Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2706262 A
Publication typeGrant
Publication date12 Apr 1955
Filing date15 Jul 1950
Priority date15 Jul 1950
Publication numberUS 2706262 A, US 2706262A, US-A-2706262, US2706262 A, US2706262A
InventorsBowling Barnes Robert
Original AssigneeAmerican Optical Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Diffusion coated articles
US 2706262 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

April 12, 1955 R. B. BARNES DIFFUSION COATED ARTICLES "A. /2/ M- 1'19 5% fly. l

Filed July 15, 1950 2 Shets-Sheet 1 w mzzw $2 INVENTOR ROBERT BOWLING BARNES BY ATTOR NEY a April 12, 1955 R. s. BARNES 2,705,262

DIFFUSION COATED ARTICLES Filed July 15, 1950 2 Sheets-Sheet 2 INVENTOR ROBERT BOWLING BARNES ATTORNEY 2,705,262 Patented Apr. 12, l$55 p IQQ DIFU3N EGATED ARTIQLES Robert Bowling Barnes, Stamford, Conn., assignor to American Gptical Company, Southbridge, Mass, a voluntary association of lliassachusetts Application July 15, 1950, Serial No. 173,993

9 Claims. (C 3l.3--2) This invention relates to novel means and method of eliminating specular reflection from the reflective surface of an article and relates particularly to the provision of a novel coating and method of making and applying the same, and to a novel article resulting therefrom. I

One of the principal objects of the invention is to provide a composition in the form of a liquid suspension which may be applied to the reflective s urrace of an article to produce a coating which will eliminate specular reflection and novel method of making and applying the same.

Another object is to provide a coating of the above character and method of applying the same whereby specular reflection from the reflecting surface of an article having the coating thereon will be so ditfused that no isolated bright spots will be visible and with the resultant coated surface further having the appearance of being smooth and substantially uniform in texture.

Another object is to provide a composition compr sing a transparent liquid bonding agent havin substantially uniformly dispersed therein a plurality of small nearly spherical transparent material which when placed upon the rellectin surface of an article as by painting, spraying, clipping or other suitable method and when the liquid is dry and hard or becomes polymerized, the surface will have a texture simulating a multitude of small contiguously related spherical elements with pa rt1a lly filled depressions therebetween whereby light impinging thereon and which would normally produce specular reflection will be diffused and the image formation destroyed.

Another object is to provide a coating of the above nature with ultra-violet absorbing characteristics.

Another object is to provide a coating of this nature having desired visible light-absorbing characteristics.

Another object is to provide a composition and a coating resulting therefrom which embodies a liquid having suspended therein relatively small transparent nearly spherical particles wherein the related indrces of refraction of said liquid and particles is controlled accord ing to the end results desired.

Another object is to provide an article having a d ffusing coating formed thereon in accordance with the above and further having a reflection-reduction coating on said diffusing coating.

Other objects and advantages of the invention will become apparent from the following description taken in connection with the accompanying drawings and it will be apparent that many changes may be made in the details of construction, arrangement of parts and steps of the method shown and described without departing from the spirit of the invention as expressed in the accompanying claims. I, therefore, do not wish to be limited to the exact details of construction, arrangement of parts and steps of the method shown and described as the preferred forms only are given by way of illustration.

Referring to the drawings:

Fig. l is a fragmentary view of an article having a coating thereon and diagrammatically illustrating the effect of said coating on light'rays impinging thereon;

Fig la is a view generally similar to Fig. l diagrammatically illustrating reflected light from a non-coated surface; t p

Fig. 2 is a view generally similar to Fig. 1 illustrating multiple layers instead of a single layer;

Fig. 3 is an enlarged fragmentary view generally similar to Fig. 1 having a portion thereof provided with a non-reflection coating;

Fig. 4 is a View generally similar to Fig. 1 illustrating a further feature of the invention when a light-absorbing dye1 is placed in the solution of the coating composition; an

Fig. 5 is a view generally similar to Fig. 4 diagrammatically illustrating another feature of the invention.

Referring more particularly to the drawings wherein like characters of reference designate lilac parts throughout the several views, the article 4, which in the present instance, is described as being the face of a television tube, is formed of a transparent material such as glass having an outer reflecting surface 5 and an inner phosphor coating 6 thereon.

Under normal conditions of use, light rays from an exterior source of light 7, as illustrated in Fig. 1a, impinging on the surface 5 would normally be specularly reflected, as illustrated by the lines 8, and when received by the eye 9 of an observer would produce a distinct image of the source '7 as being located at '7.

In following the teachings of the present invention, a composition which embodies a liquid binder it) having a plurality of relatively small transparent nearly spherical particles or beads 11 therein is applied to the surface 5 as by spraying, painting, dipping or other suitable means, see Figures 1 and 3 to 5 Tie size of the individual particles or heads is controlled according to the distance at which the picture is to be viewed. For example, if the picture is to be viewed close to, the size of the particles should be reduced proporti nately. If, on the other hand, the picture is to be constantly viewed at a considerable distance, then the particles can be proportionately greater in size, keeping in mind that the size of particles is preferably so controlled that no particle is individually visible at the distance of vie 'ing and so that the resultant coated surface has the appearance of being smooth and substantially uniform in texture. it has been found that if the size of the individual particles or beads are such that they are not readily visible at a distance of approximately ten inches very efficient and practical results will be obtained. in practice, particles of from 3 to 5 microns in size have been found to be very eilicient as they do not readily settle in the suspension and may be easily and relatively uniform applied. If they are too coarse, they settle too quickly and may result in a surface having some of said particles individually visible.

Although particles of from 3 to 5' microns in size have been found to be. very efdcient, the said size ofparticles may be from less than 16 3 microns or of a millimeter, as their upper limit, and which is at the limit of visibility at 1!) inches, and must be in the order of magnitude of more than a wave length of light as the lower limit in size, to if they are too small they do not perform the desired function.

In forming the composition, any suitable transparent liquid binder in which the transparent nearly spherical particles or beads may be suspended may be used; This, of course, depends upon the nature of the beads and the binder must be such as not to act as a solvent for said beads.

For example, the liquid suspension may be a cellulose acetate lacquer formed in ace rdance with the following:

Percent by weight Cellulose acetate s 5 Acetone 40 Methyl Cellosolve 30 Ethyl acetate 25 solvent characteristics of the liquid, that is, they should be such as not to dissolve in the liquid.

In forming the composition, it has been found that approximately 200 ccs. of a desired liquid suspension which may be any one of those set forth above plus 10 grams of dry powdered glass beads of the type and size set forth above, produce a very efficient surface coating.

It is desirable, when forming the composition, that after the glass beads have been substantially uniformly dispersed throughout the liquid, the said composition should be allowed to settle for approximately one hour whereby the large particles will settle leaving only the fine particles in suspension. After such settling, the solution having the fine particles therein is poured off and it is then ready for use.

The above is applied to the surface of the article to be coated as by spraying, painting, dipping or other suitable method wherein a substantially uniform layer of closely related beads will remain. When said liquid dries, it forms a relatively thin coating over the beads, partially fills in the spaces between said beads and firmly bonds the beads to the face of the article as is more clearly illustrated in Fig. 3.

The above is particularly adaptable for use with the face of the so-called dark field television tubes.

If it is desired to introduce UV absorptive characteristics in said coating, an ultra-violet absorbing agent such as phenyl salicylate, quinine, piperine or other similar material soluble in the lacquer may be used. This is preferably added to the composition before the transparent particles are added thereto.

If it is desired to form a coating composition more suitable for use with a white face television tube and, in

addition to the light diffusing and UV absorbing characteristics set forth above, it is desired to introduce visible light-absorbing characteristics, this may be accomplished by either adding a suitable dye such as nigrosine or other dark or black dye to the liquid binder. For example, lamp black, colloidal carbon, Erie black or any other suitable material may be used to introduce a clear substantially neutral color and desired visible light absorption.

The UV absorbing and visible light-absorbing ingredients are preferably added to the composition before the beads are added in said solution.

Although a formula for a liquid binder which has been found to produce desirable results has been specifically set forth above and other lacquers or binders have been mentioned, it is to be understood that the liquid binder could be any suitable glue, gelatin solution, monomeric methyl methacrylate or other polymerizable liquids.

It is also to be understood that in addition to or instead of adding visible light-absorbing ingredients in the liquid suspension, glass beads having the desired lightabsorbing characteristics might be used, for example, glass having a substantially neutral clear color or other colors, with or without UV absorbing ingredients therein such as cerium or vanadium, might be used.

ltis particularly pointed out, as shown in Figs. 1 and 3, that after the coating has been applied to the surface 5 of the article 4 and the liquid binder is allowed to dry, that the said liquid forms a thin outer coating over the glass beads 11, and also forms valley-like areas 12 between said beads and further forms binder means 13 for securing the beads on the surface 5.

The function of the coating, as diagrammatically illustrated in Fig. l, is to cause the light rays, diagrammatically illustrated as coming from a source of origin 7 and which impinge upon said coating to be reflected and dispersed in a plurality of different directions as indicated by the various arrows 13 whereby no specular image of the source of origin ,7 will be visible to the eye 9 of the observer.

While the above-mentioned coating functions to diffuse and destroy the image formation of reflected light, the reflection itself may be further greatly reduced by applying to said beaded coating a non-reflecting coating such as diagrammatically illustrated at 14, see Fig. 3. Such a coating may be any one of the well known types such as is produced by evaporation of magnesium fluoride, calcium fluoride, sodium fluoride or sodium aluminum fluoride on the surface.

One of the preferred reflection-reduction coatings, how ever, if formed of a composition consisting of a colloidal suspension containing from about 0.1 to 6.0% by weight of submicroscopic, micro-granular, discrete particles of solid anhydrous transparent material such as silica, magnesium fluoride, lithium fluoride, strontium fluoride, calcium fluoride, barium fluoride or cryolitc substantially uniformly dispersed in a volatile liquid inert to the particles and the binder with the particles being approximately spherical in shape and substantially less than onequarter of the wave length of light in diameter. The beadcoated surface can be provided with the reflection-reduction coating by applying to the surface a thin layer of the above composition and causing it to dry leaving a dry coating of very minute ultra-microscopic particles on the surface, as illustrated by the numeral 14. It is desirable to control the amount of the composition applied, and also to control the concentration of the particles in the suspension to produce a reflection-reduction coating having a resultant thickness of approximately onequarter wave length of light.

The reflection-reduction coating thus formed will comprise sub-microscopic, discrete, micro-granular, transparent solid particles which are so deposited on the beaded coating as to form minute projecting irregularities on said surface, the concentration of the particles in the irregularities decreasing from the surface of the beaded coating outwardly and the material of the particles being such that the effective index of refraction of the reflectionreduction coating varies from substantially unity at the layer-air interface to an index value which progressively increases as it approaches the outer surface of the beaded coating wherein it substantially approximates the index of refraction of said beaded coating.

In order to render the above coating more resistant to abrasion, a small amount of tetraethylorthosilicate may be incorporated in the colloidal sub-microscopic suspenslon.

In Fig. 2, there is illustrated a surface similar to that illustrated in Figs. 1 and 3 with the exception that a plu rality of beaded coatings are placed in superimposed relation with each other. The coatings otherwise function in a manner similar to the beaded coating of Fig. l.

Said multiple beaded coating of Fig. 2 may be provided with a reflection-reduction coating such as illustrated diagrammatically at 14 in Fig. 3 and may be formed in any manner such as specified above.

In Fig. 4, there is diagrammatically illustrated the effect which would be obtained if the beaded coating were of the type having light-absorptive characteristics and the coating controlled as to its thickness so as to permit substantially only partial transmission therethrough, say for example, sixty per cent transmission. With this condition, the entrant ray 15, upon reaching a particle 16 of the phosphor coating 6, would cause said particle to be only sixty per cent as bright as it would be if illuminated directly by the entrant ray 15. The light reflected from the particle of phosphor 16, as illustrated by the arrow 17, upon passing through the face of the tube and through the beaded coating, will again be reduced in proportion to its first reduction when first passing through said coating and the face of the tube and will, therefore, be only thirty-six per cent of the original light of the entrant ray 15.

An additional function of the above beaded coating is illustrated in Fig. 5. In this instance, we are taking into account the illumination of the particle 16 of the phosphor coating 6 as excited by the electron stream of the conventional television tube. The light from the fluorescing particle will be only sixty per cent of its inherent value after it has passed directly through the face of the tube and the beaded coating as illustrated by the line 19. The light leaving the fluorescent particle 16 at an angle within the critical angle to the face of the tube, as indicated by the line 20, upon reaching the outer surface of the face of the tube 4 will be partially reflected rearwardly and will cause another particle 16 to be illuminated. A succession of said particles such as 16" will be similarly illuminated by reflected light. The light rays emanating from the original source 16 which are not reflected by the front face of the tube 4 will pass through the beaded coating,'as illustrated by the dash line 21, and will be reduced partially by the reflected portion thereof and by the absorption of the beaded coating whereby it will appear less than sixty per cent as bright as from the original source 16. Light at a greater angle than the critical angle, and without the beaded coating on the face of the tube, will be totally reflected and will illuminate the phosphor as, for example, at 16", but with the beaded coating thereon, the light rays will have to .pass through the beaded coating two or more times as often as the direct rays 19 and 21 and will, therefore, be greatly reduced in intensity. With the reflection-reduction coating 14 thereon, as specified above, less light will be refiectedand, therefore, less intensity of illumination at other locations, such as at 16 and 16". It will be seen, therefore, that stray light will be greatly absorbed and reduced by the beaded and reflection-reduction coatings and will be much less visible to the observer.

If it is desired to increase the diffusion characteristics of the beaded coating, this may be brought about by increasing the difference in indices of refraction of the particles and the dry suspension media as this will introduce interior diifusion effects in addition to surface diffusion. It has been found that a good difference of indices of refraction is a few units in the second decimal place of the respective indices, for example, let us assume that the index of refraction of the suspension is approximately 1.53 the particles which would work best would have an index of refraction of from 1.50 to 1.56.

While it has been specified that nigrosine or some other suitable visible light-absorbing means may be introduced in the beaded coating, it is to be understood that a visible light-absorptive dye of any suitable color or colors may be used depending upon the characteristics desired of the resultant coating and the particular pot tion of the visible spectrum which is to be reduced through absorption. This effect may be introduced either by adding such dye ingredients to the suspension liquid of the composition or by adding the desired coloring and absorptive ingredients to the glass composition from which the beads are formed. This would be particularly adaptable to television in natural colors as the color controls could be introduced by this method.

From the foregoing description, it will be seen that simple, etficient and economical means and methods have been provided for accomplishing all of the objects and advantages of the invention.

Having described my invention, 1 claim:

1. A television tube having a phosphor coating on the internal surface of the face portion thereof and having on the outer surface thereof a coating embodying a plurality of contiguously related beads of transparent material secured to said outer surface by a transparent bonding agent, said beads being approximately spherical and from 3 to 5 microns in size, and said outer coating having the beads therein having controlled absorption as to the visible portion of the spectrum.

2. A television tube having a phosphor coating on the internal surface of the face portion thereof and having on the outer surface thereof a coating embodying a plurality of contiguously related beads of transparent material adhesively secured to said outer surface and to each other by a transparent bonding agent, said particles being approximately spherical and from about 100 microns to about a wave length of the incident light in diameter, and said outer coating having the beads therein having controlled absorption as to the visible portion of the spectrum and further having controlled ultra-violet absorption.

3. The tube face of a cathode ray tube comprising a transparent member having a phosphor coating on one side thereof and having a layer of contiguously related beads of transparent material adhesively secured to the opposed side surface thereof by a thin coating of transparent bonding material surrounding the individual beads and partially filling in the spaces therebetween, said beads individually having a diameter between a dimension equal to about a wave length of the incident light and approximately 100 microns, and said beads breaking up the specular image of external light normally reflected by said surface of the member While substantially unaffecting the viewing through the transparent member of the image formed by excitation of the phosphor coating on its first-mentioned side.

4. The tube face of a cathode ray tube as claimed in claim 3 having a thin transparent reflection-reducing coating over the exposed side of said layer of contiguously related beads.

5. The tube face of a cathode ray tube as claimed in claim 3 having a transparent reflection-reducing coating over the exposed side of said layer of contiguously related beads, said transparent reflection-reducing coating comprising a plurality of submicroscopic, discrete microgranular transparent solid particles piled on the surface of said beads in the form of minute irregularities projecting to a height of a fractional wave length of the incident light and with the effective index of said layer varying from substantially unity at its air interface to an index value which progressively increases as it approaches the surface of said beads where it substantially approximates the index of refraction of the particles in massive form, said coating functioning to reduce the reflection of the light diffused and increase the transmission of the image through the transparent member and beads on its surface.

6. The face portion of a cathode ray tube comprising a transparent member having a phosphor coating on one side thereof and having a layer of contiguously related beads of transparent material adhesively secured to the opposed side surface thereof by a thin coating of transparent bonding material surrounding the individual beads and partially filling in the spaces therebetween, said beads individually having a diameter of from 3 to 5 microns for breaking up specular images of external light normally reflected by said surface of the member while substantially unaffecting viewing through said member of an image formed by excitation of said phosphor coating on its first-mentioned side.

7. A television tube having a phosphor coating on the internal surface of the face portion thereof and having on the outer surface thereof a coating embodying a plurality of contiguously related beads of transparent material adhesively secured to said outer surface by a transparent bonding agent, said beads individually being approximately spherical in shape and having a diameter more than a wave length of the light normally reflected by said outer surface and less than microns so as to diffuse the image of said reflected light without the beads being readily discernible at distances greater than ten inches.

8. A television tube as claimed in claim 7 having a thin transparent reflection-reducing coating over the exposed side of the coating of contiguously related beads.

9. A television tube as claimed in claim 7 having a thin transparent reflection-reducing coating over the exposed side of the coating of contiguously related beads, said reflection-reducing coating comprising a plurality of submicroscopic, discrete microgranular transparent solid particles piled on the surface of said beads in the form of minute irregularities projecting to a height of a fractional wave length of the incident light and with the effective index of said layer varying from substantially unity at its air interface to an index value which progressively increases as it approaches the surface of said beads where it substantially approximates the index of refraction of the particles in massive form, said coating functioning to reduce the reflection of the light diffused and increase the transmission of the image through the transparent member and beads on its surface.

References Cited in the file of this patent UNITED STATES PATENTS Re. 22,076 Cartwright et al. Apr. 21, 1942 1,176,746 Federico Mar. 28, 1916 1,491,830 Troeger Apr. 29, 1924 2,023,558 Tallman Dec. 10, 1935 2,090,922 Von Ardenne Aug. 24, 1937 2,091,152 Malpica Aug. 24, 1937 2,137,118 Schleede et al. Nov. 15, 1938 2,169,838 Herbst Aug. 15, 1939 2,197,625 Teves et al. Apr. 16, 1940 2,201,245 Ruska et al. May 21, 1940 2,222,414 Kudar Nov. 19, 1940 2,242,567 Bodde May 20, 1941 2,289,978 Malter July 14, 1942 2,293,529 Bedford Aug. 18, 1942 2,294,930 Palmquist Sept. 8, 1942 2,312,206 Calbick Feb. 23, 1943 2,346,810 Young Apr. 18, 1944 2,386,626 Nadeau et al. Oct. 9, 1945 (Other references on following page) UNITED. STATES PATENTS.

Zinde1, Jr. Oct. 30, 1945 Palmquist et a1. Sept. 27, 1946 Steadman Apr. 15, 1947 Moulton Dec. 9, 1947 Wolfson Mar. 2, 1948 Aronstein Feb. 8, 1949 8 Smith June 21, 1949 Moulton June 21, 1949 Burroughs Oct. 25, 1949 Moulton Nov. 28, 1950 Moulton Jan. 2, 1951 Heltzer Nov. 13, 1951 Barnes June 10, 1952 Szegho et a1. Sept. 30, 1952

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1176746 *12 Mar 191328 Mar 1916Rosario FedericoLight-spreading screen.
US1491830 *14 May 192029 Apr 1924Trans Lux Daylight PictureScreen for picture projection
US2023558 *17 Dec 193410 Dec 1935Tallman Allen PNeon tube and method of making the same
US2090922 *18 Oct 193324 Aug 1937Von Ardenne ManfredBraun tube for producing television images rich in contrast
US2091152 *17 Jun 193624 Aug 1937Gen ElectricOscillograph
US2137118 *6 Dec 193415 Nov 1938Telefunken GmbhFluorescent screen
US2169838 *29 Apr 193815 Aug 1939Hazeltine CorpTelevision signal reproducing tube
US2197625 *9 Aug 193816 Apr 1940Rca CorpCathode ray tube
US2201245 *22 Oct 193721 May 1940Firm Fernseh Aktien GesCathode ray projection tube
US2222414 *15 Feb 193719 Nov 1940Telefunken GmbhProjection system
US2242567 *6 Jun 193820 May 1941Bernard M BoddeManufacture of translucent screens
US2289978 *30 Nov 194014 Jul 1942Rca CorpTelevision picture tube screen
US2293529 *29 Jun 194018 Aug 1942Rca CorpImage tube
US2294930 *7 Apr 19418 Sep 1942Minnesota Mining & MfgReflex light reflector
US2312206 *12 Jun 194023 Feb 1943Bell Telephone Labor IncMethod of and apparatus for reducing halo from fluorescent screens
US2346810 *13 Nov 194118 Apr 1944Polaroid CorpCathode ray tube
US2386626 *30 Jan 19439 Oct 1945Eastman Kodak CoDrawing surface
US2388203 *10 Sep 194230 Oct 1945Philco Radio & Television CorpViewing device for cathode-ray tube screens and the like
US2407680 *2 Mar 194517 Sep 1946Minnesota Mining & MfgReflex light reflector
US2419177 *9 Dec 194415 Apr 1947Du Mont Allen B Lab IncCathode-ray tube coating
US2432484 *12 Mar 19439 Dec 1947American Optical CorpReflection reducing coating having a gradually increasing index of refraction
US2436847 *29 Jul 19432 Mar 1948Int Standard Electric CorpCathode-ray tube and visual indicating system for apparatus including cathode-ray tube
US2461464 *14 Nov 19478 Feb 1949Robert AronsteinFilter for fluorescent screens
US2473825 *23 Apr 194521 Jun 1949Raytheon Mfg CoTelevision receiver screen
US2474061 *23 Jul 194321 Jun 1949American Optical CorpMethod of producing thin microporous silica coatings having reflection reducing characteristics and the articles so coated
US2485561 *29 Mar 194625 Oct 1949Int Standard Electric CorpCathode-ray tube
US2531945 *5 Apr 194728 Nov 1950American Optical CorpReflection reducing coatings having uniform reflection for all wave lengths of lightand method of forming such coatings
US2536764 *5 Apr 19472 Jan 1951American Optical CorpMethod of forming a reflection reducing coating
US2574971 *26 Oct 194513 Nov 1951Minnesota Mining & MfgHighway marking paint containing glass beads
US2599739 *12 Apr 195010 Jun 1952American Optical CorpCathode-ray tube
US2612612 *23 Jun 195030 Sep 1952Rauland CorpCathode-ray tube
USRE22076 *27 Dec 193821 Apr 1942 Process of decreasing reflection of
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2838707 *13 Sep 195610 Jun 1958Duro Test CorpFluorescent lamp and method of making
US2858233 *17 Dec 195328 Oct 1958Machlett Lab IncMethod of forming a multi-color screen on the image plate of a color television tube and product
US2884833 *13 Sep 19545 May 1959Frederic PohlOptical system for viewing pictures
US2898495 *24 Jun 19584 Aug 1959Michlin Hyman AColor display phosphor screens
US2946911 *1 Nov 195726 Jul 1960Gen ElectricCoated electric lamp
US3141106 *12 Dec 195814 Jul 1964American Optical CorpImage transmitting screen
US3147136 *11 Jan 19611 Sep 1964Owens Illinois Glass CoProcess for forming a grit-blasted and methyl methacrylate-epoxy resin coated glass surface
US3176584 *11 Oct 19616 Apr 1965Prismo Safety CorpReflex reflective sheeting and method of making same
US3209192 *29 Dec 196028 Sep 1965Westinghouse Electric CorpDecorative electric lamp with specular coating
US3249947 *17 Jun 19633 May 1966Sperry Rand CorpConcave reflector with opaque optically reflective coating to prevent concentration of solar energy
US3256124 *23 Dec 196014 Jun 1966Saint GobainMethod and apparatus for polychrome striped screens for color television receiver
US3274421 *26 Dec 196120 Sep 1966Sylvania Electric ProdRead-out device having bonding material between a face panel and a cover panel
US3351409 *12 Jun 19637 Nov 1967Mcguire Irvin HLight diffusion material, method of making and using same
US3399320 *7 Dec 196527 Aug 1968Saint GobainPolychrome striped screens for color television receiver comprising filaments of homoneous glass
US3509063 *14 Aug 196728 Apr 1970Chrysler CorpOptically dense fluid and method of making the same
US3536509 *14 Aug 196827 Oct 1970Gard Ind IncAerosol sprayable paint composition
US3627619 *26 Mar 196814 Dec 1971Eastman Kodak CoMethod and product for impeding duplication of microfilm images
US3637285 *23 Jun 197025 Jan 1972Stewart Filmscreen CorpReflex light reflector
US3639037 *25 Feb 19701 Feb 1972Ricoh KkDirectional or reflexive projection screen
US3919585 *24 May 197411 Nov 1975Bell Telephone Labor IncEncapsulation for light emitting element providing high on-off contrast
US4191943 *17 Mar 19784 Mar 1980Fairchild Camera And Instrument CorporationFiller-in-plastic light-scattering cover
US4459506 *8 Nov 198210 Jul 1984Premier Industrial CorporationIncandescent illuminating device with antifragility coating
US4677338 *15 Oct 198530 Jun 1987The General Electric Company, P.L.C.Electric lamps having outer stem surface which minimizes internal reflections
US5229619 *23 Dec 199120 Jul 1993U.S. Philips CorporationApparatus for optically measuring the height of surface irregularities having an imaged scanning spot formed on a radiation diffusive screen
US5410212 *1 Apr 199325 Apr 1995General Electric CompanySoft white reflector lamp
US66005999 Jun 199929 Jul 2003Avery Dennison CorporationRear projection screens and light filters with conformable coatings and methods of making the same
US6657382 *19 Jul 20012 Dec 2003Nichia CorporationLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
US6900941 *16 May 200231 May 2005Eastman Kodak CompanyLight diffuser with colored variable diffusion
US70874451 Jul 20048 Aug 2006Nichia CorporationLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
US742545921 Jun 200616 Sep 2008Nichia CorporationLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
US20030214717 *16 May 200220 Nov 2003Eastman Kodak CompanyLight diffuser with colored variable diffusion
US20040241894 *1 Jul 20042 Dec 2004Yoshifumi NagaiLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
US20050105186 *9 Nov 200419 May 2005Kaminsky Cheryl J.Light diffuser with colored variable diffusion
US20060234409 *21 Jun 200619 Oct 2006Yoshifumi NagaiLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
US20080072956 *7 Sep 200627 Mar 2008Guardian Industries Corp.Solar cell with antireflective coating comprising metal fluoride and/or silica and method of making same
US20090009873 *21 May 20088 Jan 2009Rohm And Haas Denmark Finance A/SThin film bulk and surface diffuser
US20090284949 *1 Apr 200919 Nov 2009Samsung Electronics Co., Ltd.Optical element, light-emitting device having the same and method of manufacturing the same
EP1174931A219 Jul 200123 Jan 2002Nichia CorporationLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
EP1174931A3 *19 Jul 20017 Sep 2005Nichia CorporationLight emitting device, display apparatus with an array of light emitting devices, and display apparatus method of manufacture
EP2120256A2 *31 Mar 200918 Nov 2009Samsung Electronics Co., Ltd.Optical element, light-emitting device having the same and method of manufacturing the same
EP2120256A3 *31 Mar 20094 May 2011Samsung Electronics Co., Ltd.Optical element, light-emitting device having the same and method of manufacturing the same
EP2244245A2 *19 Jul 200127 Oct 2010Nichia CorporationLight emitting device and display apparatus of light emitting devices
EP2244245A3 *19 Jul 20012 Jan 2013Nichia CorporationLight emitting device and display apparatus of light emitting devices
Classifications
U.S. Classification313/478, 427/255.21, 427/107, 359/599, 427/126.2, 427/126.1, 427/108, 313/116, 427/255.6, 427/70, 106/170.4, 252/588, 427/109, 427/106, 427/69, 427/64, 313/112
International ClassificationH01J29/24, H01J29/18, G02B1/11, G02B1/10
Cooperative ClassificationG02B1/113, H01J29/24
European ClassificationH01J29/24, G02B1/11D