US2263217A - Heat treatment of glass textiles - Google Patents

Heat treatment of glass textiles Download PDF

Info

Publication number
US2263217A
US2263217A US215688A US21568838A US2263217A US 2263217 A US2263217 A US 2263217A US 215688 A US215688 A US 215688A US 21568838 A US21568838 A US 21568838A US 2263217 A US2263217 A US 2263217A
Authority
US
United States
Prior art keywords
glass
fibres
strength
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US215688A
Inventor
Howard R Lillie
Eric H Loytty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning
Original Assignee
Owens Corning Fiberglas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Fiberglas Corp filed Critical Owens Corning Fiberglas Corp
Priority to US215688A priority Critical patent/US2263217A/en
Priority to FR856853D priority patent/FR856853A/en
Priority to DEA89766D priority patent/DE734291C/en
Application granted granted Critical
Publication of US2263217A publication Critical patent/US2263217A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/002Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Definitions

  • This treatment may take place at any time after the formation of the fibres, but preferably after the fibres have been fabricated into yarn or cloth, and will produce beneficial results whether the fibres are in their original oil-free condition or have been lubricated.
  • Heating may be accomplished either intermittently by operating on sepate quantities of finished material or continuously as by passing the fabric through a rially increased, both in in the wet state, by heat heating furnace of proper type and temperature possibly be accounted for either on the theory that the moisture tends to reduce the efficacy of the lubricants applied to glass fibres or that the moisture is drawn into the surface flaws known to exist in glass of all descriptions, thereby changing the force of attraction between the mirror surfaces of the flaw which, in the case of a very fine fibre, may make a major change in the strength ofthe fibre at that point.
  • glass compositions referred to above are those in which the total alkali metal oxides do not exceed 3% of the glass composition.
  • one definite effect of heat treatment of fibrous glass textiles is to reduce the strain set up in the fibres by their fabrication into textiles and produce a stronger fabric whose threads have less tendency to slide on one another andunravel.
  • the increase in'strength of a heat treated, oiled yarn over the same yarn in its regular condition may be only about 2%, while under conditions of 100% relative humidity the heat-treated yarn may have a strength as much as two and onehalf times that of the regular yarn.
  • the wet strength of a heat treated yarn may be from 65% to 75% of its dry strength, while the wet strength of a regular these weights-of yarn are heat treated.
  • part of the above effect may be due to a tougheningand baking-on of the oil film which seals surface fiaws in the fibres and generally renders them water resistant, but this can be only part of the effect produced for a similar, though less pronounced effect is obtained by treating oil-free yarns and fibres.
  • an oiled yarn of low alkali glass fibres has been observed to lose 30% of its strength as the relative humidity of the surrounding atmosphere increases from 47% to 70%.
  • an oil free yarn which lost 20% of its strength before being heat treated lost only 11% of its strength after heat treatment.
  • the oiled yarn lost only 1% of its strength with the same change in humidities.
  • the heat treatment of the yarn was carried out at 200 C. for one half hour.
  • the method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, fabricating said filaments into a textile material, and heating said material at a temperature between 50 C. and 340 C. for a period of from 5 to 30 minutes.
  • the method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, fabricating said filaments into a textile material, and heating said material at a temperature between 50 C. and 340 C. for at least five minutes.
  • the method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature sufficiently high to remove a portign of said lubricant, but not in excess of 340 C.
  • the method of making glasstextile material having a high wet strength which comprises forming filaments from a glass containing up to I yarn may be only 30% to 34% of its dry strength. Similar effects are found when'fabrics made from 3% of alkali metal oxides; coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature sufiiciently high to remove a portion of said lubricant, but not in excess of 340 C. for a period of at least five minutes.
  • the method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature of 200 C. for aperiod of thirty minutes.

Description

Patented Nov. 18, 1941 Howard B. Lillie and Eric H. Loytty,
N. Y., assignors, by mesne assignments, to
Owens-Corning Fiber notation of Delaware glas Corporation. a cor- No Drawing. Application June 24, 1938,
- Serial No. 215,688
5 Claims.
number of fibres of this nature are twisted together to form a thread and subsequently woven or knitted into a textile fabric, neither the thread nor the fabric has a strength commensurate with the sum of the strengths of the individual fibres contained therein. This is believed due, at least in part, to lack 'of parallelism of the fibres, the stresses set up in the individual fibres as they are bent over and under one -an-- other, and, further, to the abrasion of the fibres at these points of contact, both increasing the tendency for fibres to break and thereby lowering the efiiciency of the fabricated material as compared with the individual fibres.
When yarns and fabrics composed of glass fibres are immersed in liquids, particularly water, or used in humid atmosphere, a marked decrease from their corresponding dry strength occurs. This is believed partially due to the tendency of water to combine with and leach out the alkali content of the glass which tends to attack the remainder of the glass, actually reducing the diameter of the fibres and eventually cementing them together at their points of contact, thereby decreasing the ability of the fibres to slip past one another and increasing the abrasion at these points However, an almost equaly high loss in strength occurs when fabrics of a lowalkali or alkali-free glass composition are wet. This can the dry and particularly treating the fibres, preferably after fabrication, at a relatively low temperature for a limited period of time, More specifically, an increase in the wet strength of glass fibres and fabrics made therefrom of up to 150%, depending on the humidity conditions under which the test is made, may be obtained by heating low alkali and alkali-free fibrous glass products for a period of from one to thirty minutes at a temperature of from 50 C. to 340 C. This treatment may take place at any time after the formation of the fibres, but preferably after the fibres have been fabricated into yarn or cloth, and will produce beneficial results whether the fibres are in their original oil-free condition or have been lubricated. Heating may be accomplished either intermittently by operating on sepate quantities of finished material or continuously as by passing the fabric through a rially increased, both in in the wet state, by heat heating furnace of proper type and temperature possibly be accounted for either on the theory that the moisture tends to reduce the efficacy of the lubricants applied to glass fibres or that the moisture is drawn into the surface flaws known to exist in glass of all descriptions, thereby changing the force of attraction between the mirror surfaces of the flaw which, in the case of a very fine fibre, may make a major change in the strength ofthe fibre at that point.
Whatever the reasons for the loss of strength in glass fibres, yarns, and fabrics when wet, it has been found that the strength of glass fibres and fibrous glass products made from low alkali as it comes from the loom or knitting'machine. The glass compositions referred to above are those in which the total alkali metal oxides do not exceed 3% of the glass composition.
Inasmuchas the precise reasons for loss of strength by fibrous glass products when they are wet are not fully known, the effects of heat treatment cannot be stated completely and exactly. It is known from experimentation that the strain release temperature of glass fibres of very fine diameter is materially lowered due to the rapidity with which they are cooled. This may amount to as much as 300 C. bringing the strain release temperature for a glass fibre as low as 200 0., approximately. While the total amount of strain release occurring at a given temperature depends om the particular glass composition and the period for which it is held at that temperature, it has been found that values of 25% and more can be obtained with most glasses when heated at as low a temperature as 200 C. for from five to thirty minutes. When woven or knitted glass fabrics are 'heat treated in this manner, it is found that a permanent undulation is set in each thread which corresponds to its position in the fabric, whilethe tendency of a thread to untwist is substantially eliminated. Thus, one definite effect of heat treatment of fibrous glass textiles is to reduce the strain set up in the fibres by their fabrication into textiles and produce a stronger fabric whose threads have less tendency to slide on one another andunravel.
Further advantages are derived from heat and alkali-free glass compositions can be matetreatment as tests of single fibres show, but the reasons therefor are obscure. While strain release takes place equally well' with low alkali.
glasses and those having a large percentage of NazO in their composition, only those glasses which are substantially free from or have less than 3% of alkali metal oxides in their composition show an actual increase in strength in individual fibres due to heat treatment. This increase is observed both with oil-free and lubricated fibres, yarns, and fabrics, although it is more pronounced when an oil is present on the surface of the fibres during heat treatment. Furthermore, the change in strength varies with the temperature at which the fibres are treated. Thus, with a representative glass containing approximately 2% of lithia, the strength of fibres and textiles after heat treatment is found to increase uniformly with the treating temperature used up to and including 200 C., after which it gradually decreases reaching its original value after treatment at 340 C. and having but half its original strength after treatment at 450 C.
The increase in strength effected by heating at a given temperature has been found to vary with humidity, increasing proportionately with increase in humidity, and to be more pronounced with the lighter weights of fabricated materials. By way of illustration, the following tables are given showing the strength in pounds of 1 and 2 grain yarn made from fibres of the representative glass referred to above both plain and heat treated at 200 C. for one-half hour.
Thus it will be seen that -ina dry atmosphere the increase in'strength of a heat treated, oiled yarn over the same yarn in its regular condition may be only about 2%, while under conditions of 100% relative humidity the heat-treated yarn may have a strength as much as two and onehalf times that of the regular yarn. Stated in a different way, the wet strength of a heat treated yarn may be from 65% to 75% of its dry strength, while the wet strength of a regular these weights-of yarn are heat treated.
It is believed that part of the above effect may be due to a tougheningand baking-on of the oil film which seals surface fiaws in the fibres and generally renders them water resistant, but this can be only part of the effect produced for a similar, though less pronounced effect is obtained by treating oil-free yarns and fibres. For example, an oiled yarn of low alkali glass fibres has been observed to lose 30% of its strength as the relative humidity of the surrounding atmosphere increases from 47% to 70%. Under the same conditions, an oil free yarn which lost 20% of its strength before being heat treated lost only 11% of its strength after heat treatment. After heat treatment the oiled yarn lost only 1% of its strength with the same change in humidities. In all of the above cases the heat treatment of the yarn was carried out at 200 C. for one half hour.
While certain specific treatments of various fibrous glass products and the results obtained thereby have been described in some detail, such description is by way of illustration, rather than of limitation and the present invention is to be limited solely by the scope of the following claims.
We claim:
1. The method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, fabricating said filaments into a textile material, and heating said material at a temperature between 50 C. and 340 C. for a period of from 5 to 30 minutes.
2. The method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, fabricating said filaments into a textile material, and heating said material at a temperature between 50 C. and 340 C. for at least five minutes.
3. The method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature sufficiently high to remove a portign of said lubricant, but not in excess of 340 C.
4. The method of making glasstextile material having a high wet strength which comprises forming filaments from a glass containing up to I yarn may be only 30% to 34% of its dry strength. Similar effects are found when'fabrics made from 3% of alkali metal oxides; coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature sufiiciently high to remove a portion of said lubricant, but not in excess of 340 C. for a period of at least five minutes.
5. The method of making glass textile material having a high wet strength which comprises forming filaments from a glass containing up to 3% of alkali metal oxides, coating said filaments with a lubricant, fabricating said filaments into a textile material, and heating said material at a temperature of 200 C. for aperiod of thirty minutes.
HOWARD R. LILLIE. ERIC H. LOY'I'I'Y.
US215688A 1938-06-24 1938-06-24 Heat treatment of glass textiles Expired - Lifetime US2263217A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US215688A US2263217A (en) 1938-06-24 1938-06-24 Heat treatment of glass textiles
FR856853D FR856853A (en) 1938-06-24 1939-06-24 Process for the heat treatment of glass fibers and products, in particular textiles, made therewith
DEA89766D DE734291C (en) 1938-06-24 1939-06-25 Process for increasing the strength, in particular the moisture resistance, of glass fibers and of yarns, woven or knitted fabrics made from glass fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US215688A US2263217A (en) 1938-06-24 1938-06-24 Heat treatment of glass textiles

Publications (1)

Publication Number Publication Date
US2263217A true US2263217A (en) 1941-11-18

Family

ID=22803958

Family Applications (1)

Application Number Title Priority Date Filing Date
US215688A Expired - Lifetime US2263217A (en) 1938-06-24 1938-06-24 Heat treatment of glass textiles

Country Status (3)

Country Link
US (1) US2263217A (en)
DE (1) DE734291C (en)
FR (1) FR856853A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2443617A (en) * 1942-12-30 1948-06-22 Samuel C Miller Insulator material for neon sign electrodes, method of making the same, and resultant article
US2489985A (en) * 1944-12-04 1949-11-29 American Cyanamid Co Process for impregnating fibrous materials and products thereof
US2667568A (en) * 1949-06-20 1954-01-26 Ferier Albert Apparatus for treating glass fiber cloth
US2686954A (en) * 1949-12-19 1954-08-24 H I Thompson Company Method of forming silica textile materials
US2745173A (en) * 1951-07-14 1956-05-15 Gen Electric Method of thermal insulation
DE966247C (en) * 1951-07-06 1957-07-18 Owens Corning Fiberglass Corp Method for treating fabrics made from glass fibers
US2904258A (en) * 1957-07-22 1959-09-15 Fibercraft Products Inc Evaporator plates
US3050907A (en) * 1958-06-27 1962-08-28 American Optical Corp Method for shaping a fiber optical device
US3454362A (en) * 1965-03-16 1969-07-08 Union Carbide Corp Process for producing fibrous graphite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE918889C (en) * 1950-04-15 1954-10-07 Saint Gobain Process for the treatment of threads or fabrics made of glass or similar mineral substances

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2443617A (en) * 1942-12-30 1948-06-22 Samuel C Miller Insulator material for neon sign electrodes, method of making the same, and resultant article
US2489985A (en) * 1944-12-04 1949-11-29 American Cyanamid Co Process for impregnating fibrous materials and products thereof
US2667568A (en) * 1949-06-20 1954-01-26 Ferier Albert Apparatus for treating glass fiber cloth
US2686954A (en) * 1949-12-19 1954-08-24 H I Thompson Company Method of forming silica textile materials
DE966247C (en) * 1951-07-06 1957-07-18 Owens Corning Fiberglass Corp Method for treating fabrics made from glass fibers
US2745173A (en) * 1951-07-14 1956-05-15 Gen Electric Method of thermal insulation
US2904258A (en) * 1957-07-22 1959-09-15 Fibercraft Products Inc Evaporator plates
US3050907A (en) * 1958-06-27 1962-08-28 American Optical Corp Method for shaping a fiber optical device
US3454362A (en) * 1965-03-16 1969-07-08 Union Carbide Corp Process for producing fibrous graphite

Also Published As

Publication number Publication date
DE734291C (en) 1943-04-13
FR856853A (en) 1940-08-13

Similar Documents

Publication Publication Date Title
US2263217A (en) Heat treatment of glass textiles
US2331944A (en) Production of fibers from minerals and like materials
US2334961A (en) Glass composition
US2571074A (en) Glass composition
JPH01500601A (en) Fireproof fiber yarn and how to use this yarn
WO2022011873A1 (en) High-temperature-resistant glass fiber woven fabric and preparation method therefor
US3375155A (en) Treatment of fibrous glass
US2915806A (en) Metal coated glass fiber combinations
US3730892A (en) Production of polyesters
CN110872737B (en) Low-shrinkage polyester cotton fabric and preparation method thereof
US3600205A (en) Boric oxide-free glass fibers and compositions for making them
CN100447332C (en) Dacron glass fiber dipped canvas and its preparation method
CN213538547U (en) Basalt fiber woven fabric for high-temperature flue gas dust removal
US2100347A (en) Woven brake lining, yarn, and process for making same
US2733158A (en) Glass composition
US3079664A (en) Coated glass fiber combinations
US2261148A (en) Method of treating fibrous glass
US2280603A (en) Preparing suture materials
EP3400327B1 (en) Method for the production of a high temperature-resistant inorganic yarn having an increased tensile strength
US3762897A (en) Thermochemical cleaning of glass fabrics
US2738324A (en) Anti-static rayon oils
CN110938995A (en) Production method of impregnated canvas for ceramic fiber high-temperature-resistant conveying belt
US3045317A (en) Process for producing sized glass yarns
US1699779A (en) Process for improving tensile strength of fabric materials
US3382135A (en) Ion exchange of glass fibers