US3537650A - Two-stage sonic atomizing device - Google Patents

Two-stage sonic atomizing device Download PDF

Info

Publication number
US3537650A
US3537650A US825091*A US3537650DA US3537650A US 3537650 A US3537650 A US 3537650A US 3537650D A US3537650D A US 3537650DA US 3537650 A US3537650 A US 3537650A
Authority
US
United States
Prior art keywords
vortex
chamber
steam
outlet bore
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US825091*A
Inventor
Charles F Peczeli
Edward T Tyrcz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulf Canada Ltd
Original Assignee
Gulf Oil Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Oil Canada Ltd filed Critical Gulf Oil Canada Ltd
Application granted granted Critical
Publication of US3537650A publication Critical patent/US3537650A/en
Assigned to GULF CANADA CORPORATION/CORPORATION GULF CANADA, P.O. BOX 130, 401 - 9TH AVENUE, S.W., CALGARY, ALBERTA, T2P 2H7 reassignment GULF CANADA CORPORATION/CORPORATION GULF CANADA, P.O. BOX 130, 401 - 9TH AVENUE, S.W., CALGARY, ALBERTA, T2P 2H7 ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF CANADA LIMITED
Assigned to GULF CANADA CORPORATION/ CORPORATION GULF CANADA, A CORP. OF CANADA reassignment GULF CANADA CORPORATION/ CORPORATION GULF CANADA, A CORP. OF CANADA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GULF CANADA LIMITED/ GULF CANADA LIMITEE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/34Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by ultrasonic means or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0892Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the outlet orifices for jets constituted by a liquid or a mixture containing a liquid being disposed on a circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/106Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
    • F23D11/107Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space

Definitions

  • a liquid atomizer having a cylindrical vortex chamber with at least one tangential inlet, and a concentric outlet tube. A substantially sharp corner marks the transition from the chamber to the outlet tube and the chamber wall through which the outlet tube opens is substantially normal to the latter.
  • a liquid feed tube is provided axially within the outlet tube and has a port for expelling a jet of liquid centrifugally toward the outlet tube Walls.
  • This invention relates to devices for atomizing liquids, and has to do particularly with the application of the rotary vortex to the problem of liquid atomization.
  • a particular application of the device to which this invention is directed relates to the atomization of fuel oils.
  • One way of promoting a high recirculation rate of the combustion gases is to provide a fuel atomizer which has a wide spray angle.
  • a further object of this invention is to provide an atomizing device utilizing the principle of gas-vortex atomization, which is capable of utilizing a high-pressure vortex medium, and can efiiciently atomize certain thick, viscous liquid, such as the heavier fuel oils and pitch fuels.
  • the apparatus of this invention achieves the above objects by utilizing a particular rotary-vortex chamber design to produce a high-speed rotary vortex of an atomizing medium such as steam or air, in combination with a two-stage atomizing technique carried out at the downstream end of an outlet tube in which the atomizing medium is rotating.
  • the special design of the vortex chamber and outlet tube produces a desired ratio of axial to tangential velocity within the outlet tube and results in a wide-angle spray cone, while the two-stage atomizing technique ensures that a high degree of comminution and nebularization of the heavy viscous oil will occur.
  • a liquid atomizer comprising: means defining a substantially cylindrical chamber having a forward end wall and a rearward end wall, a cylindrical outlet nozzle defining at least part of said forward end wall and having an outlet bore of diameter less than that of said chamber and extending co-axially away from the chamber, the forward end wall and the outlet bore meeting to define a substantially sharp corner around which gas must pass when moving from said chamber into said outlet bore, at least one substantially tangential inlet to said chamber, means for causing a gas to pass under pressure through said inlet and into said chamber so as to set-up a rotating vortex in said chamber, the said pressure being sufiicient to cause the rotational speed of the gas in the chamber at a radius equal to that of the outlet bore to be greater than sonic, whereby the gas exits from the chamber through the outlet bore while rotating at a speed greater than sonic and establishes a rotating vortex along the outlet bore the speed of which decreases, due to friction, to substantially sonic velocity near the downstream end of the
  • FIG. 1 is an axial sectional view through the nozzle of an oil burner equipped with a vortex-type atomizer
  • FIG. 2 is a transverse sectional view taken at the line 2-2 in FIG. 1;
  • FIGS. 3, 4 and 5 are diagrammatic axial views of three vortex chamber designs, utilized in a discussion of comparative energy requirements
  • FIGS. 6, 7 and 8 are axial sectional views of the vortex chamber designs shown in FIGS. 3, 4 and 5, respectively;
  • FIG. 9 is a graph showing energy conversion, for the three vortex chamber designs shown in FIGS. 3 to 8, as the atomizing medium passes from the tangential inlet through the device to the downstream end of the outlet tube.
  • FIG. 1 shows an oil burner nozzle 10, which includes a cylindrical atomizer mounting sleeve 12 into the open end of which is threaded a conical vertex body 14.
  • apex of the conical vortex body 14 has an axial bore 15 which is widened at 16 to define an annular shoulder 17.
  • a gas nozzle 18 is shaped to fit snugly within the bore 15 and the widened portion 16 in the conical vortex body, and is held in position by a vortex chamber housing 20 which is threaded into the conical vortex body 14.
  • a feed tube 22 extends in sealed relationship through an axial aperture 23 in the vortex chamber housing 20, and passes centrally through the vortex chamber 21 to enter concentrically a co-axial outlet bore 24 in the gas nozzle 18.
  • the diameter of the outlet bore 24 is greater than the outside diameter of the feed tube 22, such that an annular space 26 is defined therebet-ween.
  • the feed tube 22 is connected, by welding or press-fitting, to a tubular connecting element 28 which is in turn connected to a fuel line (not shown) which delivers fuel under pressure to the connecting element 28 and thence to the feed tube 22.
  • the connecting element 28 is secured centrally through a partition 30 which is threaded into the upstream end of the conical vortex body 14.
  • a pressurized gaseous medium is delivered to the nozzle through a line (not shown) located inside the atomizer mounting sleeve 12 and fastened in eccentric port 31.
  • the medium is considered to be steam, although other gases can be used, as is later discussed.
  • the steam passes into an antechamber 32 defined by the partition 30, the conical vortex body 14 and the vortex chamber housing 20. From the antechamber 32 the pressurized steam enters the vortex chamber 21 through a tangential inlet 34 constituted by a bore hole drilled through the wall of the vortex chamber housing 20, as shown in FIGS. 1 and 2.
  • the steam rotates within the vortex chamber 21 in a counter-clockwise sense as seen in FIG. 2.
  • the steam exits from the vortex chamber 21 by way of the annular space 26 defined between the outlet bore 24 and the feed tube 22.
  • the steam in progressing from the periphery of the vortex chamber 21 toward its centre, undergoes an increase in rotational speed, the increase varying inversely with the square root of the radius.
  • the steam passes into the outlet bore 24 and continues to spin at this higher rotational speed as it passes along the outlet bore 24 slowing slightly due to friction, and it finally spins out into the open at the right-hand end of the outlet bore 24.
  • This invention provides a two-stage atomization of the liquid to be atomized.
  • the first stage involves forcing the fuel under pressure through one or more restricted ports 36 drilled in the periphery of the feed tube 22.
  • the downstream end of the feed tube 22 is closed as shown, and the ports 36 are drilled in the feed tube 22 closely adjacent the closed downstream end.
  • the ports 36 function as nozzles which expel thin jets of the liquid centrifugally outwardly into the periphery of the vortex created by the spinning steam. Because of the high rotational speed of the vortex, most of the steam is thrown outwardly and forms a rotating film or layer adjacent the walls of the axial bore 24. As the thin jets of the liquid impinge upon the rotating steam layer, they are further broken up, and more finely atomized.
  • the size, number, orientation and axial position of the ports should be properly selected.
  • the size of the ports should be such that there is no danger of the liquid clogging or blocking the ports.
  • the number of ports should be such that the required liquid flow is achieved at the desired pressure.
  • the orientation of the ports although here considered to be radial, can also be partially or fully tangential to the feed tube 22 and/or tilted in the axial direction at an angle between 0 and where conditions warrant it. Even angles exceeding 90 (i.e. the liquid jet is directed, partially, against the flow of the vortex medium) may be of advantage under certain circumstances.
  • the word centrifugally as applied to the ports 36 and to the direction of the liquid sprayed from the feed tube 22, is meant to include all tangential angles and all axial inclinations.
  • the location of the ports is dependent upon several considerations. Firstly, the ports should be inside of the outlet bore 24 to ensure that the liquid particles spend a long enough time in the region of violent disturbance to become properly atomized. However, since the liquid particles are swirled around in an ever increasing spiral path due to both the radial component of liquid velocity and the centrifugal force, the ports 36 must be close enough to the downstream open end of the annular space 26 to ensure that most of the particles leave the nozzle before they contact the walls of the outlet bore 24. The presence of the rotating layer of steam adjacent the wall of the outlet bore 24 helps to ensure that contact between the liquid particles and the wall will be minimal.
  • the ports 36 are all at the same axial location, it is conceivable that two or more sets of ports could be provided at different axial locations, or that the individual ports could be arranged along the feed tube 22 in a random distribution, both axially and radially.
  • the atomizing medium should be moving at sonic velocity at the point of atomization.
  • Supersonic velocities as a rule, generally involve heavy energy losses, while subsonic velocities require an unduly high consumption for a given energy requirement.
  • the layer of the atomizing medium in the discharge of the outlet bore must be sufficiently thick to prevent the penetration of the fuel, since penetration leads to agglomeration on the inside wall, and thus to the formation of large particles. It will be obvious, then, that with a 1:1 velocity ratio, there will be a mathematical inter-relationship between the diameter of the discharge nozzle, the flow rate of the atomizing medium, and its axial velocity component.
  • the energy requirement, in B.t.u.s per pound of atomizing medium, can be minimized by selecting a D/d ratio within a given range, where D is the diameter of the vortex chamber, and d is the diameter of the outlet bore 24.
  • FIGS. 4 and 7 show the comparative diameters in an actual experimental prototype which was built and tested under working conditions.
  • the D/ d ratio was 3.312, and the actual dimensions of the prototype were as follows:
  • the vortex chamber had six tangential inlets, each one being 0.125 inch in diameter.
  • Air was delivered to the tangential inlets at 48 p.s.i.g. pressure and at negligible velocity, and the transforma tions of the total available pressure energy as the air travelled through the prototype was determined primarily on the basis of pitot tube measurements, and plotted as the solid line in FIG. 9. Attention is now directed to FIG. 9.
  • the total energy available in the pressurized medium prior to entering the tangential inlets is indicated by the upper circled dot with the number 1.
  • the energy available in the pressurized medium is 42 /2 B.t.u.s per pound.
  • the medium is considered to be motionless, and so the kinetic energy is zero, as shown by the circled dot at the bottom bearing the number 1.
  • the rotating air next moves spirally inwardly toward the centre of the vortex chamber, and its kinetic energy increases in inverse ratio to the diameter.
  • the axial component is zero
  • the radial component is negligible
  • the tangential component increase from 666 feet per second on the periphery to 1215 feet per second on the one inch diameter line.
  • This stage is shown in the FIGS. 4 and 7 and in the graph of FIG. 9 as a progression from point 3 to point 4. Irreversible frictional losses result in a slight reduction in the total available energy to about 31.3 B.t.u.s per pound, while nearly all of the available pressure energy is converted to kinetic energy through the increase of speed, as will be seen by the closeness of the two points marked 4 in FIG. 9.
  • the next stage is the entry of the rotating air into the outlet bore 24, and at this stage a part of its tangential velocity is converted to axial velocity.
  • the energy loss is appreciable, as can be seen by the steep drop of the two lines 4-5 in FIG. 9.
  • the ratio of tangential velocity to axial velocity becomes constant.
  • the air velocity was found to be sonic at 1,046 feet per second, with a tangential component of 768 and an axial component of 538 feet per second. Virtually all of the air is discharged on the periphery, in a layer of 0.10 inch thickness. In the central core, the density is small and the axial velocity is negligible.
  • the cylindrical outlet bore is considered an essential part of this invention, because it is necessary for the stabilization of the flow. Without the discharge nozzle, the conditions in the region of atomization would be so unstable that uniform atomization would not be possible.
  • the forward wall of the vortex chamber is a cone with an enclosed angle of considerably less than 180, for example from 30 to then the dominant velocity component in the vortex chamber will be an axial one, and this will be the case even more so in the outlet bore, resulting in a very narrow angle spray which would not produce a recirculating type of pattern in the combustion chamber.
  • the flow rate of the atomizing medium would have to be significantly higher to provide an acceptable layer thickness around the inside wall of the outlet tube at its discharge end.
  • this invention relates essentially to an atomizer utilizing a high-pressure medium, it is particularly adapted for use with high-pressure steam.
  • compressed air or steam is used for the atomization of heavy oil fuels.
  • steam is the most common for economic reasons.
  • the largest portion of the required energy (heat) is used for the evaporation of the water, and the pressure of the steam requires only a small portion of energy by comparison. For example, to generate 1 pound of steam (100% quality) at 5 p.s.i.g. requires 976 B.t.u.s, While the generation of 1 pound of steam at 75 p.s.i.g. requires 1,005 B.t.u.s.
  • atomization energy of 100 B.t.u.s can be derived from either (a) 17.5 pounds of 5 p.s.i.g. steam, generated at the cost of 17,100 B.t.u.s of heat, or
  • a liquid atomizer comprising:
  • a cylindrical outlet nozzle defining at least part of said forward end wall and having an outlet bore of diameter less than that of said chamber and extending co-axially away from the chamber, the forward end wall and the outlet bore meeting to define a substantially sharp corner around which gas must pass when moving from said chamber into said outlet bore,
  • liquid feed means located substantially axially within said outlet bore for expelling at least one jet of liquid centrifugally into the vortex where the latter has substantially sonic velocity.
  • liquid feed means comprises a feed tube which extends from a liquid source co-axially through said cylindrical chamber and into said outlet bore to a point adjacent the downstream end of the outlet bore, the downstream end of the feed tube having at least one jet port for expelling said jet of liquid centrifugally into the vortex.
  • a liquid atomizer as claimed in claim 4 in which a ratio D/ d lies between 3 and 4, where D is the internal diameter of the cylindrical chamber,

Description

Nov. 3, 1970 c. F. PECZELI ETAL 3,537,650
TWO-STAGE some ATOMIZING DEVICE Filed April 14, 1969 3 SheetsSheet 1 INVEN'I'OR. CHARLES F. PECZELI EDW RD T YRCZ BY/ PATENT' AGENT Nov. 3, 1970 c, z ETAL 3,537.650
I TWO-STAGE SONIC ATOMIZING DEVICE 7 Filed April 14, 1969 3 Sheets-Sheet :2
STEPPED VORTEX CHAMBERS GEOMETRY FIGA G INVENTORS= CHARLES E PiQLEu p EDWARD T BY ,1
Nov. 3, 1970 c. F. PECZELI E 7,
TWO-STAGE some ATOMIZING DEVICE Filed April 14, 1969 5 Sheets-Sheet 5 STEPPED VORTEX CHAMBERS ENERGY vs LOCATION an I 45$ R LEGEND I DM 3.3m
2 D/d G 40 0m 1.5
'3} n PRESSURE i3 (POTENTIAL) ENERGY 25 3 AVAILABLE w 5 ENERGY 2 III I KINETIC ENERGY 6 l5 l 2' I0 I I I 3 I I J U 0- I 3' I I I 0* v d" .lNLET-.-- DISCHARGE FIG. 9
l VENTORS= CHARLES F. ECZELI AND EDWMN TI TYKCL MAW United States Patent 3,537,650 TWO-STAGE SONIC ATOMIZIN G DEVICE Charles F. Peczeli, Clarkson, Ontario, and Edward T. Tyrcz, Toronto, Ontario, Canada, assignors to Gulf Oil Canada Limited, Toronto, Ontario, Canada Continuation-impart of application Ser. No. 650,342, June 30, 1967. This application Apr. 14, 1969, Ser.
Int. Cl. Bb 7/10 US. Cl. 239-405 5 Claims ABSTRACT OF THE DISCLOSURE A liquid atomizer having a cylindrical vortex chamber with at least one tangential inlet, and a concentric outlet tube. A substantially sharp corner marks the transition from the chamber to the outlet tube and the chamber wall through which the outlet tube opens is substantially normal to the latter. A liquid feed tube is provided axially within the outlet tube and has a port for expelling a jet of liquid centrifugally toward the outlet tube Walls.
This invention relates to devices for atomizing liquids, and has to do particularly with the application of the rotary vortex to the problem of liquid atomization. A particular application of the device to which this invention is directed relates to the atomization of fuel oils.
This application is a continuation-in-part of US. patent application No. 650,342 Two-Stage Sonic Atomizing Device, Charles F. Peczeli and Edward T. Trycz, filed June 30, 1967, now abandoned.
Before going into the specific objects and advantages of the present invention, it will be helpful to discuss several theoretical points relating to the proper operation of fuel oil burners.
Most kinds of oil fuel require approximately 14.5 pounds of combustion air to burn completely 1 pound of fuel. This ratio is referred to scientifically as the stoichiometric ratio, and its significance is simply that it takes about 14.5 pounds of air to provide suflicient oxygen to burn all of the carbon, hydrogen and other combustibles in 1 pound of fuel oil. In order to ensure that the fuel oil is completely burned, however, it is standard practice to provide an excess amount of air at the point of burning. This is done because no fuel atomizer is able to create a nebulous spray whose burning characteristics are the same as if the fuel oil were vaporized, and because complete and homogeneous mixing of the combustion airwith the atomized fuel is never fully attained. When the necessary excess air is greater than about 5% of the stoichiometric amount, the result will be a substantial amount of oxygen exiting from the burning chamber along with the combustion gases. The problem here arises because of the sulphur present in the oil. Most of the sulphur burns to S0 but if excess oxygen is present, a portion of the sulphur will burn to S0 and the latter will combine with water vapour to form sulphuric acid, H 80 which is corrosive to metal surfaces, etc. However, when the stoichiometric excess air is limited to the area of 5% or less, there is a considerable reduction in the S0 production, and the evolution of H 80, substantially disappears.
In order to permit the stoichiometric excess air to be limited to the area of 5% or less, it is necessary to set up high recirculation rates in the combustion chamber, so that some of the hot combustion gases will be caused to recirculate back to the point at which the cool air-fuel mixture enters. The combustion gases mix with the incoming air-fuel mixture, promoting a high rate of evaporation and rapid combustion, and thus improving the efiiciency of the burning.
One way of promoting a high recirculation rate of the combustion gases is to provide a fuel atomizer which has a wide spray angle.
In view of the above, it is one object of this invention to provide an atomizer which is capable of producing a wide-angle atomized spray of liquid.
A further object of this invention is to provide an atomizing device utilizing the principle of gas-vortex atomization, which is capable of utilizing a high-pressure vortex medium, and can efiiciently atomize certain thick, viscous liquid, such as the heavier fuel oils and pitch fuels.
Essentially, the apparatus of this invention achieves the above objects by utilizing a particular rotary-vortex chamber design to produce a high-speed rotary vortex of an atomizing medium such as steam or air, in combination with a two-stage atomizing technique carried out at the downstream end of an outlet tube in which the atomizing medium is rotating. The special design of the vortex chamber and outlet tube produces a desired ratio of axial to tangential velocity within the outlet tube and results in a wide-angle spray cone, while the two-stage atomizing technique ensures that a high degree of comminution and nebularization of the heavy viscous oil will occur.
More particularly this invention provides a liquid atomizer comprising: means defining a substantially cylindrical chamber having a forward end wall and a rearward end wall, a cylindrical outlet nozzle defining at least part of said forward end wall and having an outlet bore of diameter less than that of said chamber and extending co-axially away from the chamber, the forward end wall and the outlet bore meeting to define a substantially sharp corner around which gas must pass when moving from said chamber into said outlet bore, at least one substantially tangential inlet to said chamber, means for causing a gas to pass under pressure through said inlet and into said chamber so as to set-up a rotating vortex in said chamber, the said pressure being sufiicient to cause the rotational speed of the gas in the chamber at a radius equal to that of the outlet bore to be greater than sonic, whereby the gas exits from the chamber through the outlet bore while rotating at a speed greater than sonic and establishes a rotating vortex along the outlet bore the speed of which decreases, due to friction, to substantially sonic velocity near the downstream end of the outlet bore, and liquid feed means located substantially axially within said outlet bore for expelling at least one jet of liquid centrifugally into the vortex where the latter has substantially sonic velocity.
One embodiment of this invention is shown in the accompanying drawings, in which like numerals refer to like parts throughout the several views, and in which:
FIG. 1 is an axial sectional view through the nozzle of an oil burner equipped with a vortex-type atomizer;
FIG. 2 is a transverse sectional view taken at the line 2-2 in FIG. 1;
FIGS. 3, 4 and 5 are diagrammatic axial views of three vortex chamber designs, utilized in a discussion of comparative energy requirements;
FIGS. 6, 7 and 8 are axial sectional views of the vortex chamber designs shown in FIGS. 3, 4 and 5, respectively; and
FIG. 9 is a graph showing energy conversion, for the three vortex chamber designs shown in FIGS. 3 to 8, as the atomizing medium passes from the tangential inlet through the device to the downstream end of the outlet tube.
FIG. 1 shows an oil burner nozzle 10, which includes a cylindrical atomizer mounting sleeve 12 into the open end of which is threaded a conical vertex body 14. The
apex of the conical vortex body 14 has an axial bore 15 which is widened at 16 to define an annular shoulder 17. A gas nozzle 18 is shaped to fit snugly within the bore 15 and the widened portion 16 in the conical vortex body, and is held in position by a vortex chamber housing 20 which is threaded into the conical vortex body 14.
A feed tube 22 extends in sealed relationship through an axial aperture 23 in the vortex chamber housing 20, and passes centrally through the vortex chamber 21 to enter concentrically a co-axial outlet bore 24 in the gas nozzle 18. The diameter of the outlet bore 24 is greater than the outside diameter of the feed tube 22, such that an annular space 26 is defined therebet-ween. At its upstream end, the feed tube 22 is connected, by welding or press-fitting, to a tubular connecting element 28 which is in turn connected to a fuel line (not shown) which delivers fuel under pressure to the connecting element 28 and thence to the feed tube 22. The connecting element 28 is secured centrally through a partition 30 which is threaded into the upstream end of the conical vortex body 14.
A pressurized gaseous medium is delivered to the nozzle through a line (not shown) located inside the atomizer mounting sleeve 12 and fastened in eccentric port 31. For the remainder of this description, the medium is considered to be steam, although other gases can be used, as is later discussed. The steam passes into an antechamber 32 defined by the partition 30, the conical vortex body 14 and the vortex chamber housing 20. From the antechamber 32 the pressurized steam enters the vortex chamber 21 through a tangential inlet 34 constituted by a bore hole drilled through the wall of the vortex chamber housing 20, as shown in FIGS. 1 and 2.
Because of the tangential orientation of the inlet 34, the steam rotates within the vortex chamber 21 in a counter-clockwise sense as seen in FIG. 2. The steam exits from the vortex chamber 21 by way of the annular space 26 defined between the outlet bore 24 and the feed tube 22. The steam, in progressing from the periphery of the vortex chamber 21 toward its centre, undergoes an increase in rotational speed, the increase varying inversely with the square root of the radius. The steam passes into the outlet bore 24 and continues to spin at this higher rotational speed as it passes along the outlet bore 24 slowing slightly due to friction, and it finally spins out into the open at the right-hand end of the outlet bore 24.
It is possible, of course, to provide any number of tangential inlets 34, provided their total cross-sectional area is suited to the required flow. Also, a slight deviation from the strictly tangential direction is unlikely to have a significant effect on atomization.
This invention provides a two-stage atomization of the liquid to be atomized. The first stage involves forcing the fuel under pressure through one or more restricted ports 36 drilled in the periphery of the feed tube 22. The downstream end of the feed tube 22 is closed as shown, and the ports 36 are drilled in the feed tube 22 closely adjacent the closed downstream end. The ports 36 function as nozzles which expel thin jets of the liquid centrifugally outwardly into the periphery of the vortex created by the spinning steam. Because of the high rotational speed of the vortex, most of the steam is thrown outwardly and forms a rotating film or layer adjacent the walls of the axial bore 24. As the thin jets of the liquid impinge upon the rotating steam layer, they are further broken up, and more finely atomized.
To achieve the best atomization, the size, number, orientation and axial position of the ports should be properly selected. The size of the ports should be such that there is no danger of the liquid clogging or blocking the ports. The number of ports should be such that the required liquid flow is achieved at the desired pressure. The orientation of the ports, although here considered to be radial, can also be partially or fully tangential to the feed tube 22 and/or tilted in the axial direction at an angle between 0 and where conditions warrant it. Even angles exceeding 90 (i.e. the liquid jet is directed, partially, against the flow of the vortex medium) may be of advantage under certain circumstances. As used in this disclosure and in the appended claims, the word centrifugally, as applied to the ports 36 and to the direction of the liquid sprayed from the feed tube 22, is meant to include all tangential angles and all axial inclinations. The location of the ports is dependent upon several considerations. Firstly, the ports should be inside of the outlet bore 24 to ensure that the liquid particles spend a long enough time in the region of violent disturbance to become properly atomized. However, since the liquid particles are swirled around in an ever increasing spiral path due to both the radial component of liquid velocity and the centrifugal force, the ports 36 must be close enough to the downstream open end of the annular space 26 to ensure that most of the particles leave the nozzle before they contact the walls of the outlet bore 24. The presence of the rotating layer of steam adjacent the wall of the outlet bore 24 helps to ensure that contact between the liquid particles and the wall will be minimal.
Although in the embodiment shown, the ports 36 are all at the same axial location, it is conceivable that two or more sets of ports could be provided at different axial locations, or that the individual ports could be arranged along the feed tube 22 in a random distribution, both axially and radially.
It has been found helpful to provide a slight outward conical taper 38 at the downstream end of the outlet bore 24. A preferred angle for the conical taper is 30, although this is not critical.
A discussion now follows of the reasons why an abrupt and clearly defined step between the vortex chamber and the outlet tube is considered an essential part of this invention.
Firstly, from the point of view of efliciency, it is considered that the atomizing medium should be moving at sonic velocity at the point of atomization. Supersonic velocities, as a rule, generally involve heavy energy losses, while subsonic velocities require an unduly high consumption for a given energy requirement.
Secondly, in order to achieve an acceptable recirculation pattern of the atomizing medium-fuel spray components within the combustion chamber, it is necessary to ensure that the ratio of tangential to axial velocity at the discharge is in the neighbourhood of 1:1 or higher.
Thirdly, the layer of the atomizing medium in the discharge of the outlet bore, described above, must be sufficiently thick to prevent the penetration of the fuel, since penetration leads to agglomeration on the inside wall, and thus to the formation of large particles. It will be obvious, then, that with a 1:1 velocity ratio, there will be a mathematical inter-relationship between the diameter of the discharge nozzle, the flow rate of the atomizing medium, and its axial velocity component.
The energy requirement, in B.t.u.s per pound of atomizing medium, can be minimized by selecting a D/d ratio within a given range, where D is the diameter of the vortex chamber, and d is the diameter of the outlet bore 24.
To illustrate these points, attention is directed to FIGS. 3 to 9. FIGS. 4 and 7 show the comparative diameters in an actual experimental prototype which was built and tested under working conditions. The D/ d ratio was 3.312, and the actual dimensions of the prototype were as follows:
Vortex chamber diameter, D=3.312 inches.
Outlet bore diameter, d=1.000 inch.
The vortex chamber had six tangential inlets, each one being 0.125 inch in diameter.
Air was delivered to the tangential inlets at 48 p.s.i.g. pressure and at negligible velocity, and the transforma tions of the total available pressure energy as the air travelled through the prototype was determined primarily on the basis of pitot tube measurements, and plotted as the solid line in FIG. 9. Attention is now directed to FIG. 9.
In FIG. 9, the total energy available in the pressurized medium prior to entering the tangential inlets is indicated by the upper circled dot with the number 1. At this point, the energy available in the pressurized medium is 42 /2 B.t.u.s per pound. At this point, the medium is considered to be motionless, and so the kinetic energy is zero, as shown by the circled dot at the bottom bearing the number 1.
As the medium passes through the tangential inlets to the position 2 (see FIG. 4) where it is about to enter the vortex chamber, it is accelerated to 880 feet per second, and there is a slight loss in available energy on account of friction. This loss of available energy is shown by the drop in the upper line to the circled dot numbered 2, at which the total available energy is reduced to 41.5 B.t.u.s per pound. Frictional losses account for the 1 B.t.u. per pound difference. At the same time, the kinetic energy increases as shown by the steep rise in the bottom line from 1 to 2. The pressure energy in the air at this point is represented by the distance between the two dots marked 2, but the kinetic energy is shown to be about 15.5 B.t.u.s per pound.
The air next enters the vortex chamber, and in doing so passes from point 2 to point 3 in FIGS. 4 and 7 and in the graph of FIG. 9. Due to the sudden change of cross-section, and also to the change of direction (from straight to rotation), there is an appreciable energy loss. It is seen in FIG. 9 that the irreversible frictional losses have reduced the total available energy to about 34 B.t.u.s per pound, that the pressure energy available has been reduced slightly, and that the kinetic energy has been reduced significantly.
The rotating air next moves spirally inwardly toward the centre of the vortex chamber, and its kinetic energy increases in inverse ratio to the diameter. The axial component is zero, the radial component is negligible, and the tangential component increase from 666 feet per second on the periphery to 1215 feet per second on the one inch diameter line. This stage is shown in the FIGS. 4 and 7 and in the graph of FIG. 9 as a progression from point 3 to point 4. Irreversible frictional losses result in a slight reduction in the total available energy to about 31.3 B.t.u.s per pound, while nearly all of the available pressure energy is converted to kinetic energy through the increase of speed, as will be seen by the closeness of the two points marked 4 in FIG. 9.
The next stage is the entry of the rotating air into the outlet bore 24, and at this stage a part of its tangential velocity is converted to axial velocity. In this process, the energy loss is appreciable, as can be seen by the steep drop of the two lines 4-5 in FIG. 9.
As the air moves along the outlet bore from point to point 6, it is stabilized. Friction losses, however, increase the volume of the air by heating it and causing its pressure to drop, and thus more tangential velocity is converted into axial velocity.
At stage 6, representing the divergent section of the outlet bore, the ratio of tangential velocity to axial velocity becomes constant. In the atomizing section the air velocity was found to be sonic at 1,046 feet per second, with a tangential component of 768 and an axial component of 538 feet per second. Virtually all of the air is discharged on the periphery, in a layer of 0.10 inch thickness. In the central core, the density is small and the axial velocity is negligible.
The following discussion relates to vortex atomizers with different D/ d ratios. It was assumed that these must match the prototype described above in capacity and in the quality of atomization, and it was therefore assumed that identical conditions would be required downstream of stage 4. It was also assumed that the diameter of the outlet bore would be the same. Starting with these assumptions, the necessary graph points were calculated backwards from stage 4 for a D/d ratio of 1.5 and for a D/d ratio of 6.
For the casein which the D/ d ratio is 1.5 (FIGS. 5 and 8), the increase of velocity in the process 3-4 (the radial inward movement in the vortex chamber) will be small. To make up for this, the discharge velocity in the tangential inlets (process 1-2) must be significantly higher, and works out to be in the neighborhood of Mach 1.5. But, if this very high velocity stream enters a smaller diameter vortex chamber, the energy losses in the process 2-3 will be extremely high. Thus, the intial energy requirement in B.t.u.s per pound, must be higher than that for the tested prototype worked out above which had a D/d ratio of 3.312. Refer in FIG. 9 to the broken lines identified by the circled numerals with asterisks.
Conversely, if the diameter of the vortex chamber is in a larger ratio to the outlet bore than is the case with the prototype described above, for example, 6 inches to 1 inch (FIGS. 3 and 6), then the velocity increase in the process 3-4 is higher. To compensate for this, the discharge velocity from the inlet (process 1-2) is proportionately lower. But, since part of the work of converting pressure to kinetic energy was transferred from a more efficient to a less eflicient process, the required supply pressure is higher, and thus the required energy content in B.t.u.s per pound of the atomizing medium must be higher. Refer in FIG. 9 to the broken lines identified by the circled numetals 1, 2', 3', etc.
To avoid confusion on this point, it is to be emphasized that neither the quality of the atomization, nor theconsumption of the atomizing medium, depends on the D/d ratio. However, with ratios of 1.5 or lower, it is considered that therequired supply pressure for the medium becomes prohibitively high. With ratios of 6 or higher, the increase in supply pressure is moderate, but the size of the atomizer itself is unduly large. For these reasons, it is considered that ratios between 1.5 and 6 are preferable for practical applications.
The cylindrical outlet bore is considered an essential part of this invention, because it is necessary for the stabilization of the flow. Without the discharge nozzle, the conditions in the region of atomization would be so unstable that uniform atomization would not be possible.
In order to avoid excessive conversion of tangential velocity to axial velocity where the atomizing medium passes from the vortex chamber into the outlet bore, it is considered essential to provide a substantially sharp corner with an approximate right-angular orientation. It is considered that the degree of sharpness of the corner is a more important criterion than the exact perpendicularity, and in fact it is likely that the operation of the device described herein would not be adversely affected by a small departure from perpendicularity of the order of 5 or 10, or even more.
If, however, the forward wall of the vortex chamber is a cone with an enclosed angle of considerably less than 180, for example from 30 to then the dominant velocity component in the vortex chamber will be an axial one, and this will be the case even more so in the outlet bore, resulting in a very narrow angle spray which would not produce a recirculating type of pattern in the combustion chamber. Furthermore, because of the higher axial velocity, the flow rate of the atomizing medium would have to be significantly higher to provide an acceptable layer thickness around the inside wall of the outlet tube at its discharge end.
Since this invention relates essentially to an atomizer utilizing a high-pressure medium, it is particularly adapted for use with high-pressure steam. In most burner installations, either compressed air or steam is used for the atomization of heavy oil fuels. Of these two, steam is the most common for economic reasons. In the generation of steam, the largest portion of the required energy (heat) is used for the evaporation of the water, and the pressure of the steam requires only a small portion of energy by comparison. For example, to generate 1 pound of steam (100% quality) at 5 p.s.i.g. requires 976 B.t.u.s, While the generation of 1 pound of steam at 75 p.s.i.g. requires 1,005 B.t.u.s.
Since the atomizer discharges steam of 100% quality, the energy released by the steam as its expands to atmospheric pressure is highly dependent upon the steam pressure. For example, 5.7 B.t.u.s per pound is available from 5 p.s.i.g. steam and 35 B.t.u.s per pound is available from 75 p.s.i.g. steam.
'To illustrate this point in a slightly different way, atomization energy of 100 B.t.u.s can be derived from either (a) 17.5 pounds of 5 p.s.i.g. steam, generated at the cost of 17,100 B.t.u.s of heat, or
(b) 2.85 pounds of 75 p.s.i.g. steam, generated at the cost of 3,000 B.t.u.s of heat.
It is obvious from the above that the use of highpressure steam is far less costly than the use of lowpressure steam. The use of low-pressure steam for atomization is justified only if it is available at virtually no cost (such as, for example, the 50 p.s.i.g. turbine exhaust).
What we claim as our invention is:
1. A liquid atomizer comprising:
means defining a substantially cylindrical chamber having a forward end wall and a rearward end wall,
a cylindrical outlet nozzle defining at least part of said forward end wall and having an outlet bore of diameter less than that of said chamber and extending co-axially away from the chamber, the forward end wall and the outlet bore meeting to define a substantially sharp corner around which gas must pass when moving from said chamber into said outlet bore,
at least one substantially tangential inlet to said chamber,
means for causing a gas to pass under pressure through Cir said inlet and into said chamber so as to set up a rotating vortex in said chamber and along the outlet bore, the said pressure being sufiicient to cause the velocity of the gas at the downstream end of the outlet bore to be substantially sonic,
and liquid feed means located substantially axially within said outlet bore for expelling at least one jet of liquid centrifugally into the vortex where the latter has substantially sonic velocity.
2. A liquid atomizer as claimed in claim 1, in which the downstream end of the outlet tube has an outward conical flare in the downstream direction.
3. A liquidv atomizer as claimed in claim 1, in which a ratio D/ d is greater than 1.5, where D is the internal diameter of the cylindrical chamber,
and d is the internal diameter of the outlet bore.
4. A liquid atomizer as claimed in claim 1, in which said liquid feed means comprises a feed tube which extends from a liquid source co-axially through said cylindrical chamber and into said outlet bore to a point adjacent the downstream end of the outlet bore, the downstream end of the feed tube having at least one jet port for expelling said jet of liquid centrifugally into the vortex.
5. A liquid atomizer as claimed in claim 4, in which a ratio D/ d lies between 3 and 4, where D is the internal diameter of the cylindrical chamber,
and d is the internal diameter of the outlet tube.
References Cited UNITED STATES PATENTS 1,476,774 12/1923 Simon 239-406 3,254,846 6/1966 Schreter et a1. 239-400 FOREIGN PATENTS 879,224 10/ 1961 Great Britain.
488,312 12/1953 Italy.
LLOYD L. KING, Primary Examiner U.S. Cl. X.R. 239425, 426
US825091*A 1969-04-14 1969-04-14 Two-stage sonic atomizing device Expired - Lifetime US3537650A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82509169A 1969-04-14 1969-04-14

Publications (1)

Publication Number Publication Date
US3537650A true US3537650A (en) 1970-11-03

Family

ID=25243087

Family Applications (1)

Application Number Title Priority Date Filing Date
US825091*A Expired - Lifetime US3537650A (en) 1969-04-14 1969-04-14 Two-stage sonic atomizing device

Country Status (3)

Country Link
US (1) US3537650A (en)
DE (1) DE7013257U (en)
GB (1) GB1248711A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958759A (en) * 1974-01-04 1976-05-25 Seamus Gearoid Timoney Directed atomized fuel jet apparatus
FR2308865A1 (en) * 1975-04-22 1976-11-19 Coulon Christian METHOD AND DEVICE FOR SPRAYING AND BURNING LIQUID FUELS
US4415123A (en) * 1980-08-22 1983-11-15 H. Ikeuchi & Co., Ltd. Atomizer nozzle assembly
US5687905A (en) * 1995-09-05 1997-11-18 Tsai; Shirley Cheng Ultrasound-modulated two-fluid atomization
EP1081487A2 (en) 1999-09-06 2001-03-07 Hitachi, Ltd. Nebulizer
US20080296787A1 (en) * 2007-06-01 2008-12-04 Wet Enterprises, Inc. Gas Splattered Fluid Display
US20100331428A1 (en) * 2007-11-07 2010-12-30 Aridis Pharmaceuticals Sonic Low Pressure Spray Drying
CH702598A1 (en) * 2010-01-29 2011-07-29 Alstom Technology Ltd Injection nozzle and method for operating such an injection nozzle.
US20120145050A1 (en) * 2010-12-08 2012-06-14 Vladimir Vladimirovich Fisenko Apparatus for combustion products utilization and heat generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1476774A (en) * 1921-09-16 1923-12-11 Parkscramer Company Vaporizer
GB879224A (en) * 1956-10-17 1961-10-11 Marc Marie Paul Rene De La Fou Improvements in or relating to mixing and atomizing device
US3254846A (en) * 1965-01-21 1966-06-07 Hauck Mfg Co Oil atomizing burner using low pressure air

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1476774A (en) * 1921-09-16 1923-12-11 Parkscramer Company Vaporizer
GB879224A (en) * 1956-10-17 1961-10-11 Marc Marie Paul Rene De La Fou Improvements in or relating to mixing and atomizing device
US3254846A (en) * 1965-01-21 1966-06-07 Hauck Mfg Co Oil atomizing burner using low pressure air

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958759A (en) * 1974-01-04 1976-05-25 Seamus Gearoid Timoney Directed atomized fuel jet apparatus
FR2308865A1 (en) * 1975-04-22 1976-11-19 Coulon Christian METHOD AND DEVICE FOR SPRAYING AND BURNING LIQUID FUELS
US4415123A (en) * 1980-08-22 1983-11-15 H. Ikeuchi & Co., Ltd. Atomizer nozzle assembly
US5687905A (en) * 1995-09-05 1997-11-18 Tsai; Shirley Cheng Ultrasound-modulated two-fluid atomization
EP1081487A2 (en) 1999-09-06 2001-03-07 Hitachi, Ltd. Nebulizer
EP1081487A3 (en) * 1999-09-06 2003-07-16 Hitachi, Ltd. Nebulizer
US20080296787A1 (en) * 2007-06-01 2008-12-04 Wet Enterprises, Inc. Gas Splattered Fluid Display
US8500038B2 (en) * 2007-06-01 2013-08-06 Wet Enterprises, Inc. Gas splattered fluid display
US8268354B2 (en) 2007-11-07 2012-09-18 Aridis Pharmaceuticals Sonic low pressure spray drying
US20100331428A1 (en) * 2007-11-07 2010-12-30 Aridis Pharmaceuticals Sonic Low Pressure Spray Drying
US8673357B2 (en) 2007-11-07 2014-03-18 Aridis Pharmaceuticals Sonic low pressure spray drying
CN102141245A (en) * 2010-01-29 2011-08-03 阿尔斯托姆科技有限公司 Injection nozzle and method for operating an injection nozzle
US20110185741A1 (en) * 2010-01-29 2011-08-04 Fulvio Magni Injection nozzle and method for operating an injection nozzle
CH702598A1 (en) * 2010-01-29 2011-07-29 Alstom Technology Ltd Injection nozzle and method for operating such an injection nozzle.
US8567198B2 (en) 2010-01-29 2013-10-29 Alstom Technology Ltd. Injection nozzle having constant diameter pin and method for operating the injection nozzle
HRP20110066B1 (en) * 2010-01-29 2014-12-19 Alstom Technology Ltd. Injection nozzle and method for operating an injection nozzle
CN102141245B (en) * 2010-01-29 2015-11-25 阿尔斯托姆科技有限公司 The method of nozzle and the operation for this nozzle
US20120145050A1 (en) * 2010-12-08 2012-06-14 Vladimir Vladimirovich Fisenko Apparatus for combustion products utilization and heat generation
US8551222B2 (en) * 2010-12-08 2013-10-08 Fisonic Holding Limited Apparatus for combustion products utilization and heat generation

Also Published As

Publication number Publication date
GB1248711A (en) 1971-10-06
DE7013257U (en) 1971-02-25

Similar Documents

Publication Publication Date Title
US3980233A (en) Air-atomizing fuel nozzle
US3790086A (en) Atomizing nozzle
US4139157A (en) Dual air-blast fuel nozzle
US5579645A (en) Radially mounted air blast fuel injector
US3667221A (en) Fuel delivery apparatus
US2602292A (en) Fuel-air mixing device
US3648457A (en) Combustion apparatus
US2601000A (en) Combustor for thermal power plants having toroidal flow path in primary mixing zone
US11628455B2 (en) Atomizers
US2607193A (en) Annular combustion chamber with multiple notched fuel nozzles
US3979069A (en) Air-atomizing fuel nozzle
US4464314A (en) Aerodynamic apparatus for mixing components of a fuel mixture
US3975141A (en) Combustion liner swirler
Giuliani et al. Influence of pulsed entries on a spray generated by an air-blast injection device: An experimental analysis on combustion instability processes in aeroengines
JPS5922129B2 (en) fuel injector
GB2306002A (en) Swirl atomiser for a combustor
US3844484A (en) Method of fuel atomization and a fuel atomizer nozzle therefor
CA1038912A (en) Air-atomizing fuel nozzle
US3831843A (en) Method of fuel atomization and a fuel atomizer nozzle therefor
US3537650A (en) Two-stage sonic atomizing device
US20180328586A1 (en) Fuel injector for fuel spray nozzle
US3510061A (en) Two-stage sonic atomizing device
JPH11304111A (en) Method for operating premixed burner
US3922137A (en) Apparatus for admixing fuel and combustion air
US5101623A (en) Rocket motor containing improved oxidizer injector

Legal Events

Date Code Title Description
AS Assignment

Owner name: GULF CANADA CORPORATION/CORPORATION GULF CANADA,CA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF CANADA LIMITED;REEL/FRAME:004555/0478

Effective date: 19860224

Owner name: GULF CANADA CORPORATION/CORPORATION GULF CANADA, P

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF CANADA LIMITED;REEL/FRAME:004555/0478

Effective date: 19860224

AS Assignment

Owner name: GULF CANADA CORPORATION/ CORPORATION GULF CANADA,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GULF CANADA LIMITED/ GULF CANADA LIMITEE;REEL/FRAME:004645/0530

Effective date: 19861014

Owner name: GULF CANADA CORPORATION/ CORPORATION GULF CANADA,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GULF CANADA LIMITED/ GULF CANADA LIMITEE;REEL/FRAME:004645/0530

Effective date: 19861014