interactive Techniques Proceedings of the 20th annual conference on Computer graphics and interactive techniques, (1993), pp. 73-80.
Bier, Eric A., et al., "Toolglass and Magic Lenses—The See-Through Interface", Conference on Human Factors in Computing Systems Conference companion on Human factors in computing systems, (1994), pp. 445-446.
Boots, Barry N., "Delaunay Triangles: An Alternative Approach to Point Pattern Analysis", Proceedings of the Association of American Geographers, vol. 6, (1974), pp. 26-29.
Bossen, Frank "Anisotropic Mesh Generation With Particles" Technical Report CMU-CS-96-134, CS Dept, Carnegie Mellon University; (May 13, 1996), pp. 1-59.
Bossen, Frank J., et al., "A Pliant Method For Anisotropic Mesh Generation", 5th Intl. Meshing Roundtable; (Oct. 1996), pp. 63-74.
Bouju, Alain et al., "Client-Server Architecture for Accessing Multimedia and Geographic Databases within Embedded Systems", Database and Expert Systems Applications, 1999 Proceedings. Tenth International Workshop on Florence, Italy Sep. 1-3, 1999, Los Alamitos, CA, USA, IEEE Comput. Soc, US, XP010352370; ISBN:0-7695-0281-4, abstract, figure 2,(Sep. 1-3, 1999), pp. 760-764.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", Available at ,(Nov. 19, 1999), 1 page.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", PhD thesis, Simon Fraser University; Available at ,(Mar. 1999), pp. 69, 72, 78-83,98-100, 240, 241.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", Simon Fraser University, Burnaby; British Columbia XP001051168; cited in the application figures 2.13, 3.1-3.31, 4.1-4.19, 5.14,(Mar. 1999), pp. 7, 14, 34, 38, 65, 112, 123, and 126.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", Thesis Simon Fraser University, XP001051168; Chapter 3-5; appendix A,B; (Mar. 1999), pp. 1-271.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", Available at <http://pages.cpsc.ucalgary.ca/˜sheelagh/personal/thesis/>,(Nov. 19, 1999), 1 page.
Carpendale, M. Sheelagh T., "A Framework for Elastic Presentation Space", PhD thesis, Simon Fraser University; Available at <http://pages.cpsc.ucalgary.ca/˜sheelagh/wiki/uploads/Main/Thesis/pre.pdf>,(Mar. 1999), pp. 69, 72, 78-83,98-100, 240, 241.
Carpendale, M. Sheelagh T., et al., "A Framework for Unifying Presentation Space", Proceedings of UIST '01: ACM Symposium on User Interface Software and Technology, Orlando, FL, USA; XP002249323 2001, New York, NY, USA, ISBN: 1-58113-438-X,(Nov. 14, 2001), pp. 61-70, 64.
Carpendale, M. Sheelagh T., et al., "Distortion Viewing Techniques for 3-Dimensional Data", Information Visualization '96. Proceedings IEEE Symposium On, San Francisco, CA, USA, Los Alamitos, CA, USA, IEEE Comput. Soc., US, Oct. 28, 1996, XP010201944, ISBN: 0-8186-76138-X,(Oct. 28-29, 1996), pp. 46-53 and 119.
Carpendale, M. Sheelagh T., et al., "Exploring Distinct Aspects of the Distortion Viewing Paradigm", Technical Report TR 97-08, School of Computer Science, Simon Fraser University, Burnaby, British Columbia, Canada; (Sep. 1997), 14 pages.
Carpendale, M. Sheelagh T., et al., "Extending Distortion Viewing from 2D to 3D", IEEE Computer Graphics and Applications,IEEE Inc. New York, US, vol. 17, No. 4; XP000927815, ISSN: 0272-1716., (Jul. 1997), pp. 42-51.
Carpendale, M. Sheelagh T., et al., "Graph Folding: Extending Detail and Context Viewing into a Tool for Subgraph Comparisons", In Proceedings of Graph Drawing 1995, Passau, Germany, (1995), 13 pages.
Carpendale, M. Sheelagh T., et al., "Making Distortions Comprehensible", Visual Languages, Proceedings, 1997 IEEE Symposium On Isle of Capri, Italy, Los Alamitos, CA, USA, IEEE Comput. Soc., US, Sep. 23, 1997; XP010250566, ISBN: 0-8186-8144-6,(Sep. 23-26, 1997), pp. 36-45.
Cowperthwaite, David J., "Occlusion Resolution Operators for Three-Dimensional Detail-In-Context", Burnaby, British Columbia: Simon Fraser University; (2000), 166 pages.
Cowperthwaite, David J., et al., "Visual Access For 3D Data", Proceedings of ACM CHI 96 Conference on Human Factors in Computer Systems, Volume 2 of Short Papers: Alternative Methods of Interaction; (1996), 5 pages.
Deng, Ke et al., "Texture Mapping with a Jacobian-Based Spatially-Variant Filter", Proceedings 10th Pacific Conference on Computer Graphics and Applications, XP00224932, ISBN; 0-7695-1784-6 the whole document,(Oct. 2002), pp. 460-461.
Dursteler, Juan C., "The Digital Magazine of InfoVis.net", Retrieved from: on Nov. 9, 2006 (Apr. 22, 2002), 2 pages.
Dursteler, Juan C., "The Digital Magazine of InfoVis.net", Retrieved from: <http://www.infovis.net/printMag.php?num=85&lang=2> on Nov. 9, 2006 (Apr. 22, 2002), 2 pages.
Fitzmaurice, George et al., "Tracking Menus", UIST; (2003), pp. 71-79.
Ikedo, Tsuneo "A Realtime Video-Image Mapping Using Polygon Rendering Techniques", IEEE Intl. conf on Ottawa, Ont, Canada Jun. 3-6, 1997, Los Alamitos, CA, USA; IEEE Comput. Soc, US, XP010239181, ISBN: 0-8186-7819-4 Sections 2, 4.4; Multimedia Computing and Systems '97 Proceedings, (Jun. 3, 1997), pp. 127-134.
Ito, Minoru et al., "A Three-Level Checkerboard Pattern (TCP) Projection Method for Curved Surface Measurement", Pattern Recognition, vol. 28, No. 1, XP004014030, ISSN 0031-3203,(1995), pp. 27-40.
Kamba, Tomonari et al., "Using Small Screen Space More Efficiently", CHI 96 Vancouver, BC Canada, (1996), pp. 383-390.
Keahey, T. A., "Getting Along: Composition of Visualization Paradigms", Visual Insights. Inc.; (2001), 4 pages.
Keahey, T. A., "Nonlinear Magnification", (Indiana University Computer Science), (1997), 196 pages.
Keahey, T. A., "The Generalized Detail-In-Context Problem", Information Visualization 1998, Proceedings; IEEE Symposium On Research Triangle, CA, USA; Los Alamitos, CA, USA, IEEE Comput. Soc, US; XP010313304; ISBN: 0-8186-9093,(Oct. 1998), pp. 44-51, 152.
Keahey, T. A., "Visualization of High-Dimensional Clusters Using Nonlinear Magnification", Technical Report LA-UR-98-2776, Los Alamos National Laboratory; (1998), 8 pages.
Keahey, T. A., et al., "Nonlinear Magnification Fields", Information Visualization, 1997, Proceedings, IEEE Symposium On Phoenix, AZ, USA, Los Alamitos, CA, USA, IEEE Comput. Soc., US: XP010257169; ISBN: 0-8186-8189-6,(Oct. 1997), pp. 51-58 and 121.
Keahey, T. A., et al., "Techniques For Non-Linear Magnification Transformations", Information Visualization '96, Proceedings IEEE Symposium on, San Francisco, CA, Los Alamitos, CA, USA, IEEE Comput. Soc, US: XP010201943; ISBN: 0-8186-7668-X the whole document,(Oct. 28, 1996), pp. 38-45.
Kline, Richard L., et al., "Improving GUI Accessibility for People with Low Vision", Proceedings of the SIGCHI conference on Human factors in computing systems, (1995), pp. 114-121.
Kuederle, Oliver "Presentation of Image Sequences: A Detail-in-context Approach", Thesis, Simon Fraser University; (Aug. 2000), pp. 1-3, 5-10, 29-31.
Lamar, Eric et al., "A Magnification Lens for Interactive Volume Visualization", ACM; (Oct. 2001), pp. 1-10.
Leung, Y. K., et al., "A Review and Taxonomy of Distortion-Oriented Presentation Techniques", ACM Transactions on Computer-Human Interaction, 'Online! vol. 1, No. 2, XP002252314; Retrieved from the Internet: 'retrieved on Aug. 21, 2003! the whole document,(Jun. 1994), pp. 126-160.
Leung, Y. K., et al., "A Review and Taxonomy of Distortion-Oriented Presentation Techniques", ACM Transactions on Computer-Human Interaction, 'Online! vol. 1, No. 2, XP002252314; Retrieved from the Internet: <URL:http://citeseer.nj.nec.com/ leung94review.html> 'retrieved on Aug. 21, 2003! the whole document,(Jun. 1994), pp. 126-160.
Lieberman, Henry "Power of Ten Thousand-Navigating in Large Information Spaces", Proceedings of the 7th annual ACM symposium on User interface software and technology, Marina del Rey, California, United States, (Nov. 1994), pp. 15-16.
Microsoft Corp., "Microsoft Paint", (1981-1998), pp. 1-14.
Mills, Michael et al., "A Magnifier Tool for Video Data", Proceedings of the SIGCHI conference on Human factors in computing systems, (1992), pp. 93-96.
Perlin, Ken et al., "Pad-an alternative approach to the computer interface", International Conference on Computer Graphics and Interactive Techniques. Proceedings of the 20th annual conference on Computer graphics and interactive techniques., (1993), pp. 57-64.
Rauschenbach, Uwe "The Rectangular Fish Eye View as an Efficient Method for the Transmission and Display of Large Images", Image Processing, ICIP 99, Proceedings, 1999 International Conference On, Kobe, Japan. Oct. 24-28, 1999, Piscataway, NJ, USA, IEEE, US, XP01368852, ISBN 0-7803-5467-2 p. 115, left-hand column-p. 116, paragraph 3, p. 118, paragraph 7.1; (Oct. 1999), pp. 115-119.
Robertson, George G., et al., "The Document Lens", UIST. Proceedings of the Annual ACM Symposium on User Interface Software and Technology, abstract figures 3,4,(Nov. 3, 1993), pp. 101-108.
Sakamoto, Chikara et al., "Design and Implementation of a Parallel Pthread Library (PPL) with Parallelism and Portability", Systems and Computers in Japan, New York, US, vol. 29, No. 2; XP0007527130, ISSN: 0882-1666 abstract,(Feb. 1, 1998), pp. 28-35.
Sarkar, et al., "Stretching the Rubber Sheet: A Metaphor for Viewing Large Layouts on Small Screens", Proc. of the 6th annual ACM symp. on User interface software an technology, Atlanta, GA, (Dec. 1993), p. 81-91.
Schmalstieg, Dieter et al., "Using transparent props for interaction with the virtual table", Proceedings of the 1999 symposium on Interactive 3D graphics.,(Apr. 26, 1999), 8 pages.
Sheelagh, M et al., "3-Dimensional Pliable Surfaces: For the Effective Presentation of Visual Information", UIST '95. 8th Annual Symposium on User Interface Software and Technology. Proceedings of the ACM Symposium on User Interface Software and Technology. Pittsburgh, PA; ACM Symposium on User Interface Software and Technology, New York; XP000634423; ISBN: 0-89791-709-X, p. 219, right-hand column, line 219-left-hand column, line 220,(Nov. 14-17, 1995), pp. 217-226.
Smith, et al., "Efficient techniques for wide-angle stereo vision using surface projection models", Retrieved from <http://ieee.org/stamp.jsp?arnumber=17045 (1999), 6 pages.
Stone, et al., "The movable filter as a user interface tool", Proceedings of CHI ACM; (1992), 18 pages.
Tigges, M. et al., "Generalized Distance Metrics For Implicit Surface Modeling", Proceedings of the Tenth Western Computer Graphics Symposium; (Mar. 1999), 5 pages.
Tominski, Christian et al., "Fisheye Tree Views and Lenses for Graph Visualization", pp. 1-8.
Viega, J et al., "3D magic lenses", Proceedings of the 9th annual ACM symposium on User interface software and technology; Pub 1996 ACM Press New York, NY, USA; (1996), pp. 51-58.
Watt, et al., "Advanced Animation and Rendering Techniques" (Addison-Wesley Publishing), (1992), p. 106-108.
Welsh, Michelle "Futurewave Software", Business Wire; (Nov. 15, 1993), 2 Pages.
Wilson, et al., "Direct Volume Rendering Via 3D Textures", Technical Report UCSC-CRL-94-19, University of California, Santa Cruz, Jack Baskin School of Engineering; (Jun. 1994), 11 pages.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567628B2 (en) 2018-07-05 2023-01-31 International Business Machines Corporation Cognitive composition of multi-dimensional icons

Also Published As

Publication number Publication date
WO2002050654A2 (en) 2002-06-27
US7106349B2 (en) 2006-09-12
US20060214951A1 (en) 2006-09-28
CA2328795A1 (en) 2002-06-19
AU2002215785A1 (en) 2002-07-01
US20020089520A1 (en) 2002-07-11
US7283141B2 (en) 2007-10-16
WO2002050654A3 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
USRE43742E1 (en) Method and system for enhanced detail-in-context viewing
US6768497B2 (en) Elastic presentation space
US7197719B2 (en) Graphical user interface for detail-in-context presentations
US7213214B2 (en) Graphical user interface with zoom for detail-in-context presentations
US7495678B2 (en) Navigating digital images using detail-in-context lenses
Robertson et al. The document lens
US7173636B2 (en) Method and system for generating detail-in-context lens presentations for elevation data
US7667699B2 (en) Fast rendering of pyramid lens distorted raster images
US7275219B2 (en) Fast and accurate rendering of pliable display technology distortions using pre-calculated texel coverages
US8478026B2 (en) Method and system for transparency adjustment and occlusion resolution for urban landscape visualization
US20070064018A1 (en) Detail-in-context lenses for online maps
US20070097109A1 (en) Method and system for generating detail-in-context presentations in client/server systems
US20070083819A1 (en) Method and system for generating pyramid fisheye lens detail-in-context presentations
JPH07181951A (en) Picture display method and picture display as well as picture scaling method
JPH07181952A (en) Picture display method, context-preserved picture display and picture scaling method
US20110069086A1 (en) Detail-in-Context Presentations in Client/Server Systems
CA2365426A1 (en) Method and system for enhanced detail-in-context viewing
CA2425990A1 (en) Elastic presentation space

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOREGIN ASSETS N.V., L.L.C., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IDELIX SOFTWARE INC.;REEL/FRAME:025649/0681

Effective date: 20081107

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CALLAHAN CELLULAR L.L.C., DELAWARE

Free format text: MERGER;ASSIGNOR:NOREGIN ASSETS N.V., L.L.C.;REEL/FRAME:037220/0255

Effective date: 20150827

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 186 LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALLAHAN CELLULAR L.L.C.;REEL/FRAME:062708/0463

Effective date: 20221222

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 186 LLC, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:MIND FUSION, LLC;REEL/FRAME:063295/0001

Effective date: 20230214

Owner name: INTELLECTUAL VENTURES ASSETS 191 LLC, DELAWARE

Free format text: SECURITY INTEREST;ASSIGNOR:MIND FUSION, LLC;REEL/FRAME:063295/0001

Effective date: 20230214

AS Assignment

Owner name: MIND FUSION, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 186 LLC;REEL/FRAME:064271/0001

Effective date: 20230214

AS Assignment

Owner name: ACCESSIFY, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIND FUSION, LLC;REEL/FRAME:064357/0642

Effective date: 20230623