US3863196A - Acoustically activated proximity sensor switch - Google Patents

Acoustically activated proximity sensor switch Download PDF

Info

Publication number
US3863196A
US3863196A US222182*A US22218272A US3863196A US 3863196 A US3863196 A US 3863196A US 22218272 A US22218272 A US 22218272A US 3863196 A US3863196 A US 3863196A
Authority
US
United States
Prior art keywords
target
zone
circuit
transistor
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US222182*A
Inventor
Lewis M Hilles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASSA DONALD P COHASSET
Dynamics Corp of America
Massa Products Corp
MASSA CORP
Original Assignee
Dynamics Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamics Corp of America filed Critical Dynamics Corp of America
Priority to US222182*A priority Critical patent/US3863196A/en
Application granted granted Critical
Publication of US3863196A publication Critical patent/US3863196A/en
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST *, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT M. MASSA TRUST
Assigned to TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST reassignment TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST. Assignors: MASSA, CONSTANCE A., MASSA, DONALD P., MASSA, GEORGIANA M., MASSA, ROBERT
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT MASSA TRUST
Assigned to MASSA, DONALD P., COHASSET, MA, DELLORFANO, FRED M. JR. reassignment MASSA, DONALD P., COHASSET, MA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STONELEIGH TRUST, THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/901Noise or unwanted signal reduction in nonseismic receiving system

Definitions

  • This invention relates to proximity sensor switches activated by the presence of a target within a predetermined zone, and more particularly to means for selectively detecting the presence of a human or other form.
  • proximity sensors There are many proximity sensors; however, in the past they have not been very selective. For example, a capacitive bridge detector merely detects movement of an object in a field. It cannot discriminate between various moving objects; nor can it detect completely stationary objects. Likewise, most optic sensors merely detect when a beam of light is either cut or reflected, and it is not important how or why the beam is cut or reflected. Thus, these prior proximity sensors cannot distinguish between a target person and a stream of pedestrian traffic. Accordingly, there is a need for a selective,-proximity sensor which is able to respond only to a predetermined target which remains in a predetermined spot or area for a predetermined period of time.
  • a selective proximity sensor may be used as a positive identification means.
  • This application discloses an automatic flushing valve for urinals in public rest-rooms; although, many other uses exist.
  • one target might be a human form which remains for a predetermined time in a particular spot, such as approaching or standing in a doorway. If the human is also wearing an optical target, there can be a double identification.
  • the selective sensor may be tied into still other identifiers, such as key or combination locks on a door. Thus, an almost foolproof identification of persons may be accomplished.
  • an object of this invention is to utilize acoustic signals for selectively detecting the presence of a predetermined target in a predetermined zone for a predetermined time period.
  • a still further object of this invention is to determine the distance between the target and the transducers responsive to the elapsed time between the initiation of an ultrasonic signal and its detection'by an ultrasonic receiving transducer, after the signal is reflected by a target located in the path of the sound waves.
  • Yet another object of this invention is to detect the presence of a target in a specified region responsive to a measurement of the elapsed time between the transmission of an ultrasonic signal and the receipt of the signal after it is reflected from a target. Another object is to recognize the presence of the predetermined target in the specified zone for a predetermined period of time. Still another object is to actuate an auxiliary device immediately upon the removal of the target from the zone of recognition, after satisfying the requirement of the targets presence in the zone for the prescribed time period.
  • the presence of the target is recognized by a target interception of an acoustic signal which is sent from a directional electroacoustic transducer to the target zone and region.
  • a preferred form of the invention employs an ultrasonic directional transmitter and a directional ultrasonic receiver, arranged side by side with their normal axes directed toward a zone or region within which the target is to be detected.
  • the invention is not limited to this use of separate receiving and transmitting transducers. It may also use a single transducer acting both as a receiver and a transmitter, controlled by an appropriate transmit-receive switching device.
  • short bursts of ultrasonic frequency are repeatedly transmitted to the zone or region of interest.
  • a receiving transducer with its associated electronic circuitry. detects the reflection of the tone burst signals, from the surface of a target, if the target is then within the specifled zone or region.
  • the received ultrasonic tone burst echoes are electronically processed to produce a steady state dc voltage that indicates the presence of a target in the specified zone.
  • This d-c voltage is then processed in logic circuitry that gives an output signal which indicates that a target is present. Further electronic processing is then utilized to recognize the continued presence of the target within the specified zone or region for a predetermined period of time of, for example, a few seconds.
  • the logic circuitry delivers a function voltage immediately upon the removal of the target from the prescribed region in which it was recognized.
  • the function voltage is then utilized to accomplish any desired operation such as, for example, to activate the solenoid of an electronically activated flushing valve, or for operat ing any other device.
  • the inventive system can be adjusted, if desired, to tolerate repetitive passages of targets through the target zone or region. For example, a continuous stream of moving pedestrian traffic may pass through the target zone without a delivery of the end function voltage.
  • FIG. 1 is a schematic and block diagram illustrating one embodiment of the invention in which separate directional ultrasonic transmitter and receiver transducers are utilized to detect the presence of a target in a specified zone or region of interest and to ignore targets outside the specified zone;
  • FIG. 2 is a timing diagram which graphically illustrates a sequential series of signals generated throughout the system of FIG. 1;
  • FIG. 3 is a schematic representation of another embodiment of the invention in which multiple sets of ultrasonic transducers are operated under control of a common circuit for separately indicating the presence of targets which may appear within a plurality of different specified zones or regions, each zone being associated with one pair of ultrasonic transducers; and
  • FIG. 4 schematically illustrates how the system may use a transmitting and receiving transducer which are one and the same.
  • FIG. 1 shows various elements 11 to 33 which are employed in one embodiment of the inventive system.
  • FIG. 1 also includes means for the recognition of a continued presence of a target in the zone or region of interest for a specified period of time. After the system has met a pre-established time related recognition threshold requirement. a function voltage is generated immediately upon the removal of the target from the zone. This voltage is utilized to control a desired function such as, for example, the illustrated operation of a flushing valve.
  • FIG. 2 The time relationships of the various electrical signals that appear in FIG. 1, are shown on the timing diagrams in FIG. 2. These signals represent the functions of target recognition within the prescribed zone or region, the continued presence of the target within the zone for a specified period of time, and the final activation of an end function, such as the operation ofa flushing valve as illustrated in FIG. 1.
  • a transmitting, directional, ultrasonic transducer 11 is located with its major radiating axis pointed toward approximately the center of the target zone 12.
  • a receiving, directional, ultrasonic transducer 13 is located close to transducer 11, with its major radiating axis also pointed toward the approximate center of the target zone or region.
  • the system is controlled from a free-running, repetition rate, trigger generator 17 which acts as a system clock pulse source.
  • the clock pulse generator 17 may include any suitable oscillator, such as a unijunction transistor circuit (not shown) controlled by an R-C network.
  • Generator l7 cyclically delivers pulses that control transmission of short bursts of ultrasonic power. Preferably, each burst has a duration in the order of two milliseconds, for example. These repetitive narrow pulses recur at a rate of about pulses per second (FIG. 2,A).
  • the output of the generator 17 is applied to a transmit monostable circuit 16, of any suitable design, which is used as a pulse stretcher, providing a pulse width of two milliseconds (FIG. 2,B).
  • the transmit monostable circuit 16 controls a burst gate switch which turns on for a predetermined period of time. During this time, an ultrasonic power source 14 sends a burst of ultrasonic energy to the directional transducer 11 (FIG. 2,C).
  • the clock or trigger pulses from generator 17 also trigger a delay monostable circuit 18, in which each of the trigger pulses is stretched to have a width of about four milliseconds as illustrated in FIG. 2,D.
  • the trailing edges of these four millisecond pulses are differentiated by a conventional differentiator circuit 19.
  • the result is a generation of narrow trigger pulses which are delayed from the first trigger pulse by four milliseconds (FIG. 2,E).
  • the delayed trigger pulse triggers a receiver turn-on monostable circuit 20 (FIG. 2,F) which, in turn, stretches the delayed trigger pulse out to a width of four milliseconds.
  • a voltage pulse is applied through an isolating inductor L1 to the base electrode of an NPN transistor T1, which is connected in an emitter follower configuration.
  • a zener diode Z1 is connected to bias the emitter of the transistor, as shown in the receiver gate switch 21 (FIG. 1).
  • the voltage of the bias supplied through the zener diode Z1 is chosen to match that of the delayed pulse applied through the inductor Ll.
  • the receiver gate switch 21 is also controlled responsive to the ultrasonic energy received by the transducer 13. More specifically, energy transmitted by the transducer 11 is reflected from a target in zone 12 to the receiver transducer 13. As a result, a signal is applied through a receiving amplifier 22 to a coupling capacitor C1.
  • the ultrasonic energy may appear at the output of the receiver gate switch 21 only during the presence of the delayed pulse from circuit 20.
  • the monostable circuit 20 provides a time window of acceptance (FIG. 2,F) during which reflected ultrasonic energy (FIG. 2,H) may be detected.
  • F time window of acceptance
  • F reflected ultrasonic energy
  • T1 base of the emitter follower
  • the output of receiving amplifier 22 is hard clipped. Both the emitter bias of the receiver gate switch, transistor T1, and the delayed pulse voltage (FIG. 2,F), are chosen to match the hard clipping level. Thus, it is impossible to get false gating action responsive to very strong echo bursts, indicated as cross talk and other echos in FIG. 2,G.
  • the pulses out of circuit 21 resulting from the reflections of ultrasonic energy from the target zone [2 occur at the system's repetition rate, which, in this example, is 10 pps. These pulses are applied to a peak detector circuit 23, which is ofa conventional type. These pulses are stored and stretched into a steady d-c voltage by the peak detector circuit 23. This d-c voltage out of circuit 23, called the "ready voltage", appears as a result of a reflection from a target within the target zone. The ready voltage is applied to both the input of a transistor inverter 24 and the input of a delay integrator 26.
  • the transistor T2 in the inverter 24 saturates responsive to the ready voltage, and its collector voltage is at ground or zero voltage, thus cutting off a transistor T3 in the S1 switch circuit 27.
  • transistor T3 turns off, its collector voltage rises, driving the transistor T4 in the d-c power amplifier 29 into saturation.
  • the ground or zero voltage at the output of the inverter 24 cuts off a transistor T5 in a delay reset circuit 25.
  • transistor T5 turns off, a low resistor bridging circuit R1 is removed from shunting a capacitor C2 in a delay integrator circuit 26. As a result, the integrator circuit 26 begins to conduct, for forward integration.
  • the output of the d-c power amplifier 29 becomes a ground or zero voltage, when transistor T4 turns on. Ground is applied, via contacts K4, K5 of relay 32, to the base of a transistor T6 in a d-c amplifier 31. Thus, the transistor T6 in the d-c power amplifier 31 is at cut off to prevent operation of relay 32.
  • the ready voltage is applied to the input of the inverter 24
  • the same voltage is applied to the input of the delay integrator circuit 26.
  • the capacitor C2 charges and the voltage at the integrator 26 output drives into the base of the transistor T7, in S2 switch 28, which goes into a saturated condition. In effect, there is a closed switch S2 extending from the collector to the emitter of the transistor T7.
  • the base of the transistor T5 in delay reset circuit is also driven into saturation by inverter circuit 24.
  • the output voltage of the S1 switch in circuit 27 also falls to zero.
  • a low value bridging resistance R1 is connected in parallel across the integrating capacitor C2 in the delay integrator 26.
  • switch S2 While the integrator capacitor C2, in delay integrator 26, is discharging, switch S2 (transistor T7), remains on for a time period which is long enough to allow the ground or zero voltage output of switch S1 (transistor T3) to cut off the d-c power amplifier 29. In turn, the d-c power amplifier 31 turns on and thereby energizes the coil K of relay 32.
  • contacts K1 and K3 close to place a holding circuit across the switch S2 (by shunting the transistor T7).
  • Contacts K4 and K5 open and remove a bridging circuit across a differentiator circuit 30.
  • Contacts K7 and K9 close to complete a power circuit across a flushing valve 33, causing the desired operation.
  • the time constant of the differentiator circuit is chosen so that the base drive to the d-c power amplifier 31 decays during a few seconds.
  • the relay 32 releases, and the relay contacts return to their normal position.
  • the differentiator capacitor C3 discharges quickly via the contacts, K4 and K5.
  • An opening of contacts K1 and K3 removes the bridging circuit from switch S2.
  • the contacts K7 and K9 open to remove power from the flushing valve, thereby terminating the functional operation.
  • FIG. 2 shows successive pulses from the receiver gate switch 21; Each pulse results from a coincidence of an acceptance time window and an echo signal. As long as the target isstationary, each successive pulse merely recharges a capacitor in circuit 23, with no immediate effect (FIG. 2,.l). If the target leaves the zone, at time 40, the sonic echoes disappear causing thepulses to stop (FIG. 2,I) their passage through circuit 21.
  • a master unit 102 includes a single ultrasonic power source 14, which simultaneously supplies ultrasonic power to a group of N stations 10].
  • a common d-c power supply 103 is utilized for supplying power to the flushing device at each of the N stations.
  • each of the transmit transducers 11A, 11B; UN is simultaneously pulsed in unison from the common ultrasonic power source 14.
  • the receiver turn-on gate switch 21 at each station selects the timing window for identifying the target in the zone 12 for each individually associated one of the stations, as was described in connection with FIG. 1.
  • the multi-station operation is thereby achieved by employing at each of the stations only a transmitting transducer, such as shown at 11A, a receiving transducer, such as shown at 13A, and the receiving and logic circuitry, such as shown at 2lA-22A.
  • a considerable economy in cost is achieved by the common control use of some of the major operational components identified as the master unit 102.
  • the system' may use the same electroacoustic transducer 200 as a transmitting or a receiving transducer.
  • the transducer 200 is connected through a switching circuit.
  • the switching circuit comprises means 201 for sequentially connecting a circuit at 203, 204 to the transmitting logic l4 and to the receiving logic 22 at 205.
  • the circuits connected before and after the logic circuits l4 and 22 are as shown in FIG. I.
  • the switch 201 and logic circuitry are synchronized by the system clock 17 acting through circuits 206, 208.
  • transducer 200 acts as a transmitter, sending sound 210.
  • the switch 203, 205 is closed, it acts as a receiving transducer, accepting reflected sound 211.
  • Block diagram representations have been used for the electronic functions throughout the descriptions of the various illustrative embodiments of this invention because the various electronic functions represented by the block diagrams utilize conventional circuitry well known to those skilled in the art. Other well known specific circuit details may be used for performing the individual functions illustrated by the block diagrams.
  • the invention is related to the basic systems, which have been described, for achieving a unique acoustically controlled proximity switch, which only detects the presence ofa target when it appears within a predefined target zone and operates upon an identification of the targets continued presence in the zone.
  • a sonically operated urinal flushing system comprising means for sonically detecting a sonic energy reflecting target in a predetermined zone, means for measuring a predetermined time period after said detection of said target in said zone, means for detecting the removal of said target from said zone. and means responsive jointly to said detection of the removal of said sonic energy reflecting target from said predetermined zone and to said time measuring means for flushing said system after said target has been in said zone for said predetermined time period.

Abstract

An ultrasonic system detects the presence of a target only after it has remained in a specified target zone for a predetermined period of time. Then after the recognized target is removed a function is performed. Thus, when the target is a person, a system may be automated to operate only after the person has remained fairly stationary within a defined zone of a prescribed period of time, but the system will not be operated responsive to a stream of pedestrian traffic passing through the zone.

Description

llite tates 11 1 [11] 3,63,19
llilles 1 Jan. 2%, 1975 [54] AC OUSTlCALLY ACTIVATED PROXIMITY 3,362,009 1/1968 Midlock 340/1 T SENSOR SWTCH 3,675 l90 7/1972 Auer, Jr. et al. 340/l T [75] Inventor: Lewis M. Hllles, Hmgham, Mass. Primary Examiner Richard A. Farley [73] Assignce: Massa Corporation, Hingham, Mass.
[22] Filed: Jan. 31, 1972 [57] ABSTRACT [21} App]. No.: 222,182 An ultrasonic system detects the presence of a target only after it has remained in a specified target zone for 52; us. Cl 340/1 R 340/258 B predetermined Period of time- 511 1111. C1. .1. C015 9/66 ized iaigei is iemivei iuiiciii" is Thus 58 Field 01 Search 340/1 11,15, 1 T, 16 c, when target is a Person sysiem may be auto 340/778 280 42 258 B mated to operate only after the person has remained fairly stationary within a defined zone of a prescribed period of time, but the system will not be operated reisfi] References Cited s onsive to a stream of edestrian traffc a J 1 ssm UNITED STATES PATENTS j the Zone g 3017,1132 1/1962 MacDonald 340/16 C 3.283.292 l 1/1966 Kay 340/1 R 3 Claims, 4 Drawing Figures l5 uI rgas og lC BGLiqSET v DC VDC SOURCE SWITCH /4 l j 5 T 27 TRANSMlTl INVERTER l3 MONOSTABLE REPETITION ,17 T3 e;s;:1$%e
\ DELAY 15 $1 MONOSTABLE 2- /9 l l RECEIVING D'FFERENT'ATORP 3215 lTARGETl AMPLIFIER 20 ZONE RECEIVER J l TUR fi FLOOR LEVEL MONOSTABLE RECEWER GATE Ll SWITCH If l. FLUSHING VALVE Cl TI 2 swncI-I L 29 l DC GOHZ K7 I K9 RELAY c POWER DIFFERENTIATDR D c E AMPLIFIEQF?6 7 (C3 pow l K l A AMPLIFIER J +nc lIll- 3 30 Patented Jan. 28, 1975 3,863,196
4 Sheets-Sheet 2 2ma TRANsMIT I MONOSTABLE m n PULSE l I .i I
| 2 ms ULTRASONIC I TRIGGER PULSE GENERATOR 4 ms' DELAY MONOSTABLE l I i I I DIFFERENTIATED TRIGGER PULSE I9 I V I If 4ms RECEIVER I I TuRN ON I L MONOSTABLE I 22 CROSS TALK I H03 I RECEIVER I n III AMPLIFIER EcI-IO OUTPUT ZONE {4 Q ECHO OTI-IER RECEIVER v ECHOS II SIIET gl EXTENDED TIME SCALE 4o I-P-ZONE TARGET PRESENT-m TARGET ABSENT RECEIVER GATE SWITCH OUTPUT +|Oo.
PEAK DETECTOR I O0 OUTPUT Q CLOSE CLOSE SI I OPEN 27 IDELAY IN(26% -I CLOSED OPEN I OPEN s2 I 28 :I ENERGISED RELAY COIL UNENERGIZED I DESIRED I g; OPERATING ACTS CLOSE I PER'OD ICLOSE CONT K4 ANDKs IOIFF :E N TIA RI- I so cTIvAT I5 C Ac 8 I CLOSED I ONT T OPEN OPEN Kl AND K3 [+HOLD ON s2+ 32 I I I I CLOSED I i I J QSL OPEN OPEN APPLIES H5V ii I60H3' POWER To FLUSHING VALVE 33 Patented Jan. 28,1975 3,863,;1
4 Sheets-Sheet 4.
r TARGET 2 .205 1g 208 204 C l 205 Z I l ACOUSTICALLY ACTIVATED PROXIMITY SENSOR SWITCH This invention relates to proximity sensor switches activated by the presence of a target within a predetermined zone, and more particularly to means for selectively detecting the presence of a human or other form.
There are many proximity sensors; however, in the past they have not been very selective. For example, a capacitive bridge detector merely detects movement of an object in a field. It cannot discriminate between various moving objects; nor can it detect completely stationary objects. Likewise, most optic sensors merely detect when a beam of light is either cut or reflected, and it is not important how or why the beam is cut or reflected. Thus, these prior proximity sensors cannot distinguish between a target person and a stream of pedestrian traffic. Accordingly, there is a need for a selective,-proximity sensor which is able to respond only to a predetermined target which remains in a predetermined spot or area for a predetermined period of time.
There are many examples of times, places, and situations when and where a selective proximity sensor may be used as a positive identification means. This application discloses an automatic flushing valve for urinals in public rest-rooms; although, many other uses exist. Thus, one target might be a human form which remains for a predetermined time in a particular spot, such as approaching or standing in a doorway. If the human is also wearing an optical target, there can be a double identification. Likewise, the selective sensor may be tied into still other identifiers, such as key or combination locks on a door. Thus, an almost foolproof identification of persons may be accomplished.
Still other uses of selective proximity sensors will readily occur to those who are skilled in the art.
Accordingly, an object of this invention is to utilize acoustic signals for selectively detecting the presence of a predetermined target in a predetermined zone for a predetermined time period.
A further object of this invention is to utilize a directional ultrasonic sound generator adapted to deliver short repetitive bursts of ultrasonic signals toward a region within which it is desired to detect the presence of a predetermined target. Yet another object is to detect the presence of a target by means of ultrasonic signals which are reflected from the target and picked up by directional ultrasonic receiving transducers.
A still further object of this invention is to determine the distance between the target and the transducers responsive to the elapsed time between the initiation of an ultrasonic signal and its detection'by an ultrasonic receiving transducer, after the signal is reflected by a target located in the path of the sound waves.
Yet another object of this invention is to detect the presence of a target in a specified region responsive to a measurement of the elapsed time between the transmission of an ultrasonic signal and the receipt of the signal after it is reflected from a target. Another object is to recognize the presence of the predetermined target in the specified zone for a predetermined period of time. Still another object is to actuate an auxiliary device immediately upon the removal of the target from the zone of recognition, after satisfying the requirement of the targets presence in the zone for the prescribed time period.
In accordance with one aspect of the invention, the presence of the target is recognized by a target interception of an acoustic signal which is sent from a directional electroacoustic transducer to the target zone and region. A preferred form of the invention employs an ultrasonic directional transmitter and a directional ultrasonic receiver, arranged side by side with their normal axes directed toward a zone or region within which the target is to be detected. However, the invention is not limited to this use of separate receiving and transmitting transducers. It may also use a single transducer acting both as a receiver and a transmitter, controlled by an appropriate transmit-receive switching device.
In one specialized embodiment of the invention, short bursts of ultrasonic frequency are repeatedly transmitted to the zone or region of interest. A receiving transducer, with its associated electronic circuitry. detects the reflection of the tone burst signals, from the surface of a target, if the target is then within the specifled zone or region. In this illustrative application. the received ultrasonic tone burst echoes are electronically processed to produce a steady state dc voltage that indicates the presence of a target in the specified zone. This d-c voltage is then processed in logic circuitry that gives an output signal which indicates that a target is present. Further electronic processing is then utilized to recognize the continued presence of the target within the specified zone or region for a predetermined period of time of, for example, a few seconds. After this pre-established threshold recognition requirement is met, the logic circuitry delivers a function voltage immediately upon the removal of the target from the prescribed region in which it was recognized. The function voltage is then utilized to accomplish any desired operation such as, for example, to activate the solenoid of an electronically activated flushing valve, or for operat ing any other device.
Furthermore, as a result of a unique asymmetrical recognition integrator, the inventive system can be adjusted, if desired, to tolerate repetitive passages of targets through the target zone or region. For example, a continuous stream of moving pedestrian traffic may pass through the target zone without a delivery of the end function voltage.
For a better understanding of preferred embodiments of the invention, together with further features and advantages thereof, reference is made to the accompanying description and drawings in which:
FIG. 1 is a schematic and block diagram illustrating one embodiment of the invention in which separate directional ultrasonic transmitter and receiver transducers are utilized to detect the presence of a target in a specified zone or region of interest and to ignore targets outside the specified zone;
FIG. 2 is a timing diagram which graphically illustrates a sequential series of signals generated throughout the system of FIG. 1;
FIG. 3 is a schematic representation of another embodiment of the invention in which multiple sets of ultrasonic transducers are operated under control of a common circuit for separately indicating the presence of targets which may appear within a plurality of different specified zones or regions, each zone being associated with one pair of ultrasonic transducers; and
FIG. 4 schematically illustrates how the system may use a transmitting and receiving transducer which are one and the same.
The block diagram of FIG. 1 shows various elements 11 to 33 which are employed in one embodiment of the inventive system. FIG. 1 also includes means for the recognition of a continued presence of a target in the zone or region of interest for a specified period of time. After the system has met a pre-established time related recognition threshold requirement. a function voltage is generated immediately upon the removal of the target from the zone. This voltage is utilized to control a desired function such as, for example, the illustrated operation of a flushing valve.
The time relationships of the various electrical signals that appear in FIG. 1, are shown on the timing diagrams in FIG. 2. These signals represent the functions of target recognition within the prescribed zone or region, the continued presence of the target within the zone for a specified period of time, and the final activation of an end function, such as the operation ofa flushing valve as illustrated in FIG. 1.
In greater detail, a transmitting, directional, ultrasonic transducer 11 is located with its major radiating axis pointed toward approximately the center of the target zone 12. A receiving, directional, ultrasonic transducer 13 is located close to transducer 11, with its major radiating axis also pointed toward the approximate center of the target zone or region.
The system is controlled from a free-running, repetition rate, trigger generator 17 which acts as a system clock pulse source. More particularly, the clock pulse generator 17 may include any suitable oscillator, such as a unijunction transistor circuit (not shown) controlled by an R-C network. Generator l7 cyclically delivers pulses that control transmission of short bursts of ultrasonic power. Preferably, each burst has a duration in the order of two milliseconds, for example. These repetitive narrow pulses recur at a rate of about pulses per second (FIG. 2,A). The output of the generator 17 is applied to a transmit monostable circuit 16, of any suitable design, which is used as a pulse stretcher, providing a pulse width of two milliseconds (FIG. 2,B).
The transmit monostable circuit 16 controls a burst gate switch which turns on for a predetermined period of time. During this time, an ultrasonic power source 14 sends a burst of ultrasonic energy to the directional transducer 11 (FIG. 2,C).
The clock or trigger pulses from generator 17 also trigger a delay monostable circuit 18, in which each of the trigger pulses is stretched to have a width of about four milliseconds as illustrated in FIG. 2,D. The trailing edges of these four millisecond pulses are differentiated by a conventional differentiator circuit 19. The result is a generation of narrow trigger pulses which are delayed from the first trigger pulse by four milliseconds (FIG. 2,E). The delayed trigger pulse triggers a receiver turn-on monostable circuit 20 (FIG. 2,F) which, in turn, stretches the delayed trigger pulse out to a width of four milliseconds.
During this four milliseconds, a voltage pulse is applied through an isolating inductor L1 to the base electrode of an NPN transistor T1, which is connected in an emitter follower configuration. A zener diode Z1 is connected to bias the emitter of the transistor, as shown in the receiver gate switch 21 (FIG. 1). The voltage of the bias supplied through the zener diode Z1 is chosen to match that of the delayed pulse applied through the inductor Ll.
The receiver gate switch 21 is also controlled responsive to the ultrasonic energy received by the transducer 13. More specifically, energy transmitted by the transducer 11 is reflected from a target in zone 12 to the receiver transducer 13. As a result, a signal is applied through a receiving amplifier 22 to a coupling capacitor C1.
The ultrasonic energy may appear at the output of the receiver gate switch 21 only during the presence of the delayed pulse from circuit 20. Thus, the monostable circuit 20 provides a time window of acceptance (FIG. 2,F) during which reflected ultrasonic energy (FIG. 2,H) may be detected. As a result, ultrasonic frequency echo bursts are delivered from the receiving amplifier 22 output to the base of the emitter follower T1. All other echo burst signals lying outside this time window of acceptance, are rejected.
The output of receiving amplifier 22 is hard clipped. Both the emitter bias of the receiver gate switch, transistor T1, and the delayed pulse voltage (FIG. 2,F), are chosen to match the hard clipping level. Thus, it is impossible to get false gating action responsive to very strong echo bursts, indicated as cross talk and other echos in FIG. 2,G.
The pulses out of circuit 21 resulting from the reflections of ultrasonic energy from the target zone [2 occur at the system's repetition rate, which, in this example, is 10 pps. These pulses are applied to a peak detector circuit 23, which is ofa conventional type. These pulses are stored and stretched into a steady d-c voltage by the peak detector circuit 23. This d-c voltage out of circuit 23, called the "ready voltage", appears as a result of a reflection from a target within the target zone. The ready voltage is applied to both the input of a transistor inverter 24 and the input of a delay integrator 26.
The transistor T2 in the inverter 24 saturates responsive to the ready voltage, and its collector voltage is at ground or zero voltage, thus cutting off a transistor T3 in the S1 switch circuit 27. When transistor T3 turns off, its collector voltage rises, driving the transistor T4 in the d-c power amplifier 29 into saturation. At the same time, the ground or zero voltage at the output of the inverter 24 cuts off a transistor T5 in a delay reset circuit 25. When transistor T5 turns off, a low resistor bridging circuit R1 is removed from shunting a capacitor C2 in a delay integrator circuit 26. As a result, the integrator circuit 26 begins to conduct, for forward integration.
The output of the d-c power amplifier 29 becomes a ground or zero voltage, when transistor T4 turns on. Ground is applied, via contacts K4, K5 of relay 32, to the base of a transistor T6 in a d-c amplifier 31. Thus, the transistor T6 in the d-c power amplifier 31 is at cut off to prevent operation of relay 32.
At the same time that the ready voltage is applied to the input of the inverter 24, the same voltage is applied to the input of the delay integrator circuit 26. After a delay of a few seconds, the capacitor C2 charges and the voltage at the integrator 26 output drives into the base of the transistor T7, in S2 switch 28, which goes into a saturated condition. In effect, there is a closed switch S2 extending from the collector to the emitter of the transistor T7.
A removal of the target from the target zone 12 at any time after the transistor T7 is saturated, results in a functional operation. More particularly, the removal causes the transistor T1 to turn off. The ready voltage becomes zero, thus cutting off the transistor T2 in the inverter 24, which causes its collector voltage to rise toward the d-c voltage. The rise in voltage at the collector of the inverter transistor T2 drives into the base of transistor T3 of the SI switch circuit 27.
The base of the transistor T5 in delay reset circuit is also driven into saturation by inverter circuit 24. The output voltage of the S1 switch in circuit 27 also falls to zero. As the transistor T5 turns on, a low value bridging resistance R1 is connected in parallel across the integrating capacitor C2 in the delay integrator 26.
While the integrator capacitor C2, in delay integrator 26, is discharging, switch S2 (transistor T7), remains on for a time period which is long enough to allow the ground or zero voltage output of switch S1 (transistor T3) to cut off the d-c power amplifier 29. In turn, the d-c power amplifier 31 turns on and thereby energizes the coil K of relay 32.
Responsive to an operation of the relay, contacts K1 and K3 close to place a holding circuit across the switch S2 (by shunting the transistor T7). Contacts K4 and K5 open and remove a bridging circuit across a differentiator circuit 30. Contacts K7 and K9 close to complete a power circuit across a flushing valve 33, causing the desired operation. The time constant of the differentiator circuit is chosen so that the base drive to the d-c power amplifier 31 decays during a few seconds.
After this time delay, the relay 32 releases, and the relay contacts return to their normal position. The differentiator capacitor C3 discharges quickly via the contacts, K4 and K5. An opening of contacts K1 and K3 removes the bridging circuit from switch S2. The contacts K7 and K9 open to remove power from the flushing valve, thereby terminating the functional operation.
As a result ofthe delayed turn-on of switch S2, after the target appears in the'specified zone, and the quick discharge of the integrator capacitor C3 in the delay integrator 26, due to the actionof the delay reset 25, after the targetdisappears from the specifiedzone, the systemwill tolerate repetitive'appearances and disappearances of targets in the target zone 12. As' long as the appearance of the target does not persist for a sufficient time duration to close the switch S2 (transistor T7), the system does not perform the function operation.
The acceptance of signals from desired targets and rejection of targets from passing pedestrian traffic is drawn on an EXTENDED TIME SCALE in FIG. 2. In greater detail, FIG. 2,] shows successive pulses from the receiver gate switch 21; Each pulse results from a coincidence of an acceptance time window and an echo signal. As long as the target isstationary, each successive pulse merely recharges a capacitor in circuit 23, with no immediate effect (FIG. 2,.l). If the target leaves the zone, at time 40, the sonic echoes disappear causing thepulses to stop (FIG. 2,I) their passage through circuit 21.
Atthis instant oftime switch S1 closes. However, ,there was a delay of about 3 seconds in the closure of S2.due to the charging ofthe condenser C2 in the delay integrator 26 when the target entered the zone. If the target leaves the zone'prior to this 3 second delay, S2
will remain in the open position and the closure of S1 cannot cause the end function. Furthermore, removal of the target from the zone saturates the delay reset 25 which very rapidly discharges C2 in the delay integrathereto to generate a functional signal that operates an end device for a predetermined period of time; and
4. To tolerate repetitive passages, without delay, of targets through the target zone, (like a continuous stream of pedestrian traffic), without delivery of the end function voltage.
It is possible to achieve a multi-station application of an acoustically operated proximity switch with a common control system, as illustrated in the schematic diagram of FIG. 3. In this illustrative example of a multistation application, a master unit 102 includes a single ultrasonic power source 14, which simultaneously supplies ultrasonic power to a group of N stations 10].
A single clock pulse source or repetition rate trigger generator 17 and burst gate switch 15, operate through a transmit monostable 16 to control the power source 14. Likewise, a delay monostable circuit I8 and a receiver turn-on monostable 20, serve the same functions as the corresponding elements described above in connection with the single station application of FIG. I. A heavy duty transistor 104, used in an emitter follower configuration, is utilized for supplying the receiver turn-on gate to the N stations 10]. A common d-c power supply 103 is utilized for supplying power to the flushing device at each of the N stations.
During operation of the multi-station system, each of the transmit transducers 11A, 11B; UN, is simultaneously pulsed in unison from the common ultrasonic power source 14. The receiver turn-on gate switch 21 at each station selects the timing window for identifying the target in the zone 12 for each individually associated one of the stations, as was described in connection with FIG. 1. The multi-station operation is thereby achieved by employing at each of the stations only a transmitting transducer, such as shown at 11A, a receiving transducer, such as shown at 13A, and the receiving and logic circuitry, such as shown at 2lA-22A. Thus, in the multi-station operational system as illustrated in FIG. 3, a considerable economy in cost is achieved by the common control use of some of the major operational components identified as the master unit 102.
As shown in FIG. 4, the system' may use the same electroacoustic transducer 200 as a transmitting or a receiving transducer. The transducer 200 is connected through a switching circuit. As here symbolically shown, the switching circuit comprises means 201 for sequentially connecting a circuit at 203, 204 to the transmitting logic l4 and to the receiving logic 22 at 205. The circuits connected before and after the logic circuits l4 and 22 are as shown in FIG. I. The switch 201 and logic circuitry are synchronized by the system clock 17 acting through circuits 206, 208. When the switch 203, 204 is closed, transducer 200 acts as a transmitter, sending sound 210. When the switch 203, 205 is closed, it acts as a receiving transducer, accepting reflected sound 211.
Block diagram representations have been used for the electronic functions throughout the descriptions of the various illustrative embodiments of this invention because the various electronic functions represented by the block diagrams utilize conventional circuitry well known to those skilled in the art. Other well known specific circuit details may be used for performing the individual functions illustrated by the block diagrams.
The invention is related to the basic systems, which have been described, for achieving a unique acoustically controlled proximity switch, which only detects the presence ofa target when it appears within a predefined target zone and operates upon an identification of the targets continued presence in the zone.
This invention has been described in connection with several particular embodiments which have been chosen for the purpose of illustrating the basic principles involved. However, it will be obvious to those skilled in the art that numerous deviations will be possible from the particular embodiments shown. Therefore, the invention is not limited thereto, but includes all equivalents which fall within the spirit and scope of the appended claims.
I claim:
1. A sonically operated urinal flushing system comprising means for sonically detecting a sonic energy reflecting target in a predetermined zone, means for measuring a predetermined time period after said detection of said target in said zone, means for detecting the removal of said target from said zone. and means responsive jointly to said detection of the removal of said sonic energy reflecting target from said predetermined zone and to said time measuring means for flushing said system after said target has been in said zone for said predetermined time period.
2. The system of claim 1 and means for inhibiting response to targets which are not in said zone for said predetermined time period.
3. The system of claim 2 wherein there are a plurality of said flushing systems, and common control means for selectively operating individual ones of said flushing systems.

Claims (3)

1. A sonically operated urinal flushing system comprising means for sonically detecting a sonic energy reflecting target in a predetermined zone, means for measuring a predetermined time period after said detection of said target in said zone, means for detecting the removal of said target from said zone, and means responsive jointly to said detection of the removal of said sonic energy reflecting target from said predetermined zone and to said time measuring means for flushing said system after said target has been in said zone for said predetermined time period.
2. The system of claim 1 and means for inhibiting response to targets which are not in said zone for said predetermined time period.
3. The system of claim 2 wherein there are a plurality of said flushing systems, and common control means for selectively operating individual ones of said flushing systems.
US222182*A 1972-01-31 1972-01-31 Acoustically activated proximity sensor switch Expired - Lifetime US3863196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US222182*A US3863196A (en) 1972-01-31 1972-01-31 Acoustically activated proximity sensor switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US222182*A US3863196A (en) 1972-01-31 1972-01-31 Acoustically activated proximity sensor switch

Publications (1)

Publication Number Publication Date
US3863196A true US3863196A (en) 1975-01-28

Family

ID=22831218

Family Applications (1)

Application Number Title Priority Date Filing Date
US222182*A Expired - Lifetime US3863196A (en) 1972-01-31 1972-01-31 Acoustically activated proximity sensor switch

Country Status (1)

Country Link
US (1) US3863196A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126856A (en) * 1977-04-18 1978-11-21 Robert L. Gray Scales annunciator
US4141091A (en) * 1976-12-10 1979-02-27 Pulvari Charles F Automated flush system
US4213197A (en) * 1978-04-13 1980-07-15 Siemens Aktiengesellschaft Circuit arrangement of an ultrasonic-presence motion detector, particularly for a non-contact control of a water faucet
US4260980A (en) * 1979-04-30 1981-04-07 Bates Mitchell G Blind spot detector for vehicles
US4309781A (en) * 1980-05-09 1982-01-12 Sloan Valve Company Automatic flushing system
US4326273A (en) * 1980-07-23 1982-04-20 Hurst Performance, Inc. Ultrasonic ranging device
US4417278A (en) * 1981-06-19 1983-11-22 Hensleigh Robert H Television receiver scrambling system
US4471498A (en) * 1981-01-10 1984-09-18 Laycock Bros. Limited Flush control
US4598726A (en) * 1981-03-26 1986-07-08 Pepper Robert B Ultrasonically operated water faucet
US4624017A (en) * 1983-12-20 1986-11-25 Foletta John D Automatic flushing system
FR2583888A1 (en) * 1985-06-25 1986-12-26 Int Detection Protection Device for the selective detection by ultrasound of the presence of an object in a given region
US4667350A (en) * 1984-05-25 1987-05-26 Toto Ltd. Lavatory hopper flushing apparatus
US4670798A (en) * 1983-10-28 1987-06-02 Max L. Campbell Point of purchase advertising system
US4707867A (en) * 1985-12-18 1987-11-24 F.M. Valve Manufacturing Co., Ltd. Toilet-flushing control apparatus
US4823414A (en) * 1986-01-22 1989-04-25 Water-Matic Corporation Automatic faucet-sink control system
US4984314A (en) * 1986-01-22 1991-01-15 Water-Matic Corporation Automatic fluid-flow control system
DE4000698A1 (en) * 1990-01-12 1991-07-18 Hermesmeyer Alexander C Dipl I DEVICE AND METHOD FOR DETECTING THE PRESENCE OF A VEHICLE BY MEANS OF AN ULTRASONIC DEVICE
US5062453A (en) * 1991-03-06 1991-11-05 Zurn Industries, Inc. On demand sensor flush valve
US5133095A (en) * 1990-08-31 1992-07-28 Hoxan Corporation Method of and system for supplying electric power to automatic water discharge apparatus
US5144593A (en) * 1990-11-05 1992-09-01 Siemens Aktiengesellschaft Integrated automatic control for ultrasonic proximity switches
US5170514A (en) * 1985-03-21 1992-12-15 Water-Matic Corporation Automatic fluid-flow control system
US5251872A (en) * 1991-07-02 1993-10-12 Uro Denshi Kogyo Kabushiki Kaisha Automatic cleaner for male urinal
US5313673A (en) * 1993-03-19 1994-05-24 Zurn Industries, Inc. Electronic flush valve arrangement
US5573041A (en) * 1994-08-01 1996-11-12 Electro-Pro, Inc. Dispenser control with ultrasonic position detection
US5696489A (en) * 1996-01-11 1997-12-09 Lockheed Martin Energy Systems, Inc. Wireless boundary monitor system and method
US6002427A (en) * 1997-09-15 1999-12-14 Kipust; Alan J. Security system with proximity sensing for an electronic device
US6299127B1 (en) 2000-06-23 2001-10-09 Sloan Valve Company Solenoid valve piston
US20040221899A1 (en) * 2001-12-04 2004-11-11 Parsons Natan E. Electronic faucets for long-term operation
US20050199842A1 (en) * 2002-06-24 2005-09-15 Parsons Natan E. Automated water delivery systems with feedback control
US20070272019A1 (en) * 2006-04-12 2007-11-29 Sensotech, Inc. Method and System for Short-Range Ultrasonic Location Sensing
WO2017025642A2 (en) * 2015-08-13 2017-02-16 Leonardo Mw Ltd. Monitoring systems and methods
US9695579B2 (en) 2011-03-15 2017-07-04 Sloan Valve Company Automatic faucets
US10508423B2 (en) 2011-03-15 2019-12-17 Sloan Valve Company Automatic faucets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017832A (en) * 1950-12-13 1962-01-23 Waldron S Macdonald Echo firing device for a depth charge
US3283292A (en) * 1963-03-02 1966-11-01 Ultra Electronics Ltd Ultrasonic position sensing equipment
US3362009A (en) * 1966-05-20 1968-01-02 Lab For Electronics Inc Sonic vehicle detector
US3675190A (en) * 1965-03-31 1972-07-04 Gen Signal Corp Sonic presence detector system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017832A (en) * 1950-12-13 1962-01-23 Waldron S Macdonald Echo firing device for a depth charge
US3283292A (en) * 1963-03-02 1966-11-01 Ultra Electronics Ltd Ultrasonic position sensing equipment
US3675190A (en) * 1965-03-31 1972-07-04 Gen Signal Corp Sonic presence detector system
US3362009A (en) * 1966-05-20 1968-01-02 Lab For Electronics Inc Sonic vehicle detector

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141091A (en) * 1976-12-10 1979-02-27 Pulvari Charles F Automated flush system
US4126856A (en) * 1977-04-18 1978-11-21 Robert L. Gray Scales annunciator
US4213197A (en) * 1978-04-13 1980-07-15 Siemens Aktiengesellschaft Circuit arrangement of an ultrasonic-presence motion detector, particularly for a non-contact control of a water faucet
US4260980A (en) * 1979-04-30 1981-04-07 Bates Mitchell G Blind spot detector for vehicles
US4309781A (en) * 1980-05-09 1982-01-12 Sloan Valve Company Automatic flushing system
US4326273A (en) * 1980-07-23 1982-04-20 Hurst Performance, Inc. Ultrasonic ranging device
US4471498A (en) * 1981-01-10 1984-09-18 Laycock Bros. Limited Flush control
US4598726A (en) * 1981-03-26 1986-07-08 Pepper Robert B Ultrasonically operated water faucet
US4417278A (en) * 1981-06-19 1983-11-22 Hensleigh Robert H Television receiver scrambling system
US4670798A (en) * 1983-10-28 1987-06-02 Max L. Campbell Point of purchase advertising system
US4624017A (en) * 1983-12-20 1986-11-25 Foletta John D Automatic flushing system
US4667350A (en) * 1984-05-25 1987-05-26 Toto Ltd. Lavatory hopper flushing apparatus
US5170514A (en) * 1985-03-21 1992-12-15 Water-Matic Corporation Automatic fluid-flow control system
FR2583888A1 (en) * 1985-06-25 1986-12-26 Int Detection Protection Device for the selective detection by ultrasound of the presence of an object in a given region
US4707867A (en) * 1985-12-18 1987-11-24 F.M. Valve Manufacturing Co., Ltd. Toilet-flushing control apparatus
US4823414A (en) * 1986-01-22 1989-04-25 Water-Matic Corporation Automatic faucet-sink control system
US4984314A (en) * 1986-01-22 1991-01-15 Water-Matic Corporation Automatic fluid-flow control system
DE4000698A1 (en) * 1990-01-12 1991-07-18 Hermesmeyer Alexander C Dipl I DEVICE AND METHOD FOR DETECTING THE PRESENCE OF A VEHICLE BY MEANS OF AN ULTRASONIC DEVICE
US5133095A (en) * 1990-08-31 1992-07-28 Hoxan Corporation Method of and system for supplying electric power to automatic water discharge apparatus
US5144593A (en) * 1990-11-05 1992-09-01 Siemens Aktiengesellschaft Integrated automatic control for ultrasonic proximity switches
US5062453A (en) * 1991-03-06 1991-11-05 Zurn Industries, Inc. On demand sensor flush valve
US5251872A (en) * 1991-07-02 1993-10-12 Uro Denshi Kogyo Kabushiki Kaisha Automatic cleaner for male urinal
US5313673A (en) * 1993-03-19 1994-05-24 Zurn Industries, Inc. Electronic flush valve arrangement
US5573041A (en) * 1994-08-01 1996-11-12 Electro-Pro, Inc. Dispenser control with ultrasonic position detection
US5696489A (en) * 1996-01-11 1997-12-09 Lockheed Martin Energy Systems, Inc. Wireless boundary monitor system and method
US6002427A (en) * 1997-09-15 1999-12-14 Kipust; Alan J. Security system with proximity sensing for an electronic device
US6299127B1 (en) 2000-06-23 2001-10-09 Sloan Valve Company Solenoid valve piston
US7690623B2 (en) 2001-12-04 2010-04-06 Arichell Technologies Inc. Electronic faucets for long-term operation
US20040221899A1 (en) * 2001-12-04 2004-11-11 Parsons Natan E. Electronic faucets for long-term operation
US7069941B2 (en) 2001-12-04 2006-07-04 Arichell Technologies Inc. Electronic faucets for long-term operation
US8496025B2 (en) 2001-12-04 2013-07-30 Sloan Valve Company Electronic faucets for long-term operation
US20070063158A1 (en) * 2001-12-04 2007-03-22 Parsons Natan E Electronic faucets for long-term operation
US20100269923A1 (en) * 2001-12-04 2010-10-28 Parsons Natan E Electronic faucets for long-term operation
US20050199842A1 (en) * 2002-06-24 2005-09-15 Parsons Natan E. Automated water delivery systems with feedback control
US20090179165A1 (en) * 2002-06-24 2009-07-16 Parsons Natan E Automated water delivery systems with feedback control
US7383721B2 (en) 2002-06-24 2008-06-10 Arichell Technologies Inc. Leak Detector
US20060202051A1 (en) * 2002-06-24 2006-09-14 Parsons Natan E Communication system for multizone irrigation
US9763393B2 (en) 2002-06-24 2017-09-19 Sloan Valve Company Automated water delivery systems with feedback control
US20070272019A1 (en) * 2006-04-12 2007-11-29 Sensotech, Inc. Method and System for Short-Range Ultrasonic Location Sensing
US8353321B2 (en) 2006-04-12 2013-01-15 Sensotech Inc. Method and system for short-range ultrasonic location sensing
US9695579B2 (en) 2011-03-15 2017-07-04 Sloan Valve Company Automatic faucets
US10508423B2 (en) 2011-03-15 2019-12-17 Sloan Valve Company Automatic faucets
WO2017025642A2 (en) * 2015-08-13 2017-02-16 Leonardo Mw Ltd. Monitoring systems and methods
WO2017025642A3 (en) * 2015-08-13 2017-03-23 Leonardo Mw Ltd. Monitoring systems and methods

Similar Documents

Publication Publication Date Title
US3863196A (en) Acoustically activated proximity sensor switch
US3675190A (en) Sonic presence detector system
US4092643A (en) Security device
NL7908225A (en) METHOD AND APPARATUS FOR EMBROIDERY DETECTION.
US4229811A (en) Intrusion detection method and apparatus
US4953141A (en) Sonic distance-measuring device
US4785429A (en) Range control system
US4290126A (en) Ultrasonic intrusion alarm system
GB1580406A (en) Ultrasonic detection system
US3017832A (en) Echo firing device for a depth charge
US3781772A (en) Ultrasonic detection apparatus
JPS6070383A (en) Ultrasonic obstacle detecting apparatus
US4746912A (en) Emergency alarm method and system utilizing cross cueing and ranging techniques
GB1568229A (en) Ultrasonic wave echo-type switch
US4151472A (en) Selective calling circuit employing controlled power supply therefor
US3098213A (en) Ultrasonic vehicle detection system
US3382480A (en) Method of detecting traffic
US3562703A (en) Echo sound pulse receiving and processing apparatus
US3703000A (en) Security alarm system
US3412390A (en) Echo ranging system for monitoring plurality of detection zones to determine presence of absence of objects
GB1187775A (en) Improvements in or relating to Ultra-Sonic Presence Detectors
US4969131A (en) Automatic detection and classification equipment for high resolution sonar
US5062088A (en) Acoustic measuring system
US3176266A (en) Vehicular traffic detection system
JPS62140084A (en) Ultrasonic object detector

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELLORFANO, FRED M. JR.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223

Owner name: MASSA, DONALD P., COHASSET, MA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223

Owner name: MASSA PRODUCTS CORPORATION, 80 LINCOLN STREET, HIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST *;GEORGIANA M. MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0954

Effective date: 19841223

Owner name: MASSA PRODUCTS CORPORATION, 280 LINCOLN STREET, HI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST;ROBERT MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0971

Effective date: 19860612

Owner name: TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST

Free format text: ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST.;ASSIGNORS:MASSA, DONALD P.;MASSA, CONSTANCE A.;MASSA, GEORGIANA M.;AND OTHERS;REEL/FRAME:005395/0942

Effective date: 19841223