US3874417A - Pneumatic pump surge chamber - Google Patents

Pneumatic pump surge chamber Download PDF

Info

Publication number
US3874417A
US3874417A US363684A US36368473A US3874417A US 3874417 A US3874417 A US 3874417A US 363684 A US363684 A US 363684A US 36368473 A US36368473 A US 36368473A US 3874417 A US3874417 A US 3874417A
Authority
US
United States
Prior art keywords
chamber
hose
surge
tube
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US363684A
Inventor
Robert B Clay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US363684A priority Critical patent/US3874417A/en
Application granted granted Critical
Publication of US3874417A publication Critical patent/US3874417A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • F16L55/045Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
    • F16L55/05Buffers therefor
    • F16L55/052Pneumatic reservoirs
    • F16L55/053Pneumatic reservoirs the gas in the reservoir being separated from the fluid in the pipe
    • F16L55/054Pneumatic reservoirs the gas in the reservoir being separated from the fluid in the pipe the reservoir being placed in or around the pipe from which it is separated by a sleeve-shaped membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • F04B11/0016Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators with a fluid spring

Definitions

  • U.S. Cl. 138/30, 417/540 comprises a flexible tube or h enclosed within a [51] Int. Cl. F16! 55/04, FO4b 11/00 rigid Outer tight chamber f larger diameter than [58] Field of Search 138/26, 30, 31; 417/540, the hose, thereby f i an annular cavity between 417/542 the hose and chamber.
  • This hose which contains the flow of the pumped medium, can expand or contract [56] References cued within the containing chamber depending upon surge UNITED STATES PATENTS pulsations from the pump, and the degree of expan- 2,725,897 12/1955 Crooks 138/31 Sion and Contraction is automafically Controlled Within 2,949,932 8/1960 Hewitt 138/30 X the chamber by a pneumatic valving means which al- 3,473,565 10/1969 Blendermann 138/30 X ternately pressurizes and depressurizes the annular 3,601,128 8/1971 Hakim 138/30 X cavity to aceomodate respective expansion and con- 3,741,692 6/1973 Rupp 417/540 traction f the hose FOREIGN PATENTS OR APPLICATIONS 1 Claim, 3 Drawing Figures 283,878 8/1928 United Kmgdom 138/26 PATENTEDAPR 11975 3874,41?
  • Peristaltic or diaphragm pumps are well-known in the prior art especially for pumping viscous fluids such as liquid explosive blasting agents or slurries such as described in US. Pat. Nos. 3,367,805 3,379,587; 3,453,158; 3,660,181 as well as many others. Such pumps are used for a variety of purposes. In pumping thick or viscous slurries, however, cavitation and other flow hindrance problems arise. A peristaltic pump necessarily depends on successive squeezing and opening of a collapsible tube or channel member to draw in a continuing supply of the material being pumped.
  • Pressure pulsations result in large energy losses and may interfere with manipulations of a delivery hose used, for example, when blasting slurry is pumped into boreholes. In some cases pulsations are severe enough to damage the pumping apparatus and even to burst the delivery hose which can involve serious dangers to operating personnel. For these reasons as well as others, it is important that such pressure surges be minimized and eliminated as far as possible.
  • Surge chambers known in the prior art include elastic drums, tubes, or cylinders whichcan yield and thus expand or contract to accommodate variations in flow velocity and pressure.
  • Various types of pneumatically pressured surge chambers are also known, such as an enclosed air-tight chamber which allows influx of the pumped medium during surges.
  • Such prior art surge chambers generally allow accumulations of pumped medium during surges.
  • An expansive surge chamber where a substantial volume of slurry can accululate, makes close control more difficult.
  • fluids such as slurry or aqueous explosive compositions may contain thickening and crosslinking components which act to increase the compositions viscosity with time.
  • thickening and crosslinking components which act to increase the compositions viscosity with time.
  • high pressure surges be accomodated without accumulation of large masses of composition which may become highly viscous in the matter of a few seconds and thereafter impede or clot the surge chamber.
  • surge chambers for these latter fluids must not accumulate liquid mass to any appreciable extent, and whatever mass is accumulated by an expanding chamber due to a high pressure surge must be immediately expelled. This latter requirement in the operation of the surge chamber is hereinafter referred to as a first in/first out operation.
  • surge chamber of the present invention is particularly suitable for a peristaltic or hose diaphragm pump, it is also suitable for use with reciprocating and other types of pumps even where the pulse volume is large in comparison with the average pumping rate.
  • the surge chamber of the present invention is designed to absorb pressure surges at low average pressure and to similarly absorb larger surges in pressure at high average pressure with relatively little further volume expansion.
  • the pneumatic surge chamber of the present invention comprises a pipe containing an expandable hose.
  • the pipe contains an atmospheric air exhaust valve which will remain open as long as the hose is not substantially expanded or dilated, i.e., when not experiencing a pressure surge superimposed on the average pressure; and which will close when a surge does occur.
  • the pipe also contains a high pressure inlet valve which works conjunctively opposite to that of the exhaust valve in that when a surge, and thus an expansion of the hose, occurs, the high pressure inlet valve will open pressurizing the chamber surrounding the hose and enclosed by the pipe, thereby inhibiting or dampening by pressurized air further expansion of the hose.
  • FIG. 1 is a cutaway side view of a preferred embodiment of the invention showing an air-dampened surge chamber, the air outlet exhaust valve and high pressure inlet valve both attached to the chamber pipe, and the enclosed hose.
  • FIG. 2 is a cross-sectional view of another surge chamber showing an enclosed hose and a three-way valve arrangement attached to the outer pipe.
  • FIG. 3 is an enlarged cross-sectional view of the three-way valve arrangement shown in FIG. 2.
  • FIG. 1 shows a surge chamber of the present invention.
  • the surge chamber comprises a tubular member or hose a pipe 21 which encloses and circumferences the hose, air inlet and exhaust valves and stems 24 and 31 and 23 and 22, respectively, which are attached to the pipe wall 21; and springs 26 and 28 for contacting or actuating valves 23 and 24.
  • the operation of the pneumatic surge chamber of the present invention is as follows. Referring to FIG. 1, as a fluid is pumped into the tubular member or hose 20, the hose will expand outwardly to an extent dependent upon the pressure of the surge. As the hose expands it contacts and depresses the flat spring 26 which is connected to the pipe 21 by a screw 25. The end of the spring 26 opposite its secured end is attached by means of a nylon line 29 to an outlet exhaust valve 23 which is secured to the pipe wall 21 by means of a valve stem 22. As the spring is depressed, the nylon line 29 moves up allowing the outlet valve 23 to close, thereby forming an air-tight seal within the pipe chamber.
  • this surge chamber is airtight and the higher pumping pressures automatically introduce corresponding air pressures into the chamber volume between the hose 20 and the outer pipe 21, providing a variable matched air cushion to backup the surging of the hose 20.
  • Strategic placement of springs 26 and 28 will allow pressurization and depressurization of the chamber and respective expansion and subsequent contraction of the hose 20 to be controlled to a predetermined degree.
  • valve 24 will close and valve 23 will open venting the pressurized air within the chamber to the atmosphere.
  • FIG. 2 shows a surge chamber of the present invention which comprises basically a hose 45 contained within and surrounded by a pipe 40, a valve plunger 42 (FIG. 3), a three-way valve 41, a plunger spring 46, a house inlet 44 and a hose clamp 49.
  • FIG. 3 shows an enlarged view of the three-way valve shown in FIG. 2 absent plunger spring 46 and which comprises a valve plunger 42, a valve exhaust and inlet 43 and 51, respectively, and a valve block 50.
  • This surge chamber performs in a manner similar to the one described above and shown in FIG. 1.
  • FIG. 3 is a blownup cross-sectional view of the three-way valve arrangement shown in FIG. 2. Strategic placement of openings on plunger 42 and on the valve block 50 will provide for predeterminable control of hose oscillation.
  • FIGS. 1 and 2 are more versatile than the surge chamber described in US. Pat. No. 3,649,128 since not only can they be used in instances of high pressure surging, but also they are useful in circumstances of mild surging such as when a peristaltic pump is used.
  • Another advantage of using the air-cushioned surge chamber shown in FIGS. 1 and 2 is that it lowers the range of maximum and minimum output pressures of pumped fluid from the pump over the range obtainable by the surge chamber described in US. Pat. No. 3,649,138.
  • comparative tests were run using a peristaltic pump and the two types of surge chambers shown in US. Pat. No. 3,649,138 and FIG. 1. Water was pumped at a nominal rate. Using the surge chamber and pump of US. Pat.
  • the relative sizes of the various components of the surge chamber of the present invention shown in FIGS. 1-3 are not critical and can .be varied as desired depending upon rate and quantity of flow to be accomodated.
  • the hose of the surge chamber should approximate in size the conduit being used for transporting the pumped material.
  • a typical surge chamber for use in pumping aqueous explosive compositions through pumps such as shown in US. Pat. No. 3,649,138 would comprise a hose of about 2-inch diameter contained within a pipe of about 4-inch internal diameter.
  • An example of materials for the pipe and hose components of the surge chamber are a standard metal pipe and a gum rubber hose.
  • the invention described above offers outstanding advantages in smooth, uniform flow. This is desirable and frequently is very important in delivering blasting slurry into boreholes. It is desirable, of course, to be able to control the flow with reasonable precision, and it is important to minimize pump vibrations, whipping of the hose, and pressure surges.
  • a surge chamber of limited volume expansion for accomodating pressure surges of wide ranges and relatively high pressure surges incident to pumping fluids on a first in/first out basis so that no accumulation of the pumped fluid occurs comprising, in combination,
  • an elastic expandable tube adapted to be connected to a delivery flow line and adapted to receive a mass of said fluid from a pump or variable pressure source; a rigid gas-tight chamber circumscribing said tube and spaced from said tube; a pressurized gas source for supplying gas under pressure to said chamber; and a threeway valve connecting said gas source and said chamber directly activated by expansion and subsequent elastic contraction of said tube to respectively allow the pressurized gas to enter and leave and thus respectively pressurize and depressurize said chamber thereby dampening expansions of said tube as caused by pressure surges of a pumped fluid within said tube.

Abstract

A pneumatic surge chamber for smoothing high and low pressure surges from pumps is provided which comprises a flexible tube or hose enclosed within a rigid outer air tight chamber of larger diameter than the hose, thereby forming an annular cavity between the hose and chamber. This hose, which contains the flow of the pumped medium, can expand or contract within the containing chamber depending upon surge pulsations from the pump, and the degree of expansion and contraction is automatically controlled within the chamber by a pneumatic valving means which alternately pressurizes and depressurizes the annular cavity to accomodate respective expansion and contraction of the hose.

Description

United States Patent 1191 Clay Apr. 1, 1975 PNEUMATIC PUMP SURGE CHAMBER [76] Inventor: Robert B. Clay, 728 w. 3800 s. PWTWY Examlfilerwlnlam Bountiful Salt Lake City Utah Assistant Exammer-Oregory P. LaPolnte 841 19 Attorney, Agent, or F1rmRobert A. Bingham [22] Filed: May 24, 1973 [57] ABSTRACT [21] Appl. No.: 363,684
A pneumatic s'urge chamber for smoothing hlgh and low pressure surges from pumps is provided which [52] U.S. Cl. 138/30, 417/540 comprises a flexible tube or h enclosed within a [51] Int. Cl. F16! 55/04, FO4b 11/00 rigid Outer tight chamber f larger diameter than [58] Field of Search 138/26, 30, 31; 417/540, the hose, thereby f i an annular cavity between 417/542 the hose and chamber. This hose, which contains the flow of the pumped medium, can expand or contract [56] References cued within the containing chamber depending upon surge UNITED STATES PATENTS pulsations from the pump, and the degree of expan- 2,725,897 12/1955 Crooks 138/31 Sion and Contraction is automafically Controlled Within 2,949,932 8/1960 Hewitt 138/30 X the chamber by a pneumatic valving means which al- 3,473,565 10/1969 Blendermann 138/30 X ternately pressurizes and depressurizes the annular 3,601,128 8/1971 Hakim 138/30 X cavity to aceomodate respective expansion and con- 3,741,692 6/1973 Rupp 417/540 traction f the hose FOREIGN PATENTS OR APPLICATIONS 1 Claim, 3 Drawing Figures 283,878 8/1928 United Kmgdom 138/26 PATENTEDAPR 11975 3874,41?
SHEET 2 BF 2 Figure 2 Figure 3 PNEUMATIC PUMP SURGE CHAMBER BACKGROUND AND PRIOR ART Peristaltic or diaphragm pumps are well-known in the prior art especially for pumping viscous fluids such as liquid explosive blasting agents or slurries such as described in US. Pat. Nos. 3,367,805 3,379,587; 3,453,158; 3,660,181 as well as many others. Such pumps are used for a variety of purposes. In pumping thick or viscous slurries, however, cavitation and other flow hindrance problems arise. A peristaltic pump necessarily depends on successive squeezing and opening of a collapsible tube or channel member to draw in a continuing supply of the material being pumped.
Many positive displacement pumps move fluids by relatively small, discrete volumes. These intermittent volumes of fluid, moved against a head or through a pressurized pipe, produce pressure variations or pulses in the pressurized pipe due to the inertia of the fluid in the pipe system. A'series of synchronized positive displacement pumps can be connected in parallel so that the peak outputs of each can be timed to produce a relatively pulseless high pressure output. However, with only a single or double acting pump, pressure surges greater than the maximum pressure and more than twice the average pressure are commonly encountered. To reduce the stresses, noise and motion associated with such pressure surges, devices have been made which absorb part of the energy during the rapid movement of fluid from the pump and then liberate it while the pump is confining the next discrete volume preparatory to expelling it into the pressurized system.
Pressure pulsations result in large energy losses and may interfere with manipulations of a delivery hose used, for example, when blasting slurry is pumped into boreholes. In some cases pulsations are severe enough to damage the pumping apparatus and even to burst the delivery hose which can involve serious dangers to operating personnel. For these reasons as well as others, it is important that such pressure surges be minimized and eliminated as far as possible.
Surge chambers known in the prior art include elastic drums, tubes, or cylinders whichcan yield and thus expand or contract to accommodate variations in flow velocity and pressure. Various types of pneumatically pressured surge chambers are also known, such as an enclosed air-tight chamber which allows influx of the pumped medium during surges. Such prior art surge chambers generally allow accumulations of pumped medium during surges. In some operations, however, it is most undesirable to have surged material accumulate in substantial volumes. For example, when an operator is filling a borehole with explosive slurry, it is important for him to be able to start and stop the flow quickly; e.g., to avoid spillage or overflow. An expansive surge chamber, where a substantial volume of slurry can accululate, makes close control more difficult. It is therefore highly desirable to be able to smooth low or high pressure surges without accumulating relatively large masses of the viscous liquid in a surge chamber. Furthermore, fluids such as slurry or aqueous explosive compositions may contain thickening and crosslinking components which act to increase the compositions viscosity with time. When handling these viscosityincreasing compositions, it is imperative that high pressure surges be accomodated without accumulation of large masses of composition which may become highly viscous in the matter of a few seconds and thereafter impede or clot the surge chamber. Thus, surge chambers for these latter fluids must not accumulate liquid mass to any appreciable extent, and whatever mass is accumulated by an expanding chamber due to a high pressure surge must be immediately expelled. This latter requirement in the operation of the surge chamber is hereinafter referred to as a first in/first out operation.
While various surge chambers have been developed to minimize the normally large pressure variations from a positive displacement pump, however, none of the prior art devices effectively incorporate both (a) first in/first out operation and (b) effective surge control, regardless of. average pumping pressure. Commonly owned US. Pat. No. 3,649,138 describes a surge chamber which meets these requirements to a degree; however, that surge chamber is dependent upon elasticity and resiliency of a flexible hose to accomodate pressure surges and is therefore effective only to a definable upper pressure limit, especially since the hose must also work effectively at relatively lower pressures. In contrast, the surge chamber of the present invention operates effectively at both low and high pressures, is not restricted to an upper pressure limit, and yet combines the desirable features of first in/first out operation with effective surge control regardless of average pumping pressure.
It is therefore the object of this invention to provide a surge chamber that will smooth low or high pressure surges without accumulating relatively large masses of viscous fluid while preventing substantial pressure variations in the pump output or delivery hose.
While the surge chamber of the present invention is particularly suitable for a peristaltic or hose diaphragm pump, it is also suitable for use with reciprocating and other types of pumps even where the pulse volume is large in comparison with the average pumping rate. The surge chamber of the present invention is designed to absorb pressure surges at low average pressure and to similarly absorb larger surges in pressure at high average pressure with relatively little further volume expansion.
SUMMARY Briefly, the pneumatic surge chamber of the present invention comprises a pipe containing an expandable hose. The pipe contains an atmospheric air exhaust valve which will remain open as long as the hose is not substantially expanded or dilated, i.e., when not experiencing a pressure surge superimposed on the average pressure; and which will close when a surge does occur. The pipe also contains a high pressure inlet valve which works conjunctively opposite to that of the exhaust valve in that when a surge, and thus an expansion of the hose, occurs, the high pressure inlet valve will open pressurizing the chamber surrounding the hose and enclosed by the pipe, thereby inhibiting or dampening by pressurized air further expansion of the hose.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cutaway side view of a preferred embodiment of the invention showing an air-dampened surge chamber, the air outlet exhaust valve and high pressure inlet valve both attached to the chamber pipe, and the enclosed hose.
FIG. 2 is a cross-sectional view of another surge chamber showing an enclosed hose and a three-way valve arrangement attached to the outer pipe.
FIG. 3 is an enlarged cross-sectional view of the three-way valve arrangement shown in FIG. 2.
DESCRIPTION OF PREFERRED EMBODIMENT The present invention can be better understood by reference to the accompanying drawings. FIG. 1 shows a surge chamber of the present invention. Basically the surge chamber comprises a tubular member or hose a pipe 21 which encloses and circumferences the hose, air inlet and exhaust valves and stems 24 and 31 and 23 and 22, respectively, which are attached to the pipe wall 21; and springs 26 and 28 for contacting or actuating valves 23 and 24.
The operation of the pneumatic surge chamber of the present invention is as follows. Referring to FIG. 1, as a fluid is pumped into the tubular member or hose 20, the hose will expand outwardly to an extent dependent upon the pressure of the surge. As the hose expands it contacts and depresses the flat spring 26 which is connected to the pipe 21 by a screw 25. The end of the spring 26 opposite its secured end is attached by means of a nylon line 29 to an outlet exhaust valve 23 which is secured to the pipe wall 21 by means of a valve stem 22. As the spring is depressed, the nylon line 29 moves up allowing the outlet valve 23 to close, thereby forming an air-tight seal within the pipe chamber.
Further expansion of the hose 20 will contact and depress spring 28 which is secured to the pipe wall 21 by a screw 27 or similar means. Depression of the spring 28 will open the high pressure inlet valve 24 which is secured to the pipe wall 21 by means of a valve stem 31. As a result, pressurized air from a pressurized tank or similar source (not shown) will be allowed to enter the pipe chamber thereby inhibiting and controlling further expansion of the hose 20. In this manner the volumetric expansion range of the hose will be limited regardless of the amount of surge pressure produced by the pump as long as the inlet air source is of sufficiently high pressure. Generally then, this surge chamber is airtight and the higher pumping pressures automatically introduce corresponding air pressures into the chamber volume between the hose 20 and the outer pipe 21, providing a variable matched air cushion to backup the surging of the hose 20. Strategic placement of springs 26 and 28 will allow pressurization and depressurization of the chamber and respective expansion and subsequent contraction of the hose 20 to be controlled to a predetermined degree.
Between surges the fluid pressure within the hose 20 is reduced and the hose 20 will contract from its expanded form to a size depending upon ambient fluid pressure between surges, whereupon valve 24 will close and valve 23 will open venting the pressurized air within the chamber to the atmosphere.
Therefore, in the manner described above the volume of the surge produced by the pump is automatically controlled.
An equivalent and alternate means of controlling pump surges by cashioning or dampening with pressurized air is shown in FIGS. 2 and 3. FIG. 2 shows a surge chamber of the present invention which comprises basically a hose 45 contained within and surrounded by a pipe 40, a valve plunger 42 (FIG. 3), a three-way valve 41, a plunger spring 46, a house inlet 44 and a hose clamp 49. FIG. 3 shows an enlarged view of the three-way valve shown in FIG. 2 absent plunger spring 46 and which comprises a valve plunger 42, a valve exhaust and inlet 43 and 51, respectively, and a valve block 50. This surge chamber performs in a manner similar to the one described above and shown in FIG. 1. Fluid is pumped into hose 45 which is clamped over inlet 44 by a clamp 49. As the hose 45 expands corresponding to a pressure surge from a pump, it will depress the valve plunger 42 held open by a spring 46 of the three-way valve 41 and thereby close the valve 43 opening to the atomosphere. Further depression of the valve would open the high pressurized air inlet 51 to the enclosed annular chamber. The chamber will then pressurize thereby cushioning or inhibiting further expansion of the hose 45. As the pressure surge passes, the hose 45 will contract and the valve plunger will return by means of the spring 46 to its original position venting the pressurized air within the chamber. FIG. 3 is a blownup cross-sectional view of the three-way valve arrangement shown in FIG. 2. Strategic placement of openings on plunger 42 and on the valve block 50 will provide for predeterminable control of hose oscillation.
The air-cushioned surge chamber described in FIGS..
1 and 2 are more versatile than the surge chamber described in US. Pat. No. 3,649,128 since not only can they be used in instances of high pressure surging, but also they are useful in circumstances of mild surging such as when a peristaltic pump is used. Another advantage of using the air-cushioned surge chamber shown in FIGS. 1 and 2 is that it lowers the range of maximum and minimum output pressures of pumped fluid from the pump over the range obtainable by the surge chamber described in US. Pat. No. 3,649,138. For example, comparative tests were run using a peristaltic pump and the two types of surge chambers shown in US. Pat. No. 3,649,138 and FIG. 1. Water was pumped at a nominal rate. Using the surge chamber and pump of US. Pat. No. 3,649,138, the outlet pressure from the pump varied from psi maximum to 60 psi minimum. Passing the outlet through the aircushioned surge chamber of FIG. 1 improved the re-' spective average pressure readings to 100 psi and 93 psi. This reduced pressure range resulted in a corresponding decrease in delivery hose and pump pulsations.
The relative sizes of the various components of the surge chamber of the present invention shown in FIGS. 1-3 are not critical and can .be varied as desired depending upon rate and quantity of flow to be accomodated. Preferably, the hose of the surge chamber should approximate in size the conduit being used for transporting the pumped material. A typical surge chamber for use in pumping aqueous explosive compositions through pumps such as shown in US. Pat. No. 3,649,138 would comprise a hose of about 2-inch diameter contained within a pipe of about 4-inch internal diameter. An example of materials for the pipe and hose components of the surge chamber are a standard metal pipe and a gum rubber hose.
The invention described above offers outstanding advantages in smooth, uniform flow. This is desirable and frequently is very important in delivering blasting slurry into boreholes. It is desirable, of course, to be able to control the flow with reasonable precision, and it is important to minimize pump vibrations, whipping of the hose, and pressure surges.
It will be obvious that modifications mentioned above and others not mentioned may be made by those skilled in the art without departing from the spirit and purpose of the invention. It is intended to cover the invention and obvious variations and modifications as broadly as the prior are permits.
' What is claimed is:
l. A surge chamber of limited volume expansion for accomodating pressure surges of wide ranges and relatively high pressure surges incident to pumping fluids on a first in/first out basis so that no accumulation of the pumped fluid occurs comprising, in combination,
an elastic expandable tube adapted to be connected to a delivery flow line and adapted to receive a mass of said fluid from a pump or variable pressure source; a rigid gas-tight chamber circumscribing said tube and spaced from said tube; a pressurized gas source for supplying gas under pressure to said chamber; and a threeway valve connecting said gas source and said chamber directly activated by expansion and subsequent elastic contraction of said tube to respectively allow the pressurized gas to enter and leave and thus respectively pressurize and depressurize said chamber thereby dampening expansions of said tube as caused by pressure surges of a pumped fluid within said tube.

Claims (1)

1. A surge chamber of limited volume expansion for accomodating pressure surges of wide ranges and relatively high pressure surges incident to pumping fluids on a first in/first out basis so that no accumulation of the pumped fluid occurs comprising, in combination, an elastic expandable tube adapted to be connected to a delivery flow line and adapted to receive a mass of said fluid from a pump or variable pressure source; a rigid gas-tight chamber circumscribing said tube and spaced from said tube; a pressurized gas source for supplying gas under pressure to said chamber; and a three-way valve connecting said gas source and said chamber directly activated by expansion and subsequent elastic contraction of said tube to respectively allow the pressurized gas to enter and leave and thus respectively pressurize and depressurize said chamber thereby dampening expansions of said tube as caused by pressure surges of a pumped fluid within said tube.
US363684A 1973-05-24 1973-05-24 Pneumatic pump surge chamber Expired - Lifetime US3874417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US363684A US3874417A (en) 1973-05-24 1973-05-24 Pneumatic pump surge chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US363684A US3874417A (en) 1973-05-24 1973-05-24 Pneumatic pump surge chamber

Publications (1)

Publication Number Publication Date
US3874417A true US3874417A (en) 1975-04-01

Family

ID=23431258

Family Applications (1)

Application Number Title Priority Date Filing Date
US363684A Expired - Lifetime US3874417A (en) 1973-05-24 1973-05-24 Pneumatic pump surge chamber

Country Status (1)

Country Link
US (1) US3874417A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972656A (en) * 1974-12-16 1976-08-03 Acf Industries, Incorporated Fuel pump having pulsating chambers
US4234427A (en) * 1979-06-04 1980-11-18 Varian Associates, Inc. Pulse damper
DE3210239A1 (en) * 1982-03-20 1983-10-06 Heinz M Naegel Air vessel for compensating flow rate fluctuations in pressure lines of pumps and the like
US4544328A (en) * 1982-10-05 1985-10-01 The Coca-Cola Company Sold-out device for syrup pump
US4634347A (en) * 1984-05-03 1987-01-06 Allman Byggnadsservice Ab Abs Arrangement in plant equipment for supplying a binding agent directly to a building element
US4637434A (en) * 1985-06-07 1987-01-20 Beloit Corporation Three-way valve for an attenuator
EP0251406A1 (en) * 1986-06-25 1988-01-07 Unilever N.V. An apparatus for dispensing measured quantities of a liquid material
DE4031239A1 (en) * 1990-10-04 1992-04-09 Kaltenberg Hans Georg Adjustable pressure pulse damper for piston pumps - has nitrogen@-filled damping vol. bounded by membrane at end of plunger with magnetic position feedback
US5106367A (en) * 1989-11-28 1992-04-21 Alexander Ureche Eye surgery apparatus with vacuum surge suppressor
US5160086A (en) * 1990-09-04 1992-11-03 Kuykendal Robert L Lighted laminar flow nozzle
US5167620A (en) * 1989-11-28 1992-12-01 Alexandar Ureche Eye surgery methods
US5183974A (en) * 1992-04-03 1993-02-02 General Motors Corporation Gas pulsation attenuator for automotive air conditioning compressor
US5226455A (en) * 1990-12-17 1993-07-13 Dupont Anthony A Variable geometry duct seal
US5351716A (en) * 1992-07-22 1994-10-04 Ernst Korthaus Concrete distributor system
US5435699A (en) * 1994-04-05 1995-07-25 Ford Motor Company Accumulator for air conditioning system
US5521340A (en) * 1994-04-05 1996-05-28 Ford Motor Company Tuned tube muffler for an automotive vehicle
EP1123744A1 (en) * 2000-02-11 2001-08-16 United States Gypsum Company Slurry spray machine
US20020117559A1 (en) * 2000-02-11 2002-08-29 Kaligian Raymond A. Continuous slurry dispenser apparatus
US6572259B2 (en) 2001-04-20 2003-06-03 Burnett Lime Co., Inc. Apparatus and method to dispense a slurry
US20030232981A1 (en) * 2002-03-22 2003-12-18 Pearlman Bruce Allen Process to prepare eplerenone
US20040231741A1 (en) * 2001-04-06 2004-11-25 Harald Kraus Pipe fracture safety for a vacuum-insulated filling line
EP1520986A1 (en) * 2003-10-02 2005-04-06 Feluwa Pumpen GmbH Pneumatic surge chamber
US20050127208A1 (en) * 2000-02-11 2005-06-16 Kaligian Raymond A.Ii Continuous slurry dispenser apparatus
US20070040065A1 (en) * 2005-08-19 2007-02-22 Von Thal German Flexible refueling boom extendable tube
US7264176B2 (en) 2004-11-17 2007-09-04 Bruce Johnson Laminar water jet with pliant member
US20110073670A1 (en) * 2005-11-17 2011-03-31 Bruce Johnson Laminar flow water jet with wave segmentation, additive, and controller
US20130008512A1 (en) * 2011-07-07 2013-01-10 Mathiak Gregg M Pump pulsation discharge dampener with curved internal baffle and pressure drop feature creating two internal volumes
ITVI20110274A1 (en) * 2011-10-14 2013-04-15 Miro Capitanio PULSE DAMPING DEVICE
US8951419B2 (en) 2010-12-17 2015-02-10 Burnett Lime Company, Inc. Method and apparatus for water treatment
FR3028057A1 (en) * 2014-10-31 2016-05-06 Serac Group DEFORMABLE TUBULAR MEMBRANE FLOW CONTROL DEVICE, FLUID DISTRIBUTION LINE AND INSTALLATION COMPRISING SUCH A DEVICE
WO2021016470A1 (en) * 2019-07-23 2021-01-28 Smart Pipe Company, Inc. System and method for transient mitigation device in continuous pipelines for surge impact control
US11248731B2 (en) * 2017-10-19 2022-02-15 Khs Gmbh Device and method for aseptic pressure relief
WO2023164621A1 (en) * 2022-02-25 2023-08-31 Equilibar, Llc Pulsation dampener for sanitary processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725897A (en) * 1953-11-05 1955-12-06 Cooper Bessemer Corp Dampener
US2949932A (en) * 1959-06-18 1960-08-23 Westinghouse Air Brake Co Surge dampener apparatus
US3473565A (en) * 1966-05-25 1969-10-21 Josam Mfg Co Shock absorber for liquid flow lines
US3601128A (en) * 1968-12-26 1971-08-24 Salomon Hakim Ventriculoatrial shunt accumulator
US3741692A (en) * 1970-12-17 1973-06-26 Rupp Co Warren Surge suppressor for fluid lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2725897A (en) * 1953-11-05 1955-12-06 Cooper Bessemer Corp Dampener
US2949932A (en) * 1959-06-18 1960-08-23 Westinghouse Air Brake Co Surge dampener apparatus
US3473565A (en) * 1966-05-25 1969-10-21 Josam Mfg Co Shock absorber for liquid flow lines
US3601128A (en) * 1968-12-26 1971-08-24 Salomon Hakim Ventriculoatrial shunt accumulator
US3741692A (en) * 1970-12-17 1973-06-26 Rupp Co Warren Surge suppressor for fluid lines

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972656A (en) * 1974-12-16 1976-08-03 Acf Industries, Incorporated Fuel pump having pulsating chambers
US4234427A (en) * 1979-06-04 1980-11-18 Varian Associates, Inc. Pulse damper
DE3210239A1 (en) * 1982-03-20 1983-10-06 Heinz M Naegel Air vessel for compensating flow rate fluctuations in pressure lines of pumps and the like
US4544328A (en) * 1982-10-05 1985-10-01 The Coca-Cola Company Sold-out device for syrup pump
US4634347A (en) * 1984-05-03 1987-01-06 Allman Byggnadsservice Ab Abs Arrangement in plant equipment for supplying a binding agent directly to a building element
US4637434A (en) * 1985-06-07 1987-01-20 Beloit Corporation Three-way valve for an attenuator
EP0251406A1 (en) * 1986-06-25 1988-01-07 Unilever N.V. An apparatus for dispensing measured quantities of a liquid material
WO1993015776A1 (en) * 1989-11-28 1993-08-19 Alexander Ureche Eye surgery method and apparatus
US5106367A (en) * 1989-11-28 1992-04-21 Alexander Ureche Eye surgery apparatus with vacuum surge suppressor
US5167620A (en) * 1989-11-28 1992-12-01 Alexandar Ureche Eye surgery methods
US5160086A (en) * 1990-09-04 1992-11-03 Kuykendal Robert L Lighted laminar flow nozzle
DE4031239A1 (en) * 1990-10-04 1992-04-09 Kaltenberg Hans Georg Adjustable pressure pulse damper for piston pumps - has nitrogen@-filled damping vol. bounded by membrane at end of plunger with magnetic position feedback
US5226455A (en) * 1990-12-17 1993-07-13 Dupont Anthony A Variable geometry duct seal
US5183974A (en) * 1992-04-03 1993-02-02 General Motors Corporation Gas pulsation attenuator for automotive air conditioning compressor
US5351716A (en) * 1992-07-22 1994-10-04 Ernst Korthaus Concrete distributor system
US5435699A (en) * 1994-04-05 1995-07-25 Ford Motor Company Accumulator for air conditioning system
US5521340A (en) * 1994-04-05 1996-05-28 Ford Motor Company Tuned tube muffler for an automotive vehicle
EP1123744A1 (en) * 2000-02-11 2001-08-16 United States Gypsum Company Slurry spray machine
US20020117559A1 (en) * 2000-02-11 2002-08-29 Kaligian Raymond A. Continuous slurry dispenser apparatus
US7516909B2 (en) 2000-02-11 2009-04-14 United States Gypsum Company Continuous slurry dispenser apparatus
US20050127208A1 (en) * 2000-02-11 2005-06-16 Kaligian Raymond A.Ii Continuous slurry dispenser apparatus
US20040231741A1 (en) * 2001-04-06 2004-11-25 Harald Kraus Pipe fracture safety for a vacuum-insulated filling line
US6572259B2 (en) 2001-04-20 2003-06-03 Burnett Lime Co., Inc. Apparatus and method to dispense a slurry
AU784073B2 (en) * 2001-07-31 2006-02-02 United States Gypsum Company Continuous slurry dispenser apparatus
EP1281433A3 (en) * 2001-07-31 2004-01-14 United States Gypsum Company Continuous slurry dispenser apparatus
US20030232981A1 (en) * 2002-03-22 2003-12-18 Pearlman Bruce Allen Process to prepare eplerenone
EP1520986A1 (en) * 2003-10-02 2005-04-06 Feluwa Pumpen GmbH Pneumatic surge chamber
US7264176B2 (en) 2004-11-17 2007-09-04 Bruce Johnson Laminar water jet with pliant member
US20070040065A1 (en) * 2005-08-19 2007-02-22 Von Thal German Flexible refueling boom extendable tube
US20110073670A1 (en) * 2005-11-17 2011-03-31 Bruce Johnson Laminar flow water jet with wave segmentation, additive, and controller
US8763925B2 (en) 2005-11-17 2014-07-01 Pentair Water Pool And Spa, Inc. Laminar flow water jet with wave segmentation, additive, and controller
US9751784B2 (en) 2010-12-17 2017-09-05 Burnett Lime Company, Inc. Method and apparatus for water treatment
US10662094B2 (en) 2010-12-17 2020-05-26 Burnett Lime Company, Inc. Method and apparatus for water treatment
US8951419B2 (en) 2010-12-17 2015-02-10 Burnett Lime Company, Inc. Method and apparatus for water treatment
US20130008512A1 (en) * 2011-07-07 2013-01-10 Mathiak Gregg M Pump pulsation discharge dampener with curved internal baffle and pressure drop feature creating two internal volumes
US9790934B2 (en) * 2011-07-07 2017-10-17 Performance Pulsation Control, Inc. Pump pulsation discharge dampener with curved internal baffle and pressure drop feature creating two internal volumes
ITVI20110274A1 (en) * 2011-10-14 2013-04-15 Miro Capitanio PULSE DAMPING DEVICE
WO2016066774A1 (en) * 2014-10-31 2016-05-06 Serac Group Flow regulation device having a deformable tubular membrane, fluid distribution line and apparatus comprising such a device
FR3028057A1 (en) * 2014-10-31 2016-05-06 Serac Group DEFORMABLE TUBULAR MEMBRANE FLOW CONTROL DEVICE, FLUID DISTRIBUTION LINE AND INSTALLATION COMPRISING SUCH A DEVICE
US11248731B2 (en) * 2017-10-19 2022-02-15 Khs Gmbh Device and method for aseptic pressure relief
WO2021016470A1 (en) * 2019-07-23 2021-01-28 Smart Pipe Company, Inc. System and method for transient mitigation device in continuous pipelines for surge impact control
US11112049B2 (en) 2019-07-23 2021-09-07 Smart Pipe Company, Inc. System and method for transient mitigation device in continuous pipelines for surge impact control
WO2023164621A1 (en) * 2022-02-25 2023-08-31 Equilibar, Llc Pulsation dampener for sanitary processes

Similar Documents

Publication Publication Date Title
US3874417A (en) Pneumatic pump surge chamber
US3951572A (en) Apparatus for pumping cement slurry
US6089837A (en) Pump inlet stabilizer with a control unit for creating a positive pressure and a partial vacuum
US2812716A (en) Pumping device
US5308230A (en) Bellows pump
US3467021A (en) Fluid pressure operated pump
US3945770A (en) High pressure pump
US4408635A (en) Hydropneumatic pulse interceptor
US2854826A (en) Method and system for transferring a pressurized normally gaseous liquid
US3154021A (en) Pumping apparatus
CN206770863U (en) Adjustment type fluid pulsation damper
US3937440A (en) Metering pump and combination two-section pinch-off aspirator valve
US6257844B1 (en) Pump device for pumping liquid foodstuff
SU805958A3 (en) Supply tank
US2760436A (en) Pump for fluid and semi-fluid material such as plaster and the like
US3039272A (en) Fluid actuating device
US6345962B1 (en) Fluid operated pump
US3016840A (en) Fluid actuating device
US8147218B2 (en) Pneumatic motorized multi-pump system
US3430652A (en) Intermittently operable fluid ballast mechanism
SU1652674A1 (en) Hydraulic shock air compressor
US5111848A (en) Apparatus for preventing pulsations in a flowing fluid
US3609067A (en) Double-acting pump
KR20090068123A (en) Coating apparatus
EP0030411B1 (en) Hydropneumatic pulse interceptor