US2679610A - Electron tube device - Google Patents

Electron tube device Download PDF

Info

Publication number
US2679610A
US2679610A US167956A US16795650A US2679610A US 2679610 A US2679610 A US 2679610A US 167956 A US167956 A US 167956A US 16795650 A US16795650 A US 16795650A US 2679610 A US2679610 A US 2679610A
Authority
US
United States
Prior art keywords
cathode
tube
electron
spades
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US167956A
Inventor
Backmark Nils Erik Gustav
Sternbeck Olaf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Application granted granted Critical
Publication of US2679610A publication Critical patent/US2679610A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/02Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused
    • H01J31/06Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused with more than two output electrodes, e.g. for multiple switching or counting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/18Tubes with a single discharge path having magnetic control means; having both magnetic and electrostatic control means

Definitions

  • This invention relates to electron tube devices of the kind which is described in application Serial No. 122,443, filed October 20, 19 19, now Patent No. 2,591,997, dated April 8, 1952.
  • This patent relates to electron tube devices with electron tubes, the discharge chamber of which is penerated by a magnetic field and which contains a centrally arranged cathode and a plurality of electrodes surrounding the same, which electrodes by means of different circuit elements or connecting means may be given individually a potential differing from that of the other electrodes.
  • These electrodes may be of two kinds, partly control electrodes, spades, and partly contact electrodes, plates, which last mentioned are arranged between the spades and connected to resistances.
  • One important field of application for the present invention is in selectors for automatic telephone systems.
  • the tube has no electron gun nor electro-optical means for generating the electron current which performs the switching,
  • cathode-ray tubes intended for telephone purposes
  • tube of the present invention is very compact as compared with cathoderay tubes and can be operated at lower voltages
  • the improved tube is particularly suited for telephone selection apparatus.
  • the invention can also be utilized as a switch or distributor for multi-channel telephone or signal communication systems using lines or radio links, such switches operating to connect a plurality of transmitters successively and cyclically to a common outgoing circuit.
  • a similar switch or distributor would be used, and synchronized with the first distributor, to connect a plurality of receivers for the different channels successively to the transmission circuit.
  • the invention relates to improvements in this kind of electron tubes for the purpose of increasing the current, which may be derived from the contact electrodes of the tubes.
  • the invention also relates to devices for facilitating the manufacture of such tubes and to means for reducing the magnitude of the parasitic or noise current appearing during the operation of the tubes.
  • a distinctive feature of the invention is that the ratio between the diameter of the cathode cylinder and the distance between the edges directed towards the cathode of the control electrodes, which are arranged diametrically in the tube in relation to each other, is such, that the whole cathode current, when the electron beam is directed into a certain box formed between adjacent spades, is obtained to the plate situated in this box.
  • Another distinctive feature of the invention is that a closed cylindrical screen is arranged round the electrode system so as to make degasifying of this electrode system possible by means of high frequency heating at the manufacture of the tube.
  • a further distinctive feature of this invention is that the electron emitting coating of the cathode cylinder is shaped in sections surrounded by cathode portions without the ability of emitting electrons.
  • Fig. 1 shows a diagrammatic section of an electron tube.
  • Fig. 2 shows a diagram over the current to plates and spades in this tube.
  • Fig. 3a shows diagrammatically the intera-rrangement of the electrodes in the tube shown in Fig. 1.
  • Fig. 3b shows the relation between the cathode diameter and the distance between the edges directed towards the cathode of diametrically opposed spades as a function of the number of spades.
  • Fig; 4 is a perspective view showing an electron tube with certain parts broken away and including means according to the invention.
  • Fig. 1 in the drawing shows an electron tube, the envelope of which is designated H, a centrally arranged cathode K and a number of spades S1-S1o arranged round the same and alter nating with plates P1 P1o.
  • the spades are all connected to the same voltage V0. Further details not necessary for the comprehension of the following description as resistances etc., are omitted in the figure but may be shaped in the same manner as is described in the main patent.
  • the electron beam will be directed towards this spade and into the corresponding box, where it hits the plate P1 situated within the same.
  • the beam E2 marked with dotted lines.
  • the cathode radius may be chosen arbitrarily for values of said relation dk/ds (Fig. 3a), which exceed a certain limit value. At this limit value the influence from one spade on the field is sufficient to obtain a sufficiently low potential minimum. It has been proved by practical experiments that the cathode current is constant for spade voltages greater or equal to zero at practically all values of the cathode diameter die, if said limit value is exceeded.
  • Fig. 3b the relation between the limit value for the ratio dk/ds and the number of spades n within the tube is shown.
  • the limit value for dk/ds is increasing very rapidly for an increased number of spades and approaches 1, i. e. the necessary cathode diameter die approaches very rapidly the value of the diameter 11$ for the pitch circle of the spades and the distance between the cathode surface and the edges of the spade grows very small. This means that the cathode at values on n exceeding ten very rapidly will be of troublesome dimensions and causes a heavy increase of the noise and the heater current.
  • the above-mentioned tendency in electron tubes of this kind to demand negative voltage in relation to the cathode for attaining a complete directing of the electron beam to a certain box may thus be counteracted by an increase of the cathode diameter, which however causes other inconveniences, if the number of spades within the tube is too great.
  • the values of the least ratio between the cathode diameter and the diameter of the pitch circle for the edges of the spades, which are required for obtaining a full cathode current to the plates within the different boxes at the spade potential zero, are at 10, 12 and 14 spades in the tube 0.01, 0.32 and 0.65, respectively, which values have been determined by experiments and are the basis of the relation in Fig. 322. It might however be possible to reduce these values with at least 10% by an especial shaping of the edges of the spades.
  • This inconvenience may according to the invention be removed by surrounding the whole electrode system with a closed cylindrical metal screen S according to Fig. 4 in the drawing.
  • a closed cylindrical metal screen S according to Fig. 4 in the drawing.
  • Such a screen can easily be heated by means of high frequency and be brought to such a temperature that a sufficient radiation energy to the surrounded electrode system may be obtained and this may consequently be degasifled at the tube manufacturing without any difliculty.
  • a screen of this kind involves furthermore other advantages. It may thus be utilized partly for electrostatic shielding. and partly as anode for electron current instead of the plates.
  • the electron tube shown in Fig. 4 in the drawing contains besides the cylindrical screen also devices for obtaining a homogeneous magnetic field inside the tube, which often has a rather great axial extension.
  • a yoke M of magnetic material is arranged, which for instance may consist of a bottom plate B arranged inside the foot of the tube or outside the tube envelope H and having perforations for the connecting leads to the difierent electrodes and of a disc A of magnetic material placed in the upper part of the tube, said disc also carrying the getter G.
  • An electron tube device comprising an electron tube having an envelope containing an evennumbered plurality N of planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and an equal number N of receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the minimum value of the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being related to the number N of control and receiving electrodes by the following:
  • An electron tube device comprising an electron tube having an envelope containing ten planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and
  • An electron tube device comprising an electron tube having an envelope containing twelve planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and twelve receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being greater than 0.32.
  • An electron tube device comprising an electron tube having an envelope containing fourteen planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and fourteen receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being greater than 0.65.

Description

' N/E. G. BACKMARK ET AL May 25, 1954 ELECTRON TUBE DEVICE 2 Sheets-Sheet 1 Filed June 14, 1950 .BCLCKUZQ/ZLZI y 25, 1954 N. E. G. BACKMARK ET AL ,67 ,610
ELECTRON TUBE DEVICE 2 Sheets-Sheet 2 Filed June 14, 1950 HgJb Patented May 25, 1954 UNITED STATES PATENT OFFICE ELECTRON TUBE DEVICE Sweden Application June 14, 1950, Serial No. 167,956
Claims priority, application Sweden June 21, 1949 4 Claims. 1
This invention relates to electron tube devices of the kind which is described in application Serial No. 122,443, filed October 20, 19 19, now Patent No. 2,591,997, dated April 8, 1952.
This patent relates to electron tube devices with electron tubes, the discharge chamber of which is penerated by a magnetic field and which contains a centrally arranged cathode and a plurality of electrodes surrounding the same, which electrodes by means of different circuit elements or connecting means may be given individually a potential differing from that of the other electrodes. These electrodes may be of two kinds, partly control electrodes, spades, and partly contact electrodes, plates, which last mentioned are arranged between the spades and connected to resistances.
One important field of application for the present invention is in selectors for automatic telephone systems. As the tube has no electron gun nor electro-optical means for generating the electron current which performs the switching,
as do cathode-ray tubes intended for telephone purposes, and as the tube of the present invention is very compact as compared with cathoderay tubes and can be operated at lower voltages,
the improved tube is particularly suited for telephone selection apparatus. The invention can also be utilized as a switch or distributor for multi-channel telephone or signal communication systems using lines or radio links, such switches operating to connect a plurality of transmitters successively and cyclically to a common outgoing circuit. At the receiving end of the transmission medium, a similar switch or distributor would be used, and synchronized with the first distributor, to connect a plurality of receivers for the different channels successively to the transmission circuit.
The invention relates to improvements in this kind of electron tubes for the purpose of increasing the current, which may be derived from the contact electrodes of the tubes. The invention also relates to devices for facilitating the manufacture of such tubes and to means for reducing the magnitude of the parasitic or noise current appearing during the operation of the tubes.
A distinctive feature of the invention is that the ratio between the diameter of the cathode cylinder and the distance between the edges directed towards the cathode of the control electrodes, which are arranged diametrically in the tube in relation to each other, is such, that the whole cathode current, when the electron beam is directed into a certain box formed between adjacent spades, is obtained to the plate situated in this box.
Another distinctive feature of the invention is that a closed cylindrical screen is arranged round the electrode system so as to make degasifying of this electrode system possible by means of high frequency heating at the manufacture of the tube.
A further distinctive feature of this invention is that the electron emitting coating of the cathode cylinder is shaped in sections surrounded by cathode portions without the ability of emitting electrons.
The invention will be more closely described in the following with reference to the annexed drawing, on which Fig. 1 shows a diagrammatic section of an electron tube. Fig. 2 shows a diagram over the current to plates and spades in this tube. Fig. 3a shows diagrammatically the intera-rrangement of the electrodes in the tube shown in Fig. 1. Fig. 3b shows the relation between the cathode diameter and the distance between the edges directed towards the cathode of diametrically opposed spades as a function of the number of spades. Fig; 4 is a perspective view showing an electron tube with certain parts broken away and including means according to the invention.
Fig. 1 in the drawing shows an electron tube, the envelope of which is designated H, a centrally arranged cathode K and a number of spades S1-S1o arranged round the same and alter nating with plates P1 P1o. The spades are all connected to the same voltage V0. Further details not necessary for the comprehension of the following description as resistances etc., are omitted in the figure but may be shaped in the same manner as is described in the main patent.
In such a device with full voltage Voon all the spades the electrons leaving the cathode turn back to the same except for a small leak current dependent on the magnetic field. An electron beam being symmetrical round the cathode is thus obtained, which beam in the figure is designated E1 and is marked with continuous lines.
If the potential of one of the spades, for instance the spade S1 is decreased to the value Vspl Vo) the electron beam will be directed towards this spade and into the corresponding box, where it hits the plate P1 situated within the same. To begin with only a portion of the electron beam will be directed into the box, as is illustrated in the figure by the beam E2 marked with dotted lines.
It is however desirable that the electron beam is completely directed into the intended box, when the spade has obtained cathode potential, i. e. when Vspl= and that, in other words, the beam indicated with E1 ceases and all the electrons emitted from the cathode follow the path indicated with E2 to the plate P1 in the box formed between the spades S1 and S2.
From the diagram in Fig. 2, which shows the cathode and spade current as a function of the spade voltage, is apparent that the cathode current Ikl, which is marked with a continuous curve, reaches an almost constant value, when the spade voltage Vspl is equal to zero, At incomplete deflection of the electron beam to the intended box some electrons will however pass the spade in question, also when this has the potential zero and return to the cathode. Total deflection of the beam to this box will thus not be obtained until the spade voltage gets a negative value, which in Fig. 2 is illustrated with the dotted curve Ik2.
The facts cited above have their explanation in the potential relations between the spade and the cathode and depend on the potential minimum, which is achieved and necessary to have in order to direct the whole beam into the intended box. This potential minimum is dependent on the ratio between the cathode diameter die and the pitch circle diameter for the spade cls defined as the distance between two spades placed diametrically in the tube at the edges of the spades directed towards the cathode, and also on the total number of spades.
If the number of control electrodes for instance is chosen as ten the cathode radius may be chosen arbitrarily for values of said relation dk/ds (Fig. 3a), which exceed a certain limit value. At this limit value the influence from one spade on the field is sufficient to obtain a sufficiently low potential minimum. It has been proved by practical experiments that the cathode current is constant for spade voltages greater or equal to zero at practically all values of the cathode diameter die, if said limit value is exceeded.
In Fig. 3b the relation between the limit value for the ratio dk/ds and the number of spades n within the tube is shown. As appears from this figure the limit value for dk/ds is increasing very rapidly for an increased number of spades and approaches 1, i. e. the necessary cathode diameter die approaches very rapidly the value of the diameter 11$ for the pitch circle of the spades and the distance between the cathode surface and the edges of the spade grows very small. This means that the cathode at values on n exceeding ten very rapidly will be of troublesome dimensions and causes a heavy increase of the noise and the heater current.
The above-mentioned tendency in electron tubes of this kind to demand negative voltage in relation to the cathode for attaining a complete directing of the electron beam to a certain box may thus be counteracted by an increase of the cathode diameter, which however causes other inconveniences, if the number of spades within the tube is too great. The values of the least ratio between the cathode diameter and the diameter of the pitch circle for the edges of the spades, Which are required for obtaining a full cathode current to the plates within the different boxes at the spade potential zero, are at 10, 12 and 14 spades in the tube 0.01, 0.32 and 0.65, respectively, which values have been determined by experiments and are the basis of the relation in Fig. 322. It might however be possible to reduce these values with at least 10% by an especial shaping of the edges of the spades.
At the manufacture of electron tubes according to the main patent there are further inconveniences with the degasifying the different electrodes at the pumping. These electrodes have namely so small dimensions that it is diflicult to heat them by means of high frequency heating.
This inconvenience may according to the invention be removed by surrounding the whole electrode system with a closed cylindrical metal screen S according to Fig. 4 in the drawing. Such a screen can easily be heated by means of high frequency and be brought to such a temperature that a sufficient radiation energy to the surrounded electrode system may be obtained and this may consequently be degasifled at the tube manufacturing without any difliculty.
A screen of this kind involves furthermore other advantages. It may thus be utilized partly for electrostatic shielding. and partly as anode for electron current instead of the plates.
The electron tube shown in Fig. 4 in the drawing contains besides the cylindrical screen also devices for obtaining a homogeneous magnetic field inside the tube, which often has a rather great axial extension. For this purpose suitably a yoke M of magnetic material is arranged, which for instance may consist of a bottom plate B arranged inside the foot of the tube or outside the tube envelope H and having perforations for the connecting leads to the difierent electrodes and of a disc A of magnetic material placed in the upper part of the tube, said disc also carrying the getter G.
We claim:
1. An electron tube device comprising an electron tube having an envelope containing an evennumbered plurality N of planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and an equal number N of receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the minimum value of the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being related to the number N of control and receiving electrodes by the following:
2. An electron tube device comprising an electron tube having an envelope containing ten planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and
ten receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being greater than 0.01.
3. An electron tube device comprising an electron tube having an envelope containing twelve planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and twelve receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being greater than 0.32.
4. An electron tube device comprising an electron tube having an envelope containing fourteen planar control electrodes, a cylindrical cathode mounted centrally among said control electrodes, the latter being disposed in pairs lying with their respective inner edges directed towards diametrically opposite portions of said cathode, and fourteen receiving electrodes alternating in position with said control electrodes and mounted at a greater distance from the cathode surface than that part of the control electrodes which lies nearest to said surface, means mounted outside said envelope for producing a constant and homogeneous magnetic field penetrating the discharge space of said tube and the field lines of which are parallel to the axis of said cathode, the ratio between the diameter of the cathode and the distance between the edges directed towards the cathode of diametrically opposed control electrodes being greater than 0.65.
References Cited in the file of this patent UNITED STATES PATENTS Number Name Date 2,198,323 Wagner Apr. 23, 1940 2,217,774 Skellett Oct. 15, 1940 2,293,368 Stuart, Jr Aug. 18, 1942 2,320,756 Skellett June 1, 1943 2,358,542 Thompson Sept. 19, 1944 FOREIGN PATENTS Number Country Date 351,419 Great Britain June 24, 1931
US167956A 1948-10-29 1950-06-14 Electron tube device Expired - Lifetime US2679610A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE277134X 1948-10-29
SE2679610X 1949-06-21

Publications (1)

Publication Number Publication Date
US2679610A true US2679610A (en) 1954-05-25

Family

ID=32301955

Family Applications (2)

Application Number Title Priority Date Filing Date
US122443A Expired - Lifetime US2591997A (en) 1948-10-29 1949-10-20 Electron tube device
US167956A Expired - Lifetime US2679610A (en) 1948-10-29 1950-06-14 Electron tube device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US122443A Expired - Lifetime US2591997A (en) 1948-10-29 1949-10-20 Electron tube device

Country Status (7)

Country Link
US (2) US2591997A (en)
BE (1) BE491888A (en)
CH (1) CH277134A (en)
DE (1) DE824082C (en)
FR (2) FR998311A (en)
GB (1) GB709264A (en)
NL (1) NL86930C (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706248A (en) * 1949-02-12 1955-04-12 Ericsson Telefon Ab L M Systems for magnetic and electric electron flow control
US2659814A (en) * 1949-06-21 1953-11-17 Ericsson Telefon Ab L M Connecting device for electron tubes
NL275650A (en) * 1951-07-05
BE513485A (en) * 1951-08-15
US2777085A (en) * 1952-05-29 1957-01-08 Westinghouse Electric Corp Secondary electron suppressor
US2733409A (en) * 1952-08-14 1956-01-31 Kuchinsky
US2802103A (en) * 1952-10-15 1957-08-06 Burroughs Corp Commutating circuit
US2839702A (en) * 1953-07-24 1958-06-17 Burroughs Corp Modulated distribution system
US2721955A (en) * 1953-07-24 1955-10-25 Burroughs Corp Multi-position beam tube
US2764711A (en) * 1953-07-24 1956-09-25 Burroughs Corp Multiple position beam tube
US2841743A (en) * 1953-07-31 1958-07-01 Ericsson Telefon Ab L M Electron tube device
US2797357A (en) * 1954-01-22 1957-06-25 Burroughs Corp Feedback arrangements for beam switching tubes
US2848605A (en) * 1954-01-22 1958-08-19 Burroughs Corp Analogue-to-digital conversion using cathode ray sampler to control cathode ray coder
US2795732A (en) * 1954-01-22 1957-06-11 Burroughs Corp Means for indexing the electron beam in magnetron type beam switching tubes
US2817786A (en) * 1954-01-26 1957-12-24 Burroughs Corp Multiple position beam switching tube
US2848646A (en) * 1954-02-01 1958-08-19 Burroughs Corp Counting circuit using multiple position beam switching tubes
US2847611A (en) * 1954-05-21 1958-08-12 High Voltage Engineering Corp Apparatus for voltage stabilization of constant-potential high-voltage generators
US2848647A (en) * 1954-06-23 1958-08-19 Burroughs Corp Multiplexing system
US2892959A (en) * 1954-08-19 1959-06-30 Burroughs Corp Electronic device and circuits
US2806979A (en) * 1954-09-07 1957-09-17 Fan Sin-Pih Beam switching tubes
US2857552A (en) * 1954-09-13 1958-10-21 Burroughs Corp Beam tube switching circuits
US2807748A (en) * 1954-10-01 1957-09-24 Burroughs Corp Counter circuit
US2876350A (en) * 1955-05-26 1959-03-03 Burroughs Corp Coding system
US2794147A (en) * 1955-08-22 1957-05-28 Burroughs Corp Beam tube switching circuits
US2835808A (en) * 1955-10-19 1958-05-20 Burroughs Corp Transfer-storage circuits
US2856558A (en) * 1956-02-27 1958-10-14 Burroughs Corp Variable scale counter
US2857550A (en) * 1956-02-29 1958-10-21 Burroughs Corp Variable counter circuit
US2849645A (en) * 1956-03-15 1958-08-26 Burroughs Corp Magnetron tube magnet structure
US2919436A (en) * 1956-03-15 1959-12-29 Burroughs Corp Multiplex measuring device
US2947901A (en) * 1956-03-23 1960-08-02 Burroughs Corp Magnetron tube shield
US2919347A (en) * 1957-12-16 1959-12-29 Burroughs Corp Beam tube multiplexing system
EP0361427B1 (en) * 1988-09-27 1994-06-08 Fuji Photo Film Co., Ltd. Color photographic material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB351419A (en) * 1930-03-24 1931-06-24 Lissen Ltd Improvements in and relating to thermionic valves
US2198323A (en) * 1936-12-30 1940-04-23 Rca Corp Amplifier
US2217774A (en) * 1939-05-27 1940-10-15 Bell Telephone Labor Inc Electron discharge apparatus
US2293368A (en) * 1940-06-20 1942-08-18 Bendix Aviat Corp System of frequency conversion
US2320756A (en) * 1942-05-07 1943-06-01 Bell Telephone Labor Inc Electronic device
US2358542A (en) * 1940-07-26 1944-09-19 Rca Corp Currentless grid tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1721395A (en) * 1921-05-24 1929-07-16 Gen Electric Electron-discharge apparatus
US1585173A (en) * 1922-01-03 1926-05-18 Simpson Frederick Grant Converter of electric currents
US1558120A (en) * 1922-04-03 1925-10-20 Simpson Frederick Grant Radio receiving system
NL45832C (en) * 1934-07-07
BE418252A (en) * 1935-11-05
US2432608A (en) * 1941-03-28 1947-12-16 Ncr Co Multianode, gas-filled discharge device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB351419A (en) * 1930-03-24 1931-06-24 Lissen Ltd Improvements in and relating to thermionic valves
US2198323A (en) * 1936-12-30 1940-04-23 Rca Corp Amplifier
US2217774A (en) * 1939-05-27 1940-10-15 Bell Telephone Labor Inc Electron discharge apparatus
US2293368A (en) * 1940-06-20 1942-08-18 Bendix Aviat Corp System of frequency conversion
US2358542A (en) * 1940-07-26 1944-09-19 Rca Corp Currentless grid tube
US2320756A (en) * 1942-05-07 1943-06-01 Bell Telephone Labor Inc Electronic device

Also Published As

Publication number Publication date
FR60401E (en) 1954-11-02
DE824082C (en) 1951-12-10
US2591997A (en) 1952-04-08
BE491888A (en)
GB709264A (en) 1954-05-19
FR998311A (en) 1952-01-17
CH277134A (en) 1951-08-15
NL86930C (en)

Similar Documents

Publication Publication Date Title
US2679610A (en) Electron tube device
US2314794A (en) Microwave device
US2169396A (en) Signal-translating apparatus
US2228939A (en) High frequency power tube
US5589736A (en) Frequency multiplier including grid having plural segments
US2138928A (en) Electron discharge device
US5233269A (en) Vacuum tube with an electron beam that is current and velocity-modulated
US2399223A (en) Electron discharge device
US2164922A (en) Cross field control tube
US2197042A (en) Electron discharge device
US2407906A (en) Low velocity television transmitting apparatus
US2197041A (en) Electron discharge device
US2299252A (en) Frequency detector
US2674661A (en) Electron multiplier device
US2434196A (en) Focus control for television image tubes
US2176589A (en) Electron beam tube
US2243829A (en) Fixed plate variable capacity condenser
US3854066A (en) Electron device incorporating a microchannel secondary emitter
US2228895A (en) Electrical translating device
US2567359A (en) Electron discharge apparatus
US2250529A (en) Signal translating apparatus
US2270160A (en) Circuit organization for magnetrons
US2239749A (en) Electron beam tube
US2074829A (en) Electron beam tube
US2803779A (en) Electron switching device