Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS2422937 A
Publication typeGrant
Publication date24 Jun 1947
Filing date3 Dec 1943
Priority date3 Dec 1943
Publication numberUS 2422937 A, US 2422937A, US-A-2422937, US2422937 A, US2422937A
InventorsSzegho Constantin S
Original AssigneeRauland Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Tube for color television
US 2422937 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

June 24, c. SZEGHQ TUBE FOR COLOR TELEVISION Filed Dec. 3, 1943 disadvantages.

Patented June24, 1947 Constantin S. Szegho, Chicago, 111., asslgnor to The Rauland Corporation, Chicago, a, corporation of Illinois Application December a, 1943, Serial No. 512,709

11 Claims. (cl. 250-164) This invention relates to cathode ray tubes in which the optical imageappearing on the fluorescent screen is displayed in more than one color. More particularly this invention relates to a cathode ray tube for use in the reproduction of television images in color.

One method commonly used at presentin the art employs, in conjunction with the receiving cathode ray tube, a number of color filters, which are sequentially inserted at some point along the path between a fluorescent screen, upon which the received image appears in black and white, and the eye of theobserver. These filters are commonly used in the form of color segments of a disc which is rotated, for example between the fluorescent screen and the projection screen. As well-knownin color optics, it is possible synthetically to reconstruct a color image by first analyzing it into a certain number of primary elemental colors, usually two or three. The color segments lust referred to are therefore chosen to correspond to the color elements into which the image is analyzed at the television transmitter.

The method just described sufiers from several The use of color filters inevitably leads to the absorption of a certain amount of light, therefore demanding upon the fluorescent screen an image having greater brilliance than would otherwise be necessary. Likewise, as at present used in the art, the cathode ray tube employs a fluorescent screen of a translucent nature, and the image consequently must be directly projected through the body of such screen. This brings about the disadvantage that some of the light which is produced upon the inner surface of the fluorescent screen is absorbed by the fluorescent material itself, in the passage of such light through the screen. Furthermore, the need of a transparent or translucent supporting material upon which to place the screen, greatly limits the range of materials from which such support may be constructed. Since the screen and its support must dissipate a considerable amount of energy in the form of heat, it has been found that the use of material such as glass, sets a practical limit to the accelerating voltages and beam current densities which may be employed, thus in turn limiting thedegree of brightness which may be imparted to the image produced upon the fluorescent screen.

In an effort to overcome certain of the disadvantages just pointed out, it has been proposed to use a screen support formed of an opaque material and toview the screen from the same side upon which the electron beam impinges.

Such type of tube will hereinafter be referred to as a front surface projectiontube.

However, when a tube oi' this last-mentioned type is employed in connection with a rotating color filter disc, as above-described, .for color television purposes, certain difliculties are encountered. The color filter disc can nolonger be placed at a relatively short distance from the fluorescent screen, since the transparent window through which the light to be color filtered leaves the cathode ray tube, is situated at a relatively great distance from the screen. This leads to a considerable divergence of the light emanating from any single illuminated elemental point located upon the fluorescent screen. In fact such divergence is so great that each spot of light on the fluorescent screen spreads out so as substantially to cover the entire area of such transparent window. From this last consideration it can be, seen that a color filter must have each elemental color thereof distributed over an area approximately equal to the size of the entire transparent window, bringing it about that when it is necessary for a change to occur, from one color to another, the whole surface of the filter in front and, consequently, compromised solutions have been been proposed in which the time of overlap between two successive filters has been made as small as practicable. In order to bring about such reduction of overlap, an increase in the diameter of the color filter disc may be made.

However, with standards of picture transmission at present employed, it can be computed that for a picture size of approximately 4 inches x 5 inches, and a permissible color overlapping time of about 5 per cent of the duration oi. each color image, the diameter of such color filter disc would have to be somewhat greater than 50 inches. Therefore, it can be seen that such'a solution of the problems involved would be wholly impracticable, in comparison with the color filter disc having a diameter of a little over 8 inches, which would be needed for this same picture size, were a direct projection cathode ray tube to be employed therewith.

The present invention overcomes the difliculties abovedescribed and at the same time allows the advantages of front surface projection to be obtained, without necessitatingv the employment of iilter discsofsuch prohibitive size as the one Just mentioned by way of illustration.

ments of the color filter disc have been replaced by corresponding segments of fluorescent materials, yielding, respectively, the desired discrete elemental colors. Furthermore, there is provided an arrangement for rotating this polychromatically fluorescing disc within the envelope of the cathode ray tube, so that the electron beam can impinge directly upon the various fluorescent materials with which one side of the disc is coated. In order to secure rotation of the disc within the body of the tube itself, there are employed devices familiar in the art for the construction of X-ray tubes having rotating anodes, for example an induction motor, the stator of which motor is located outside the tube and the rotor of which is located within the tube. The speed of rotation, which must correspond with that employed for color analysis at the transmitter, may be synchronized therewith by means familiar in the art. Likewise, the present invention contemplates the use of a disc formed of metal, which is better able to withstand relatively high accelerating voltages and beam current densities, since front surface projection may be employed with such disc. Likewise, the rotation of such fludrescent screen, causing the utilization at a given moment of only a fractional part herewith, still further facilities heat dissipation therefrom, since only a portion thereof is at one time subjected to heating.

One object of this invention is to provide a polychromatically reproducing cathode ray tube in which relatively high accelerating voltages and beam current densities maybe employed, without causing undue heating of the image screen of the tube.

Another object of this invention is to provide a cathode ray tube for use as a color television receiver, in which moving color filter elements external to the tube are eliminated.

Still another purpose of this invention is to provide, in a cathode ray tube, an image screen having a number of discrete portions which are successively placed in the path of the electron beam and removed therefrom, each of these discrete portions yielding a luminous output differing from that yielded by any other portion thereof, and each portion corresponding to an elemental analytic color used in transmission.

Still another object of this invention is to provide a color television cathode ray tube receiver in which a direct projection type fluorescent screen is provided with discrete portions, each fluorescing so as to yield a different color, and in which a device is provided for moving such screen within the tube so that only a portion thereof is subjected to impact by the electron beam at any given moment.

Yet another purpose of this invention is to provide a color television cathode ray tube receiver in which the overlapping time between successive colors is greatly reduced, without the need of employing moving elements of prohibitively great size.

I quence at the transmitter and controlled by any suitable means, as well-known in the art.

Another purpose of this invention is to provide a polychromatically reproducing cathode ray tube in which the successive images, having diverse color values, are each directly produced in the respective colors and are directly viewed, without the interposition between the eye of the observer and the fluorescent screen of any light absorbing color filter, so that luminous efllciency of reproduction is greatly enhanced thereby.

Reference is now made to the accompanying drawing where:

Fig. 1 shows a color television cathode ray tube employing front surface projection and embodying this invention;

Fig. 2 shows another embodiment of this invention in which a direct projection type cathode ray tube is used;

Fig. 3 shows a diagrammatic plan view of the disc.

Referring now to Fig. 1, the cathode ray tube I0 is formed with a longitudinal section I I and an off-set section iii. In section l2, are located devices for producing, projecting and scanningly moving an electron beam. Such devices may be of any form familiar in the art and are here schematically represented by electron gun ll, electron lens or accelerating electrode l4, and two pair of deflection coils ii and I8 respectively.

The electron beam enteringlongitudinal section ll of the tube impinges upon a fluorescent coating I! carried upon one surface of a rotating disc ll. This surface of disc is is not coated uniformly with a single fluorescent material, but is divided into a number of segments corresponding to the number or a multiple thereof of synthetical color elements employed, and each of these segments is coated with a phosphor yielding a color corresponding to one of these synthetical elements used by the particular transmitter from which signals are being received and from which a given image is to be reconstituted. As shown in Fig. 3, disc I 8 may be conveniently divided into three segments colored red, green and blue.

Tube i0 is provided with another elongated off-set portion l9, housing approximately onehalf of disc it, the portion so housed being shielded from any possible heating action due to impingement thereupon of the electron stream. Disc i8 is mounted upon a shaft 20, rotating in suitable bearings 2| and 22. Between such bearings, shaft 20 carries thereupon the rotor 23, which is actuated by the rotary electro-magnetic inductive field derived from an external stator 24, and passing through wall 25 of tube to. Such method of driving a rotating element within an evacuated tube is well-known in the X-ray art and therefore detailed description of the motor drive is considered to be unnecessary. The speed of rotation is synchronized with the speed of color se- For example, with actual standards of transmission now in use, disc i8 may, for example, be divided into six color segments and the driving motor may make 1200 R. P. M., such particular values being understood to be purely illustrative.

Reference is now made to Fig. 2, where cathode ray tube 30 is formed so that one extremity thereof 3|, has a diameter somewhat greater than twice that of the portion of the tube which the electron beam actually traverses. Electron gun l3 and electron lens or accelerating electrode it, may be of any convenient types familiar in the art, There is here shown by way of an illustral and I6, but it is to be understood that electromagnetically deflecting coils, similar to those shown in Fig. 1, may alternatively be employed.

In this form of invention, rotating disc 3| is formed of transparent material, the fluorescent coating 32 is placed upon the inner surface thereof and the light from such coating passes, outwardly from the tube, by transmission through the body of the disc and the outer wall of portion 3| of the tube. The inner surface of disc 3| is divided into segments, each coated with a phosphor emitting a different color, as described in connection with Fig. 1.

Disc 3| is mounted upon shaft 33, held in a suitable bearing, 34, and driven by bevel'gears 35 and 36, gear 36 being in turn mounted upon shaft 31, which latter is held in suitable bearings 38 and 39, and driven by an external-internal motor of the induction type which may be similar to that already described in Fig. 1, and whichhere bears corresponding reference numerals upon the various elements thereof.

It will-be evident that the color cathode ray tube shown in Fig. 2 is of the direct projection type, instead of the front surface projection type shown in the embodiment of Fig. 1'. By placing the disc normal to the plane of incidence of the electron'beam. maximum spread angle thereof is secured, this being accomplished by the useof an indirect mechanical drive of the disc.

' In the case of both embodiments of this invention here shown, the fluorescent screen is constituted by several discrete segments and accordingly it is possible, if so desired, to-introduce the screen into the glass envelope of the cathode ray tube in separate portions, which portions may be assembled with one another to build up the disc and screen, after such insertion has taken place. This yields the further advantage that the glass envelope, which must house a fluorescent screen support of approximately twice the diameter 0f the support which would'be employed in the case of black and white television, can be provided with a relatively small aperture for in sertlon of the various elements therewithin. This necessitates the employment of only relatively small size glass seals duringthe course of manufacture, thus facilitating construction of the tube. It is likewise to be noted that the power needed for rotating the fluorescent color screensof this invention will be much less than that which would be required to drive color filter discs ofthe usual types, since such color filter discs would be located externally to the tube and therefore would encounter air resistance when being rotated.

When high power tubes are employed, the enhanced cooling effects afforded by this invention become of increasing importance. -This is due, inter alia, to the fact that certain phosphors may lose, for example, as much as 80 percent of their luminosity, if the temperature of the phosphor be raised from ordinary room temperature to 300 C. Accordingly. a screen which would have its luminosity greatly decreased, which effect would therefore entail a loss of brilliancy of the repro.-- duced image, if such screen were employed in the stationary manner of the prior art, may satisfactorily be used while kept in motion by means of the apparatus employed in carrying out the present invention, due to the cooling eifect, previously described, secured by the use of a rotating and partly shielded fluorescent screen.

Another advantage of this invention is that color reproduction is obtained by an additive method. so that the electronic energy is more emciently employed, by being wholly converted, at any given instant, into the desired color, instead of being spread over the entire spectrum of white light and then only a portion of this spectrum being actually used, as is done by sub- Of course, in all such tubes tractive processes. the afterglow should be of very short duration.

What is claimed is:

1. In a cathode ray tube, the method of securv ing polychromatic reproduction with discrete phosphors exhibiting diverse colors when excited by an electron stream, which includes the steps of subjecting a first phosphor to the electron stream, removing said phosphor from the path of said stream, and placing another phosphor in said path, said discrete phosphors being selected so as to yield respective luminous outputs located in different portions of the visible spectrum.

2. Method according to claim 1, in which said discrete phosphors yield luminous outputs corresponding to the analytic color elements employed in color reproduction electro-optical devices.

- 3. Method according to claim 1, in which said discrete phosphors, when excited by said electron stream, are viewed from the same side upon which they are respectively struck by said electron stream.

4. Method according to'claim 1, in which said discrete phosphors, when excited by said electron stream, are viewed from the opposite side from the side upon which they are respectively trum from the portion wherein is located the luminous output of the remaining phosphors, and means for determining a coincidental temporal and spatial relationship of said electron stream and each of said phosphors, in a predetermined sequential manner.

7. Cathode ray tube according to claim 6, in which said means for the determination of said coincidental spatial and temporal relationship includes means for giving to said phosphors translatory motion in a circular path, the plane of which path is substantially normal to the angle of incidence or said electron stream thereupon, in at least two dimensions.

8. Cathode ray tube for color television reproduction, including an evacuated envelope, means for producing an electron stream therewithin, a disc-like support located within said tube and segmentally coated with phosphors exhibiting discrete color output from one another, said support being shielded at any one instant for at least which said disc-like support is formed of trans- 5 parent material such as glass, and said evacuated envelope includes a transparent window located on the side of said support which is not coated,

through which support and which window the light yielded by said phosphors is, in turn, projected.

11. Cathode ray tube for color television reception, including an evacuated envelope, means for producing therewithin an electron stream, means for scanning with said stream, a disc, means for rotating said disc so that substantially all portions of one surface thereof pass successively across the scanning field, at least two phosphors yielding diiferent colors and segmentally coated upon said surface of said disc, and means for utilizing the luminous output of the electron excited portion of said disc coating excited at a given instant.


REFERENCES CITED The following references are of record in the file of this patent:

UNITED STATES PATENTS Number Name Date 2,086,718 Knoll July 13, 1937 2,268,523 Clothier et al Dec. 30, 1941 2,330,682 Clothier et al. Sept. 28, 1943 2,281,638 Sukumlyn May 5, 1942 I 2,104,862 Henroteau Jan. 11, 1938 1,974,911 Becker Sept. 25, 1934 2,289,978 Malter July 14, 1942 2,303,563 Law Dec. 1, 1942 2,277,009 Von Ardenne Mar. 17, 1942 2,319,789 Chambers May 25, 1943 2,335,180 Goldsmith Nov. 23, 1943 FOREIGN PATENTS Number Country Date 508,712 Great Britain Feb. 20, 1939 328,680 Great Britain Feb. 1, 1929 395.578 Great Britain Dec. 5, 1932 318,331 Great Britain 'Apr. 22, 1929

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1974911 *27 Dec 193025 Sep 1934Heinrich BueckerTelevision
US2086718 *9 Feb 193513 Jul 1937Telefunken GmbhElectron tube
US2104862 *4 Jan 193411 Jan 1938Electronic Television CompanyTelevision method and apparatus
US2268523 *15 Mar 193830 Dec 1941Clothier Stewart LMethod and apparatus for television communication
US2277009 *6 Jun 194017 Mar 1942Von Ardenne ManfredTelevision image projection tube
US2281638 *17 May 19405 May 1942Sukumlyn Thomas WElectron camera
US2289978 *30 Nov 194014 Jul 1942Rca CorpTelevision picture tube screen
US2303563 *9 May 19411 Dec 1942Rca CorpCathode ray tube and luminescent screen
US2319789 *3 Oct 194125 May 1943Harrison Chambers TorrcnceTelevision
US2330682 *30 Dec 194128 Sep 1943Clothier Stewart LMethod and apparatus for television communication
US2335180 *28 Jan 194223 Nov 1943Goldsmith Alfred NTelevision system
GB318331A * Title not available
GB328680A * Title not available
GB395578A * Title not available
GB508712A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US2602903 *13 Nov 19508 Jul 1952Kenneth T SnowCathode-ray tube
US2644031 *22 Apr 194930 Jun 1953Time IncScanning device
US2681946 *24 Sep 194922 Jun 1954Rca CorpColor image reproduction system
US2687450 *10 Aug 195124 Aug 1954VColor television
US3121872 *11 Mar 195918 Feb 1964Telefunken AgSignal recording system and method
US3138796 *3 Sep 195823 Jun 1964Withey Edward LThree-dimensional display apparatus
US3140415 *16 Jun 19607 Jul 1964Hughes Aircraft CoThree-dimensional display cathode ray tube
US3231746 *9 Jun 196125 Jan 1966Bendix CorpImage intensifier device using electron multiplier
US3599026 *25 Aug 196910 Aug 1971Tokyo Shibaura Electric CoProjection tube with rotatable cooled display screen
US3600625 *26 Aug 196917 Aug 1971Tokyo Shibaura Electric CoProjection picture tube with rotating fluorescent screen
U.S. Classification315/1, 313/476, 348/743, 348/E09.18, 313/149
International ClassificationH04N9/16, H04N9/22
Cooperative ClassificationH04N9/22
European ClassificationH04N9/22