US3710127A - Solid-state image converter having composite energy sensing element - Google Patents

Solid-state image converter having composite energy sensing element Download PDF

Info

Publication number
US3710127A
US3710127A US00135417A US3710127DA US3710127A US 3710127 A US3710127 A US 3710127A US 00135417 A US00135417 A US 00135417A US 3710127D A US3710127D A US 3710127DA US 3710127 A US3710127 A US 3710127A
Authority
US
United States
Prior art keywords
layer
state image
photoconductive
energy
energy sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00135417A
Inventor
T Kohashi
T Nakamura
S Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Application granted granted Critical
Publication of US3710127A publication Critical patent/US3710127A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the abovementioned difficulties are overcome by composing the photoconductive layer of a composite layer comprising a photoconductive layer having a high dark resistance and breakdown voltage and another photoconductive layer having a dark resistance and breakdown voltage lower than those of the former layer.

Abstract

A solid-state image converting device wherein the luminescence of a luminescent element is controlled by the variation in the impedance of an energy sensitive element with incident energy. The energy sensitive element is a composite element comprising a highly sensitive and highly responsive element and a high resistance and high breakdown voltage element, whereby a highly sensitive and highly responsive device to which a sufficient operating voltage can be applied is provided.

Description

United States Patent [191 Kohashi et al.
[ Jan. 9, 1973 [54] SOLID-STATE IMAGE CONVERTER HAVING COMPOSITE ENERGY SENSING ELEMENT [75] Inventors: Tadao Kohashi, Yokohama; Tadao Nakamura; Shigeaki Nakamura, both of Kawasaki, all of Japan [73] Assignee: Matsushita Electric Industrial Co.,
Ltd., Osaka, Japan [22] Filed: April 19, 1971 [2l] Appl. No.: 135,417
' Related U.S. Application Data [63] Continuation of Ser. No. 793,137, Jan. 22, 1969,
abandoned.
[52] US. Cl. ..250/213 R, 250/833 HP [5 1] Int. Cl ..H0lj 31/50 [58] Field of Search ..250/2l3 R, 83.3 HP, 213 A [56] References Cited UNITED STATES PATENTS 3,058,002 10/1962 Sihvonen ..250/2l3 R 3,348,056 10/1967 Kohashi ..250/2l3 R Primary Examiner-Archie R. Borchelt Assistant Examiner-T. N. Grigsby Attorney-Stevens, Davis, Miller & Mosher v [57] ABSTRACT A solid-state image converting device wherein the luminescence of a luminescent element is controlled by the variation in the impedance of an energy sensitive element with incident energy. The energy sensitive element is a composite element comprising a highly sensitive and highly responsive element and a high resistance and high breakdown voltage element, whereby a highly sensitive and highly responsive device to which a sufficient operating voltage can be applied is provided.
3 Claims, 2 Drawing Figures PATENTEDJAN 9W5 3.710.127
FIG. (PRIOR ART) l L Y INVENTORS THDHD now/um Toma mom/men sums/m mnfr mir BY vjy/n ATTORNEYS SOLID-STATE IMAGE CONVERTER HAVING COMPOSITE ENERGY SENSING ELEMENT CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation of co-pending U. S. Pat. application Ser. No. 793,137 filed Jan. 22, 1969 and abandoned upon the filing of the present application.
The present invention relates to a solid-state image converting device wherein the luminescence of a luminescent element such as an electroluminescent layer is controlled by the variation in resistance or impedance of an energy sensitive element such as a photoconductive layer with incident energy such as visible light, radiation or the like.
A conventional solid state image converting device comprises laminated layers of an incident energy image transmissive electrode, a photoconductive layer, an opaque layer for preventing optical feedback, an electroluminescent layer for producing output light images, and a light transmissive supporting plate such as a glass plate coated with a light transmissive electrode. An operating voltage is applied across the two electrodes by a power source. When an incident image falls upon the photoconductive layer, the resistance of the layer decreases. In response to the decrease in resistance of the photoconductive layer the electroluminescent layer is excited to produce an output light image. In a device operating on such principle, unless the dark resistance of the photoconductive layer is high, a current flows through the electroluminescent layer to make the layer considerably luminous even when no input image is incident upon the photoconductive layer because the impedance of the photoconductive layer is low. Thus, the contrast of an output light image corresponding to an input image is degraded preventing the obtaining of a good quality output image. Moreover, unless the breakdown voltage of the photoconductive layer is high, the operating voltage of the device cannot be made high. Consequently, a high output, high sensitive operation of the device is impossible because a high current can not be allowed to flow through the electroluminescent layer due to the low operating voltage.
In view of the abovementioned consideration, as a photoconductive material composing the photoconductive layer in a conventional solid state image converting device, a very high dark resistance and very high breakdown voltage photoconductive material is required. To meet such requirement, materials containing cadmium sulphide have been employed as photoconductive material. On the other hand, a device operative with a very low X-ray dose and yet having a suitably rapid response characteristic is required for a medical device amplifying and converting a radiation image such as X-ray image into a visible light image.
Conventional photoconductive materials containing cadmium sulphide are not necessarily high in their sensitivity to X-rays, and moreover have the vital disadvantage that their response time is very long. These disadvantages of low sensitivity and long response time can be overcome by employing photoconductive materials having a band gap narrower than that of the photoconductive materials containing CdS, such as photoconductive materials containing CdSe or CdHgTe instead of those containing CdS. However, such photoconductive materials are low in their dark resistance and breakdown voltage. Consequently, such photoconductive materials cannot be employed in solid state image converting devices of the conventional structure.
Therefore, an object of the present invention is to provide a novel solid state image converting device which eliminates the abovementioned difficulties.
In the present invention the abovementioned difficulties are overcome by composing the photoconductive layer of a composite layer comprising a photoconductive layer having a high dark resistance and breakdown voltage and another photoconductive layer having a dark resistance and breakdown voltage lower than those of the former layer.
According to the present invention there is provided a solid state image converting device comprising a composite energy sensitive element composed. of a first energy sensitive element having a high sensitivity to an input energy and a second energy sensitive element having a high dark impedance and a high breakdown voltage, an electrically luminescent element for emitting light in response to the variation in impedance of said composite energy sensitive element corresponding to the intensity of said input energy, and two electrodes for applying an electric field to said composite energy sensitive element and said electrically luminescent element.
The present invention will become more apparent from the following detailed description of the invention made with reference to the accompanying drawings, in which:
FIG. 1 is a schematic cross-sectional view of a conventional solid state image converting device; and
FIG. 2 is a schematic cross-sectional view of a solid state image converting device embodying the invention.
In FIG. 1, a conventional solid image converting device comprises an electrode 1 pervious to an image L, of an input energy such as light rays, radiations, or the like, a photoconductive layer 2, an opaque layer 3, an electroluminescent layer 4 for producing an output light image L and a transparent supporter plate 6 coated with a transparent electrode 5. A power supply 7 applies an operating voltage V between the electrodes 1 and 5.
An embodiment of the solid state image converting device of the invention shown in FIG. 2 comprises a transparent glass plate 6 coated with a transparent electrode 5 made of, for example, stannic oxide, an electroluminescent layer 4 about 50 microns thick on the transparent electrode 5, the electroluminescent layer being made of ZnS phosphor powder bonded by a binder such as epoxy resin, an opaque layer 3 about 5 microns thick provided on the electroluminescent layer 4, the opaque layer 3 being made by-mixing opaque powder such as carbon black in a binder similar to that used in the electroluminescent layer 4, and a composite photoconductive layer 20 disposed on the opaque layer 3, the composite photoconductive layer 20 being a lamination consisting of a first photoconductive layer 21 provided with a porous electrode 10 and a second photoconductive layer 22. A power supply 7 applies an operating voltage V across the porous electrode 10 and the transparent electrode 5. As an input image L an X-ray image is employed.
- sistance R,
The first photoconductive layer 21 is a layer of a thickness of about 50 to 80 microns made of powder of a photoconductive material having low dark resistance and breakdown voltage but having a rapid response characteristic and capable of producing a large photocurrent, such as CdSe, CdI-IgTe, etc., bonded together by a binder such as epoxy resin. The layer 21 is provided with a foraminous electrode such as a grid electrode formed of, for example, tungsten filaments having a diameter of about 10 to 50 microns arranged at intervals of about 200 to 600 microns, or a net electrode of about 30 to 150 mesh formed by weaving metal filaments. The second photoconductive layer 22 is sensitive to the X-ray image L, to a certain degree and has breakdown voltage and dark resistance higher than those of the first photoconductive layer 21. The second photoconductive layer 22 is made of powder of a material containing, for example, CdS or CdS-CdSe (solid solution of CdS and CdSe) with a binder such as epoxy resin, and is thicker than the layer 21, for example, about 200 to 400 microns thick. The thickness of the layers 21 and 22 can be selected depending on the dark resistance, breakdown voltage, and rate of variation in the resistance or impedance against input energy or sensitivity of each photoconductive material employed.
The operating voltage V is supplied by the power source 7 between the electrodes and 10. By the provision of the second photoconductive layer 22 of high dark resistance and breakdown voltage a very high operating voltage can be applied to the electrodes in a dark and suitably weak output light L state compared with the case of no provision of such second photoconductive layer 22.
When input X-rays L, are incident upon the first photoconductive layer 21, the lateral resistance R, of the interstice portions of the layer 21 exposed to the X- rays L decreases effectively due to a rapid response and a high sensitivity. The decrease in the lateral reincreases the effective area of the foraminous electrode 10, and hence the space factor to the transparent plane electrode 5. With this increase in space factor the displacement current between the electrodes and 5 increases. Depending on an increase in the displacement current the light output L of the electroluminescent layer 4 varies. As the input energy L is increased further, the foraminous electrode 10 becomes effectively a continuous electrode and, at the same time, the intensity of the X-rays having passed through the first photoconductive layer 21 becomes very large. Consequently, also the second photoconductive layer 22 becomes effectively sensitive to X-rays in spite of its low sensitivity. Due to the excitation of the second photoconductive layer 22 by the transmitted X-rays the resistance R, of the layer 22 in the direction of its thickness decreases. Since the decrease in the resistance R is substantially equivalent to the decrease in distance between the electrodes 10 and 5, the displacement current between the electrodes 10 and 5 increases further to produce more intense output light L Generally, the response time of a photoconductive material becomes shorter as the degree of its excitation caused by an input energy increases. Since the variation in the impedance of the second photoconductive layer 22 contributing to the luminescence of the electroluminescent layer 4 is effective when the input energy L is high, a sufficiently rapid response region becomes substantially the operating region even if a layer having a long response time at a low intensity of X-rays L is used as the second photoconductive layer 22. Thus, at low levels of the incident energy L, the first photoconductive layer 21 operates, and at high levels of the input energy L, the second photoconductive layer 22 operates. As a result the device effectively has a rapid response, a high breakdown voltage and a high dark resistance which enables the application of a high operating voltage, thus providing a very bright image with high sensitivity, high contrast, and wide brightness range.
In this embodiment the first photoconductive layer 21 is predominantly employed in its variation in the lateral resistance R For this purpose the foraminous electrode 10 can be provided in such a manner that a portion thereof is exposed above the surface of the first photoconductive layer 21 and the remainder is buried therein as shown in FIG. 2, the electrode 10 is completely buried in the layer 21, is disposed between the first and second photoconductive layers 21 and 22, or is disposed on the outer surface of the first photoconductive layer 21.
In the above case the variation in the resistance of the layer 21 in the direction of thickness can additionally be utilized. Instead of utilizing the variation in the lateral resistance of the layer 21 mainly, the variation in the resistance in the direction of thickness can mainly be utilized by appropriately increasing the thickness of the layer 21 and by providing an input energy transmissive continuous electrode such as, for example, an evaporated thin metal film electrode or transparent conductive film electrode on the surface of the layer.
In the above-described embodiment, although X- rays are utilized as an input energy L infrared rays can also be used as the input energy L,. In this case, by employing an infrared photoconductive material, which has a low dark resistance and a low breakdown voltage and which has not been possible to be employed in solid state image converting devices, such as PbS, PbSe, CdI-IgTe, etc. as the first energy sensitive layer 21 and by employing CdSe which has a certain degree of sensitivity to infrared light as the second energy sensitive layer 22, an infrared light image can be converted into a visible light image.
In the above description photoconductive materials are utilized as materials of the layers 21 and 22. However, since it is sufficient for the layers 21 and 22 to have a variation in resistance or impedance in response to an input energy, piezoelectric materials, magnetoresistive materials, etc. can also be utilized as materials of the layers 21 and 22. In these cases, elastic energy, electromagnetic energy, etc. can be used as the input energy L Also, although an electroluminescent material was utilized as material of the luminescent layer 4 in the above embodiment, solid laser materials or other luminescent materials can be used as material of the luminescent layer 4 because the layer 4 has only to be electrically controlled in its luminescence.
What is claimed is:
l. A solid state image converting device comprising a pair of electrodes, a composite energy sensitive element and an electrically luminescent element, both of said elements being disposed adjacent to each other and interposed closely between said pair of electrodes, wherein one of said pair of electrodes which rests on said composite energy sensitive element is a foraminous electrode and said composite energy sensitive element is composed of a first energy sensitive element adjacent said foraminous electrode and a second energy sensitive element adjacent said electrically luminescent element, the response to said first element to incident energy being more rapid than that of said

Claims (3)

1. A solid state image converting device comprising a pair of electrodes, a composite energy sensitive element and an electrically luminescent element, both of said elements being disposed adjacent to each other and interposed closely between said pair of electrodes, wherein one of said pair of electrodes which rests on said composite energy sensitive element is a foraminous electrode and said composite energy sensitive element is composed of a first energy sensitive element adjacent said foraminous electrode and a second energy sensitive element adjacent said electrically luminescent element, the response to said first element to incident energy being more rapid than that of said second element, and the dielectric strength and the dark impedance of said second element being higher than those of said first element.
2. A solid state image converting device according to claim 1, wherein said foraminous electrode comprises a parallel-grid electrode made of fine metal wire.
3. A solid state image converting device according to claim 1, wherein said first energy sensitive element is a photoconductive element including at least one of CdSe and CdHgTe and said second energy sensitive element is a photoconductive element including CdS or CdS-CdSe.
US00135417A 1971-04-19 1971-04-19 Solid-state image converter having composite energy sensing element Expired - Lifetime US3710127A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13541771A 1971-04-19 1971-04-19

Publications (1)

Publication Number Publication Date
US3710127A true US3710127A (en) 1973-01-09

Family

ID=22468012

Family Applications (1)

Application Number Title Priority Date Filing Date
US00135417A Expired - Lifetime US3710127A (en) 1971-04-19 1971-04-19 Solid-state image converter having composite energy sensing element

Country Status (1)

Country Link
US (1) US3710127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818877A (en) * 1986-02-28 1989-04-04 Thomson-Csf Memory display system
US5084619A (en) * 1990-01-12 1992-01-28 Siemens Aktiengesellschaft X-ray diagnostics installation having a solid-state transducer
US5438198A (en) * 1993-05-12 1995-08-01 Nichia Chemical Industries, Ltd. Infrared-to-visible converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058002A (en) * 1957-11-29 1962-10-09 Gen Motors Corp Light beam transducer
US3348056A (en) * 1963-05-22 1967-10-17 Matsushita Electric Ind Co Ltd Wavelength converting type radiant energy responsive display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058002A (en) * 1957-11-29 1962-10-09 Gen Motors Corp Light beam transducer
US3348056A (en) * 1963-05-22 1967-10-17 Matsushita Electric Ind Co Ltd Wavelength converting type radiant energy responsive display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818877A (en) * 1986-02-28 1989-04-04 Thomson-Csf Memory display system
US5084619A (en) * 1990-01-12 1992-01-28 Siemens Aktiengesellschaft X-ray diagnostics installation having a solid-state transducer
US5438198A (en) * 1993-05-12 1995-08-01 Nichia Chemical Industries, Ltd. Infrared-to-visible converter

Similar Documents

Publication Publication Date Title
US2768310A (en) Distributed gap electroluminescent device
US3348056A (en) Wavelength converting type radiant energy responsive display device
US2920205A (en) Radiant energy detector
US3710127A (en) Solid-state image converter having composite energy sensing element
US3458700A (en) Energy-sensitive composite elements
US2989636A (en) Image converter
US3015731A (en) Radiation indicating device
US3748380A (en) Energy-responsive luminescent device
US3058002A (en) Light beam transducer
US3264479A (en) Electroluminescent light amplifier
US3710181A (en) Solid-state image intensifier
US2882419A (en) Image reproducing device
US3878105A (en) Optical radiation transmission and detection device
US3648052A (en) Solid-state image-converting device
US3502885A (en) Non-coplanar electrode photoconductor structure and electroluminescent-photoconductor array
US3112404A (en) Photosensitive radiant-energy transducers
US3344280A (en) Electroluminescent-photoconductive display with long persistence
US3548214A (en) Cascaded solid-state image amplifier panels
US3033989A (en) Radiant energy sensitive device
US2939029A (en) Method of image storage and release
US3601610A (en) Signal memory device
US3210551A (en) Electroluminescent image amplifier
US2915641A (en) Electroluminescent display devices
US2916630A (en) Electroluminescent device
US3060345A (en) Display devices