US2247138A - System for television transmission - Google Patents

System for television transmission Download PDF

Info

Publication number
US2247138A
US2247138A US232755A US23275538A US2247138A US 2247138 A US2247138 A US 2247138A US 232755 A US232755 A US 232755A US 23275538 A US23275538 A US 23275538A US 2247138 A US2247138 A US 2247138A
Authority
US
United States
Prior art keywords
mosaic
electrons
anode
potential
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US232755A
Inventor
Thomas W Sukumlyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US232755A priority Critical patent/US2247138A/en
Application granted granted Critical
Publication of US2247138A publication Critical patent/US2247138A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/28Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen
    • H01J31/40Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen having grid-like image screen through which the electron ray passes and by which the ray is influenced before striking the output electrode, i.e. having "triode action"

Definitions

  • This invention relates to television, and especially to a system for television transmission, especially by the aid of a cathode ray scanning device.
  • Eflicient television systems depend upon advantageous use of amplifier stages of the audion type. At best the signaling impulses obtained at the transmitter end by conversion of light impulses into electrical impulses, are minute; and eflfectlve high amplication is essential to render such signals perceptible at the receiver.
  • the ray (comprising a stream of electrons) is caused to scan a mosaic of photoelectric material.
  • This mosaic in such prior systems comprises a series of isolated photoelectrically active areas, supported on an insulation plate; this plate in turn is supported on a metal member, having with the active elements, capacities that are in parallel relation with each other.
  • the picture to be transmitted is focused on the photoelectric mosaic; accordingly the charge on each photoelectrically active element depends upon its illumination, and therefore varies as its illumination varies.
  • the capacity between each active element and the conducting plate support determines the potential difference across this capacity due to the charge.
  • This smaller capacity is formed, not by the supporting plate for the mosale, but by a supplemental small anode or collector that is spaced from the source of those electrons that are to be received and collected thereon.
  • the intensity of the signal is further increased by an amplifier action.
  • the discharge and charge of the mosaic elements do not serve directly as a signal current, but they cause the potential of these elements to change, and thus the mosaic serves as a control electrode controlling a much larger current in the'form of secondary electrons from a supplemental emitter to the anode.
  • the charge and discharge current to the mosaic elements is really a grid current, and the mosaic elements perform the function of a grid as in the usual amplifying audion.
  • Figure 1 is a diagram illustrating a system incorporating the invention
  • FIG. 2 is an enlarged fragmentary view of a photoelectrically active mosaic utilized in connection with the invention
  • Fig. 3 is an enlarged sectional view taken along the plane 3-3 of Fig. 2, and
  • Figs. 4, and 6 are graphs illustrating the phases of operation of the system.
  • the television transmission system includes an evacuated tubular envelope I in which substantially all of the elements of the system may be enclosed and sealed.
  • One portion of the tube is a cathode ray device; this corresponds in Fig. 1 to the left hand portion of the tube l.
  • the right hand portion of the tube I is a photoelectric cell system.
  • a photoelectrically active mosaic In one form of television system use is made of a photoelectrically active mosaic. Upon this mosaic the image of the scene to be transmitted by television is cast.
  • the present system utilizes such a mosaic, It has a supporting plate 3. The construction of this mosaic can be best explained in connection with Figs. 2 and 3.
  • the supporting plate 3 is shown as having perforations 4. Upon this supporting plate is spread 'the mosaic 2 which includes mutually insulated elemental photoelectric areas. The resultant effect is that there are numerous small spots such as indicated at 5 on Fig. 2, which are electrical- 1y insulated from each other and from the supporting plate 3, but each of which forms a photoelectric cathode capable of emitting electrons when illuminated. The intensity of emission is dependent, as in the usual photoelectric cell, upon the intensity of illumination falling upon these elements.
  • One manner suggested by prior investigators is to produce minute metallic globules on a layer of insulation, as for example by reducing particles of silver oxide that had been dusted over the insulation layer.
  • the reduced silver globules form the individual minute metal areas. These areas may be sensitized after the mosaic has been mounted in the tube l and the tube evacuated, as required for such cathode ray devices.
  • the sensitization may be accomplished by oxidizing the metal surface and exposing it to caesium vapor, and then heat treating.
  • the mosaic 2 includes a very large number of elemental areas closely spaced on the insulation 6, which in turn is supported on the perforated screen or plate 3.
  • the mosaic 2 and its supporting plate 3 are shown as appropriately supported within the evacuated tube I.
  • any suitable lens system In order to focus an image on to the photoelectrically active mosaic, use is made of any suitable lens system.
  • a lens system I is diagrammatically illustrated in Fig. 1 and is shown as located exterior of the tube l. Illumination from the scene passes through the lens system 1 and part of it passes through the perforations 4 of the supporting plate 3. Preferably the perforations comprise about one-half of the total over-all area of this support 3. The illumination is reflected backward on to the mosaic 2 by the aid of a metallic mirror film 8 disposed adjacent and opposite the mosaic 2.
  • the elemental active areas of the mosaic 2 emit electrons corresponding to the intensity of the illumination produced on these areas from the scene to be transmitted.
  • the emission of electrons causes an increase in the potential of these areas.
  • This increase in potential with re spect to the metallic film 8 is made use of to determine the intensity of another stream of electrons, in the manner of control electrodes used for arriplifiers of the thermionic type. How this is accomplished will now be described.
  • the film 8 is made of appropriately thin continuous metal so that it may serve as a secondary emitter of slow electrons when bombarded by a cathode ray; but it is thick enough to me vent the passage of any high velocity primary rays that are used for the bombardment.
  • the emission of electrons toward the right as viewed in Fig. 1, from elemental areas of the secondary emitter 8 is shown as controlled by a scanning cathode ray 9, which serves as the bombarding ray.
  • This ray is caused to scan film 8, as for example by the aid of the usual scanning coils l0 and II. This is all accomplished in a well understood manner.
  • the cathode ray 9 is produced by the aid of a heated cathode l2 and directing anode [3 by the aid of which an electron gun is produced.
  • the anode I3 is maintained at a sufiicien-tly high potential with respect to the cathode l2 as by the aid of the battery M connected between these two electrodes. Furthermore, the secondary emitter 8 is shown as maintained at a positive potential with respect to the oathode l2 as by the aid of .the battery l5. Thus the path of the electrons utilized in the gun includes the ray 9, and a return through the battery l5.
  • the right hand portion of the evacuate-d tube I utilizes the emissive right. hand surface of the secondary emitter 8 as Well as the mosaic 2 with its support 3 to form a structure analogous to a three electrode electronic emission amplifier of the audion type, the mosaic 2 serving as a control grid and its potential being varied by the photoelectric effect.
  • the emitter 8 corresponds to a cathode, and a plate I! serves as the anode.
  • the secondary emitter 8 is main tained at a potential normally positive with respeot to the mosaic 2 and the plate 3, as by the aid of the battery Hi.
  • the intensity of illumination of any particular elementary active portion of the mosaic produces a corresponding emission of electrons from the elementary portion, causing the potential to increase with re spect to the secondary emitter 8.
  • Most of the electrons emitted from the mosaic 2 find their path to the emitter 8. Accordingly the potential difference between any elemental area of the emitter 8 and the corresponding opposite photoelec'trically active elements of the mosaic z is varied in accordance with the intensity of illumination of the elemental area of the mosaic.
  • the intensity of electron flow along the path t9 between the emitter 8 4 and the anode I1 is dependent upon the potential difference between the mosaic 2 andut'he emitter B; and this in turn, as heretofore explained, is dependent upon the intensity of illumination of that portion of the mosaic 2 which is opposite the region on the emitter ll which is acted upon by the cathode ray 9. Accordingly the intensity of the current impulses flowing through the path connecting the anode l1 and emitter 8 is dependent upon the intensity of illumination of the corresponding elementary portions of the mosaic.
  • the path between anode I! and emitter 8 includes a resistance 2
  • anode I1 forms a very small capacity with respect to the other elements of the system
  • a comparatively small volume of electron flow to the anode I1 is sufiicient to alter the potential of the anode I! to a signal strength.
  • the potential of anode I! is the potential applied to the amplifier system 20, as by having the input side of this system 1001].- pled across the resistance 2
  • Fig. 4 the potential of cathode I2 is taken as the datum or zero potential 24.
  • the potential of the directing anode I3 is indicated by the point 25. This increase in potential between points 24 and 25 is caused by the battery M.
  • the po-. tential of the emitter 8 is indicated at the point 26 and is higher than that of anode I3 by virtue of the battery [5.
  • the plate 3 has a poten-' tial below that of the emitter 8.
  • This lower potential is represented by the point 27, and is due to the battery I6 interposed between these two elements. From the point 21 corresponding to the supporting plate 3 there is a comparatively steep rise of potential to the point 28 corresponding to the anode l1, and due to the battery I 8.
  • the potential of the photoelectrically active elements. thereof at any particular point corresponding to the position of the cathode ray 9, and the potentials of other elements of the system may be represented by the graph of Fig. 5.
  • the potential of emitter 8 is represented as before by the point 26.
  • these elements have a potential represented by the point 29 which is considerably higher than before.
  • the point 21 again represents the potential of the plate 3. Accordingly conditions are more favorable for the acceleration of electrons through the plate 3 to anode ll.
  • Fig. 6 the electric field through a path for the electrons from emitter 8, is indicated.
  • the point 30 represents the potential at the corresponding aperture 4 through which the electrons from emitter 8 are accelerated.
  • This potential 30 at the aperture is affected by the potential 29 on the adjacent portion of the photoelectric control mosaic 2. Since this electric field is such as to accelerate the electrons through path is to the anode ii, there is a flow of secondary electrons, the intensity of which is dependent upon the illumination of the corresponding part of the mosaic 2.
  • the ray 9 thus serves to discharge a current by the aid of the electron stream id to the anode II.
  • This current being due to the collection of negative electrons emitted from the emitter 8, "once these electrons reach the region of the mosaic 2, they are accelerated toward the :collecting anode II.
  • This anode serves, as is apparent, as a plate electrode of an amplifier including an emitter 8 and a control electrode or rid 2.
  • the output of the storage type of pickup is times the output of a non-storage pickup (assuming equal photoelectric sensitivities and perfect eificiencies), where N is the number of elements making up the picture, C1 is the capacity of the photoelectric cell and associated circuits in the case of the nonstorage type of pickup, and C2 is the capacity of the circuit of anode I1, connecting the pickup and amplifier in the case of the storage type.
  • the capacity C2 is necessarily very large, being of the order of hundreds of times larger than the capacity Ci usually found in the non-storage type of pickup, the gain in output resulting from the storage principle is in large measure annulled. Therefore if we reduce the capacity in a pickup of the storage type to a value as low as that of the usual photoelectric cell and its associated circuit, the gain in output over the gain possible with the non-storage type of pickup becomes equal to the number of picture elements; this is up in the thousands of times.
  • the capacity of the electrode I! in the present invention, together with the capacity of the circuit associated with the amp-lifier system 20 can be easily made as small as this.
  • a television transmission system means forming a mosaic of photoelectrically active elements, a cathode ray scanning device, a secondary electron emitter interposed in the path between the mosaic and the cathode ray, an apertured plate supporting the mosaic, said secondary electron emitter having a reflecting surface opposed to the mosaic, means for casting an optical image on the said reflecting surface, and through the apertured plate, means whereby the potential difference between an elementary portion of the surface of the secondary emitter and the opposite elements of the mosaic is dependent upon the illumination on said elements, and an anode spaced from the mosaic and on that side of the mosaic opposite from the secondary emitter, for collecting the secondarily emitted electrons.
  • a television transmission system means forming a mosaic of photoelectrically active elements, a perforated plate support for said mosaic, a reflecting member opposite the mosaic, means for casting an optical image on the mosaic by the passage of light through the plate onto the reflecting member, means whereby successive elemental areas of said reflecting member are caused to emit electrons in accordance with the illumination of. successive elemental portions of the mosaic, an anode for collecting said electrons, and an amplifier system having an inputcircuit connected to said anode.
  • a television transmission system having a mosaic of photoelectrically active elements, as well as means for casting an optical image on said elements to cause emission of electrons from said elements in accordance with the intensities of illumination on said elements, and also an anode to receive electrons for affecting a transmission circuit, characterized by the fact that the mosaic. elements have their active surfaces turned away from the direct illumination and receive their image by reflection, and by the provision of means to cause secondary electrons to Pass to the anode and in accordance with the optical image.
  • a television transmission system having a mosaic of photoelectrically active elements, as well as means for casting an optical image on said elements to cause emission of electrons from said elements in accordance with the intensities of illumination on said elements, and also an anode to receive electrons for afl'ecting a transmission circuit, characterized by the fact that the mosaic elements have their active surfaces turned away from the direct illumination and receive their image by reflection, said reflection being provided by a secondary electron emitter having a reflecting surface, which receives primary photoelectrons from the elements, and by the provision of means to cause said reflecting surface to emit secondary electrons corresponding in succession to elements of the optical image, and received by the anode.

Description

June 24, 1941.
T. W. SUKUMLYN SYSTEM FOR TELEVISION TRANSMISSION Filed Oct. 1, 1938 I; .4 1 26 x :7 s 27 I Ii 24 Dish/me 14/0/29 76 468 E 5 26 l 29 E 25 I I I I 27 I I I I Z4 .D/ISfd/{C A/ony 7Z/be g I' 2a 30 I Z5 I 1 I I I I I 24 D/sfonce 4/0/79 7Z/be BY m I N V E N TOR 7710/2705 W 50/11/2791? ATTORNEY Patented June 24, 1941 UNITED STATES PATENT OFFICE SYSTEM FOR TELEVISION TRANSMISSION 3 Thomas W. Sukumlyn, Los Angeles, Calif. Application October 1, 1938, Serial No. 232,755
4 Claims.
This invention relates to television, and especially to a system for television transmission, especially by the aid of a cathode ray scanning device.
Eflicient television systems depend upon advantageous use of amplifier stages of the audion type. At best the signaling impulses obtained at the transmitter end by conversion of light impulses into electrical impulses, are minute; and eflfectlve high amplication is essential to render such signals perceptible at the receiver.
It is one of the objects of this invention to make it possible to increase the intensity of the signaling impulses without the necessity of supplementing the amplifier stages.
In one previously known application of a cathode ray tube for television transmission, the ray (comprising a stream of electrons) is caused to scan a mosaic of photoelectric material. This mosaic in such prior systems comprises a series of isolated photoelectrically active areas, supported on an insulation plate; this plate in turn is supported on a metal member, having with the active elements, capacities that are in parallel relation with each other. The picture to be transmitted is focused on the photoelectric mosaic; accordingly the charge on each photoelectrically active element depends upon its illumination, and therefore varies as its illumination varies. The capacity between each active element and the conducting plate support determines the potential difference across this capacity due to the charge. Now just as soon as a cathode ray impinges upon a group of such active elements in the course of the scanning operation, the photoelectric charge on these elements can be discharged by the ray. The resultant discharge current flow is passed through a large resistance so as to set up a corresponding potential difference across the resistance. This potential difierence is then utilized to affect an amplifier system in a well-known manner.
In such old systems as outlined above, advantage is taken of the fact that the active elements oi. the photoelectric mosaic are continuously effective to determine the quantity of electricity to be discharged by the operation of the scanning cathode ray; and this effectiveness occurs at any the active elements that are be mg discharged, and the metal plate support that carries the mosaic as well as upon the capacity of the anode that collects the electrons. In general it may be stated that the smaller this capacity is, the greater the signal impulse that can be passed to the amplifier system. When the capacity of this collector is made small as by making its area small, much fewer electrons need be received thereon to cause it to have a potential suificient to provide a large signaling impulse.
It is another object of this invention to make it possible to increase greatly the signaling impulses in such storage systems, especially by providing that the discharge take place through a smaller capacity. This smaller capacity is formed, not by the supporting plate for the mosale, but by a supplemental small anode or collector that is spaced from the source of those electrons that are to be received and collected thereon.
By providing such an anode, the intensity of the signal is further increased by an amplifier action. The discharge and charge of the mosaic elements do not serve directly as a signal current, but they cause the potential of these elements to change, and thus the mosaic serves as a control electrode controlling a much larger current in the'form of secondary electrons from a supplemental emitter to the anode. Thus the charge and discharge current to the mosaic elements is really a grid current, and the mosaic elements perform the function of a grid as in the usual amplifying audion.
This invention possesses many other advantages, and has other objects Which may be made more apparent from a consideration of one embodiment of the invention. For this purpose there is shown a form in the drawing accompanying and forming part of the present specification. This form will now be described in de tail, illustrating the general principles of the invention; but it is to be understood that this detailed description is not to be taken in a limiting sense, since the scope of this invention is best defined by the appended claims.
Referring to the drawing:
Figure 1 is a diagram illustrating a system incorporating the invention;
2 is an enlarged fragmentary view of a photoelectrically active mosaic utilized in connection with the invention;
Fig. 3 is an enlarged sectional view taken along the plane 3-3 of Fig. 2, and
Figs. 4, and 6 are graphs illustrating the phases of operation of the system.
The television transmission system includes an evacuated tubular envelope I in which substantially all of the elements of the system may be enclosed and sealed. One portion of the tube is a cathode ray device; this corresponds in Fig. 1 to the left hand portion of the tube l. The right hand portion of the tube I is a photoelectric cell system.
In transmitting electrical impulses corresponding in intensity to the illumination obtained by projecting an image on a surface, it is essential to make use of photoelectrically active elements such as those produced by the distillation of alkali metals on a supporting surface. The impulses may be secured by the aid of a scanning cathode ray for causing the fiow of an electric current, corresponding to the illumination on successive elemental areas of the photoelectrically active surface.
In one form of television system use is made of a photoelectrically active mosaic. Upon this mosaic the image of the scene to be transmitted by television is cast. The present system utilizes such a mosaic, It has a supporting plate 3. The construction of this mosaic can be best explained in connection with Figs. 2 and 3.
The supporting plate 3 is shown as having perforations 4. Upon this supporting plate is spread 'the mosaic 2 which includes mutually insulated elemental photoelectric areas. The resultant effect is that there are numerous small spots such as indicated at 5 on Fig. 2, which are electrical- 1y insulated from each other and from the supporting plate 3, but each of which forms a photoelectric cathode capable of emitting electrons when illuminated. The intensity of emission is dependent, as in the usual photoelectric cell, upon the intensity of illumination falling upon these elements.
Various ways may be utilized to form the mosaic. One manner suggested by prior investigators is to produce minute metallic globules on a layer of insulation, as for example by reducing particles of silver oxide that had been dusted over the insulation layer. The reduced silver globules form the individual minute metal areas. These areas may be sensitized after the mosaic has been mounted in the tube l and the tube evacuated, as required for such cathode ray devices. The sensitization may be accomplished by oxidizing the metal surface and exposing it to caesium vapor, and then heat treating.
No matter how produced, the mosaic 2 includes a very large number of elemental areas closely spaced on the insulation 6, which in turn is supported on the perforated screen or plate 3. The mosaic 2 and its supporting plate 3 are shown as appropriately supported within the evacuated tube I.
In order to focus an image on to the photoelectrically active mosaic, use is made of any suitable lens system. Such a lens system I is diagrammatically illustrated in Fig. 1 and is shown as located exterior of the tube l. Illumination from the scene passes through the lens system 1 and part of it passes through the perforations 4 of the supporting plate 3. Preferably the perforations comprise about one-half of the total over-all area of this support 3. The illumination is reflected backward on to the mosaic 2 by the aid of a metallic mirror film 8 disposed adjacent and opposite the mosaic 2.
Since for the purpose of this invention the image cast upon the mosaic 2 is formed by light passing through the perforations 4, a p' of the light is lost, but in view of the tremendous advantage obtained in signal intensity, this reduction in illumination is tolerable.
The elemental active areas of the mosaic 2 emit electrons corresponding to the intensity of the illumination produced on these areas from the scene to be transmitted. The emission of electrons causes an increase in the potential of these areas. This increase in potential with re spect to the metallic film 8 is made use of to determine the intensity of another stream of electrons, in the manner of control electrodes used for arriplifiers of the thermionic type. How this is accomplished will now be described.
Thus the film 8 is made of appropriately thin continuous metal so that it may serve as a secondary emitter of slow electrons when bombarded by a cathode ray; but it is thick enough to me vent the passage of any high velocity primary rays that are used for the bombardment. The emission of electrons toward the right as viewed in Fig. 1, from elemental areas of the secondary emitter 8 is shown as controlled by a scanning cathode ray 9, which serves as the bombarding ray. This ray is caused to scan film 8, as for example by the aid of the usual scanning coils l0 and II. This is all accomplished in a well understood manner. The cathode ray 9 is produced by the aid of a heated cathode l2 and directing anode [3 by the aid of which an electron gun is produced.
The electrons in the ray -9 are quite well concentrated along this ray.
The anode I3 is maintained at a sufiicien-tly high potential with respect to the cathode l2 as by the aid of the battery M connected between these two electrodes. Furthermore, the secondary emitter 8 is shown as maintained at a positive potential with respect to the oathode l2 as by the aid of .the battery l5. Thus the path of the electrons utilized in the gun includes the ray 9, and a return through the battery l5.
The right hand portion of the evacuate-d tube I utilizes the emissive right. hand surface of the secondary emitter 8 as Well as the mosaic 2 with its support 3 to form a structure analogous to a three electrode electronic emission amplifier of the audion type, the mosaic 2 serving as a control grid and its potential being varied by the photoelectric effect. The emitter 8 corresponds to a cathode, and a plate I! serves as the anode. The secondary emitter 8 is main tained at a potential normally positive with respeot to the mosaic 2 and the plate 3, as by the aid of the battery Hi. In other words, if the mosaic 2 is not illuminated, the intensity of illumination of any particular elementary active portion of the mosaic, produces a corresponding emission of electrons from the elementary portion, causing the potential to increase with re spect to the secondary emitter 8. Most of the electrons emitted from the mosaic 2 find their path to the emitter 8. Accordingly the potential difference between any elemental area of the emitter 8 and the corresponding opposite photoelec'trically active elements of the mosaic z is varied in accordance with the intensity of illumination of the elemental area of the mosaic.
Now at the instant that the cathode ray 9 reaches any elemental portion oi. the emitter 8, a secondary emission of slow electrons takes place from that elemental area toward the right. A]-
though some of .these electrons might find their way back to the emitter '8, some of them can proceed through the apertures '4 of the plate 3 in to the region to the right of the mosaic 2, and the balance is utilized to replenish electrons on the mosaic 2. They are accelerated to some extent by the potential of the corresponding portion of the mosaic 2, toward the anode I1. This anode i7 is spaced some distance to the right of the emitter 8. It is maintained at a potential positive with respect to the plate 3 and is also positive with respect to the emitter 8, as by the aid of battery Hi. The intensity of electron flow along the path t9 between the emitter 8 4 and the anode I1 is dependent upon the potential difference between the mosaic 2 andut'he emitter B; and this in turn, as heretofore explained, is dependent upon the intensity of illumination of that portion of the mosaic 2 which is opposite the region on the emitter ll which is acted upon by the cathode ray 9. Accordingly the intensity of the current impulses flowing through the path connecting the anode l1 and emitter 8 is dependent upon the intensity of illumination of the corresponding elementary portions of the mosaic.
In order to affect the input circuit of an arm plifier system 20 by this current impulse, the path between anode I! and emitter 8 includes a resistance 2| of appropriate size across which the input circuit 22, 23 of the amplifier system may be connected.
By virtue of the fact that the anode ll forms a very small capacity with respect to the other elements of the system, a comparatively small volume of electron flow to the anode I1 is sufiicient to alter the potential of the anode I! to a signal strength. The potential of anode I! is the potential applied to the amplifier system 20, as by having the input side of this system 1001].- pled across the resistance 2| that is in the circuit of anode II.
The manner in which the potential differences along the tube are controlled is illustrated to best advantage in Figs. 4, and 6. Thus in Fig. 4 the potential of cathode I2 is taken as the datum or zero potential 24. The potential of the directing anode I3 is indicated by the point 25. This increase in potential between points 24 and 25 is caused by the battery M. The po-. tential of the emitter 8 is indicated at the point 26 and is higher than that of anode I3 by virtue of the battery [5. Assuming that there is no illumination on the mosaic 2, and that the cathode ray 9 is ineffective, the plate 3 has a poten-' tial below that of the emitter 8. This lower potential is represented by the point 27, and is due to the battery I6 interposed between these two elements. From the point 21 corresponding to the supporting plate 3 there is a comparatively steep rise of potential to the point 28 corresponding to the anode l1, and due to the battery I 8.
Now when the mosaic is illuminated, the potential of the photoelectrically active elements. thereof at any particular point corresponding to the position of the cathode ray 9, and the potentials of other elements of the system may be represented by the graph of Fig. 5. In this graph the potential of emitter 8 is represented as before by the point 26. However, due to the emission of electrons from the photoelectrically active elements under consideration, these elements have a potential represented by the point 29 which is considerably higher than before.
The point 21 again represents the potential of the plate 3. Accordingly conditions are more favorable for the acceleration of electrons through the plate 3 to anode ll. In Fig. 6, the electric field through a path for the electrons from emitter 8, is indicated. Here the point 30 represents the potential at the corresponding aperture 4 through which the electrons from emitter 8 are accelerated. This potential 30 at the aperture is affected by the potential 29 on the adjacent portion of the photoelectric control mosaic 2. Since this electric field is such as to accelerate the electrons through path is to the anode ii, there is a flow of secondary electrons, the intensity of which is dependent upon the illumination of the corresponding part of the mosaic 2.
The ray 9 thus serves to discharge a current by the aid of the electron stream id to the anode II. This current being due to the collection of negative electrons emitted from the emitter 8, "once these electrons reach the region of the mosaic 2, they are accelerated toward the :collecting anode II. This anode serves, as is apparent, as a plate electrode of an amplifier including an emitter 8 and a control electrode or rid 2.
It is of importance to ensure, under any circumstances, that the capacity of plate i'! be as low as possible; the smaller this is, the greater the advantages obtained by this system. It can be shown that the output of the storage type of pickup is times the output of a non-storage pickup (assuming equal photoelectric sensitivities and perfect eificiencies), where N is the number of elements making up the picture, C1 is the capacity of the photoelectric cell and associated circuits in the case of the nonstorage type of pickup, and C2 is the capacity of the circuit of anode I1, connecting the pickup and amplifier in the case of the storage type. Now since in the usual storage type of pickup the capacity C2 is necessarily very large, being of the order of hundreds of times larger than the capacity Ci usually found in the non-storage type of pickup, the gain in output resulting from the storage principle is in large measure annulled. Therefore if we reduce the capacity in a pickup of the storage type to a value as low as that of the usual photoelectric cell and its associated circuit, the gain in output over the gain possible with the non-storage type of pickup becomes equal to the number of picture elements; this is up in the thousands of times. The capacity of the electrode I! in the present invention, together with the capacity of the circuit associated with the amp-lifier system 20 can be easily made as small as this.
What is claimed is:
1. In a television transmission system, means forming a mosaic of photoelectrically active elements, a cathode ray scanning device, a secondary electron emitter interposed in the path between the mosaic and the cathode ray, an apertured plate supporting the mosaic, said secondary electron emitter having a reflecting surface opposed to the mosaic, means for casting an optical image on the said reflecting surface, and through the apertured plate, means whereby the potential difference between an elementary portion of the surface of the secondary emitter and the opposite elements of the mosaic is dependent upon the illumination on said elements, and an anode spaced from the mosaic and on that side of the mosaic opposite from the secondary emitter, for collecting the secondarily emitted electrons.
2. In a television transmission system, means forming a mosaic of photoelectrically active elements, a perforated plate support for said mosaic, a reflecting member opposite the mosaic, means for casting an optical image on the mosaic by the passage of light through the plate onto the reflecting member, means whereby successive elemental areas of said reflecting member are caused to emit electrons in accordance with the illumination of. successive elemental portions of the mosaic, an anode for collecting said electrons, and an amplifier system having an inputcircuit connected to said anode.
3. In a. television transmission system having a mosaic of photoelectrically active elements, as well as means for casting an optical image on said elements to cause emission of electrons from said elements in accordance with the intensities of illumination on said elements, and also an anode to receive electrons for affecting a transmission circuit, characterized by the fact that the mosaic. elements have their active surfaces turned away from the direct illumination and receive their image by reflection, and by the provision of means to cause secondary electrons to Pass to the anode and in accordance with the optical image.
4. In a television transmission system having a mosaic of photoelectrically active elements, as well as means for casting an optical image on said elements to cause emission of electrons from said elements in accordance with the intensities of illumination on said elements, and also an anode to receive electrons for afl'ecting a transmission circuit, characterized by the fact that the mosaic elements have their active surfaces turned away from the direct illumination and receive their image by reflection, said reflection being provided by a secondary electron emitter having a reflecting surface, which receives primary photoelectrons from the elements, and by the provision of means to cause said reflecting surface to emit secondary electrons corresponding in succession to elements of the optical image, and received by the anode.
THOMAS W. SUKUMLYN.
US232755A 1938-10-01 1938-10-01 System for television transmission Expired - Lifetime US2247138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US232755A US2247138A (en) 1938-10-01 1938-10-01 System for television transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US232755A US2247138A (en) 1938-10-01 1938-10-01 System for television transmission

Publications (1)

Publication Number Publication Date
US2247138A true US2247138A (en) 1941-06-24

Family

ID=22874428

Family Applications (1)

Application Number Title Priority Date Filing Date
US232755A Expired - Lifetime US2247138A (en) 1938-10-01 1938-10-01 System for television transmission

Country Status (1)

Country Link
US (1) US2247138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888513A (en) * 1954-02-26 1959-05-26 Westinghouse Electric Corp Image reproduction system
US4684994A (en) * 1985-02-07 1987-08-04 U.S. Philips Corporation Television camera tube with honeycomb grid electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888513A (en) * 1954-02-26 1959-05-26 Westinghouse Electric Corp Image reproduction system
US4684994A (en) * 1985-02-07 1987-08-04 U.S. Philips Corporation Television camera tube with honeycomb grid electrode

Similar Documents

Publication Publication Date Title
US2541374A (en) Velocity-selection-type pickup tube
US2683832A (en) Image pickup electron tube
US2404098A (en) Television transmitting system
Zworykin et al. Theory and performance of the iconoscope
US2415842A (en) Electrooptical device
US2928969A (en) Image device
US2277246A (en) Electron discharge device
US2903596A (en) Image transducers
US2213547A (en) Electron discharge apparatus
US2161643A (en) Television picture analyzer
US2292437A (en) Electron image amplifier
US2247138A (en) System for television transmission
US2262123A (en) Television image pickup system
US2339662A (en) Television transmitter
US2250283A (en) Electron discharge device
US2175691A (en) Photovoltaic target
US2227015A (en) Picture transmitter
US2373396A (en) Electron discharge device
US2324505A (en) Television transmitting tube and electrode structure
US2213177A (en) Television transmitting tube
US2840755A (en) Large storage low noise image tube
US2237679A (en) Electron discharge device
GB780819A (en) Improvements in or relating to devices for converting x-ray or light images into electric signals
US2875371A (en) Arrangements embodying pick-up tubes
US2463038A (en) Direct current insertion circuit