US3146368A - Cathode-ray tube with color dots spaced by light absorbing areas - Google Patents

Cathode-ray tube with color dots spaced by light absorbing areas Download PDF

Info

Publication number
US3146368A
US3146368A US100723A US10072361A US3146368A US 3146368 A US3146368 A US 3146368A US 100723 A US100723 A US 100723A US 10072361 A US10072361 A US 10072361A US 3146368 A US3146368 A US 3146368A
Authority
US
United States
Prior art keywords
areas
color
phosphor
screen
phosphor areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US100723A
Inventor
Joseph P Fiore
Sam H Kaplan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rauland Borg Corp
Original Assignee
Rauland Borg Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22281201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US3146368(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rauland Borg Corp filed Critical Rauland Borg Corp
Priority to US100723A priority Critical patent/US3146368A/en
Priority to GB12893/62A priority patent/GB960940A/en
Application granted granted Critical
Publication of US3146368A publication Critical patent/US3146368A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/30Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines
    • H01J29/32Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television
    • H01J29/327Black matrix materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/30Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines
    • H01J29/32Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television
    • H01J29/322Luminescent screens with luminescent material discontinuously arranged, e.g. in dots, in lines with adjacent dots or lines of different luminescent material, e.g. for colour television with adjacent dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines

Definitions

  • the present invention relates generally to cathode-ray tubes used in color reproduction and more particularly to color reproducing cathode-ray tubes affording improved brightness and contrast.
  • an evacuated envelope made of glass, metal or any other suitable material having an enlarged end carrying a frontplate, and at its opposite end a neck portion with an electrode arrangement formed of one or more electron guns for projecting a beam or beams of electrons toward the frontplate.
  • the energy of the electrons is converted into light by a suitable phosphor layer provided on the inside surface of the frontplate, or on a separate screen structure provided within the envelope just behind and visible through the frontplate.
  • the color reproducing cathode-ray tube is preferably provided with a phosphor screen which is differentiated from point to point in that adjacent areas of different phosphor material produce light of different colors.
  • a color-selection electrode usually a multi-apertured mask and conventionally made of a very thin metal sheet which is opaque to the passage of electrons, is disposed between the electron gun assembly and the phosphor screen and adjacent to the screen.
  • the mask is provided with a large number of small, closely spaced apertures geometrically related to the different phosphor areas on the screen in a predetermined manner. The relation of the apertures to the phosphor areas is such that, by con-trolling the direction of the electron beam, different phosphor areas, producing predetermined color emission, can be selectively energized to produce a visible picture corresponding to the original scene.
  • the apertures of the mask are of such size and the operating voltages are of such magnitudes, that the electron beam impinges only a portion of the respective phosphor areas.
  • the difference between the actual size of the phosphor area and the area not impinged by the electron beam constitutes a tolerance or a guard ring which provides a safety factor for preventing color contamination owing to various mechanical, thermal and electrical errors.
  • full utilization of the phosphor is not achieved, a fact which contributes to the undesirable shortcomings of inadequate brightness and contrast characteristic of present day color tubes.
  • a more specific object of the invention is to provide a new color reproducing cathode-ray tube with substantially improved brightness of the reproduced image.
  • a further object of this invention is to provide an improved color reproducing cathode-ray tube with improved contrast ratios, obtainable in the reproduced image, without impairing the image brightness.
  • a still further object of this invention is to provide an improved color reproducing cathode-ray tube in which the differences in conversion efiiciency of the different phosphors are effectively compensated to improve the uniformity of the light output of the color image.
  • a color reproducing cathode-ray tube constructed in accordance with the present invention, comprises within an evacuated envelope a mul-ti-color image screen including, a plurality of interspersed groups of similarly shaped elemental phosphor areas, each of the elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards the image screen; and means, including a color-selection electrode provided with a plurality of apertures individually larger than elemental phosphor areas and disposed between the screen and the electron gun means, for selectively directing the electron beam components onto areas of respective ones of the groups.
  • the inventive arrangement is applicable to color tubes of various types, including, for example, post deflection acceleration mask type tubes, but for convenience will be described as embodied in a three-gun dot-screen shadow-mask tube in which mask and screen are operated at a common potential.
  • the image screen can be planar, spherical or of any other configuration, and may be mounted either on the face-plate of the tube or on a transparent target-plate behind the face-plate.
  • FIGURE 1 is a cross-sectional view, partly schematic, showing in general certain of the basic components of a color-reproducing cathode-ray tube, comprising a spherical aperture mask and a spherical image screen.
  • FIGURE 2 is a cross-sectional view of a color tube embodying the invention, showing portions of the screen and the mask at an enlarged scale, illustrating the relative positioning of the apertures in the mask and of the respective phosphor areas on the multi-color image screen.
  • FIGURE 3 is a schematic view, showing the arrangement of a triad of phosphor areas relative to the areas of impingement of the electron beams from the aperture mask in prior art color tubes.
  • FIGURE 4 is a schematic view, showing the arrangement of a triad of phosphor areas relative to the areas of impingement of the electron beams from the aperture mask in a color tube embodying the present invention.
  • FIGURE 5 is a schematic view, showing a modification of this invention in which the phosphor areas of different colors on the image screen are of different size.
  • FIGURE 6 is a schematic view, showing a further modification of the present invention.
  • FIGURE 1 A color reproducing cathode-ray tube 20 having a glass envelope 21 is shown in FIGURE 1. For clarity, most of the physical details which do not relate to the present invention are omitted.
  • the three electron guns are indicated by the rectangulars 22, 23 and 24 which are disposed in the neck portion 25 of the cathode-ray tube envelope 21 and are arranged to emit respective electron beam components, in this case separate electron beams, designated g, b and 1' respectively.
  • the electron guns are preferably disposed in a triangular array but can be arranged in other suitable interrelationships, such as a collinear array, depending upon the other structural features of the tube construction.
  • Alternatively a single electron gun can be used in conjunction with an auxiliary color-switching deflection system for deflecting the electron beam to sequentially produce three separate electron beam components.
  • the electron beam components g, b and r are accelerated in known manner to pass through a deflection field produced by scanning signals applied to a yoke member 26.
  • This deflection field changes the courses of the elec tron beam components in accordance with the instantaneous sweep signals applied to the yoke member 26.
  • Such course change of the electron beam components is gradual within the deflection field; for purposes of illustration and explanation, however, the change of the course of the electron beams is shown as occurring at a plane c-c passing through the yoke member 26 and hereinafter designated the color-center plane.
  • the electron beam components g, b, r are directed through the apertures in the color-selection electrode or shadow mask 29 to impinge on the scanning side (the side on which the electron beam components are incident) of a multi-color image screen 30, disposed on the inside surface of the frontplate 28 of the envelope 21.
  • the cathode-ray tube 20 also requires a convergence system, represented in the drawing by a convergence yoke assembly 27, for converging the electron beam components g, b, r in the plane of the shadow mask 29.
  • the apertured shadow mask structure 29 may include a plurality of circular apertures 31, the screen 30 being covered accordingly with a plurality of circular phosphor areas (dots).
  • Other forms than circular apertures in the mask and circular phosphor areas (dots) on the screen are feasible, as for instance, apertures of rectangular shape, slits in the form of thin rectangular openings etc.
  • the phosphor areas are disposed on the scanning side of the image screen 30 so that the electron beam components g, b, r are directed through the apertures in the mask structure 29 to impinge selectively upon the respective groups of phosphor areas of the screen 30.
  • Different phosphor materials are used for producing the component colors green, blue and red.
  • FIGURE 2 of the drawings The relative positioning of the apertures 31 in the mask 30 with regard to the arrangement of the phosphor areas 32g, 33b and Mr on the multi-color screen 30 is shown at larger scale, in FIGURE 2 of the drawings.
  • These phosphor areas (dots) are arranged in triads, with each triad centered relative to an aperture in the mask.
  • an electron-transparent aluminum or other conductive layer 50 covers the entire rear surface of the screen to provide increased brightness as well as to provide convenient means for maintaining the screen at the operational potential.
  • the apertures 31 in mask 29 are dimensioned and the relative mask and screen potentials selected so as to have the electron spots 35 on screen 30 larger than the size of phosphor areas 32g, 33b, Mr, and the intermediate areas 36g, 37b, 38r are made of or coated with a light absorbing material in a manner to be described.
  • the geometry of the conventional arrangement of the phosphor areas on the image screen is shown in FIGURE 3, in which the apertures in the mask are of such size and the mask and screen potentials of such magnitude that the electron spots 39g, 4%, 411' are of smaller size than the phosphor areas 42g, 42b, 421' on the image screen.
  • the apertures in the mask are made larger than the elemental phosphor areas on the screen, while the mask and screen potentials are of such magnitudes that the electron spots 46g, 46b, 46r on the screen are larger than the phosphor areas 43g, 44b, 451'.
  • the whole surface of the image screen, excluding the elemental phosphor areas is formed of or coated with a light absorbing material 47; this may be most conveniently accomplished by coating the intermediate areas with a material such as black manganese dioxide.
  • the blackened intermediate areas 47 of the image screen substantially reduce ambient light reflections since these blackened areas efiectively absorb the ambient light, but do not attenuate the light emitted by the image screen.
  • the face-plate of the cathode-ray tube and the safety-plate bonded thereto or superposed thereover may be formed of clear glass rather than the darkened or reduced-transmission glass ordinarily used in such de-
  • the combination of blackened areas intermediate the phosphor areas with electron spots larger than the individual elemental phosphor areas, and clear glass faceplate and safety-plate provides materially greater brightness without loss of contrast and, in many instances, with improved contrast as well.
  • a further advantage of a tube, embodying the present invention consists in that the desaturation effects caused by the reflected ambient light, are reduced by the increased effective absorption in the blackened intermediate areas 36g, 37b, 38r; this also improves the contrast ratios obtainable in the reproduced image, without reducing the efficiency of the cathode-ray tube.
  • Different methods for producing the light absorbing surfaces between the phosphor areas of the image screen may be employed. Two basic methods are possible: one in which the black area is produced first, and another method in which the different color phosphor areas are produced first and subsequently the intermediate black areas.
  • a black powder such as manganese dioxide may be settled over the whole area of the screen by a water sedimentation process.
  • the water is removed and the screen is dried and then coated with the reversal type photo-resist.
  • the sensitized scresen is exposed to light, either successively or simultaneously, from the color centers to be later used to expose the color phosphor areas.
  • the size of the light exposing source is selected to be such that because of penumbra effects, well known in the photoengraving art, a proper size area can be secured by controlling the exposure time. By this means phosphor areas (dots) smaller than the mask apertures are readily obtained.
  • the screen is developed in a resin solvent, which development also removes the black pigment in those areas where light has struck.
  • the three color phosphor areas may be put on using any conventional screening process. If desired, the phosphor areas can be made larger than the openings in the black area; in this way, the exposure time need not be critically regulated. Even though the phosphor areas are larger than openings in the black area, only the light generated in the clear areas of the black surface can reach the observer, the rest being absorbed by the black opaque coating.
  • a second method of making the screen consists in that the color phosphor areas are first made on the screen surface in conventional manner except that the phosphor areas are made smaller than the apertures in the mask, utilizing the above described method of controlling the exposure time.
  • the resin with the respective phosphors dispersed therein is then dyed in known manner with a dye which absorbs actinic light.
  • the whole area of the screen is subsequently coated with a dichromated photo-sensitive colloid, and the whole screen is then exposed, from the side opposite to that used in exposing the phosphor areas, to a source of diffuse actinic light.
  • the clear areas between the dyed phosphor areas, which are coated with the dichromated photo-sensitive colloid, are thus exposed and hardened, while the dyed phosphor areas do not transimit any light to the photo-sensitive colloid.
  • the unexposed dichromated photo-sensitive colloid is then washed away and a black pigment slurry is applied to the screen; the black pigment adheres only to the exposed and hardened colloid areas between the phosphor areas, as is well known in the art.
  • the rear surface of the screen is then aluminized and baked in conventional manner.
  • the baking also removes the organic coating and the dyes from the phosphor areas, as well as the organic coating from the areas between the phosphor dots.
  • the screen of the color tube of FIGURES 1 and 2 may be modified by making the blue phosphor area and the green phosphor area substantially smaller than the red phosphor area in each triad, the red phosphor being the least efficient. This results in improved color balance without substantial loss in overall brightness since the intermediate blackened areas are correspondingly enlarged.
  • FIGURE 5 Such a modification is shown in FIGURE 5, in which the blue phosphor area 4817 is made substantially smaller than the green phosphor area 49g, while the red phosphor area 50: is made substantially larger than the green and blue phosphor areas, thus improving the color balance of the light output from the image screen.
  • the diameter of the red phosphor area was 0.013 inch
  • the diameter of the green phosphor area was 0.0115 inch
  • the diameter of the blue phosphor area was 0.01 inch
  • the diameter of the apertures 31 of shadow-mask 29 being 0.016 inch.
  • the image screen as shown in FIG- URE 4 having phosphor areas of equal size in any one triad of 0.013 inch, the apertures in the shadow-mask being 0.016 inch, has a black, light absorbing area of 43.8% of the total area of the image screen.
  • the image screen of the embodiment shown in FIGURE 5 in which the phosphor areas are of unequal size within any triad, and having the red phosphor area of 0.13 inch, the green phosphor area of 0.0115 inch and the blue phosphor area of 0.01 inch, has a black, light absorbing area of 56.3% of the total area of the image screen. Moreover, the embodiment of FIGURE 5 provides improved appearance of the red phosphor areas on the image screen, since the electron beam component, impinging the red phosphor areas, is separated from the adjacent blue and green phosphor areas by a greater amount.
  • the relative dimensions may be modified as shown in FIGURE 6.
  • the diameter of the apertures 31 in the mask 29 may be reduced from 0.016 inch to 0.015 inch, and the diameter of the red phosphor area 511' increased from 0.013 to 0.014 inch (an increase of approximately 8%; the diameter of the green phosphor area 523 may be increased from 0.0115 inch to 0.012 inch, and that of the blue phosphor area 53b from 0.01 inch to 0.011 inch.
  • These larger phosphor areas increase the overall brightness of the image by approximately 16% as compared to the pattern of phosphor areas shown in FIGURE 5.
  • a color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen; and means including a colorselection electrode, provided with a plurality of apertures individually larger than said elemental phosphor areas and disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups.
  • a color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate areas, a coating of light absorbing material on said intermediate areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen, and means including a colorselection electrode, provided with a plurality of apertures, individually larger than said elemental phosphor areas and disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups.
  • a color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of substantially circular elemental phosphor areas; a corresponding plurality of electron guns for projecting a corresponding plurality of electron beams onto said image screen; and means including a shadow-mask, provided with a plurality of apertures individually larger than said elemental phosphor areas and disposed between said screen and said electron guns for selectively directing said electron beams onto areas of respective ones of said groups, the whole surface of said image screen except said phosphor areas being coated with black pigment material.
  • a color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each group exhibiting different color radiation characteristics and one group having a conversion efficiency smaller than that of the others, each of such elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen; and means including a multi-apertured color selection electrode disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups, the apertures in said color-selection electrode being individually larger than 'said elemental phosphor areas, and the elemental phosphor areas of said one of said groups being of larger size than those of the remaining groups.
  • a color reproducing cathode-ray tube comprising Within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each group exhibiting dilferent color radiation characteristics and having a conversion efficiency different than those of the other groups, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components toward said image screen; and means including a multi-apertured color-selection electrode disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups, the apertures in said color-selection electrode being individually larger than said elemental phosphor areas, and the individual elemental phosphor areas of each group being of different size than those of each of the remaining groups the relative sizes of the areas of the different groups being substantially inversely proportional to the respective conversion efficiencies.
  • a multi-color screen and a multiapertured color-selection electrode for color reproducing cathode-ray tubes, said image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; and said color-selection electrode including a plurality of apertures, individually larger than said elemental phosphor areas, for selectively directing electron beam components onto phosphor areas of respective ones of said groups.

Description

Aug. 25, 1964 J, P. FIORE ETAL 3,146,368
CATHODE-RAY TUBE WITH COLOR no'rs SPACED BY LIGHT ABSORBING 'AREAS Filed April 4. 1961 Joseph P R'ore 501m HI KapZczn o li-by.
United States Patent 3,146,368 CATHODE-RAY TUBE WETH COLOR DOTS SPACE!) BY LIGHT ABSURBING AREAS Joseph P. Fiore and Sam H. Kaplan, Chicago, Ill., as-
signors to The Rauland Corporation, a corporation of Illinois Filed Apr. 4, 1961, Ser. No. 100,723 9 Claims. (Cl. 313-92) The present invention relates generally to cathode-ray tubes used in color reproduction and more particularly to color reproducing cathode-ray tubes affording improved brightness and contrast.
In color reproducing cathode-ray tubes of the type with which the present invention is concerned, it is common to provide an evacuated envelope made of glass, metal or any other suitable material having an enlarged end carrying a frontplate, and at its opposite end a neck portion with an electrode arrangement formed of one or more electron guns for projecting a beam or beams of electrons toward the frontplate. Similar to the arrangement of black and white cathode-ray tubes, the energy of the electrons is converted into light by a suitable phosphor layer provided on the inside surface of the frontplate, or on a separate screen structure provided within the envelope just behind and visible through the frontplate. The color reproducing cathode-ray tube is preferably provided with a phosphor screen which is differentiated from point to point in that adjacent areas of different phosphor material produce light of different colors. A color-selection electrode, usually a multi-apertured mask and conventionally made of a very thin metal sheet which is opaque to the passage of electrons, is disposed between the electron gun assembly and the phosphor screen and adjacent to the screen. The mask is provided with a large number of small, closely spaced apertures geometrically related to the different phosphor areas on the screen in a predetermined manner. The relation of the apertures to the phosphor areas is such that, by con-trolling the direction of the electron beam, different phosphor areas, producing predetermined color emission, can be selectively energized to produce a visible picture corresponding to the original scene.
In conventional color tubes, the apertures of the mask are of such size and the operating voltages are of such magnitudes, that the electron beam impinges only a portion of the respective phosphor areas. The difference between the actual size of the phosphor area and the area not impinged by the electron beam constitutes a tolerance or a guard ring which provides a safety factor for preventing color contamination owing to various mechanical, thermal and electrical errors. However, full utilization of the phosphor is not achieved, a fact which contributes to the undesirable shortcomings of inadequate brightness and contrast characteristic of present day color tubes.
Accordingly, it is a general object of the present invention to provide a new and improved color reproducing cathode-ray tube.
A more specific object of the invention is to provide a new color reproducing cathode-ray tube with substantially improved brightness of the reproduced image.
A further object of this invention is to provide an improved color reproducing cathode-ray tube with improved contrast ratios, obtainable in the reproduced image, without impairing the image brightness.
It is a more specific object of this invention to provide a new and improved color reproducing cathode-ray tube having a multi-color image screen which will effectively absorb much of the ambient light at the image screen, but will not attenuate the light emitted by the screen.
It is another object of this invention to provide an im- 3,146,368 Patented Aug. 25, 1964 MCe proved multicolor image screen for the color reproducing cathode-ray tube with substantially reduced color desaturation efi'ects attributable to reflected ambient light, but with out reducing the efiiciency of the tube.
A still further object of this invention is to provide an improved color reproducing cathode-ray tube in which the differences in conversion efiiciency of the different phosphors are effectively compensated to improve the uniformity of the light output of the color image.
A color reproducing cathode-ray tube, constructed in accordance with the present invention, comprises within an evacuated envelope a mul-ti-color image screen including, a plurality of interspersed groups of similarly shaped elemental phosphor areas, each of the elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards the image screen; and means, including a color-selection electrode provided with a plurality of apertures individually larger than elemental phosphor areas and disposed between the screen and the electron gun means, for selectively directing the electron beam components onto areas of respective ones of the groups.
The inventive arrangement is applicable to color tubes of various types, including, for example, post deflection acceleration mask type tubes, but for convenience will be described as embodied in a three-gun dot-screen shadow-mask tube in which mask and screen are operated at a common potential.
The image screen can be planar, spherical or of any other configuration, and may be mounted either on the face-plate of the tube or on a transparent target-plate behind the face-plate.
The features of the present invention, which are believed to be novel, are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may be best understood, however, by reference to the following description of exemplary embodiments of this invention taken in connection with the accompanying drawings, in the several figures of which like reference numerals identify like elements, and in which:
FIGURE 1 is a cross-sectional view, partly schematic, showing in general certain of the basic components of a color-reproducing cathode-ray tube, comprising a spherical aperture mask and a spherical image screen.
FIGURE 2 is a cross-sectional view of a color tube embodying the invention, showing portions of the screen and the mask at an enlarged scale, illustrating the relative positioning of the apertures in the mask and of the respective phosphor areas on the multi-color image screen.
FIGURE 3 is a schematic view, showing the arrangement of a triad of phosphor areas relative to the areas of impingement of the electron beams from the aperture mask in prior art color tubes.
FIGURE 4 is a schematic view, showing the arrangement of a triad of phosphor areas relative to the areas of impingement of the electron beams from the aperture mask in a color tube embodying the present invention.
FIGURE 5 is a schematic view, showing a modification of this invention in which the phosphor areas of different colors on the image screen are of different size.
FIGURE 6 is a schematic view, showing a further modification of the present invention.
A color reproducing cathode-ray tube 20 having a glass envelope 21 is shown in FIGURE 1. For clarity, most of the physical details which do not relate to the present invention are omitted. The three electron guns are indicated by the rectangulars 22, 23 and 24 which are disposed in the neck portion 25 of the cathode-ray tube envelope 21 and are arranged to emit respective electron beam components, in this case separate electron beams, designated g, b and 1' respectively. The electron guns are preferably disposed in a triangular array but can be arranged in other suitable interrelationships, such as a collinear array, depending upon the other structural features of the tube construction. Alternatively a single electron gun can be used in conjunction with an auxiliary color-switching deflection system for deflecting the electron beam to sequentially produce three separate electron beam components.
The electron beam components g, b and r are accelerated in known manner to pass through a deflection field produced by scanning signals applied to a yoke member 26. This deflection field changes the courses of the elec tron beam components in accordance with the instantaneous sweep signals applied to the yoke member 26. Such course change of the electron beam components is gradual within the deflection field; for purposes of illustration and explanation, however, the change of the course of the electron beams is shown as occurring at a plane c-c passing through the yoke member 26 and hereinafter designated the color-center plane. After being deflected, the electron beam components g, b, r are directed through the apertures in the color-selection electrode or shadow mask 29 to impinge on the scanning side (the side on which the electron beam components are incident) of a multi-color image screen 30, disposed on the inside surface of the frontplate 28 of the envelope 21. The cathode-ray tube 20 also requires a convergence system, represented in the drawing by a convergence yoke assembly 27, for converging the electron beam components g, b, r in the plane of the shadow mask 29.
The apertured shadow mask structure 29 may include a plurality of circular apertures 31, the screen 30 being covered accordingly with a plurality of circular phosphor areas (dots). Three interspersed similar groups of phosphor dots, one for each primary color, are provided in the usual manner. Adjacent phosphor areas, one from each group, constitute triads or clusters, and one such triad is positioned in relation to each aperture in the mask 29 in such a manner that the electron beam components g, b, r selectively impinge upon corresponding groups of phosphor areas. Other forms than circular apertures in the mask and circular phosphor areas (dots) on the screen are feasible, as for instance, apertures of rectangular shape, slits in the form of thin rectangular openings etc. Regardless of the particular configuration of the mask and of the image screen, the phosphor areas are disposed on the scanning side of the image screen 30 so that the electron beam components g, b, r are directed through the apertures in the mask structure 29 to impinge selectively upon the respective groups of phosphor areas of the screen 30.
The different groups of phosphor areas on the screen 30, regardless of the configuration of same, possess different color-response characteristics, each group emitting light of a different one of the elemental or primary colors when excited by the incidence of an electron beam. Different phosphor materials are used for producing the component colors green, blue and red.
The relative positioning of the apertures 31 in the mask 30 with regard to the arrangement of the phosphor areas 32g, 33b and Mr on the multi-color screen 30 is shown at larger scale, in FIGURE 2 of the drawings. These phosphor areas (dots) are arranged in triads, with each triad centered relative to an aperture in the mask. Preferably an electron-transparent aluminum or other conductive layer 50 covers the entire rear surface of the screen to provide increased brightness as well as to provide convenient means for maintaining the screen at the operational potential.
The construction of the tube as thus far described, including the phosphor materials, the exposure techniques vices.
and the photo-resist materials used in the production of the screen, is well known in the art.
According to the present invention, the apertures 31 in mask 29 are dimensioned and the relative mask and screen potentials selected so as to have the electron spots 35 on screen 30 larger than the size of phosphor areas 32g, 33b, Mr, and the intermediate areas 36g, 37b, 38r are made of or coated with a light absorbing material in a manner to be described. The geometry of the conventional arrangement of the phosphor areas on the image screen is shown in FIGURE 3, in which the apertures in the mask are of such size and the mask and screen potentials of such magnitude that the electron spots 39g, 4%, 411' are of smaller size than the phosphor areas 42g, 42b, 421' on the image screen.
In distinct contrast in a tube embodying the present invention, as shown in FIGURE 4, the apertures in the mask are made larger than the elemental phosphor areas on the screen, while the mask and screen potentials are of such magnitudes that the electron spots 46g, 46b, 46r on the screen are larger than the phosphor areas 43g, 44b, 451'. In accordance with a further feature of this invention the whole surface of the image screen, excluding the elemental phosphor areas, is formed of or coated with a light absorbing material 47; this may be most conveniently accomplished by coating the intermediate areas with a material such as black manganese dioxide. Thus the relation between the size of the actual phosphor areas 43g, 44b and 451' and the size of the electron spots 46g, 46b, 46;, as shown in FIGURE 4, is exactly reversed as compared with prior art color tubes.
The blackened intermediate areas 47 of the image screen substantially reduce ambient light reflections since these blackened areas efiectively absorb the ambient light, but do not attenuate the light emitted by the image screen. To achieve the maximum benefit of the invention in this respect, the face-plate of the cathode-ray tube and the safety-plate bonded thereto or superposed thereover may be formed of clear glass rather than the darkened or reduced-transmission glass ordinarily used in such de- The combination of blackened areas intermediate the phosphor areas with electron spots larger than the individual elemental phosphor areas, and clear glass faceplate and safety-plate, provides materially greater brightness without loss of contrast and, in many instances, with improved contrast as well.
A further advantage of a tube, embodying the present invention, consists in that the desaturation effects caused by the reflected ambient light, are reduced by the increased effective absorption in the blackened intermediate areas 36g, 37b, 38r; this also improves the contrast ratios obtainable in the reproduced image, without reducing the efficiency of the cathode-ray tube.
Different methods for producing the light absorbing surfaces between the phosphor areas of the image screen may be employed. Two basic methods are possible: one in which the black area is produced first, and another method in which the different color phosphor areas are produced first and subsequently the intermediate black areas.
In the first mentioned method, it is necessary to produce an image which is the reverse of that usually applied in photo-screening color tubes. Whereas each aperture normally produces three phosphor areas (dots) images, now there is required an image everywhere except where the phosphor areas are to be. It is therefore necessary to use some kind of photographic reversal process. While dillerent reversal methods are well known using silver halide emulsions, a more economical method involves the use of a reversal type photo-resist, that is, a photo-resist which becomes soluble where exposed by light and remains insoluble'elsewhere. Such a resist is disclosed, for instance, in U.S. Patent No. 2,533,530 to H. C. Staeble. Another reversal type resist, based on a diazotype material, is disclosed in U.S. Patent No. 2,929,708 to D. Straw.
To make the black areas, a black powder such as manganese dioxide may be settled over the whole area of the screen by a water sedimentation process. The water is removed and the screen is dried and then coated with the reversal type photo-resist. The sensitized scresen is exposed to light, either successively or simultaneously, from the color centers to be later used to expose the color phosphor areas. The size of the light exposing source is selected to be such that because of penumbra effects, well known in the photoengraving art, a proper size area can be secured by controlling the exposure time. By this means phosphor areas (dots) smaller than the mask apertures are readily obtained. After exposure, the screen is developed in a resin solvent, which development also removes the black pigment in those areas where light has struck. Following the application of the black area, the three color phosphor areas may be put on using any conventional screening process. If desired, the phosphor areas can be made larger than the openings in the black area; in this way, the exposure time need not be critically regulated. Even though the phosphor areas are larger than openings in the black area, only the light generated in the clear areas of the black surface can reach the observer, the rest being absorbed by the black opaque coating.
A second method of making the screen consists in that the color phosphor areas are first made on the screen surface in conventional manner except that the phosphor areas are made smaller than the apertures in the mask, utilizing the above described method of controlling the exposure time.
The resin with the respective phosphors dispersed therein is then dyed in known manner with a dye which absorbs actinic light. The whole area of the screen is subsequently coated with a dichromated photo-sensitive colloid, and the whole screen is then exposed, from the side opposite to that used in exposing the phosphor areas, to a source of diffuse actinic light. The clear areas between the dyed phosphor areas, which are coated with the dichromated photo-sensitive colloid, are thus exposed and hardened, while the dyed phosphor areas do not transimit any light to the photo-sensitive colloid.
The unexposed dichromated photo-sensitive colloid is then washed away and a black pigment slurry is applied to the screen; the black pigment adheres only to the exposed and hardened colloid areas between the phosphor areas, as is well known in the art.
The rear surface of the screen is then aluminized and baked in conventional manner. The baking also removes the organic coating and the dyes from the phosphor areas, as well as the organic coating from the areas between the phosphor dots.
In the screen of FIGURE 4, all phosphor areas of each triad are of the same size. Because the conversion efiiciency of the three different phosphors varies to a substantial degree, it has previously been the practice to dilute the blue phosphor by approximately 35% with a white inert material in order to cut or reduce the brightness of the blue phosphor areas. To obtain further improved performance in a tube embodying the invention, the screen of the color tube of FIGURES 1 and 2 may be modified by making the blue phosphor area and the green phosphor area substantially smaller than the red phosphor area in each triad, the red phosphor being the least efficient. This results in improved color balance without substantial loss in overall brightness since the intermediate blackened areas are correspondingly enlarged. At the same time the possibility of color contamination attributable to landing errors of the electron beam components is still further reduced. Such a modification is shown in FIGURE 5, in which the blue phosphor area 4817 is made substantially smaller than the green phosphor area 49g, while the red phosphor area 50: is made substantially larger than the green and blue phosphor areas, thus improving the color balance of the light output from the image screen.
In an illustrative color reproducing cathode-ray tube having an image screen as shown in FIGURE 5, the diameter of the red phosphor area was 0.013 inch, the diameter of the green phosphor area was 0.0115 inch, and the diameter of the blue phosphor area was 0.01 inch, the diameter of the apertures 31 of shadow-mask 29 being 0.016 inch. The image screen as shown in FIG- URE 4, having phosphor areas of equal size in any one triad of 0.013 inch, the apertures in the shadow-mask being 0.016 inch, has a black, light absorbing area of 43.8% of the total area of the image screen. The image screen of the embodiment shown in FIGURE 5, in which the phosphor areas are of unequal size within any triad, and having the red phosphor area of 0.13 inch, the green phosphor area of 0.0115 inch and the blue phosphor area of 0.01 inch, has a black, light absorbing area of 56.3% of the total area of the image screen. Moreover, the embodiment of FIGURE 5 provides improved appearance of the red phosphor areas on the image screen, since the electron beam component, impinging the red phosphor areas, is separated from the adjacent blue and green phosphor areas by a greater amount. Since the commonly used blue and green phosphors are substantially more eflicient than the red phosphor, even a small overlap of the blue and green phosphor areas by the electron beam component intended for the red phosphor leads to substantial color contamination and the increased separation is especially significant as it affects the red component of the reproduced image.
For still further improvement in a tube embodying the invention, to not only improve the contrast ratios but also enable an increase of the direct light output of the image screen, the relative dimensions may be modified as shown in FIGURE 6. For example, the diameter of the apertures 31 in the mask 29 may be reduced from 0.016 inch to 0.015 inch, and the diameter of the red phosphor area 511' increased from 0.013 to 0.014 inch (an increase of approximately 8%; the diameter of the green phosphor area 523 may be increased from 0.0115 inch to 0.012 inch, and that of the blue phosphor area 53b from 0.01 inch to 0.011 inch. These larger phosphor areas increase the overall brightness of the image by approximately 16% as compared to the pattern of phosphor areas shown in FIGURE 5.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modificatons may be made therein without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
We claim:
1. A color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen; and means including a colorselection electrode, provided with a plurality of apertures individually larger than said elemental phosphor areas and disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups.
2. A color reproducing cathode-ray tube as in claim 1, in which said image screen is formed on a transparent face-plate constituting a portion of said envelope.
3. A color reproducing cathode-ray tube as in claim 2, in which said face-plate is composed of clear glass.
4. A color reproducing cathode-ray tube in accordance with claim 1, in which said apertures in said mask, as
well as said elemental phosphor areas on said image screen, are substantially circular.
5. A color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate areas, a coating of light absorbing material on said intermediate areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen, and means including a colorselection electrode, provided with a plurality of apertures, individually larger than said elemental phosphor areas and disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups.
6. A color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of substantially circular elemental phosphor areas; a corresponding plurality of electron guns for projecting a corresponding plurality of electron beams onto said image screen; and means including a shadow-mask, provided with a plurality of apertures individually larger than said elemental phosphor areas and disposed between said screen and said electron guns for selectively directing said electron beams onto areas of respective ones of said groups, the whole surface of said image screen except said phosphor areas being coated with black pigment material.
7. A color reproducing cathode-ray tube comprising within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each group exhibiting different color radiation characteristics and one group having a conversion efficiency smaller than that of the others, each of such elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components towards said image screen; and means including a multi-apertured color selection electrode disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups, the apertures in said color-selection electrode being individually larger than 'said elemental phosphor areas, and the elemental phosphor areas of said one of said groups being of larger size than those of the remaining groups.
8. A color reproducing cathode-ray tube comprising Within an evacuated envelope: a multi-color image screen including a plurality of interspersed groups of elemental phosphor areas, each group exhibiting dilferent color radiation characteristics and having a conversion efficiency different than those of the other groups, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; electron gun means for projecting a corresponding plurality of electron beam components toward said image screen; and means including a multi-apertured color-selection electrode disposed between said screen and said electron gun means for selectively directing said electron beam components onto areas of respective ones of said groups, the apertures in said color-selection electrode being individually larger than said elemental phosphor areas, and the individual elemental phosphor areas of each group being of different size than those of each of the remaining groups the relative sizes of the areas of the different groups being substantially inversely proportional to the respective conversion efficiencies.
9. In combination, a multi-color screen and a multiapertured color-selection electrode for color reproducing cathode-ray tubes, said image screen including a plurality of interspersed groups of elemental phosphor areas, each of said elemental phosphor areas being spaced from all adjacent such areas by intermediate light absorbing areas; and said color-selection electrode including a plurality of apertures, individually larger than said elemental phosphor areas, for selectively directing electron beam components onto phosphor areas of respective ones of said groups.
References Cited in the file of this patent UNITED STATES PATENTS 2,795,719 Morrell June 11, 1957 2,802,964 Jesty Aug. 13, 1957 3,005,125 Evans et al. Oct. 17, 1961

Claims (1)

  1. 9. IN COMBINATION, A MULTI-COLOR SCREEN AND A MULTIAPERTURED COLOR-SELECTION ELECTRODE FOR COLOR REPRODUCING CATHODE-RAY TUBES, SAID IMAGE SCREEN INCLUDING A PLURALITY OF INTERSPERSED GROUP OF ELEMENTAL PHOSPHOR AREAS, EACH OF SAID ELEMENTAL PHOSPHOR AREAS BEING SPACED FROM ALL ADJACENT SUCH AREAS BY INTERMEDIATE LIGHT ABSORBING AREAS; AND SAID COLOR-SELECTION ELECTRODE INCLUDING A PLURALITY OF APERTURES, INDIVIDUALLY LARGER THAN SAID ELEMENTAL PHOSPHOR AREAS, FOR SELECTIVELY DIRECTING ELECTRON BEAM COMPONENTS ONTO PHOSPHOR AREAS OF RESPECTIVE ONES OF SAID GROUPS.
US100723A 1961-04-04 1961-04-04 Cathode-ray tube with color dots spaced by light absorbing areas Expired - Lifetime US3146368A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US100723A US3146368A (en) 1961-04-04 1961-04-04 Cathode-ray tube with color dots spaced by light absorbing areas
GB12893/62A GB960940A (en) 1961-04-04 1962-04-04 Colour reproducing cathode ray tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US100723A US3146368A (en) 1961-04-04 1961-04-04 Cathode-ray tube with color dots spaced by light absorbing areas

Publications (1)

Publication Number Publication Date
US3146368A true US3146368A (en) 1964-08-25

Family

ID=22281201

Family Applications (1)

Application Number Title Priority Date Filing Date
US100723A Expired - Lifetime US3146368A (en) 1961-04-04 1961-04-04 Cathode-ray tube with color dots spaced by light absorbing areas

Country Status (2)

Country Link
US (1) US3146368A (en)
GB (1) GB960940A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443944A (en) * 1963-10-23 1969-05-13 United Aircraft Corp Method of depositing conductive patterns on a substrate
US3475169A (en) * 1965-08-20 1969-10-28 Zenith Radio Corp Process of electrostatically screening color cathode-ray tubes
US3582701A (en) * 1969-03-27 1971-06-01 Zenith Radio Corp Color tube screen with light-absorbing cermet deposits
US3604081A (en) * 1969-06-04 1971-09-14 Zenith Radio Corp Screening a color cathode-ray tube
US3614504A (en) * 1970-04-09 1971-10-19 Zenith Radio Corp Color picture tube screen with phosphors dots overlapping portions of a partial-digit-transmissive black-surround material
US3614503A (en) * 1970-02-24 1971-10-19 Zenith Radio Corp Black-surround color picture tube
DE2122943A1 (en) * 1970-06-05 1971-12-16 Philips Nv Method for optically projecting a pattern of nearly circular openings onto a sensitive layer and apparatus for carrying out this method
US3632339A (en) * 1969-04-28 1972-01-04 Zenith Radio Corp Method of screening a color cathode-ray tube
US3645734A (en) * 1969-12-22 1972-02-29 Toppan Printing Co Ltd Process of manufacturing a master dot pattern for photoetching a graded-hole shadow mask
US3661580A (en) * 1970-01-30 1972-05-09 Rca Corp Photographic method for producing a cathode-ray tube screen structure
US3671795A (en) * 1970-08-28 1972-06-20 Northrop Corp High contrast display for electron beam scanner
DE2241729A1 (en) * 1971-08-27 1973-03-08 Tokyo Shibaura Electric Co COLOR CATHODE BEAM TUBE
DE2303630A1 (en) * 1972-01-26 1973-08-16 Hitachi Ltd PROCESS FOR PRODUCING A PATTERN, IN PARTICULAR A COLOR SCREEN ACCORDING TO THE PHOTOLACQUER TECHNOLOGY
JPS4891865U (en) * 1972-02-07 1973-11-05
JPS4839862B1 (en) * 1969-11-22 1973-11-27
JPS4842018B1 (en) * 1969-12-15 1973-12-10
US3779760A (en) * 1972-10-02 1973-12-18 Sony Corp Method of producing a striped cathode ray tube screen
US3790839A (en) * 1972-04-04 1974-02-05 Zenith Radio Corp Rectangular grade black surround screen
JPS4914778B1 (en) * 1970-04-03 1974-04-10
JPS4915927B1 (en) * 1970-05-15 1974-04-18
US3835347A (en) * 1971-08-11 1974-09-10 Hitachi Ltd Colour picture tube with improved color purity
US3841875A (en) * 1972-04-28 1974-10-15 Zenith Radio Corp Method for grading the screen of a color tube
US3853560A (en) * 1970-07-11 1974-12-10 Sony Corp Method of making an electron sensitive mosaic color screen
JPS504973A (en) * 1973-05-16 1975-01-20
US3879632A (en) * 1971-10-18 1975-04-22 Zenith Radio Corp High-brightness, high-contrast cathode-ray tube faceplate panel
JPS5075361A (en) * 1973-11-05 1975-06-20
JPS5078272A (en) * 1973-11-09 1975-06-26
JPS5018756B1 (en) * 1969-12-29 1975-07-01
JPS50111985A (en) * 1973-11-16 1975-09-03
JPS511510B1 (en) * 1970-11-06 1976-01-17
JPS517396B1 (en) * 1970-05-13 1976-03-06
US3973160A (en) * 1973-08-03 1976-08-03 U.S. Philips Corporation Color screen with space between luminescent regions pervious to thermal radiation from shadow mask
US3979630A (en) * 1971-08-02 1976-09-07 Rca Corporation Shadow mask color picture tube having non-reflective material between elongated phosphor areas and positive tolerance
US3988632A (en) * 1971-10-06 1976-10-26 Zenith Radio Corporation Black-surround color picture tube
DE2617684A1 (en) 1975-04-23 1976-11-04 Rca Corp PRINTING PROCESS FOR THE PRODUCTION OF A PHOTOMASK
JPS5297054U (en) * 1976-11-17 1977-07-20
JPS52100970A (en) * 1976-10-12 1977-08-24 Toshiba Corp Manufacture of fluorescent surface of black stripe type color picture tube
US4049451A (en) * 1972-01-14 1977-09-20 Rca Corporation Method for forming a color television picture tube screen
US4066924A (en) * 1974-05-22 1978-01-03 General Electric Company Screen for slotted aperture mask color television picture tube
US4070596A (en) * 1971-08-27 1978-01-24 Tokyo Shibaura Electric Co., Ltd. In-line plural beams cathode ray tube having color phosphor element strips spaced from each other by intervening light absorbing areas and slit-shaped aperture mask
US4100452A (en) * 1976-11-02 1978-07-11 Zenith Radio Corporation Color television picture tube image screen having positive and negative misregistration tolerance conditions
US4140941A (en) * 1976-03-02 1979-02-20 Ise Electronics Corporation Cathode-ray display panel
EP0003612A2 (en) * 1978-02-15 1979-08-22 Siemens Aktiengesellschaft Process for the manufacture of coloured, preferably black, picture-dot surrounds of preselected conductivity, preferably for flat colour-picture screens
US4186326A (en) * 1973-06-18 1980-01-29 Matsushita Electronics Corporation Shadow mask having vertical pitch about 8/(2n-1) times horizontal pitch
EP0012920A1 (en) * 1978-12-20 1980-07-09 Siemens Aktiengesellschaft Luminescent screen for picture display tubes and method of its manufacture
US4217518A (en) * 1975-01-17 1980-08-12 Tokyo Shibaura Electric Co., Ltd. Direct-viewing storage tube with opaque strip on transparent collector adjacent scan area
US4217520A (en) * 1978-08-30 1980-08-12 Zenith Radio Corporation Image display faceplate having a chromatic matrix
US4223083A (en) * 1977-12-27 1980-09-16 Tektronix, Inc. Virtual mask exposure system for CRT screen manufacture
US4251610A (en) * 1979-11-02 1981-02-17 Tektronix, Inc. Method of making multicolor CRT display screen with minimal phosphor contamination
DE3214571A1 (en) * 1981-04-20 1982-11-04 Hitachi Ltd MANUFACTURING METHOD FOR LUMINOUS SHIELDS OF COLOR IMAGE TUBES
DE3211266A1 (en) * 1981-03-27 1982-11-04 Hitachi, Ltd., Tokyo FLUORESCENCE SCREENS OF COLORED TUBES AND THEIR PRODUCTION PROCESS
US4369241A (en) * 1980-03-19 1983-01-18 Hitachi, Ltd. Method of forming a fluorescent screen of a black matrix type color picture tube
US4392077A (en) * 1979-02-14 1983-07-05 Zenith Radio Corporation Deeply filtered television image display
US4475797A (en) * 1982-07-30 1984-10-09 Zenith Electronics Corporation Color cathode ray tube screening exposure method and apparatus
EP0126215A2 (en) * 1983-05-18 1984-11-28 International Business Machines Corporation Colour cathode ray tube
FR2579019A1 (en) * 1985-03-13 1986-09-19 Rank Electronic Tubes Ltd CATHODE RAY TUBE
US5012112A (en) * 1989-02-21 1991-04-30 Martin Marietta Corporation Infrared scene projector
US5122708A (en) * 1990-12-12 1992-06-16 North American Philips Corporation Color reference CRT and method of making
US5717281A (en) * 1995-04-19 1998-02-10 Chunghwa Picture Tubes, Ltd. Photoresist for cathode ray tubes that includes vinyl pyrrolidone-vinylalcohol and a di-tetraalkylammonium salt
US6002203A (en) * 1996-05-28 1999-12-14 Kabushiki Kaisha Toshiba Cathode ray tube having an envelope shaped to reduce beam deflection power requirements
US6013978A (en) * 1994-03-08 2000-01-11 U.S. Philips Corporation Method for producing phosphor screens, and color cathode ray tubes incorporating same
US6060219A (en) * 1998-05-21 2000-05-09 Micron Technology, Inc. Methods of forming electron emitters, surface conduction electron emitters and field emission display assemblies
US7008739B1 (en) * 1995-04-17 2006-03-07 Lg Electronics Inc. Process for manufacturing fluorescent film of a color braun tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220892A (en) 1977-06-13 1980-09-02 Rca Corporation Phosphor screen for modular flat panel display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2795719A (en) * 1954-08-18 1957-06-11 Rca Corp Color-kinescopes
US2802964A (en) * 1953-07-10 1957-08-13 Marconi Wireless Telegraph Co Color television systems
US3005125A (en) * 1957-12-05 1961-10-17 Sylvania Electric Prod Display screen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802964A (en) * 1953-07-10 1957-08-13 Marconi Wireless Telegraph Co Color television systems
US2795719A (en) * 1954-08-18 1957-06-11 Rca Corp Color-kinescopes
US3005125A (en) * 1957-12-05 1961-10-17 Sylvania Electric Prod Display screen

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443944A (en) * 1963-10-23 1969-05-13 United Aircraft Corp Method of depositing conductive patterns on a substrate
US3475169A (en) * 1965-08-20 1969-10-28 Zenith Radio Corp Process of electrostatically screening color cathode-ray tubes
US3582701A (en) * 1969-03-27 1971-06-01 Zenith Radio Corp Color tube screen with light-absorbing cermet deposits
US3632339A (en) * 1969-04-28 1972-01-04 Zenith Radio Corp Method of screening a color cathode-ray tube
US3604081A (en) * 1969-06-04 1971-09-14 Zenith Radio Corp Screening a color cathode-ray tube
JPS4839862B1 (en) * 1969-11-22 1973-11-27
JPS4842018B1 (en) * 1969-12-15 1973-12-10
US3645734A (en) * 1969-12-22 1972-02-29 Toppan Printing Co Ltd Process of manufacturing a master dot pattern for photoetching a graded-hole shadow mask
JPS5018756B1 (en) * 1969-12-29 1975-07-01
US3661580A (en) * 1970-01-30 1972-05-09 Rca Corp Photographic method for producing a cathode-ray tube screen structure
US3614503A (en) * 1970-02-24 1971-10-19 Zenith Radio Corp Black-surround color picture tube
JPS4914778B1 (en) * 1970-04-03 1974-04-10
US3614504A (en) * 1970-04-09 1971-10-19 Zenith Radio Corp Color picture tube screen with phosphors dots overlapping portions of a partial-digit-transmissive black-surround material
JPS517396B1 (en) * 1970-05-13 1976-03-06
JPS4915927B1 (en) * 1970-05-15 1974-04-18
DE2122943A1 (en) * 1970-06-05 1971-12-16 Philips Nv Method for optically projecting a pattern of nearly circular openings onto a sensitive layer and apparatus for carrying out this method
US3853560A (en) * 1970-07-11 1974-12-10 Sony Corp Method of making an electron sensitive mosaic color screen
US3671795A (en) * 1970-08-28 1972-06-20 Northrop Corp High contrast display for electron beam scanner
JPS511510B1 (en) * 1970-11-06 1976-01-17
US3979630A (en) * 1971-08-02 1976-09-07 Rca Corporation Shadow mask color picture tube having non-reflective material between elongated phosphor areas and positive tolerance
US3835347A (en) * 1971-08-11 1974-09-10 Hitachi Ltd Colour picture tube with improved color purity
DE2241729A1 (en) * 1971-08-27 1973-03-08 Tokyo Shibaura Electric Co COLOR CATHODE BEAM TUBE
US4070596A (en) * 1971-08-27 1978-01-24 Tokyo Shibaura Electric Co., Ltd. In-line plural beams cathode ray tube having color phosphor element strips spaced from each other by intervening light absorbing areas and slit-shaped aperture mask
US3988632A (en) * 1971-10-06 1976-10-26 Zenith Radio Corporation Black-surround color picture tube
US3879632A (en) * 1971-10-18 1975-04-22 Zenith Radio Corp High-brightness, high-contrast cathode-ray tube faceplate panel
US4049451A (en) * 1972-01-14 1977-09-20 Rca Corporation Method for forming a color television picture tube screen
DE2303630A1 (en) * 1972-01-26 1973-08-16 Hitachi Ltd PROCESS FOR PRODUCING A PATTERN, IN PARTICULAR A COLOR SCREEN ACCORDING TO THE PHOTOLACQUER TECHNOLOGY
JPS4891865U (en) * 1972-02-07 1973-11-05
US3790839A (en) * 1972-04-04 1974-02-05 Zenith Radio Corp Rectangular grade black surround screen
US3841875A (en) * 1972-04-28 1974-10-15 Zenith Radio Corp Method for grading the screen of a color tube
US3779760A (en) * 1972-10-02 1973-12-18 Sony Corp Method of producing a striped cathode ray tube screen
JPS504973A (en) * 1973-05-16 1975-01-20
US4186326A (en) * 1973-06-18 1980-01-29 Matsushita Electronics Corporation Shadow mask having vertical pitch about 8/(2n-1) times horizontal pitch
US3973160A (en) * 1973-08-03 1976-08-03 U.S. Philips Corporation Color screen with space between luminescent regions pervious to thermal radiation from shadow mask
JPS5731249B2 (en) * 1973-11-05 1982-07-03
JPS5075361A (en) * 1973-11-05 1975-06-20
JPS5078272A (en) * 1973-11-09 1975-06-26
JPS5634981B2 (en) * 1973-11-16 1981-08-14
JPS50111985A (en) * 1973-11-16 1975-09-03
US4066924A (en) * 1974-05-22 1978-01-03 General Electric Company Screen for slotted aperture mask color television picture tube
US4217518A (en) * 1975-01-17 1980-08-12 Tokyo Shibaura Electric Co., Ltd. Direct-viewing storage tube with opaque strip on transparent collector adjacent scan area
DE2617684A1 (en) 1975-04-23 1976-11-04 Rca Corp PRINTING PROCESS FOR THE PRODUCTION OF A PHOTOMASK
DE2661041C2 (en) * 1975-04-23 1989-07-13 Rca Licensing Corp., Princeton, N.J., Us
US4140941A (en) * 1976-03-02 1979-02-20 Ise Electronics Corporation Cathode-ray display panel
JPS52100970A (en) * 1976-10-12 1977-08-24 Toshiba Corp Manufacture of fluorescent surface of black stripe type color picture tube
JPS6053419B2 (en) * 1976-10-12 1985-11-26 株式会社東芝 Method for manufacturing fluorescent surface of black stripe type color picture tube
US4100452A (en) * 1976-11-02 1978-07-11 Zenith Radio Corporation Color television picture tube image screen having positive and negative misregistration tolerance conditions
JPS5297054U (en) * 1976-11-17 1977-07-20
US4223083A (en) * 1977-12-27 1980-09-16 Tektronix, Inc. Virtual mask exposure system for CRT screen manufacture
EP0003612A2 (en) * 1978-02-15 1979-08-22 Siemens Aktiengesellschaft Process for the manufacture of coloured, preferably black, picture-dot surrounds of preselected conductivity, preferably for flat colour-picture screens
EP0003612A3 (en) * 1978-02-15 1979-09-05 Siemens Aktiengesellschaft Berlin Und Munchen Method for the manufacture of an edge, preferably coloured black, of a picture screen, with adjustable conductivity of the pigments, preferentially for flat colour picture screens
US4217520A (en) * 1978-08-30 1980-08-12 Zenith Radio Corporation Image display faceplate having a chromatic matrix
EP0012920A1 (en) * 1978-12-20 1980-07-09 Siemens Aktiengesellschaft Luminescent screen for picture display tubes and method of its manufacture
US4392077A (en) * 1979-02-14 1983-07-05 Zenith Radio Corporation Deeply filtered television image display
US4251610A (en) * 1979-11-02 1981-02-17 Tektronix, Inc. Method of making multicolor CRT display screen with minimal phosphor contamination
US4369241A (en) * 1980-03-19 1983-01-18 Hitachi, Ltd. Method of forming a fluorescent screen of a black matrix type color picture tube
US4855200A (en) * 1981-03-27 1989-08-08 Hitachi, Ltd. Fluorescent screens of color picture tubes and manufacturing method therefor
DE3211266A1 (en) * 1981-03-27 1982-11-04 Hitachi, Ltd., Tokyo FLUORESCENCE SCREENS OF COLORED TUBES AND THEIR PRODUCTION PROCESS
DE3214571A1 (en) * 1981-04-20 1982-11-04 Hitachi Ltd MANUFACTURING METHOD FOR LUMINOUS SHIELDS OF COLOR IMAGE TUBES
US4475797A (en) * 1982-07-30 1984-10-09 Zenith Electronics Corporation Color cathode ray tube screening exposure method and apparatus
EP0126215A3 (en) * 1983-05-18 1986-05-07 International Business Machines Corporation Colour cathode ray tube
EP0126215A2 (en) * 1983-05-18 1984-11-28 International Business Machines Corporation Colour cathode ray tube
FR2579019A1 (en) * 1985-03-13 1986-09-19 Rank Electronic Tubes Ltd CATHODE RAY TUBE
US5012112A (en) * 1989-02-21 1991-04-30 Martin Marietta Corporation Infrared scene projector
US5122708A (en) * 1990-12-12 1992-06-16 North American Philips Corporation Color reference CRT and method of making
US6013978A (en) * 1994-03-08 2000-01-11 U.S. Philips Corporation Method for producing phosphor screens, and color cathode ray tubes incorporating same
US6074789A (en) * 1994-03-08 2000-06-13 Philips Electronics N.A. Corp. Method for producing phosphor screens, and color cathode ray tubes incorporating same
US7008739B1 (en) * 1995-04-17 2006-03-07 Lg Electronics Inc. Process for manufacturing fluorescent film of a color braun tube
US5717281A (en) * 1995-04-19 1998-02-10 Chunghwa Picture Tubes, Ltd. Photoresist for cathode ray tubes that includes vinyl pyrrolidone-vinylalcohol and a di-tetraalkylammonium salt
US6002203A (en) * 1996-05-28 1999-12-14 Kabushiki Kaisha Toshiba Cathode ray tube having an envelope shaped to reduce beam deflection power requirements
US6060219A (en) * 1998-05-21 2000-05-09 Micron Technology, Inc. Methods of forming electron emitters, surface conduction electron emitters and field emission display assemblies

Also Published As

Publication number Publication date
GB960940A (en) 1964-06-17

Similar Documents

Publication Publication Date Title
US3146368A (en) Cathode-ray tube with color dots spaced by light absorbing areas
US2755402A (en) Color kinescopes of the masked-target dot-screen variety
US2581487A (en) Color television reproduction tube
US3784282A (en) Correcting lens used to form fluorescent screens of colour television receiving tubes
US2659026A (en) Cathode-ray tube of the masked target variety
US2947899A (en) Color image reproducers
US3614503A (en) Black-surround color picture tube
US2842697A (en) Beam-intercepting structure for cathode ray tube
US4049451A (en) Method for forming a color television picture tube screen
US2646521A (en) Color television picture tube
US4654559A (en) Flat color cathode-ray tube
US4070596A (en) In-line plural beams cathode ray tube having color phosphor element strips spaced from each other by intervening light absorbing areas and slit-shaped aperture mask
US3067349A (en) Method for producing registered color screen cathode-ray tubes
US3882347A (en) Color stripe cathode ray tube having bridged strip apertures
US3146369A (en) Cathode-ray tube having a color-selection electrode with large apertures
US2806165A (en) Cathode ray tube
US4188562A (en) Color display tube and method of manufacturing such a color display tube
US3223872A (en) Color screen with electron- and lightabsorptive material separating adjacent color strips
US3979630A (en) Shadow mask color picture tube having non-reflective material between elongated phosphor areas and positive tolerance
US3344301A (en) Subtractive type color cathode ray tube having overlapping color phosphor areas
US2855529A (en) Color-kinescopes, etc.
US2584814A (en) Color television picture tube
US4191909A (en) Color CRT with shadow mask having peripherally grooved skirt
US3745398A (en) Cathode ray tube screen having contiguous,overlapping color areas
US4109177A (en) Cathode-ray tube having apertured mask