US3863296A - Process for preparing airfelt - Google Patents

Process for preparing airfelt Download PDF

Info

Publication number
US3863296A
US3863296A US372728A US37272873A US3863296A US 3863296 A US3863296 A US 3863296A US 372728 A US372728 A US 372728A US 37272873 A US37272873 A US 37272873A US 3863296 A US3863296 A US 3863296A
Authority
US
United States
Prior art keywords
air
fibers
sheet
airfelt
tips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US372728A
Inventor
Kenneth B Buell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US00182795A priority Critical patent/US3825194A/en
Priority to AU46591/72A priority patent/AU465386B2/en
Priority to DE2245819A priority patent/DE2245819C2/en
Priority to CA152,156A priority patent/CA969322A/en
Priority to CH1372072A priority patent/CH550865A/en
Priority to FR7233553A priority patent/FR2158824A5/fr
Priority to AT814272A priority patent/AT329371B/en
Priority to NLAANVRAGE7212809,A priority patent/NL171542C/en
Priority to GB4401772A priority patent/GB1397297A/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US00372729A priority patent/US3824652A/en
Priority to US372728A priority patent/US3863296A/en
Priority to CA205,530A priority patent/CA977924A/en
Application granted granted Critical
Publication of US3863296A publication Critical patent/US3863296A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/06Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods
    • D21B1/066Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by dry methods the raw material being pulp sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • B02C18/148Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers specially adapted for disintegrating plastics, e.g. cinematographic films
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G1/00Severing continuous filaments or long fibres, e.g. stapling
    • D01G1/06Converting tows to slivers or yarns, e.g. in direct spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged

Definitions

  • This invention relates to the art of disintegrating fibrous sheet material and using the disintegrated material to form an airfelt. More particularly, it relates to a process whereby a dried cellulosic fibrous sheet is impacted under predetermined operating conditions to cause progressive disintegration of the sheet into individual fibers and thereafter distributing said fibers onto a foraminous support to produce an airfeit.
  • the present invention differs from the apparatus and process of U.S. Pat. No. 3,519,211, in one aspect, by providing an air control system which keeps individual fibers distributed in a minimum amount of air to minimize the problem of separating the fibers from the associated air.
  • This invention also comprises an improved design and arrangement of impacting elements and the provision of means to prevent the buildup of fibers in the inlet of the disintegrator.
  • a further aspect of the present invention involves control of the fiber density across the disintegrator discharge outlet so as to produce an airfelt which varies in basis weight across its width in a predetermined manner.
  • a disintegrator for fibrous material comprising:
  • a rotary cylindrical disintegrating element rotatable about its cylindrical disintegrating element rotatable about its cylindrical axis.
  • said element having teeth generally randomly disposed on said disintegrating elements periphery with the impacting faces of said teeth inclined inwardly in the direction of rotation at an angle of from about to about 40 from the radii drawn through the front edges of the teeths tips and the top surfaces of said teeth being inclined inwardly to form a relief angle of from about to about 60;
  • a casing for said disintegrating element comprising a support element for said fibrous material to continuously hold said fibrous material while it is being fed into a position where said disintegrating element can impact the fibrous material to separate said material into its individual fibers.
  • the distance between said disintegrating element and said support element being from about 0.0l0 to about 0.080, preferably from about 0.025 in. to about 0.035 in., said casing defining, in cooperation with said disintegrating element. a restricted air flow channel to keep the current of air and entrapped individual fibers, which results from rotating said disintegrating element to disintegrate said fibrous material, within a minimal cross-sectional area.
  • said casing having a primary discharge outlet for the air and fiber current, said discharge outlet being tangentially directed with respect to said disintegrating element.
  • said casing having an air inlet immediately adjacent the said primary discharge outlet and between said primary discharge outlet and the point where the fibrous material is impacted.
  • said casing having secondary air inlets in the casing across the width of said primary discharge outlet; and said casing having vacuum air outlets in said support element about I inch to about 4 inches from the point where the disintegrating element impacts said fibrous material; and
  • a moving foraminous support element across the opening of said discharge outlet adapted to collect the individual fibers to form an airfelt while permitting the air to escape through said foraminous support element, said foraminous support element being at a distance from the center of said disintegrating element of from about V4 to about 2 diameters of said disintegrating element but no further than about 3 feet.
  • FIG. I is a vertical cross sectional view of one embodiment of the disintegration and airfelt forming apparatus of the present invention.
  • FIG. 2 is a fragmentary side elevational view ofan individual rotor
  • FIG. 4 is a fragmentary elevational view of the discharge outlet portion of the casing as viewed along line 44 of FIG. I, showing a series of air inlet ports;
  • FIG. 5 is a cross-sectional view of the discharge outlet taken along line 55 of FIG. I;
  • FIG. 6 is a transverse cross-sectional view of an airfelt product having a transversely varying basis weight
  • FIG. 7 is a cross-sectional view of the discharge outlet taken along the line 7-7 of FIG. 1;
  • FIG. 8 is a fragmentary cross-sectional view of the vacuum ports taken along the line 88 of FIG. I.
  • This invention is particularly useful in disintegrating comminution grade wood pulp in dry lap" form of the kind found in commerce.
  • dry lap sheets typically have a basis weight, air-dried, of between about 100 and about 200 lbs. per thousand aquare feet and generally have a caliper of at least about 0.04 in. or greater.
  • a dry lap sheet of this type usually has a moisture content of about 6%.
  • sheets having lower moisture contents can be used in connection with the present invention and, in fact, those having moisture contents of about l7r have been found to produce excellent results. Sheets having moisture contents higher than about l0l can be used, but these must be disintegrated at lower rates, or they will be incompletely disintegrated.
  • dried cellulosic fibrous sheet describes any type of fibrous sheet material capable of disintegration by the process of this invention.
  • a dry lap sheet will be understood to mean a wood-fiber material of the above-described characteristics to which the invention is preferably applied.
  • a roll ll of dry lap material is unrolled into a sheet 12 which is advanced to the disintegrator l3.
  • the sheet 12 is fed radially into the disintegrator 13 by a pair of counter-rotating metering infeed rolls ]4 and 15 which are mounted on the infeed side of the disintegrator 13.
  • a motive power source which may typically be an electric motor, but which preferably is tied to the speed of the subsequent converting line's main drive to provide exact basis weight control.
  • This motive power source is connected to the inl'ecd rolls I-l. IS in a conventional manner (not shown) to provide a driving force.
  • the disintcgrator I3 comprises a casing 16 having a generally cylindrical bore 17.
  • a shaft I8 is journaled in the closed ends of the casing 16 such that one end of shaft 18 extends outside the casing 16 to permit coupling the shaft in a conventional manner to a motive source such as an electric motor.
  • the motor continuously drives the shaft l8 in a counter-clockwise direction, as shown.
  • the casing l6 comprises an inlet portion [9 which is slotted to provide an inlet opening having an inner end 19a.
  • the inlet opening receives the dry lap sheet 12 and guides it to the inner end I9a which defines a sheet support element an edge portion whereat the dry lap sheet I2 is disintegrated.
  • the inlet opening is essentially the same size as the sheet l2 with a clearance of from about 0.040 to about 0.200 inch, preferably from about 0.80 to about 0.l 25 inch, larger clearances being desirable along the edges to permit using slightly damaged sheet 12.
  • a relatively large tangential discharge outlet 20 is provided in the casing l6 at a point of from about 5 to about 270 from the inlet portion 19 in the direction of rotation of shaft 18.
  • the angle referred to is the angle of separation, i.e., the angle subtended on the surface of the easing between the slot in the inlet portion and the edge of the discharge outlet and not the angle between the axis of the inlet and discharge openings.
  • the discharge outlet 20 is sufficiently far from the inlet opening 19 to permit the fibers to be completely disintegrated before discharge.
  • the discharge outlet 20, in cross-section, has a width approximately equal to the length of cylindrical bore 17 and a depth offrom about 2 inches to about 4 inches, preferably 3 inches.
  • Air inlet openings 21 are provided near the discharge outlet 20 to permit air to be forced into the casing 16 at a slight positive pressure from a suitable blower (not shown) or the like, for the purpose of preventing the recycling of the fibers through the disintegrator l3 and for other purposes disclosed hereinafter.
  • the air inlet opening 21 can be one or more slots from about 5 4 inch to about I inch wide running the entire width ofthe casing 16 near the tangential discharge outlet 20. Under a pressure of about 2 to about 10 inches of water, the inlet openings can admit air at a velocity of about 6,000 to about l3,000, preferably 8,000 feet per minute.
  • additional air inlets 22 are provided for the purpose of adjusting the air flow in the discharge outlet 20.
  • the air inlets 22 are arranged in a straight line across the discharge outlet 20 near the tangential discharge point. In FIG. 4, only a few of the inlets 22 are shown, but it is understood that additional inlets 22 are provided at the indicated points.
  • the inlets 22 are each controlled by valve means (not shown), for example, cap and seat valves such as those used on piccolos and are of a size to deliver air at a velocity of from about 6,000 to about 13,000, preferably 3.000 fpm under 2 to 10 inches of water pressure.
  • Rotors 23 are keyed to the shaft I8 in juxtaposed relation, each being provided with a plurality of teeth 24 extending outwardly such that their tips 25 are adapted to serve as impacting elements.
  • rotor refers to thin rotor discs having widths of from about 0.030 to about (H25 inch.
  • a small clearance of from about 0.023 in. to about 0.035 in. is preferably provided between the tips 25 and the inner end 19a of the inlet opening in the inlet position 19 which forms a sheet support for the sheet 12, as disclosed in the co pending application of George Morgan entitled DIS- INTEGRATION PROCESS FOR FlBROUS SHEET MATERlAL," now US. Pat. No. 3,750,962 and incorporated herein by reference.
  • Larger and smaller clearances of from about 0.010 to about 0.080 in. can be used, depending upon the operating rates, provision of cooling means, etc.
  • each rotor 23 desirably bears from about 6 to about 18 teeth 24, preferably about 8 teeth 24, equally spaced about its periphery with their tips 25 located at like distances from the rotor 23 axis.
  • the impact face 26 of each tooth 24 is formed at the angle a with the radius of the rotor 23 which passes through the tooth tip 25.
  • the top 28 of the tooth 24 is formed at a relief angle B. i.e.. the angle defined by the top 28 of the tooth 24 and a tangent to the rotor 23 passing through the tooth tip 25.
  • the angle a can vary from about to about 40 and the angle B varies from about to about 60. Angle a is the more critical of the two angles.
  • Angle a give poorer total fiberization, the larger limit being most critical.
  • Angle B is important because if the top of the tooth 28 is tangential to the rotor 23, or is inclined outward, a splinter-like mass of glassined cellulose will be formed along the top of the tooth 28 during operation which will then break off and be discharged along with the individual fibers out the discharge outlet 20.
  • the individual rotors 23 are relatively thin, typically being from about 0.030 to about 0.125 in. in width.
  • blunt projections 29 which will help support the teeth 24 of adjacent rotors 23 when, as is preferred, the rotors 23 are bolted together to form said disintegrating element 26.
  • a series of holes 30 is provided in each rotor 23.
  • FIG. 3 is a fragmentary plan view ofa surface development of the periphery of disintegrating element 26, showing in flattened form the 10- cations of tooth tips 25 of the rotors 23, as they are preferably connected.
  • the tooth tips 25 are arranged in a staggered pattern so that individual tips 25 are not close together. If the tooth tips 25 on all the rotors 23 were aligned so as to make solid lines of tooth tips 25. or if one or more of the tips 25 were too close together. disintegration quality would be poor. The tendency in such an aligned arrangement is to tear the fibrous sheet material into chunks rather than individual fibers. Also, the noise ofthe disintegrating element 26 when it is rotating would resemble a fire siren if the teeth were aligned.
  • said disintegrating element 26 had the tips 25 in a completely random array. This would be ideal since it is desired to create a design which will not cause lateral fiber migration or consistent noise and vibration reinforcement.
  • each portion covering the entire width of said disintegrating element and each portion being paired with a corresponding adjacent portion which is sub stantially a mirror image of the first portion, each portion covering from about 30 to about 45 ofthe circumferenee of the disintegrating element, the helical patterns having helical angles of from about 10 to about 35, and each tooth 24 being arranged so that the nearest teeth 24 in all directions are at approximately equal distances.
  • the mirror image" portion is offset slightly from what would be the exact mirror image position.
  • Rows 1-5 comprise a "Set X (i.e., a first portion bearing a helical pattern) in which succeeding rows oftips 25 are offset at a helical angle of from about l0 to about 35 from the preceding teeth tips 25, Le, angle 7 varies from about l0 to about 35.
  • Rows 6-l0 comprise Set Y" (Le, a second adjacent portion bearing a helical pattern which is an approximate mirror image of the pattern in the first portion, Offset slightly). It will be noted that row 6 is offset slightly from the position that it would have had had it been a continuation of Set X.
  • Row 6 is the start of Set Y in which the helical angle of offset y for each succeeding row 7- 10 is the same as y for Set X but opposite in direction. Then a new row starts a new Set X which is identical to said first Set X but displaced around the periphery of said disintegrating element 26 by 10 rows of teeth tips 25.
  • Sets of rows of different sizes from two to about 10 rows can be used with essentially equivalent results in that lateral fiber density migration is minimized.
  • the size of the sets is a function of the number of teeth 24 on each rotor 23 and the number of rotors 23 in the disintegrating element 26. For example, where 264 rotors 23 having eight teeth 24 per rotor are used.
  • each row would comprise aligned teeth 24 on every eleventh rotor 23. It will be recognized that once a single tooth 24 on a rotor 23 has been positioned, all of the other teeth 24 on the same rotor 23 will be automatically positioned.
  • Some such arrangement of the teeth tips 25 is required to prevent the pattern of the teeth tips 25 from causing lateral migration of the fibers and to minimize noise and vibration reinforcement.
  • the disclosed design keeps a relatively constant distribution of fibers across the air flow channel 31 defined by the casing 16 and said disintegrating element 26.
  • the air flow channel 31 is defined by the disintegrating element 26 and the casing 16 which is sized to give from about one thirty-second to about one-fourth inch clearance, preferably about three thirty-two-inch clearance between blade tips 25 and the casing l6.
  • Avoidance of preferential lateral migration of fibers to one side of the other and the maintenance of a relatively even air velocity profile across the width of the air flow channel 31 by the methods described hereinafter are essential if one is to obtain an airfelt having a laterally constant basis weight when the disintegrator I3 is "closely coupled" as defined hereinafter.
  • the air inlet 21 can be a single slot one-half inch wide across the width of the casing I6 (typically about 16 inches) which under a pressure of about 2-10 inches of water will deliver about 6,000 to about i3 .000, preferably 8,000 feet per minute air velocity. This is the only air introduced deliberately to the disintegrator 13.
  • part of the velocity imparted to the fibers discharged through the discharge outlet 20 is obtained directly from the teeth 24; and accordingly, it is unnecessary to add large quantities of air to maintain the velocity of the individual fibers through the dis charge outlet 20 when the disintegrator I3 is closely coupled as defined hereinafter.
  • one c n see a row of air inlets 22 having a cross-sectional area of about 1 square inch are desirably provided across the discharge outlet 20 of the casing 16.
  • air flow through each of the individual air inlets 22 is adjusted to provide an air velocity of from about 6,000 to about l3,000 fpm. preferably 8,000 fpm air velocity, by means of a "piccolo valve, it is possible to control the direction of the high velocity fiber/air mixture flowing through the discharge outlet 20 and thereby vary the fiber density across the axial width of the discharge outlet 20.
  • the inlets may be slanted down or up, or be perpendicular to the air flow, but are preferably slanted down about 30 from the horizontal.
  • These air inlets 22 provide fine tuning for adjusting the fiber deposition rate across the width ofthe outlet 20. When the disintegrator 13 is close coupled as defined hereinafter, this permits the formation of a very even density airfelt. It is contemplated that even rather extreme modifications of the air velocity profile can be accomplished by using these air inlets 22.
  • the discharge outlet 20 can comprise a smooth rectangular chute in order to produce an airfelt having a laterally constant basis weight, a preferred variation of this invention being shown in FIGS. 1 and for the purpose of forming an airfelt having a predetermined variation in basis weights across its width.
  • a central diverting vane 32 and two side diverting vanes 33 and 34 are disposed within the outlet. These vanes 32, 33 and 34 vary the fiber density across the cross-section of the discharge outlet 20 by diverting fiber into the other portions of the discharge outlet 20 to increase the fiber density in these portions.
  • the primary fiber diverting surfaces 35, 36, 37 and 38 and the other surfaces of the vanes 32, 33 and 34 on which fibers can impinge are all slanted a maximum of about 45. preferably no more than about 25.
  • the vanes 32, 33 and 34 can be solid, hollow. or simply one or more thin plates slanted so as to divert fibers to one side or the other of the vanes 32, 33 and 34.
  • FIG. 6 shows a cross-section of the product of the arrangement of FIGS. 1 and 5.
  • FIG. 7 another preferred variation of this invention shows a second pyrimidal vane 39 disposed against the wall of the casing l6 to redivert fibers which may migrate back into the space in the discharge outlet 20 directly below the first central diverting vane 32.
  • vanes such as 32, 33, 34, and 39, and by modulating the air input through the air inlets 22, it is possible to provide airfelts having very precise basis weights and variations in basis weights across the width of the airfelt.
  • Support element 40 can comprise a 22 X 24 mesh wire screen which is about 40% open with a paper tissue running on top, the tissue having a basis weight of about 12 pounds per 3,000 square feet.
  • the disintegrator 13 can be close-coupled to the support element 40, i.e., the distance from the center of said disintegrating element 26 to the support element 40 is from about three-fourths of said disintegrating element's 26 diameter to about 2 diameters, but with an absolute distance of no more than about 3 feet. Greater distances are less desirable since the residence time in the system becomes too great and the velocity of the fibers drops to an undesirable level.
  • This close-coupling arrangement makes it possible to lay an even airfelt with very little air in the fiber/air mixture, thus minimizing the problem of passing the air through the support element 40.
  • fiber/air ratios by weight ⁇ of from about 0.02 to about 0.50, preferably from about 0. ID to about 0.40, are used.
  • certain vacuum air discharge outlets 42 each having a cross-sectional area of about one-half square inch in the casing 16 communicating with inlet opening 19. These communicate with a source of a vacuum of from about l0 to about 40 inches of water to induce an air flow out through the outlets 42 and thereby remove whatever fibers migrate from the airflow passage 3] into the inlet opening 19.
  • the air outlet holes 42 are slightly larger, closer together, and closer to the tip support edge 19a, e.g., approximately an inch away, and in the middle of the inlet opening 19 the air outlet holes 42 are approximately 2 to 4 inches away from the edge of the support element l9a.
  • holes 42 are shown only in the top portion of the casing 16 defining inlet opening 19, it is desirable, and preferable, to provide similar holes 42 in the bottom portion of the casing 16 defining inlet opening 19.
  • the holes 42 should not be too close to the airflow passage 31 or the flow of air into the outlet holes 42 may draw in fibers. but the air outlet holes 42 should be sufficiently close to the edge ofthe support element 19a so that any fibers which naturally migrate into the inlet opening 19 will be removed. Otherwise, inlet opening 19 can become stopped and clogged with fibers preventing the sheet 12 from feeding into the disintegrator. If desired, the fibers which are removed through the outlet openings 42 can be conveyed to the support element 40 to help form the airfelt.
  • the process of this invention comprises disintegrating dried cellulosic fibrous sheet material in a process comprising the steps of:
  • the inner end 190 provides a support for the sheet 12.
  • the disintegrating element 26 rotating in a counterclockwise manner, disintegrates the sheet 12 when the tips 25 impact the sheet l2 at a speed of at least 6,000 feet/minute, preferably about 15,500 feet/minute. individual fibers are then mixed with the air which is inserted through the air inlet 21 at the rate of about 8,000 fpm.
  • the air, which is inserted through the air inlet 2] prevents the rotation ofthe disintegrating element 26 from drawing air from the rest of the cavity within the disintegrator l3, i.e.. it prevents recycling.
  • the resulting fiber/air mixture flowing through the channel 31 has a relatively even velocity distribution and consequently an even fiber density profile across the width of the channel 31. It is at this point that disintegration to individual fibers is completed by the action of the teeth 24, the shearing and abrasion effects resulting from the interaction between the blades and the casing, and the turbulence in the restricted channel 3
  • This even velocity profile and fiber density profile is maintained since the pattern of the teeth 24 on the surface of the disintegrating element 26 does not preferentially divert fibers to either side of the air flow channel 31. Since the distance from the disintegrating element 26 to the support element 40 is very short and in a straight line. this fiber density profile does not have a chance to redistribute and accordingly, it is possible to lay a very even basis weight airfelt on the support element 40. if required, variations in the air flow velocity profile and fiber density profile can be made by adjusting the input of air through the individual air inlets 22.
  • vanes 32, 33 and 34 have slanted edges and diverting surfaces 35, 36, 37 and 38 to divert the fibers rather than to simply stop the fibers. This avoids buildup of fibers on the surfaces 35, 36, 37 and 38.
  • the diverter 39 has slanting edges and surfaces to avoid fiber buildup. The diversion of the fibers builds up the other areas which are not underneath the vanes 32, 33 and 34 at the same time that the fibers are being prevented from depositing on the area underneath the vanes 32, 33 and 34.
  • the effect of the vanes 32, 33 and 34 on the difference between basis weights of these adjacent areas is greater than the effect of the vanes 32, 33 and 34 on the basis weight of the area directly under the vanes 32, 33 and 34.
  • Another preferred embodiment of the invention in volves the process of keeping the inlet opening 19 free ofdisintcgrated fibers. This is done by pulling a vacuum of from about 10 to about 40 inches of water on the holes 42, the vacuum being of sufficient strength to remove those fibers migrating into the inlet 19, but preferably not sufficient to pull large amounts of additional fibers into said slotted inlet 19. it is desirable that the holes 42 in the middle of the slot inlet 19 be from about 2 to about 3 inches from the support element 190. However, the holes 42 along the sides of the slot inlet 19 can be closer to the support element 19a. i.e., about an inch.
  • a process of disintegrated dried cellulosic fibrous sheet material and laying an airfelt therefrom comprising the steps of:

Abstract

Apparatus and process for continuously converting dried cellulosic fibrous sheet material into a dispersion of individual fibers in air and thereafter forming said individual fibers into an airfelt.

Description

Umted States Patent 1 1 [111 3,863,296
Buell 1 1 Feb. 4, 1975 [54] PROCESS FOR PREPARING AIRFELT 3,268,954 8/1966 Voa 19/1563 7 1 1 1mm Kenneth Buelh Cincinnati, Ohio 312131111 11133? 325,12???.??..?15.1:1:11:111311ii'11113274)? [73] Assignee: The Proctor 8L Gamble Company, 3,692,622 9/1972 Dunnmg 19/1563 X Ohm FOREIGN PATENTS OR APPLICATIONS 1 1 Filed: J 22, 1973 1,415,428 9/1965 France 19 33 [2t] pp No; 372 728 1,010,147 11/1965 Great Britain 19/1564 I I Related Applicafion Data Primary Examiner-Dorsey Newton 1 1 Dwwwn of 182.795, Sept I971. Attorney, Agent, or Firm-Elliot A. Lackenbach; John V. German; Richard C. Wine [52] US. Cl. l9/156.3
[51] Int. Cl D0lg 25/00 [57] ABSTRACT [58} Field 01 Search 19/155,156,156.4,83,
N88. 39; 24', 18, 55 86, 9| 295 Apparatus and process for contlrmqusly convertrng dried cellulosic fibrous sheet malena1 Into a disperslon [56} Rderences Cited 91' inrlividual fibers in air and thereafter forming said UNITED STATES PATENTS mdlvldual fibers Into an alrfelt. 2,222,633 11/1940 Sheesley 19/1564 X 1 Claim, 8 Drawing Figures PROCESS FOR PREPARING AIRFELT This is a division of application Ser. No. l82,795. filed Sept. 22, I971, now U.S. Pat. No. 3,825,194.
FIELD OF THE INVENTION This invention relates to the art of disintegrating fibrous sheet material and using the disintegrated material to form an airfelt. More particularly, it relates to a process whereby a dried cellulosic fibrous sheet is impacted under predetermined operating conditions to cause progressive disintegration of the sheet into individual fibers and thereafter distributing said fibers onto a foraminous support to produce an airfeit.
PRIOR ART A similar process is disclosed in U.S. Pat. No. 3.5 l9,2l l where a disintegration device of the general type utilized herein is disclosed. This patent also envisions the formation of an airfelt pad. Said patent is incorporated herein by reference.
The present invention differs from the apparatus and process of U.S. Pat. No. 3,519,211, in one aspect, by providing an air control system which keeps individual fibers distributed in a minimum amount of air to minimize the problem of separating the fibers from the associated air. This invention also comprises an improved design and arrangement of impacting elements and the provision of means to prevent the buildup of fibers in the inlet of the disintegrator. A further aspect of the present invention involves control of the fiber density across the disintegrator discharge outlet so as to produce an airfelt which varies in basis weight across its width in a predetermined manner.
OBJECTS OF THE INVENTION The principal object of the present invention is to improve the operation of prior devices as represented by U.S. Pat. No. 3,519,211.
Another object of this invention is to provide a process which will disintegrate fibrous sheet material into its component fibers and thereafter, with a minimum time lag, use said fibers to form an airfelt.
SUMMARY OF THE INVENTION The nature and substance of this invention is best exemplified, in one aspect, in an apparatus for preparing an airfelt comprising:
A. A disintegrator for fibrous material comprising:
l. a rotary cylindrical disintegrating element rotatable about its cylindrical disintegrating element rotatable about its cylindrical axis. said element having teeth generally randomly disposed on said disintegrating elements periphery with the impacting faces of said teeth inclined inwardly in the direction of rotation at an angle of from about to about 40 from the radii drawn through the front edges of the teeths tips and the top surfaces of said teeth being inclined inwardly to form a relief angle of from about to about 60; and
2. a casing for said disintegrating element comprising a support element for said fibrous material to continuously hold said fibrous material while it is being fed into a position where said disintegrating element can impact the fibrous material to separate said material into its individual fibers. the distance between said disintegrating element and said support element being from about 0.0l0 to about 0.080, preferably from about 0.025 in. to about 0.035 in., said casing defining, in cooperation with said disintegrating element. a restricted air flow channel to keep the current of air and entrapped individual fibers, which results from rotating said disintegrating element to disintegrate said fibrous material, within a minimal cross-sectional area. said casing having a primary discharge outlet for the air and fiber current, said discharge outlet being tangentially directed with respect to said disintegrating element. said casing having an air inlet immediately adjacent the said primary discharge outlet and between said primary discharge outlet and the point where the fibrous material is impacted. said casing having secondary air inlets in the casing across the width of said primary discharge outlet; and said casing having vacuum air outlets in said support element about I inch to about 4 inches from the point where the disintegrating element impacts said fibrous material; and
B. A moving foraminous support element across the opening of said discharge outlet adapted to collect the individual fibers to form an airfelt while permitting the air to escape through said foraminous support element, said foraminous support element being at a distance from the center of said disintegrating element of from about V4 to about 2 diameters of said disintegrating element but no further than about 3 feet.
THE PROCESS In accordance with another aspect, the present invention comprises a process of disintegrating dried cellulosic fibrous sheet material in a process comprising the steps of:
A. Feeding said fibrous sheet into a disintegrator comprising a disintegrating element having a plurality of impacting elements which have tips and a casing having a slotted opening terminating in a sheet support element, said casing defining, in combination with said disintegrating element, a restricted channel;
B. Supporting said sheet in said slotted opening;
C. Moving said disintegrating element such that the tips of said impacting elements move at a velocity of at least about 6,000 feet/minute;
D. Impacting said tips against the end of said fibrous sheet so that impact is substantially normal to the plane of said sheet whereby said fibrous sheet is disintegrated into individual fibers;
E. Mixing said fibers with air in said restricted channel with said impacting elements while maintaining a relatively even fiber density gradient and air flow velocity gradient across the axial width of said channel; and
F. Removing the fiber/air mixture from the disintegrator along a tangent to the direction of motion of said impacting elements at the point of removal to a foraminous support positioned no more than about 3 feet away from said point at which the fiber/air mixture leaves said impacting elements, said air passing through said foraminous support and leaving said fibers on said foraminous support in the form of an airfelt.
BRIEF DESCRIPTION OF THE DRAWINGS While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter regarded as forming the present invention, it is believed that the invention will be better understood from the following description taken in connection with the accompanying drawings in which:
FIG. I is a vertical cross sectional view of one embodiment of the disintegration and airfelt forming apparatus of the present invention;
FIG. 2 is a fragmentary side elevational view ofan individual rotor;
FIG. 3 is a fragmentary plan view of a surface devel opment of the periphery of the axial rotary cylindrical disintegrating element rotatable about its cylindrical axis schematically showing. in flattened form, the tooth tip array;
FIG. 4 is a fragmentary elevational view of the discharge outlet portion of the casing as viewed along line 44 of FIG. I, showing a series of air inlet ports;
FIG. 5 is a cross-sectional view of the discharge outlet taken along line 55 of FIG. I;
FIG. 6 is a transverse cross-sectional view of an airfelt product having a transversely varying basis weight;
FIG. 7 is a cross-sectional view of the discharge outlet taken along the line 7-7 of FIG. 1; and
FIG. 8 is a fragmentary cross-sectional view of the vacuum ports taken along the line 88 of FIG. I.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings, a preferred embodiment of the apparatus and process will be described with particular reference to the disintegration of a dried cellulosic fibrous sheet. In order to simplify the disclosure. elements which form no part of the present invention and which can be readily supplied by persons of ordinary skill in the art have been omitted. Such elements include structural members, bearings, power transmission arrangements. and the like.
This invention is particularly useful in disintegrating comminution grade wood pulp in dry lap" form of the kind found in commerce. Such dry lap sheets typically have a basis weight, air-dried, of between about 100 and about 200 lbs. per thousand aquare feet and generally have a caliper of at least about 0.04 in. or greater. A dry lap sheet of this type usually has a moisture content of about 6%. However, sheets having lower moisture contents can be used in connection with the present invention and, in fact, those having moisture contents of about l7r have been found to produce excellent results. Sheets having moisture contents higher than about l0l can be used, but these must be disintegrated at lower rates, or they will be incompletely disintegrated.
As used herein, the term dried cellulosic fibrous sheet" describes any type of fibrous sheet material capable of disintegration by the process of this invention. On the other hand. a dry lap sheet will be understood to mean a wood-fiber material of the above-described characteristics to which the invention is preferably applied.
Referring now to FIG. I, a roll ll of dry lap material is unrolled into a sheet 12 which is advanced to the disintegrator l3. The sheet 12 is fed radially into the disintegrator 13 by a pair of counter-rotating metering infeed rolls ]4 and 15 which are mounted on the infeed side of the disintegrator 13. A motive power source, which may typically be an electric motor, but which preferably is tied to the speed of the subsequent converting line's main drive to provide exact basis weight control. This motive power source is connected to the inl'ecd rolls I-l. IS in a conventional manner (not shown) to provide a driving force.
The disintcgrator I3 comprises a casing 16 having a generally cylindrical bore 17. A shaft I8 is journaled in the closed ends of the casing 16 such that one end of shaft 18 extends outside the casing 16 to permit coupling the shaft in a conventional manner to a motive source such as an electric motor. The motor continuously drives the shaft l8 in a counter-clockwise direction, as shown.
The casing l6 comprises an inlet portion [9 which is slotted to provide an inlet opening having an inner end 19a. The inlet opening receives the dry lap sheet 12 and guides it to the inner end I9a which defines a sheet support element an edge portion whereat the dry lap sheet I2 is disintegrated. The inlet opening is essentially the same size as the sheet l2 with a clearance of from about 0.040 to about 0.200 inch, preferably from about 0.80 to about 0.l 25 inch, larger clearances being desirable along the edges to permit using slightly damaged sheet 12. A relatively large tangential discharge outlet 20 is provided in the casing l6 at a point of from about 5 to about 270 from the inlet portion 19 in the direction of rotation of shaft 18. FIG. I of the drawing shows an approximate separation between the inlet portion I9 and the discharge outlet 20. It is to be emphasized that the angle referred to is the angle of separation, i.e., the angle subtended on the surface of the easing between the slot in the inlet portion and the edge of the discharge outlet and not the angle between the axis of the inlet and discharge openings. Preferably, the discharge outlet 20 is sufficiently far from the inlet opening 19 to permit the fibers to be completely disintegrated before discharge. The discharge outlet 20, in cross-section, has a width approximately equal to the length of cylindrical bore 17 and a depth offrom about 2 inches to about 4 inches, preferably 3 inches. Air inlet openings 21 are provided near the discharge outlet 20 to permit air to be forced into the casing 16 at a slight positive pressure from a suitable blower (not shown) or the like, for the purpose of preventing the recycling of the fibers through the disintegrator l3 and for other purposes disclosed hereinafter.
Suitably, the air inlet opening 21 can be one or more slots from about 5 4 inch to about I inch wide running the entire width ofthe casing 16 near the tangential discharge outlet 20. Under a pressure of about 2 to about 10 inches of water, the inlet openings can admit air at a velocity of about 6,000 to about l3,000, preferably 8,000 feet per minute.
As shown in FIGS. I and 4, additional air inlets 22 are provided for the purpose of adjusting the air flow in the discharge outlet 20. The air inlets 22 are arranged in a straight line across the discharge outlet 20 near the tangential discharge point. In FIG. 4, only a few of the inlets 22 are shown, but it is understood that additional inlets 22 are provided at the indicated points. The inlets 22 are each controlled by valve means (not shown), for example, cap and seat valves such as those used on piccolos and are of a size to deliver air at a velocity of from about 6,000 to about 13,000, preferably 3.000 fpm under 2 to 10 inches of water pressure.
Rotors 23 are keyed to the shaft I8 in juxtaposed relation, each being provided with a plurality of teeth 24 extending outwardly such that their tips 25 are adapted to serve as impacting elements. As used herein, rotor" refers to thin rotor discs having widths of from about 0.030 to about (H25 inch. A small clearance of from about 0.023 in. to about 0.035 in. is preferably provided between the tips 25 and the inner end 19a of the inlet opening in the inlet position 19 which forms a sheet support for the sheet 12, as disclosed in the co pending application of George Morgan entitled DIS- INTEGRATION PROCESS FOR FlBROUS SHEET MATERlAL," now US. Pat. No. 3,750,962 and incorporated herein by reference. Larger and smaller clearances of from about 0.010 to about 0.080 in. can be used, depending upon the operating rates, provision of cooling means, etc.
With the above arrangement of the parts of the apparatus, successive teeth tips 25 impact the end of the infeeding sheet 12 as the rotors 23 are turned. The rotors 23 when keyed in place and bolted together form an axial rotary cylindrical disintegrating element 26 rotatable about its cylindrical axis. This configuration is preferred since it permits the favorable internal distribution of stresses set up during operation of the disintegrator. The discharge outlet 20 is generally tangentially positioned with respect to said disintegrating element 26.
Referring now to FIG. 2, an individual rotor 23 is shown. Each rotor 23 desirably bears from about 6 to about 18 teeth 24, preferably about 8 teeth 24, equally spaced about its periphery with their tips 25 located at like distances from the rotor 23 axis. The impact face 26 of each tooth 24 is formed at the angle a with the radius of the rotor 23 which passes through the tooth tip 25. The top 28 of the tooth 24 is formed at a relief angle B. i.e.. the angle defined by the top 28 of the tooth 24 and a tangent to the rotor 23 passing through the tooth tip 25. The angle a can vary from about to about 40 and the angle B varies from about to about 60. Angle a is the more critical of the two angles. Both larger and smaller angles for angle a give poorer total fiberization, the larger limit being most critical. Angle a give poorer total fiberization, the larger limit being most critical. Angle B is important because if the top of the tooth 28 is tangential to the rotor 23, or is inclined outward, a splinter-like mass of glassined cellulose will be formed along the top of the tooth 28 during operation which will then break off and be discharged along with the individual fibers out the discharge outlet 20. The individual rotors 23 are relatively thin, typically being from about 0.030 to about 0.125 in. in width. Accordingly, it is desirable to have blunt projections 29 which will help support the teeth 24 of adjacent rotors 23 when, as is preferred, the rotors 23 are bolted together to form said disintegrating element 26. For the purpose of bolting the rotors 23 together, a series of holes 30 is provided in each rotor 23.
As shown in FIG. 2, in one successful rotor design wherein eight teeth 24 are formed in equally spaced relationship about the periphery of an approximately Il /2 inch diameter blank having a thickness of about 0.065 inch, the dimensions and angles shown are as follows: Angle a is 2230'; angle 3 is 29; the teeth tops 28 are about 0.38 wide in the plane of rotation; and the tip is rounded to a 0.030 radius; the radius to the tip of the small support projections is about 5.38 inches and to the tip 25 of teeth 24 is about 5.75 inches; and the holes which take the bolts are 17/32 inches in diameter bored on an approximately 4.7525 diameter.
Referring now to FIG. 3, which is a fragmentary plan view ofa surface development of the periphery of disintegrating element 26, showing in flattened form the 10- cations of tooth tips 25 of the rotors 23, as they are preferably connected. It can be seen that the tooth tips 25 are arranged in a staggered pattern so that individual tips 25 are not close together. If the tooth tips 25 on all the rotors 23 were aligned so as to make solid lines of tooth tips 25. or if one or more of the tips 25 were too close together. disintegration quality would be poor. The tendency in such an aligned arrangement is to tear the fibrous sheet material into chunks rather than individual fibers. Also, the noise ofthe disintegrating element 26 when it is rotating would resemble a fire siren if the teeth were aligned.
If said disintegrating element 26 had the tips 25 in a completely random array. this would be ideal since it is desired to create a design which will not cause lateral fiber migration or consistent noise and vibration reinforcement. However. using individual rotors 23 with the same number of teeth, in a balanced configuration. a completely random configuration is not feasible. Applicant has found that a reasonable approximation of random distribution can be achieved by arranging the teeth tips 25 in a multiple helical pattern in which there are a plurality of patterns of teeth 24 on a plurality of portions ofthe circumference of said disintegrating element. each portion covering the entire width of said disintegrating element and each portion being paired with a corresponding adjacent portion which is sub stantially a mirror image of the first portion, each portion covering from about 30 to about 45 ofthe circumferenee of the disintegrating element, the helical patterns having helical angles of from about 10 to about 35, and each tooth 24 being arranged so that the nearest teeth 24 in all directions are at approximately equal distances. Preferably, the mirror image" portion is offset slightly from what would be the exact mirror image position.
One such arrangement of teeth 24 is shown in FIG. 3 where the pattern ofthe teeth tips 25 is shown. Rows 1-5 comprise a "Set X (i.e., a first portion bearing a helical pattern) in which succeeding rows oftips 25 are offset at a helical angle of from about l0 to about 35 from the preceding teeth tips 25, Le, angle 7 varies from about l0 to about 35. Rows 6-l0 comprise Set Y" (Le, a second adjacent portion bearing a helical pattern which is an approximate mirror image of the pattern in the first portion, Offset slightly). It will be noted that row 6 is offset slightly from the position that it would have had had it been a continuation of Set X. Row 6, then, is the start of Set Y in which the helical angle of offset y for each succeeding row 7- 10 is the same as y for Set X but opposite in direction. Then a new row starts a new Set X which is identical to said first Set X but displaced around the periphery of said disintegrating element 26 by 10 rows of teeth tips 25. Sets of rows of different sizes from two to about 10 rows can be used with essentially equivalent results in that lateral fiber density migration is minimized. The size of the sets is a function of the number of teeth 24 on each rotor 23 and the number of rotors 23 in the disintegrating element 26. For example, where 264 rotors 23 having eight teeth 24 per rotor are used. it has been found satisfactory to arrange the tips 25 in l6 sets of five rows each, using a helical angle of about 23. in such a case, each row would comprise aligned teeth 24 on every eleventh rotor 23. It will be recognized that once a single tooth 24 on a rotor 23 has been positioned, all of the other teeth 24 on the same rotor 23 will be automatically positioned.
Some such arrangement of the teeth tips 25 is required to prevent the pattern of the teeth tips 25 from causing lateral migration of the fibers and to minimize noise and vibration reinforcement. The disclosed design keeps a relatively constant distribution of fibers across the air flow channel 31 defined by the casing 16 and said disintegrating element 26.
The air flow channel 31 is defined by the disintegrating element 26 and the casing 16 which is sized to give from about one thirty-second to about one-fourth inch clearance, preferably about three thirty-two-inch clearance between blade tips 25 and the casing l6.
Avoidance of preferential lateral migration of fibers to one side of the other and the maintenance of a relatively even air velocity profile across the width of the air flow channel 31 by the methods described hereinafter are essential if one is to obtain an airfelt having a laterally constant basis weight when the disintegrator I3 is "closely coupled" as defined hereinafter.
The air inlet 21 can be a single slot one-half inch wide across the width of the casing I6 (typically about 16 inches) which under a pressure of about 2-10 inches of water will deliver about 6,000 to about i3 .000, preferably 8,000 feet per minute air velocity. This is the only air introduced deliberately to the disintegrator 13.
It should be noted that part of the velocity imparted to the fibers discharged through the discharge outlet 20 is obtained directly from the teeth 24; and accordingly, it is unnecessary to add large quantities of air to maintain the velocity of the individual fibers through the dis charge outlet 20 when the disintegrator I3 is closely coupled as defined hereinafter.
Referring now to FIG. 4, one c n see a row of air inlets 22 having a cross-sectional area of about 1 square inch are desirably provided across the discharge outlet 20 of the casing 16. When the air flow through each of the individual air inlets 22 is adjusted to provide an air velocity of from about 6,000 to about l3,000 fpm. preferably 8,000 fpm air velocity, by means of a "piccolo valve, it is possible to control the direction of the high velocity fiber/air mixture flowing through the discharge outlet 20 and thereby vary the fiber density across the axial width of the discharge outlet 20. The inlets may be slanted down or up, or be perpendicular to the air flow, but are preferably slanted down about 30 from the horizontal. These air inlets 22 provide fine tuning for adjusting the fiber deposition rate across the width ofthe outlet 20. When the disintegrator 13 is close coupled as defined hereinafter, this permits the formation of a very even density airfelt. It is contemplated that even rather extreme modifications of the air velocity profile can be accomplished by using these air inlets 22.
Although the discharge outlet 20 can comprise a smooth rectangular chute in order to produce an airfelt having a laterally constant basis weight, a preferred variation of this invention being shown in FIGS. 1 and for the purpose of forming an airfelt having a predetermined variation in basis weights across its width. Within the outlet are disposed a central diverting vane 32 and two side diverting vanes 33 and 34. These vanes 32, 33 and 34 vary the fiber density across the cross-section of the discharge outlet 20 by diverting fiber into the other portions of the discharge outlet 20 to increase the fiber density in these portions. The primary fiber diverting surfaces 35, 36, 37 and 38 and the other surfaces of the vanes 32, 33 and 34 on which fibers can impinge are all slanted a maximum of about 45. preferably no more than about 25. from the line of air flow so as to divert the fibers into the approximate centers of the adjacent open areas of the discharge outlet 20, without buildup of fibers on those surfaces. The vanes 32, 33 and 34 can be solid, hollow. or simply one or more thin plates slanted so as to divert fibers to one side or the other of the vanes 32, 33 and 34.
The fiber impinging edges should either be rounded or slanted a maximum of abut 45 from the line of air flow to avoid fiber buildup. The length and width of the vanes can be sized as required to produce a desired cross-sectional variation of basis weight in the airfelt product. FIG. 6 shows a cross-section of the product of the arrangement of FIGS. 1 and 5.
Referring now to FIG. 7, another preferred variation of this invention shows a second pyrimidal vane 39 disposed against the wall of the casing l6 to redivert fibers which may migrate back into the space in the discharge outlet 20 directly below the first central diverting vane 32.
By a combination of vanes such as 32, 33, 34, and 39, and by modulating the air input through the air inlets 22, it is possible to provide airfelts having very precise basis weights and variations in basis weights across the width of the airfelt.
The airfelt is eventually formed on the moving support element 40 with the air passing through the moving support 40 leaving the airfelt 41. Support element 40 can comprise a 22 X 24 mesh wire screen which is about 40% open with a paper tissue running on top, the tissue having a basis weight of about 12 pounds per 3,000 square feet.
It is a special advantage of the disintegrator of this invention that due to the tangential discharge outlet 20 and the relatively low volume of air flow required, the disintegrator 13 can be close-coupled to the support element 40, i.e., the distance from the center of said disintegrating element 26 to the support element 40 is from about three-fourths of said disintegrating element's 26 diameter to about 2 diameters, but with an absolute distance of no more than about 3 feet. Greater distances are less desirable since the residence time in the system becomes too great and the velocity of the fibers drops to an undesirable level. This close-coupling arrangement makes it possible to lay an even airfelt with very little air in the fiber/air mixture, thus minimizing the problem of passing the air through the support element 40. Another advantage of close-coupling is the ability to start and stop the associated converting line without changing the basis weight of the airfelt because of the minimal amount of fiber held up in the system at any time. Typically, fiber/air ratios (by weight} of from about 0.02 to about 0.50, preferably from about 0. ID to about 0.40, are used.
Referring now to FIG. 8, it is preferred to provide certain vacuum air discharge outlets 42, each having a cross-sectional area of about one-half square inch in the casing 16 communicating with inlet opening 19. These communicate with a source of a vacuum of from about l0 to about 40 inches of water to induce an air flow out through the outlets 42 and thereby remove whatever fibers migrate from the airflow passage 3] into the inlet opening 19. Along the lateral edges of the inlet opening 19 the air outlet holes 42 are slightly larger, closer together, and closer to the tip support edge 19a, e.g., approximately an inch away, and in the middle of the inlet opening 19 the air outlet holes 42 are approximately 2 to 4 inches away from the edge of the support element l9a. Although holes 42 are shown only in the top portion of the casing 16 defining inlet opening 19, it is desirable, and preferable, to provide similar holes 42 in the bottom portion of the casing 16 defining inlet opening 19. The holes 42 should not be too close to the airflow passage 31 or the flow of air into the outlet holes 42 may draw in fibers. but the air outlet holes 42 should be sufficiently close to the edge ofthe support element 19a so that any fibers which naturally migrate into the inlet opening 19 will be removed. Otherwise, inlet opening 19 can become stopped and clogged with fibers preventing the sheet 12 from feeding into the disintegrator. If desired, the fibers which are removed through the outlet openings 42 can be conveyed to the support element 40 to help form the airfelt.
More specifically. using the apparatus described hereinbefore, the process of this invention comprises disintegrating dried cellulosic fibrous sheet material in a process comprising the steps of:
A. Feeding the fibrous sheet 12 into the disintegrator 13;
B. Rotating the cylindrical disintegrating element 26 at a speed sufficient to move the tips 25 of the teeth 24 of the disintegrating element at a velocity of from about 6,000 feet/minute to about 30,000 feet/minute, preferably about l5,500 feet/minute, whereby the tips 25 of the teeth 24 impact against the end of the fibrous sheet 12 to disintegrate the fibrous sheet 12 into individual fibers;
C. Adjusting the amount of air flowing through the air inlets 21 to minimize recycling of the fibers;
D. Adjusting the amount of air flowing through secondary air inlets 22 so as to achieve the desired fiberlair profile across the width of the discharge outlet E. Adjusting the air flow through vacuum air discharge outlets 42 to remove fibrous material which migrates into the space defined by the support element 190 and the sheet 12; and
F. Directing the fiber/air mixture from the disintegrator 13 through the discharge outlet 20 and a moving foraminuos support 40, leaving the fibers on the foraminous support 40 in the form of an airfelt 41.
Referring to FIG. I, when the sheet 12 is fed into the disintegrator 13 through the slotted inlet opening in the inlet position [9 at a rate of about 60 fpm., the inner end 190 provides a support for the sheet 12. The disintegrating element 26 rotating in a counterclockwise manner, disintegrates the sheet 12 when the tips 25 impact the sheet l2 at a speed of at least 6,000 feet/minute, preferably about 15,500 feet/minute. individual fibers are then mixed with the air which is inserted through the air inlet 21 at the rate of about 8,000 fpm. The air, which is inserted through the air inlet 2] prevents the rotation ofthe disintegrating element 26 from drawing air from the rest of the cavity within the disintegrator l3, i.e.. it prevents recycling.
When the air in air flow channel 31 is mixed with the individual fibers at the point of impact of the tips 25 with the sheet 12, the resulting fiber/air mixture flowing through the channel 31 has a relatively even velocity distribution and consequently an even fiber density profile across the width of the channel 31. It is at this point that disintegration to individual fibers is completed by the action of the teeth 24, the shearing and abrasion effects resulting from the interaction between the blades and the casing, and the turbulence in the restricted channel 3|. if such a restricted passageway is not provided, or if the channel 3| is too short. then disintegration is incomplete. This even velocity profile and fiber density profile is maintained since the pattern of the teeth 24 on the surface of the disintegrating element 26 does not preferentially divert fibers to either side of the air flow channel 31. Since the distance from the disintegrating element 26 to the support element 40 is very short and in a straight line. this fiber density profile does not have a chance to redistribute and accordingly, it is possible to lay a very even basis weight airfelt on the support element 40. if required, variations in the air flow velocity profile and fiber density profile can be made by adjusting the input of air through the individual air inlets 22.
It is also possible to modify the basis weight distribution of the airfelt by means of the vanes 32, 33 and 34, and secondary diverters like diverter 39. It should be noted that these vanes 32, 33 and 34 have slanted edges and diverting surfaces 35, 36, 37 and 38 to divert the fibers rather than to simply stop the fibers. This avoids buildup of fibers on the surfaces 35, 36, 37 and 38. Similarly, the diverter 39 has slanting edges and surfaces to avoid fiber buildup. The diversion of the fibers builds up the other areas which are not underneath the vanes 32, 33 and 34 at the same time that the fibers are being prevented from depositing on the area underneath the vanes 32, 33 and 34. Thus, the effect of the vanes 32, 33 and 34 on the difference between basis weights of these adjacent areas is greater than the effect of the vanes 32, 33 and 34 on the basis weight of the area directly under the vanes 32, 33 and 34.
Another preferred embodiment of the invention in volves the process of keeping the inlet opening 19 free ofdisintcgrated fibers. This is done by pulling a vacuum of from about 10 to about 40 inches of water on the holes 42, the vacuum being of sufficient strength to remove those fibers migrating into the inlet 19, but preferably not sufficient to pull large amounts of additional fibers into said slotted inlet 19. it is desirable that the holes 42 in the middle of the slot inlet 19 be from about 2 to about 3 inches from the support element 190. However, the holes 42 along the sides of the slot inlet 19 can be closer to the support element 19a. i.e., about an inch. Placing the holes 42 so close to the support element I along the sides ofthe slot inlet 19 may cause some fibers to migrate from the air flow channel 31 into the slot of the inlet portion 19; however, the need to re move fibers from the sides of the slot of the inlet portion 19 is sufficiently great to justify drawing additional fibers in. Failure to remove the fibers from the slot of the inlet portion 19 results in a buildup of fibers which eventually will jam the slot of the inlet portion 19.
What is claimed is:
l. A process of disintegrated dried cellulosic fibrous sheet material and laying an airfelt therefrom comprising the steps of:
A. Feeding said fibrous sheet into a disintegrator comprising a disintegrating element having a plurality of impacting elements which have tips and a casing having a slotted opening terminating in a sheet support element, said casing defining, in combination with said disintegrating element, a restricted channel;
B. Supporting said sheet in said slotted opening;
C. Moving said disintegrating element such that the tips of said impacting elements move at a velocity of at least about 6.000 feet/minute;
D. Impacting said tips against the end of said fibrous sheet so that impact is substantially normal to the plane of said sheet whereby said fibrous sheet is disintegrated into individual fibers;
E. Mixing said fibers with air in said restricted channel with said impacting elements to complete disintegration while maintaining a relatively even fiber density gradient and air flow velocity gradient across the axial width of said channel; and
F. Removing the fiber/air mixture from the disintethe form of an airfelt.

Claims (1)

1. A process of disintegrated dried cellulosic fibrous sheet material and laying an airfelt therefrom comprising the steps of: A. Feeding said fibrous sheet into a disintegrator comprising a disintegrating element having a plurality of impacting elements which have tips and a casing having a slotted opening terminating in a sheet support element, said casing defining, in combination with said disintegrating element, a restricted channel; B. Supporting said sheet in said slotted opening; C. Moving said disintegrating element such that the tips of said impacting elements move at a velocity of at least about 6,000 feet/minute; D. Impacting said tips against the end of said fibrous sheet so that impact is substantially normal to the plane of said sheet whereby said fibrous sheet is disintegrated into individual fibers; E. Mixing said fibers with air in said restricted channel with said impacting elements to complete disintegration while maintaining a relatively even fiber density gradient and air flow velocity gradient across the axial width of said channel; and F. Removing the fiber/air mixture from the disintegrator along a tangent to the direction of motion of said impacting elements at the point of removal to a foraminous support positioned no more than about 3 feet away from said point at which the fiber/air mixture leaves said impacting elements so that said fiber/air mixture retains sufficient kinetic energy imparted thereto by the impacting elements to form an airfelt on said foraminous support, said air passing through said foraminous support and leaving said fibers on said foraminous support in the form of an airfelt.
US372728A 1971-09-22 1973-06-22 Process for preparing airfelt Expired - Lifetime US3863296A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US00182795A US3825194A (en) 1971-09-22 1971-09-22 Apparatus for preparing airfelt
AU46591/72A AU465386B2 (en) 1971-09-22 1972-09-13 Apparatus and process for preparing airfelt
DE2245819A DE2245819C2 (en) 1971-09-22 1972-09-19 Defiber for cellulosic fiber sheet material
CA152,156A CA969322A (en) 1971-09-22 1972-09-20 Apparatus and process for preparing airfelt
CH1372072A CH550865A (en) 1971-09-22 1972-09-20 DISINTEGRATOR FOR FIBROUS MATERIAL.
AT814272A AT329371B (en) 1971-09-22 1972-09-21 DEFIBRATOR AND PROCESS FOR DEFIBRATION
FR7233553A FR2158824A5 (en) 1971-09-22 1972-09-21
NLAANVRAGE7212809,A NL171542C (en) 1971-09-22 1972-09-21 Device for disintegrating fibrous material.
GB4401772A GB1397297A (en) 1971-09-22 1972-09-22 Apparatus and process for preparing airfelt
US00372729A US3824652A (en) 1971-09-22 1973-06-22 Apparatus for preparing airfelt
US372728A US3863296A (en) 1971-09-22 1973-06-22 Process for preparing airfelt
CA205,530A CA977924A (en) 1971-09-22 1974-07-24 Disintegrator for fibrous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US00182795A US3825194A (en) 1971-09-22 1971-09-22 Apparatus for preparing airfelt
US00372729A US3824652A (en) 1971-09-22 1973-06-22 Apparatus for preparing airfelt
US372728A US3863296A (en) 1971-09-22 1973-06-22 Process for preparing airfelt

Publications (1)

Publication Number Publication Date
US3863296A true US3863296A (en) 1975-02-04

Family

ID=27391587

Family Applications (3)

Application Number Title Priority Date Filing Date
US00182795A Expired - Lifetime US3825194A (en) 1971-09-22 1971-09-22 Apparatus for preparing airfelt
US00372729A Expired - Lifetime US3824652A (en) 1971-09-22 1973-06-22 Apparatus for preparing airfelt
US372728A Expired - Lifetime US3863296A (en) 1971-09-22 1973-06-22 Process for preparing airfelt

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US00182795A Expired - Lifetime US3825194A (en) 1971-09-22 1971-09-22 Apparatus for preparing airfelt
US00372729A Expired - Lifetime US3824652A (en) 1971-09-22 1973-06-22 Apparatus for preparing airfelt

Country Status (9)

Country Link
US (3) US3825194A (en)
AT (1) AT329371B (en)
AU (1) AU465386B2 (en)
CA (1) CA969322A (en)
CH (1) CH550865A (en)
DE (1) DE2245819C2 (en)
FR (1) FR2158824A5 (en)
GB (1) GB1397297A (en)
NL (1) NL171542C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064597A (en) * 1976-10-14 1977-12-27 E. I. Du Pont De Nemours And Company Prevention of fibers from entering the pinch point between a rotating feed roll and a stationary shoe
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4650480A (en) * 1984-04-21 1987-03-17 Winkler + Dunnebier Maschinenfabrik Und Eisengiesserei Gmbh & Co. Kg Absorption pad for hygienic applications and process for its manufacture
US4701294A (en) * 1986-01-13 1987-10-20 Kimberly-Clark Corporation Eductor airforming apparatus
US4764325A (en) * 1986-05-28 1988-08-16 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
US4765780A (en) * 1986-05-28 1988-08-23 The Procter & Gamble Company Apparatus for and method of providing a multiplicity of streams of air-entrained fibers
US4767586A (en) * 1986-01-13 1988-08-30 Kimberly-Clark Corporation Apparatus and method for forming a multicomponent integral laid fibrous web with discrete homogeneous compositional zones, and fibrous web produced thereby
US4904440A (en) * 1986-05-28 1990-02-27 The Procter & Gamble Company Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4908175A (en) * 1986-05-28 1990-03-13 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122582A (en) * 1977-01-12 1978-10-31 Weyerhaeuser Company Fiber mat forming machine
DE2708307C2 (en) * 1977-02-25 1983-04-28 Vsesojuznoe naučno-proizvodstvennoe ob"edinenie celljulozno-bumažnoj promyšlennosti, Leningrad Process for defibrating a web made of cellulose and apparatus for carrying out the process
US4389175A (en) * 1981-05-15 1983-06-21 James River-Dixie/Northern, Inc. Apparatus for distributing dry fibers onto a forming wire
US4388056A (en) * 1981-07-06 1983-06-14 The Procter & Gamble Company Apparatus for continuously making an air-laid fibrous web having patterned basis weight distribution
IT1214853B (en) * 1984-06-20 1990-01-18 Fameccanica Spa DRY DEFIBRATION EQUIPMENT FOR SHEETS OF FIBROUS CELLULOSE MATERIAL AND RELATED MATERIALS PARTICULARLY FOR THE PREPARATION OF ABSORBENT MASSES FOR DISPOSABLE AND RELATED DIAGRAMS
US4650127A (en) * 1985-01-31 1987-03-17 Kimberly-Clark Corporation Method and apparatus for fiberizing fibrous sheets
IT1196469B (en) * 1986-07-07 1988-11-16 Nuova Red Italiana Spa DRY DEFIBRATION MACHINE FOR FIBROUS AND SIMILAR CELLULOSE MATERIAL, IN PARTICULAR FOR THE PREPARATION OF ABSORBENT MASSES FOR DISPOSABLE AND SIMILAR DIABERS
US5366591A (en) * 1987-01-20 1994-11-22 Jewell Richard A Method and apparatus for crosslinking individualized cellulose fibers
US5437418A (en) 1987-01-20 1995-08-01 Weyerhaeuser Company Apparatus for crosslinking individualized cellulose fibers
US5253815A (en) * 1990-10-31 1993-10-19 Weyerhaeuser Company Fiberizing apparatus
CA2095047A1 (en) * 1990-10-31 1992-05-01 Allan R. Carney Fiber treatment apparatus
US5462235A (en) * 1992-12-08 1995-10-31 W. R. Grace & Co.-Conn. Aggregate producing machine
US5375780A (en) * 1993-05-24 1994-12-27 Courtaulds Fibres (Holdings) Ltd. Comminuting wood pulp sheeting
US5414902A (en) * 1993-10-28 1995-05-16 Kroyer; Karl K. K. Defibrator with ribs, beater plate, grate and beater bars
US5416960A (en) * 1993-10-28 1995-05-23 Kroyer; Karl K. K. Method for the production of fibrous material containing curled fibers
GB2341563A (en) * 1998-09-17 2000-03-22 Airmat Systems Ltd Disposal of waste sheet material
US6267252B1 (en) 1999-12-08 2001-07-31 Kimberly-Clark Worldwide, Inc. Fine particle filtration medium including an airlaid composite
US7111801B2 (en) * 2001-12-26 2006-09-26 Castronovo Charles A Destroying non-homogeneous loads using zero-clearance cutting systems, double-secondary shredders in zero-clearance cutting systems, and other zero-clearance systems
US7399377B2 (en) * 2003-01-02 2008-07-15 Weyerhaeuser Co. Process for singulating cellulose fibers from a wet pulp sheet
US7004412B2 (en) * 2003-11-20 2006-02-28 Carter Day International, Inc. Micron hammermill
CN101074544B (en) * 2006-11-20 2012-11-07 杭州新余宏机械有限公司 Fibre decomposite and fibre de-composition apparatus
US7775468B2 (en) * 2007-05-09 2010-08-17 Carter Day International, Inc. Hammermill with rotatable housing
EP2039827B3 (en) 2007-09-19 2014-03-12 Fameccanica.Data S.p.A. Apparatus for the defibration of sheets of cellulose
JP5358467B2 (en) * 2010-01-28 2013-12-04 ユニ・チャーム株式会社 Absorber manufacturing equipment
EP2683860B1 (en) * 2011-03-05 2015-04-29 The Procter and Gamble Company Method and device for grinding strand-like fibrous material
US9463465B2 (en) 2012-09-06 2016-10-11 Charles A. Castronovo Compact high-security destruction machine
CN105442368A (en) * 2015-12-30 2016-03-30 泉州市汉威机械制造有限公司 Long fiber wood pulp smashing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2222633A (en) * 1936-12-01 1940-11-26 Tufide Products Corp Apparatus for manufacturing fiberboard
US3268954A (en) * 1963-12-09 1966-08-30 Curt G Joa Method for disintegrating wood pulp board into its component fibers and reassembling the fibers as a soft bat
US3519211A (en) * 1967-05-26 1970-07-07 Procter & Gamble Disintegration process for fibrous sheet material
US3637146A (en) * 1969-10-27 1972-01-25 Kimberly Clark Co Hammermill construction
US3692622A (en) * 1968-12-16 1972-09-19 Kimberly Clark Co Air formed webs of bonded pulp fibers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB784012A (en) * 1954-10-04 1957-10-02 Hercules Powder Co Ltd Improvements in or relating to preparation of shredded wood pulp
GB1010147A (en) * 1960-12-09 1965-11-17 Birfield Eng Ltd Improvements in or relating to opening, teasing and/or blending machines for fibrousmaterials
US3436025A (en) * 1963-04-29 1969-04-01 Slick Ind Co Fine granulator
GB1078727A (en) * 1964-11-18 1967-08-09 Elitex Zavody Textilniho A device for the orientation of fibres prior to their transfer to a spindleless spinning mechanism
US3501813A (en) * 1965-11-10 1970-03-24 Int Paper Canada Method of forming a continuous fibrous web
US3606175A (en) * 1969-12-04 1971-09-20 Kimberly Clark Co Picker for divellicating pulp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2222633A (en) * 1936-12-01 1940-11-26 Tufide Products Corp Apparatus for manufacturing fiberboard
US3268954A (en) * 1963-12-09 1966-08-30 Curt G Joa Method for disintegrating wood pulp board into its component fibers and reassembling the fibers as a soft bat
US3519211A (en) * 1967-05-26 1970-07-07 Procter & Gamble Disintegration process for fibrous sheet material
US3692622A (en) * 1968-12-16 1972-09-19 Kimberly Clark Co Air formed webs of bonded pulp fibers
US3637146A (en) * 1969-10-27 1972-01-25 Kimberly Clark Co Hammermill construction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127637A (en) * 1975-03-13 1978-11-28 Scott Paper Co. Method of manufacturing a dry-formed, embossed adhesively bonded, nonwoven fibrous sheet
US4064597A (en) * 1976-10-14 1977-12-27 E. I. Du Pont De Nemours And Company Prevention of fibers from entering the pinch point between a rotating feed roll and a stationary shoe
US4650480A (en) * 1984-04-21 1987-03-17 Winkler + Dunnebier Maschinenfabrik Und Eisengiesserei Gmbh & Co. Kg Absorption pad for hygienic applications and process for its manufacture
US4701294A (en) * 1986-01-13 1987-10-20 Kimberly-Clark Corporation Eductor airforming apparatus
US4767586A (en) * 1986-01-13 1988-08-30 Kimberly-Clark Corporation Apparatus and method for forming a multicomponent integral laid fibrous web with discrete homogeneous compositional zones, and fibrous web produced thereby
US4764325A (en) * 1986-05-28 1988-08-16 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components
US4765780A (en) * 1986-05-28 1988-08-23 The Procter & Gamble Company Apparatus for and method of providing a multiplicity of streams of air-entrained fibers
US4904440A (en) * 1986-05-28 1990-02-27 The Procter & Gamble Company Apparatus for and methods of airlaying fibrous webs having discrete particles therein
US4908175A (en) * 1986-05-28 1990-03-13 The Procter & Gamble Company Apparatus for and methods of forming airlaid fibrous webs having a multiplicity of components

Also Published As

Publication number Publication date
ATA814272A (en) 1975-07-15
US3825194A (en) 1974-07-23
CA969322A (en) 1975-06-17
NL7212809A (en) 1973-03-26
DE2245819C2 (en) 1984-02-23
DE2245819A1 (en) 1973-03-29
AT329371B (en) 1976-05-10
CH550865A (en) 1974-06-28
NL171542C (en) 1983-04-18
NL171542B (en) 1982-11-16
GB1397297A (en) 1975-06-11
AU4659172A (en) 1974-03-21
FR2158824A5 (en) 1973-06-15
AU465386B2 (en) 1975-09-25
US3824652A (en) 1974-07-23

Similar Documents

Publication Publication Date Title
US3863296A (en) Process for preparing airfelt
US3538551A (en) Disc type fiberizer
EP0089106B1 (en) Cut and mill fiberizer
US3363759A (en) Screening apparatus with rotary pulsing member
US5306453A (en) Apparatus and method of making a non-woven fabric
US5195684A (en) Screenless disk mill
US5188298A (en) Method and apparatus for fiberizing
US2128194A (en) Reducing mill
US4607802A (en) Turbines for fiber separation
EP0179041A2 (en) Cutter segment
US3236723A (en) Sheet material reprocessing apparatus for paper broke
US3519211A (en) Disintegration process for fibrous sheet material
KR850000378B1 (en) Low pressure drop pulverizer throat
CA2009586C (en) Method and apparatus for fiberizing and cellulosic product thereof
US2968444A (en) Refining discs
US4373679A (en) Impact type crusher
US3617433A (en) Defibering discharger for continuous digesters
US3750962A (en) Disintegration process for fibrous sheet material
GB2047163A (en) Apparatus and method for rechipping oversize wood chips into smaller chips
US3644170A (en) Fibrilating fibrous pulp stock in a gas stream
CA1258194A (en) Refiner apparatus with integral steam separator
CA2210911A1 (en) Impeller for separating a conveyed stream of material
CA2059463C (en) Twin-flow beater mill for preparing fibrous materials
US3348779A (en) Method and apparatus for comminuting materials
CA1158973A (en) Lummus cutter for fiber openness