US3295010A - Image dissector with field mesh near photocathode - Google Patents

Image dissector with field mesh near photocathode Download PDF

Info

Publication number
US3295010A
US3295010A US552877A US55287766A US3295010A US 3295010 A US3295010 A US 3295010A US 552877 A US552877 A US 552877A US 55287766 A US55287766 A US 55287766A US 3295010 A US3295010 A US 3295010A
Authority
US
United States
Prior art keywords
anode
image
aperture
electron
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US552877A
Inventor
Robert H Clayton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
International Telephone and Telegraph Corp
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to US552877A priority Critical patent/US3295010A/en
Application granted granted Critical
Publication of US3295010A publication Critical patent/US3295010A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/42Image pick-up tubes having an input of visible light and electric output with image screen generating a composite electron beam which is deflected as a whole past a stationary probe to simulate a scanning effect, e.g. Farnsworth pick-up tube
    • H01J31/44Tubes with image amplification section

Definitions

  • Image dissector tubes have been used to provide electrical output signals in response to an impressed optical image.
  • a photocathode surface at one end of the tube emits electrons in accordance with the elemental light impinging thereon.
  • the electrons are accelerated through a series of electrode rings having stepped potentials applied thereto and are at the same time electromagnetically focused and deflected or scanned across a minute aperture in the focal plane of the image.
  • Output currents are transmitted through the opening corresponding to the successive elemental areas'of the image sweeping over the analyzing aperture, with an electron multiplier structure providing an amplified signal at the output end of the tube.
  • the output may then be employed, for example, in television or star-tracking systems. Examples of prior art tubes of this type are found in U.S. Patents No. 2,459,778 issued l an. 18, 1949 and No. 2,913,610, issued November 17, 1959, and are assigned to the same assignee as the instant application.
  • FIG. 1 shows a cross section of the novel -tube structure
  • FIG. 2 shows a variation employing aspaced apertured plate.
  • An optical image represented by arrow 10 is impressed ICC upon a photoemissive layer 12 on the inner surface of faceplate 14 of a glass envelope 16. Electrons are emitted from the photocathode to form an electron image in accordance with the light pattern and are accelerated toward a field mesh or screen 18 positioned parallel and adjacent the emissive surface.
  • the cathode for example, may be placed at a reference potential and the screen at approximately +300 volts, with a spacing of from 0.125 to 0.500 inch therebetween, such that no focusing of the mesh will occur, as seen at the aperture.
  • the screen encloses the open end of a hollow cylindrical anode ⁇ 20 which may directly support and connect to the screen at the same potential or may be spaced therefrom and at a small negative potential with respect thereto.
  • the spacing between screen and anode may be in the order of 0.002 to 0.125 inch and the anode potential may be about +295 volts. This difference in potential aids in retarding the ions from striking the cathode and thus prevents deterioration of the emissive surface.
  • the cylinder is made of a non-magnetic material such as Nichrome and forms a unipotential wall electrode having a field free region in which the electron image is magnetically focused and deflected without disturbance from accelerating electrostatic fields.
  • a known form of focusing solenoid 22 surrounding the tube envelope causes the electron image to be focused electromagnetically in an integral number of focusing loops in the plane of an apertured plate 24 at the opposite end of anode 20.
  • the electrons are thus signal modulated and then directed through an adjacent series of secondary emissive electron multiplying dynodes 28 having suitably stepped positive voltages applied thereto to provide an amplified output signal at a collector electrode 30 which is connected to a utilization device, such as a television transmission or star-tracking system.
  • a utilization device such as a television transmission or star-tracking system.
  • the apertured plate 24 may enclose the end of the anode 20 or be positioned in close proximity and at a slight negative potential with respect thereto. Such separation may provide compensation for non-uniformities in focusing and aid in preventing back scattering secondary electrons from entering the multiplier. In addition positive ions from the drift tube may be attracted away from the photocathode to further prevent damage to the emissive surface.
  • a typical tube may thus have a total length of approximately 8 inches and an outer diameter of about 21A inches, including the coils, a photosurface diameter of 1.1 inches, and an aperture diameter of 0.001 inch. With this type of configuration, resolutions of over 2000 lines on the photocathode. diameter are obtainable.
  • the present invention provides a novel miniature image dissector tube having a more efcient structure with improved optical characteristics. While several embodiments have been illustrated, it is apparent that the invention is not limited to the exact forms or uses shown and that many other variations may be made in the particular design and configuration without departing from the scope of the invention as set forth in the appended claims.
  • An image dissector ⁇ tube comprising:
  • a photoemissive cathode layer on lthe inner surface of one end of said envelope, said layer emitting electrons in response to an applied optical image to form a corresponding electron image;
  • a mesh screen accelerating electrode disposed at said open end and positioned in close proximity and parallel to said cathode surface
  • first electromagnetic means surrounding said tube and anode for focusing said electron image in the plane of said aperture
  • second electromagnetic means surrounding said tube and anode for deecting said electron image across said aperture, said aperture permitting passage of electrons therethrough in accordance with successively scanned elemental areas of said electron image; electron multiplier means positioned adjacent said aperture to provide an amplified signal in accordance with said scanned image; and means for deriving an output signal from said multiplier means.
  • tubular anode is formed of non-magnetic material.
  • said means providing a scanning aperture is a plate positioned in close spaced relation to the end of said anode.
  • said means providing a scanning aperture is a plate enclosing the end of said anode.

Description

Dec. 27, 1966 R, H. CLAYTON IMAGE DISSECTOR WITH FELD MESH NEAR PHOTOCATHODE Original Filed March 6, 1963 WNU INVENTOR.
ROBERT h'. CLAYTON ATTQRNEY United States Patent O 3,295,010 IMAGE DISSECTOR WITH FIELD MESH NEAR PHOTOCATHODE Robert H. Clayton, Fort Wayne, Ind., assignor to Interp national Telephone and Telegraph Corporation, Nutley,
NJ., a corporation of Maryland Continuation of application Ser. No. 263,321, Mar. 6, 1963. This application May 25, 1966, Ser. No. 552,877 8 Claims. (Cl. 315-11) This invention relates to image tubes and particularly to a novel image dissector tube having improved electron optics. The present application is a continuation of previous application Serial No. 263,321, filed March 6, 1963, and now abandoned.
Image dissector tubes have been used to provide electrical output signals in response to an impressed optical image. A photocathode surface at one end of the tube emits electrons in accordance with the elemental light impinging thereon. The electrons are accelerated through a series of electrode rings having stepped potentials applied thereto and are at the same time electromagnetically focused and deflected or scanned across a minute aperture in the focal plane of the image. Output currents are transmitted through the opening corresponding to the successive elemental areas'of the image sweeping over the analyzing aperture, with an electron multiplier structure providing an amplified signal at the output end of the tube. The output may then be employed, for example, in television or star-tracking systems. Examples of prior art tubes of this type are found in U.S. Patents No. 2,459,778 issued l an. 18, 1949 and No. 2,913,610, issued November 17, 1959, and are assigned to the same assignee as the instant application.
Attempts to miniaturize and improve this device have been limited due to the use of a plurality of accelerating electrodes and an external voltage divider network applying the various stepped potentials thereto. The electrodes require a large number of leads through the tube envelope and introduce field disturbances. In addition, electrons in transit from the cathode to the aperture plane may collide with gas molecules -to generate ions which are directed toward and cause deterioration of the emissive surface. One proposed solution has suggested the use of a resistive spiral coating on the tube wall. However, this is difficult to fabricate and permits spurious charges to accumulate on the wall between spirals.
It is therefore the primary object of the present invention to provide a novel configuration for an image dissector tube which permits simplification of the structure with increased resolution and longer life.
It is another object to eliminate the use of a plurality of accelerating electrode rings and reduce ion bombardment and damage to the photocathode.
These results are accomplished by use of a novel field mesh or screen in close proximity to the photocathode and supported on or adjacent a unipotential hollow cylindrical or tubular electrode. Acceleration occurs between the cathode and mesh, with deflection taking place in an electrostatic field free space within the cylinder, thus minimizing defocusing and reducing the number of electrodes and leads. In addition, ions generated in this space are less subject to acceleration by electrostatic fields which may direct the ions toward the photocathode. The details of the invention and other objects and advantages will become apparent from the following description and accompanying drawing wherein:
FIG. 1 shows a cross section of the novel -tube structure, and
FIG. 2 shows a variation employing aspaced apertured plate.
An optical image represented by arrow 10 is impressed ICC upon a photoemissive layer 12 on the inner surface of faceplate 14 of a glass envelope 16. Electrons are emitted from the photocathode to form an electron image in accordance with the light pattern and are accelerated toward a field mesh or screen 18 positioned parallel and adjacent the emissive surface. The cathode, for example, may be placed at a reference potential and the screen at approximately +300 volts, with a spacing of from 0.125 to 0.500 inch therebetween, such that no focusing of the mesh will occur, as seen at the aperture. The screen encloses the open end of a hollow cylindrical anode `20 which may directly support and connect to the screen at the same potential or may be spaced therefrom and at a small negative potential with respect thereto. For example, the spacing between screen and anode may be in the order of 0.002 to 0.125 inch and the anode potential may be about +295 volts. This difference in potential aids in retarding the ions from striking the cathode and thus prevents deterioration of the emissive surface.
The cylinder is made of a non-magnetic material such as Nichrome and forms a unipotential wall electrode having a field free region in which the electron image is magnetically focused and deflected without disturbance from accelerating electrostatic fields. A known form of focusing solenoid 22 surrounding the tube envelope causes the electron image to be focused electromagnetically in an integral number of focusing loops in the plane of an apertured plate 24 at the opposite end of anode 20. The deflection coils 26, similarly positioned concentrically around the tube envelope within the focusing coils, produce horizontal and vertical electromagnetic scanning of the image across the aperture in a well known manner. The aperture thus analyzes the image to provide output currents representing successively scanned elemental areas. The electrons are thus signal modulated and then directed through an adjacent series of secondary emissive electron multiplying dynodes 28 having suitably stepped positive voltages applied thereto to provide an amplified output signal at a collector electrode 30 which is connected to a utilization device, such as a television transmission or star-tracking system.
As shown in FIG. 2, the apertured plate 24 may enclose the end of the anode 20 or be positioned in close proximity and at a slight negative potential with respect thereto. Such separation may provide compensation for non-uniformities in focusing and aid in preventing back scattering secondary electrons from entering the multiplier. In addition positive ions from the drift tube may be attracted away from the photocathode to further prevent damage to the emissive surface.
Since total acceleration occurs in the first fractional inch before the screen, deflection is accomplished in a field free region so that defocusing and other disturbances are minimized. Thus an improved resolution may be obtained. Alternatively, the original resolution may be maintained with use of lower operating voltages or a smaller photocathode. In addition, elimination Iof the complex accelera-ting structure permits miniaturization of the entire tube. A typical tube, for example, may thus have a total length of approximately 8 inches and an outer diameter of about 21A inches, including the coils, a photosurface diameter of 1.1 inches, and an aperture diameter of 0.001 inch. With this type of configuration, resolutions of over 2000 lines on the photocathode. diameter are obtainable.
It may thus be seen that the present invention provides a novel miniature image dissector tube having a more efcient structure with improved optical characteristics. While several embodiments have been illustrated, it is apparent that the invention is not limited to the exact forms or uses shown and that many other variations may be made in the particular design and configuration without departing from the scope of the invention as set forth in the appended claims.
What is claimed is:
1. An image dissector `tube comprising:
an envelope;
a photoemissive cathode layer on lthe inner surface of one end of said envelope, said layer emitting electrons in response to an applied optical image to form a corresponding electron image;
a longitudinal tubular anode having an open end adjacent said cathode surface;
a mesh screen accelerating electrode disposed at said open end and positioned in close proximity and parallel to said cathode surface;
means applying an electron accelerating lield potential to said screen and anode with respect to said cathode;
means providing a scanning aperture at the opposite end of said anode;
first electromagnetic means surrounding said tube and anode for focusing said electron image in the plane of said aperture;
second electromagnetic means surrounding said tube and anode for deecting said electron image across said aperture, said aperture permitting passage of electrons therethrough in accordance with successively scanned elemental areas of said electron image; electron multiplier means positioned adjacent said aperture to provide an amplified signal in accordance with said scanned image; and means for deriving an output signal from said multiplier means.
2. The device of claim 1 wherein said screen is connected to said anode and at the same potential as said anode.
3. The device of claim 1 wherein said screen is spaced from said anode and at a small positive potential with respect to said anode to retard ion bombardment of said cathode surface.
4. The device of claim 1 wherein said tubular anode is formed of non-magnetic material.
5. The device of claim 1 wherein said screen is spaced from said cathode 0.125 to 0.500 inch such that focusing of the screen at the aperture is prevented.
6. The device of claim 1 wherein said means providing a scanning aperture is a plate positioned in close spaced relation to the end of said anode.
7. The device of claim 1 wherein said means providing a scanning aperture is a plate enclosing the end of said anode.
8. The device of claim 6 wherein said plate is at a small negative potential with respect Ito said anode.
References Cited by the Examiner UNITED STATES PATENTS 2,412,086 12/1946 Hallmark 178-7.2 2,459,778 l/l949 Larson 178-7.2 2,541,374 2/1951 Morton 178-7.2 3,047,758 7/1962 Rome 315-31 X DAVID G. REDINBAUGH, Primary Examiner. T. A. GALLAGHER, Assistant Examiner.

Claims (1)

1. AN IMAGE DISSECTOR TUBE COMPRISING: AN ENVELOPE; A PHOTOEMISSIVE CATHODE LAYER ON THE INNER SURFACE OF ONE END OF SAID ENVELOPE, SAID LAYER EMITTING ELECTRONS IN RESPONSE TO AN APPLIED OPTICAL IMAGE TO FORM A CORRESPONDING ELECTRON IMAGE; A LONGITUDINAL TUBULAR ANODE HAVING AN OPEN END ADJACENT SAID CATHODE SURFACE; A MESH SCREEN ACCELERATING ELECTRODE DISPOSED AT SAID OPEN END AND POSITIONED IN CLOSE PROXIMITY AND PARALLEL TO SAID CATHODE SURFACE; MEANS APPLYING AN ELECTRON ACCELERATING FIELD POTENTIAL TO SAID SCREEN AND ANODE WITH RESPECT TO SAID CATHODE; MEANS PROVIDING A SCANNING APERTURE AT THE OPPOSITE END OF SAID ANODE; FIRST ELECTROMAGNETIC MEANS SURROUNDING SAID TUBE AND ANODE FOR FOCUSING SAID ELECTRON IMAGE IN THE PLANE OF SAID APERTURE; SECOND ELECTROMAGNETIC MEANS SURROUNDING SAID TUBE AND ANODE FOR DEFLECTING SAID ELECTRON IMAGE ACROSS SAID APERTURE, SAID APERTURE PERMITTING PASSAGE OF ELECTRONS THERETHROUGH IN ACCORDANCE WITH SUCCESSIVELY SCANNED ELEMENTAL AREAS OF SAID ELECTRON IMAGE; ELECTRON MULTIPLIER MEANS POSITIONED ADJACENT SAID APERTURE TO PROVIDE AN AMPLIFIED SIGNAL IN ACCORDANCE WITH SAID SCANNED IMAGE; AND MEANS FOR DERIVING AN OUTPUT SIGNAL FROM SAID MULTIPLIER MEANS.
US552877A 1966-05-25 1966-05-25 Image dissector with field mesh near photocathode Expired - Lifetime US3295010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US552877A US3295010A (en) 1966-05-25 1966-05-25 Image dissector with field mesh near photocathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US552877A US3295010A (en) 1966-05-25 1966-05-25 Image dissector with field mesh near photocathode

Publications (1)

Publication Number Publication Date
US3295010A true US3295010A (en) 1966-12-27

Family

ID=24207185

Family Applications (1)

Application Number Title Priority Date Filing Date
US552877A Expired - Lifetime US3295010A (en) 1966-05-25 1966-05-25 Image dissector with field mesh near photocathode

Country Status (1)

Country Link
US (1) US3295010A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3474286A (en) * 1968-01-03 1969-10-21 Raytheon Co Image orthicon integrator device for an electro-optical correlation system
US3480855A (en) * 1967-04-10 1969-11-25 Magnaflux Corp Image dissector system having pattern rotation means
US3771004A (en) * 1972-02-02 1973-11-06 Itt Reflective multiplier phototube
US3814979A (en) * 1972-09-29 1974-06-04 Itt Smoothing optical cathode ray tube
US3961219A (en) * 1973-10-17 1976-06-01 Siemens Aktiengesellschaft Electron optical system with a magnetic focusing and electromagnetic deflection system of unit design
US3993926A (en) * 1974-10-07 1976-11-23 Goodyear Aerospace Corporation Storage tube moving target detector
FR2464557A1 (en) * 1979-09-05 1981-03-06 Lindblom Karl Peter IMAGE TUBE FOR PRODUCING HIGH-DEFINITION OPTICAL IMAGES
US4272187A (en) * 1979-12-17 1981-06-09 International Business Machines Corporation Automatic alignment of optical elements in an electrophotographic apparatus
US4527846A (en) * 1982-04-28 1985-07-09 International Telephone And Telegraph Corporation Zoom focus and deflection assembly for electron discharge devices of the camera tube type

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412086A (en) * 1944-08-26 1946-12-03 Farnsworth Television & Radio Image dissector tube
US2459778A (en) * 1945-07-09 1949-01-18 Farnsworth Res Corp Image dissector
US2541374A (en) * 1946-06-28 1951-02-13 Rca Corp Velocity-selection-type pickup tube
US3047758A (en) * 1959-12-01 1962-07-31 Machlett Laboraotries Inc Cathode ray tubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412086A (en) * 1944-08-26 1946-12-03 Farnsworth Television & Radio Image dissector tube
US2459778A (en) * 1945-07-09 1949-01-18 Farnsworth Res Corp Image dissector
US2541374A (en) * 1946-06-28 1951-02-13 Rca Corp Velocity-selection-type pickup tube
US3047758A (en) * 1959-12-01 1962-07-31 Machlett Laboraotries Inc Cathode ray tubes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480855A (en) * 1967-04-10 1969-11-25 Magnaflux Corp Image dissector system having pattern rotation means
US3474286A (en) * 1968-01-03 1969-10-21 Raytheon Co Image orthicon integrator device for an electro-optical correlation system
US3771004A (en) * 1972-02-02 1973-11-06 Itt Reflective multiplier phototube
US3814979A (en) * 1972-09-29 1974-06-04 Itt Smoothing optical cathode ray tube
US3961219A (en) * 1973-10-17 1976-06-01 Siemens Aktiengesellschaft Electron optical system with a magnetic focusing and electromagnetic deflection system of unit design
US3993926A (en) * 1974-10-07 1976-11-23 Goodyear Aerospace Corporation Storage tube moving target detector
FR2464557A1 (en) * 1979-09-05 1981-03-06 Lindblom Karl Peter IMAGE TUBE FOR PRODUCING HIGH-DEFINITION OPTICAL IMAGES
US4360759A (en) * 1979-09-05 1982-11-23 Lindblom Karl Peter C Image tube for producing optical images with high resolution
US4272187A (en) * 1979-12-17 1981-06-09 International Business Machines Corporation Automatic alignment of optical elements in an electrophotographic apparatus
US4527846A (en) * 1982-04-28 1985-07-09 International Telephone And Telegraph Corporation Zoom focus and deflection assembly for electron discharge devices of the camera tube type

Similar Documents

Publication Publication Date Title
US2280191A (en) Cathode-ray signal-reproducing unit
US2449339A (en) Cathode-ray tube
US2690517A (en) Plural beam electron gun
US3295010A (en) Image dissector with field mesh near photocathode
US2462569A (en) Television receiving tube with storage properties
US3102212A (en) Cathode ray tube with low velocity deflection and post deflection beam acceleration
US2213547A (en) Electron discharge apparatus
US2537250A (en) Electronic tube
US2837689A (en) Post acceleration grid devices
US2248977A (en) Electro-optical device
US3329856A (en) Image dissector tube field mesh
US2267823A (en) Scanning device for television
US2760096A (en) Television pickup tube
US2260911A (en) Television device
US2558647A (en) Storage electrode type cathode-ray tube
US3277334A (en) Charge storage tube and target electrode therefor
US2286280A (en) Electronic device
US2324505A (en) Television transmitting tube and electrode structure
US3189781A (en) Image tube utilizing transmissive dynode-type target
US3432711A (en) Hybrid deflection image dissector having concave deflection plates converging at horizontal edges of resolving apertures
US2971108A (en) Electron discharge device
US2875371A (en) Arrangements embodying pick-up tubes
US3035203A (en) Cathode-ray tube
US2840755A (en) Large storage low noise image tube
US2520240A (en) Cathode-ray tube