US20160252961A1 - User interface system - Google Patents

User interface system Download PDF

Info

Publication number
US20160252961A1
US20160252961A1 US15/152,408 US201615152408A US2016252961A1 US 20160252961 A1 US20160252961 A1 US 20160252961A1 US 201615152408 A US201615152408 A US 201615152408A US 2016252961 A1 US2016252961 A1 US 2016252961A1
Authority
US
United States
Prior art keywords
fluid
deformable layer
user
variation
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/152,408
Inventor
Craig Michael Ciesla
Micah B. Yairi
Nathaniel Mark Saal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tactus Technology Inc
Original Assignee
Tactus Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/969,848 external-priority patent/US8547339B2/en
Priority claimed from US12/319,334 external-priority patent/US8154527B2/en
Application filed by Tactus Technology Inc filed Critical Tactus Technology Inc
Priority to US15/152,408 priority Critical patent/US20160252961A1/en
Assigned to TACTUS TECHNOLOGY, INC. reassignment TACTUS TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CIESLA, CRAIG MICHAEL, SAAL, NATHANIEL MARK, YAIRI, MICAH B
Publication of US20160252961A1 publication Critical patent/US20160252961A1/en
Priority to US15/480,990 priority patent/US20170212595A1/en
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TACTUS TECHNOLOGY, INC.
Assigned to TACTUS TECHNOLOGY, INC. reassignment TACTUS TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SILICON VALLEY BANK
Assigned to SILICON VALLEY BANK reassignment SILICON VALLEY BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TACTUS TECHNOLOGY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • G06F1/166Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories related to integrated arrangements for adjusting the position of the main body with respect to the supporting surface, e.g. legs for adjusting the tilt angle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04809Textured surface identifying touch areas, e.g. overlay structure for a virtual keyboard

Definitions

  • FIG. 1 is a schematic representation of the system of the preferred embodiments as applied to a device.
  • FIGS. 2, 3 a , 3 b , and 4 are schematic representations of variations of the first and second deformable layers of the user interface system.
  • FIG. 5 is a schematic representation of a variation of the arrangement of the first and second deformable layers of the user interface system.
  • FIGS. 6, 7, 8 a , 8 b , 9 a , 9 b , boa and bob are schematic representations of variations of the deformation of the second deformable layer when applied to a device.
  • the user interface system boo of the preferred embodiments comprises a first deformable layer 200 that includes a first sheet 202 that defines a first surface 215 , a first fluid vessel 227 arranged underneath the first surface, and a first volume of fluid 212 contained within the first fluid vessel 227 that is manipulated to deform a first particular region 213 of the first surface 215 to receive a user input; a second deformable layer 300 that includes a second sheet 302 that defines a second surface 315 , and a second volume of fluid 312 contained within the second fluid vessel 327 that is manipulated to deform a second particular region 313 of the second surface 315 to change the shape of the device; and a displacement device 130 coupled to at least one of the first and second fluid vessels 227 and 327 and configured to manipulate at least one of the first and second volumes of fluid 212 and 312 , thereby deforming at least one of the first and second particular regions 213 and 313 .
  • the user interface system 100 is preferably applied to a device 10 (as shown in FIGS. 1 and 5-10 ).
  • the first deformable layer 200 preferably functions as the touch interface system that is applied to the device 10 where tactile guidance is to be provided to the user, such as a touch sensitive display, any other type of sensor or display, or any other suitable device as described in U.S. application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, and U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” and the second deformable layer 300 preferably functions as an accessory interface system that provides any other suitable tactile experience related to the device 10 .
  • the second deformable layer 300 may function to provide information to the user such as a tactile communication to the user to indicate the occurrence of an event or a tactile locator for a feature of the device (such as the speaker or the volume button as shown in FIG. 6 ); to provide protection for the device (such as a bumper to protect the device or “feet” that support the device when placed on a surface, as shown in FIGS. 7 and 8 ); to change the orientation of the device (such as when the device is placed on an unlevel surface, as shown in FIG. 9 ); to provide a visual aesthetic (such as to provide a decoration on the device 10 or to provide an aesthetic enhancement to the logo of the company manufacturing and/or designing the device 10 , as shown in FIG.
  • a tactile communication to the user to indicate the occurrence of an event or a tactile locator for a feature of the device (such as the speaker or the volume button as shown in FIG. 6 ); to provide protection for the device (such as a bumper to protect the device or “feet” that support the
  • the device 10 is preferably an electronic device such as a cellular phone, a media player, a laptop, a computer, a camera, television, automated teller machine, or any other suitable device.
  • the device 10 may be an interface component of a larger device, for example, the steering wheel of a vehicle or the center control console of a vehicle.
  • the device 10 may be any other suitable device.
  • the first and second deformable layers may be arranged in any suitable arrangement along the surfaces of the device 10 .
  • the first deformable layer 200 may be arranged on the main touch interface surface of the device 10 while the second deformable layer 300 is arranged on a side face of the device 10 and/or on a face opposite the main touch interface surface where a volume button, camera button, an on/off button, a ringer on/off switch, or any other suitable feature may be located, as shown in FIGS. 1 and 7 .
  • the second deformable layer may be located on the same face as the first deformable layer, for example, the second deformable layer may be located along the perimeter of the first deformable layer as shown in FIGS.
  • first and second deformable layers 200 and 300 may both be of the touch interface system as described in U.S. application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, and U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,”
  • the first and second deformable layers 200 and 300 may be applied to the same display and/or touch sensitive display, but may also be applied to devices 10 that include two displays and/or touch sensitive displays (for example, dual screen laptops, or handheld game consoles).
  • the first and second deformable layers 200 and 300 may be any other suitable type of system.
  • the first and second deformable layers are preferably structurally similar.
  • the first and second sheets 202 and 302 are preferably substantially identical.
  • Each of the first and second sheets 202 and 302 may include a first and second layer portion 210 and 310 , respectively, that are substantially similar, and a first and second substrate portion 220 and 320 , respectively, that are substantially similar.
  • the first and second layer portions 210 and 310 preferably define the first and second surfaces 215 and 315 , respectively, and are preferably of the type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan.
  • the first and second substrate portions 220 and 320 preferably support the first and second layers 210 and 310 , respectively, and at least partially define the first and second fluid vessels 227 and 327 , respectively, that are substantially similar and of the type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System.”
  • the first and second fluid vessels 227 and 327 may include a first and second cavity 225 and 325 , respectively, and/or a first and second channel 238 and 338 , respectively, but may alternatively include any other suitable combination of cavities and channels.
  • the first and second sheets 202 and 302 may alternatively be substantially different.
  • the first sheet 202 may include a first layer portion 210 and a first substrate portion 220 of the type described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” while the second sheet 302 may be a substantially continuous sheet that defines the second surface 315 and the second fluid vessel 327 .
  • any other suitable arrangement of the first and second sheets 202 and 302 may be used.
  • the displacement device 130 functions to manipulate at least one of the first and second volumes of fluid 202 and 302 , thereby deforming at least one of the first and second particular regions 213 and 313 and is preferably of a type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” but may alternatively be any other suitable type of displacement device.
  • the displacement device 130 is preferably coupled to at least one of the first fluid vessel 227 and 327 and functions to manipulate the volume of fluid within the coupled fluid vessel to expand at least a portion of the fluid vessel to deform a corresponding particular region.
  • the displacement device 130 preferably subsequently manipulates the volume of fluid within the coupled fluid vessel to un-deform the corresponding particular region.
  • the first deformable layer is separate from the second deformable layer, where the displacement device includes a first displacement device 130 a that is coupled to the first fluid vessel 227 of the first deformable layer 200 and functions to manipulate the first volume of fluid 212 to deform a first particular region 213 of the first surface 215 and a second displacement device 130 b that is coupled to the second fluid vessel 327 of the second deformable layer 300 and functions to manipulate the second volume of fluid 312 to deform a second particular region 313 of the second surface 315 .
  • a processing unit preferably controls both the displacement devices 130 a and 130 b of the first variation to manipulate the first and second volumes of fluid 212 and 312 independently of each other.
  • the first and second deformable layers 200 and 300 are connected and the first and second deformable layers 200 and 300 share a displacement device 130 .
  • the first and second fluid vessels 227 and 327 are both coupled to the displacement device 130 .
  • the first and second layer portions 210 and 310 and the first and second substrate portions 220 and 320 are substantially continuous.
  • the surface 115 may be planar (shown in FIG. 3 a ), but may alternatively be non-planar (shown in FIG. 3 b ).
  • the first surface 215 may be arranged on a first face of the device and the second surface 315 may be arranged on a second face of the device.
  • the connected first and second deformable layers 200 and 300 may be wrapped around the device to reach more than one face.
  • the second variation may allow fewer parts and more cost effective manufacturing.
  • a processing unit preferably controls the displacement device 130 to manipulate the first and second volumes of fluid 212 and 312 independently of each other.
  • the user interface system 100 of this second variation may include a valve 132 or any other suitable fluid directing component may also be used to direct fluid displaced by the displacement device 130 to the desired fluid vessel or vessels.
  • the first and second deformable layers 200 and 300 are physically separated, but still share a displacement device 130 .
  • This allows for one displacement device to actuate the expansion and retraction of both the first and second fluid vessels 227 and 327 of the first and second deformable layers, respectively while allowing additional flexibility in characteristics and arrangement of the first and second deformable layers.
  • a processing unit preferably controls the displacement device 130 to manipulate the first and second volumes of fluid 212 and 312 independently of each other.
  • the user interface system 100 of this second variation may include a valve 132 or any other suitable fluid directing component may also be used to direct fluid displaced by the displacement device 130 to the desired fluid vessel or vessels.
  • the first and second deformable layers 200 and 300 may be combined to function similarly to the second variation where the first and second deformable layers 200 and 300 are connected. However, any other suitable arrangement of the first and second deformable layers 200 and 300 may be used.
  • the user interface system 100 of the preferred embodiments is preferably one of the above mentioned variations, the user interface system 100 may be of any suitable combination of the above variations and/or any other suitable variation.
  • the first deformable layer 200 and the second deformable layer 300 are preferably identical.
  • the first layer 210 , first substrate 220 , first fluid vessel 227 , and the displacement device 130 a of the first deformable layer are each substantially similar or identical to the corresponding second layer 310 , second substrate 320 , second fluid vessel 327 , and the displacement device 130 b of the second deformable layer.
  • the corresponding components in the first and second deformable layers may be substantially similar or include slightly different properties that allow each portion to better provide the desired performance of each portion.
  • the first layer 210 of the first deformable layer functions to provide substantially rectangular deformed first particular region 213 of the first surface 215 and/or buttons that provide a “clicking” sensation to the user when the user inwardly deforms the deformed first particular region 213
  • the second deformable layer functions to provide a relatively smaller, substantially round deformed second particular region 313 of the second surface 315 that may be used to indicate the location of a volume button and does not need to be inwardly deformed by the user.
  • a “clicking” sensation may be further defined as a binary button that transitions between an unactuated button and an actuated button, for example, as seen in a key on a typical keyboard.
  • the deformed first particular region 213 of the first surface 213 may provide a substantially linear response to a user when the user inwardly deforms the deformed first particular region 213 or any other suitable type of sensation as described in U.S. application Ser. No. 12/652,708, which is hereby incorporated in its entirety by this reference.
  • the second fluid vessel 327 may be relatively smaller than the first fluid vessel 227 and the layer 310 may have a simpler geometry than the layer 210 , which may have geometrical features built in to allow for inward deformation of the deformed second particular region 313 and/or provide the “clicking” sensation to the user.
  • the layer 210 and the layer 310 may also be of materials with different stiffness and/or thickness.
  • the first surface 215 may also include a different texture than the second surface 315 , which allows the user to distinguish between the first and second deformable layers by the tactile sensation provided by the surface.
  • the corresponding components between the first and second deformable layers may be of any other suitable variation.
  • first and second deformable layers of the second variation may also include variations.
  • the second surface 315 of second deformable layer may include a coating that changes the texture of the second surface 315 relative to the first surface 215 the first deformable layer.
  • the sizes of the first fluid vessel 227 and second fluid vessel 327 may also be different.
  • the geometry of the first layer portion 210 of the first deformable layer may include geometrical features or any other suitable features that are different from the geometry of the second layer portion 310 of the second deformable layer to deliver different tactile experiences between the first and second deformable layers, including, for example, the devices and techniques described in U.S. application Ser. No. 12/652,708 entitled “User Interface System” filed on 5 Jan.
  • first and second deformable layers 200 and 300 may include different visual properties, for example, one may be substantially transparent while the other substantially opaque.
  • any other suitable variation within portions of the first and second layer portions 210 and 310 and the first and second substrate portions 220 and 320 and the first fluid vessel 227 and second fluid vessel 327 may be used.
  • the first deformable layer preferably functions as the touch interface system that is applied to a touch sensitive display or any other type of touch sensor or display that may be included in the device 10 and the second deformable layer preferably functions as an accessory interface system that provides any other suitable tactile experience related to the device 10 .
  • the second deformable layer 300 may function to provide information to the user such as a tactile communication to the user, for a example, a tactile communication to indicate the occurrence of an event or a tactile locator for a feature of the device (such as the speaker or the volume button as shown in FIG. 6 ).
  • the second deformable layer 300 may function to provide protection for the device, for example, a bumper to protect the device or “feet” or risers that support the device when placed on a surface, as shown in FIGS. 7 and 8 .
  • the second deformable layer 300 may function to change the orientation of the device, for example, when the device is placed on an unlevel surface, as shown in FIG. 9 . This may be particular useful in the variation where the device is a projector and the second deformable layer 300 may change the orientation of the device to affect the resulting projected image.
  • the second deformable layer 300 may function to provide a visual aesthetic, for example, to provide a decoration on the device 10 or to provide an aesthetic enhancement to the logo of the company manufacturing and/or designing the device 10 , as shown in FIG. 10 .
  • the fluid 312 of the second deformable layer 300 may be of a different color such that the deformed particular region 313 of the second deformable layer 300 may include a different color.
  • any other suitable tactile experience related to the device 10 may be provided by the second deformable layer 300 .
  • the second deformable layer 300 functions to provide information to the user.
  • the second deformable layer 300 may provide a tactile communication to the user to indicate the occurrence of an event.
  • the displacement device 130 may function to expand and retract the second fluid vessel 327 in a pulsating fashion to provide a tactile pulse to indicate the occurrence of an event.
  • the pulse may vary the stiffness, height, or any other suitable tactilely distinguishable property of the deformed particular region 313 .
  • the second deformable layer 300 may be located along a side face of the device 10 (as shown in FIGS. 1 and 7 ).
  • the fluid vessel 327 may include a plurality of cavities 325 that the displacement device 130 expands concurrently or in a certain sequence, using, for example, the devices and techniques described in U.S. application Ser. No. 12/652,704 entitled “User Interface System” filed on 5 Jan. 2010.
  • a certain type of pulsating pattern may be exhibited on the second deformable layer 300 , for example, if adjacent cavities 325 are expanded one after the other, a ripple effect or a wave may be exhibited on the surface 115 of the second deformable layer 300 .
  • the second deformable layer 300 may be also located along all four side faces of the rectangular prism geometry to provide tactile communication along all sides faces of the device 10 .
  • the second deformable layer 300 may be placed on the front main face and/or the back main face opposite the front main face of the device 10 .
  • the displacement device 130 may alternatively function to only expand or only retract the second fluid vessel 327 to communicate the occurrence of an event.
  • a second fluid vessel 327 may include a single cavity 325 that may be expanded to indicate to the user the occurrence of an event, or, a pattern of cavities 325 may be expanded.
  • the pattern of cavities 325 may indicate the type of message, for example, a triangle may indicate a text message while a square may indicate an email.
  • the pattern of cavities 325 may also spell out a word to indicate the event or the contents of an event such as a text message.
  • the second deformable layer 300 may function to inform the user regarding the state of the device. For example, the device may “go to sleep” after a period of no use. When the user picks the device up again, a processor may detect the movement of the device (for example, through an accelerometer), and the second deformable layer 300 may deform a particular region to indicate that the device is “awake” and ready to receive a user command.
  • a processor may detect the movement of the device (for example, through an accelerometer), and the second deformable layer 300 may deform a particular region to indicate that the device is “awake” and ready to receive a user command.
  • any other suitable arrangement or tactile communication may be provided by the second deformable layer 300 , for example, a particular region may be deformed and maintained in the deformed state substantially statically to indicate to the user the occurrence of an event.
  • the second deformable layer 300 functions to provide a tactile locator for a feature of the device, as shown in FIG. 6 .
  • the second deformable layer 300 preferably provides the tactile locator when the device 10 is performing a related task.
  • the displacement device 130 may expand a second fluid vessel 327 of the second deformable layer 300 that is located in relative close proximity or adjacent to the ear speaker of the device 10 , indicating to the user where to locate the device relative to his/her ear.
  • the deformed particular region 313 may be of a shape that is customized to the shape of the ear of the user to increase the potential comfort of placing the device 10 by the user's ear.
  • any other suitable shape of the deformed particular region 313 may be used.
  • the displacement device 130 may deform a cavity 325 of the second fluid vessel 327 of the second deformable layer 300 that is located in relative close proximity or adjacent to the volume button and/or the play/pause button. This may also be applicable to when the user is making a phone call on the phone variation of the device 10 .
  • a tactile locator for the volume button may be useful to allow the user to easily adjust the volume of the call.
  • any other arrangement or function of the second deformable layer 300 to provide tactile locating features may be used.
  • the second deformable layer 300 may function to provide protection for the device, for example, from falling or from scratching.
  • the second deformable layer 300 may function to deform the second particular region 313 to form a bumper, as shown in FIG. 7 , that functions to protect a face of the device from, for example, a fall.
  • a processor may function to detect the acceleration of the device (for example, through accelerometer), and based on the detected acceleration, the processor may actuate the deformation of the particular region 313 to form a bumper.
  • the processor may also detect the face of the device 10 that is closest to impact upon the fall and function to actuate the deformation of the particular region 313 that is substantially proximal to the predicted face of impact. This allows the fluid manipulation performed by the displacement device 130 to be allocated to a particular face with a higher chance of damage.
  • allocation of the fluid manipulation to create a bumper on the face of impact may increase the effectiveness of a bumper that is located at the face of impact.
  • any other suitable arrangement of the bumper may be used.
  • the second deformable layer 300 may function to put distance between the device 10 and an external surface and/or object, for example, to provide feet or risers that prop the device away from a surface that the device 10 may be placed on, as shown in FIGS. 8 a and 8 b , to help prevent scratching of the device, in particular, the main face of the device 10 that may include the touch sensitive display.
  • the second deformable layer 300 may be located on the same face of the device 10 as the first deformable layer because the first deformable layer may be associated with the touch sensitive display.
  • the displacement device 130 may expand a plurality of cavities of the second deformable layer 300 along the face of the device 10 facing the surface to be used as “feet” or risers to prop up the device 10 .
  • the second deformable layer 300 of this variation may also be used to put distance between a user and the device 10 , for example, to protect a user from the device.
  • a device may emit radiation and the deformed particular region 313 functions to maintain a particular distance between the device 10 and the user.
  • the second deformed particular region 313 may function to put distance between the user and the device 10 to substantially prevent the user from being injured by the heat of the device 10 .
  • the user or an application of the device may actuate the employment of the second deformable layer 300 .
  • any other method may be used to employ the second deformable layer 300 to maintain a distance between the device 10 and a surface, user, and/or any other suitable type of object.
  • the second deformable layer may be integrated into the first deformable layer, for example, cavities 225 that belong to the first deformable layer may be alternatively be used as “feet” to prop up the device.
  • the second deformable layer may also be located on a face opposite of the main face of the device 10 that may include the touch sensitive display and may be used to stabilize the device 10 as the user applies pressure on the main face and/or touch sensitive display.
  • any other suitable arrangement of the second deformable layer 300 may be used.
  • the second deformable layer 300 may function to change the orientation of the device 10 , as shown in FIGS. 9 a and 9 b .
  • This variation may be thought of as similar the second example of the second variation where “feet” are employed to lift the device 10 .
  • the “feet” are used to change the orientation of the device, preferably relative to a surface, for example, when the surface is not flat.
  • the “feet” provided by the second deformable layer and/or the first deformable layer may also be used to level the device to a desired angle. For example, in devices that include image projection functionality, the “feet” may be used align the device as desired by the user.
  • the device 10 may include a touch sensitive display that displays a keyboard and the “feet” may be used to orient the device 10 at the desired angle for typing on the touch sensitive display.
  • the second deformable layer may provide any other suitable physical feature.
  • the second deformable layer 300 may function to provide a visual aesthetic, as shown in FIG. 10 .
  • the second deformable layer 300 may include a plurality of cavities 325 and may function to expand a pattern of cavities 325 to add a certain aesthetic detail to the device 10 .
  • the second deformable layer 300 may also function to pulsate the pattern of cavities 325 to add a pulsating aesthetic to the decoration and/or the logo of the company manufacturing the device 10 . For example, the company logo of a laptop in standby mode may pulsate.
  • the particular decoration to be exhibited may be selected by the user.
  • a processor may detect the presence of the hand of a user (for example, with a proximity sensor such as an infrared sensor) and employ the decoration.
  • a proximity sensor such as an infrared sensor
  • any other suitable method to employ the second deformable layer 300 may be used.
  • the decoration may be of any suitable decoration, for example, a shape, the profile of an animal, the user's name, or a message.
  • the second deformable layer 300 of the user interface 100 may be used to provide any other suitable tactile experience to the user.
  • a light source may also be coupled to the user interface system 100 to augment the experience provided by the device.
  • a set of light sources may be integrated to provide light in phase with the pulsation of the expansion and retraction of the second fluid vessel 327 .
  • the fluid 312 of the second deformable layer 300 may function to direct light through the second deformable layer 300 such that the effect of light aimed through the fluid vessel of the second deformable layer 300 may be affected by the arrangement of fluid within the fluid vessel.
  • any other suitable experience may be provided to the user of the device 10 , for example, a vibration motor may be coupled to the user interface system 100 to provide vibration along with the expansion/retraction of the second fluid vessel 327 .
  • the user interface system 100 of the preferred embodiments may alternatively be applied to any other suitable device, for example, the device may be a musical instrument where the deformed particular region 313 of the second deformable layer 300 functions to affect the passage of air or any other suitable type of fluid through the instrument to affect the musical qualities of the instrument. Alternatively, the deformed particular region 313 may come into contact with a string of a stringed instrument and affect the vibration of the string.
  • any other suitable application of the user interface system 100 may be used.
  • the method S 100 of the preferred embodiments preferably includes providing a first deformable layer Step S 200 that defines a first surface and a first fluid vessel that contains a first volume of fluid, providing a second deformable layer Step S 300 that defines a second surface and a second fluid vessel that contains a second volume of fluid, selectively deforming at least one of the first and second surfaces Step S 110 , wherein selectively deforming at least one of the first and second surfaces includes at least one of: manipulating the first volume of fluid to deform a first particular region of the first surface into a tactilely distinguishable formation of a first type Step S 210 and manipulating the second volume of fluid to deform a second particular region on the second surface into a tactilely distinguishable formation of a second type that substantially changes the shape of the device Step S 310 .
  • the step of manipulating the first volume of fluid preferably includes configuring the first type of tactilely distinguishable formation to receive a user input Step S 120 .
  • the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide information to the user Step S 320 .
  • the information may include alerting the user regarding the operation of the device Step S 322 , for example, in the variation of the device 10 that receives messages, such as a mobile phone, the second volume of fluid may be manipulated to alert the user on a received message.
  • the information may include indicating the location of a particular feature of the device Step S 324 , for example, the location of the speaker on a device 10 that is a mobile phone.
  • the second type of tactilely distinguishable formation may provide any other suitable type of information.
  • the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide protection for the device Step S 330 , as shown in FIGS. 7 and 8 .
  • the second type of tactilely distinguishable formation is configured to provide a bumper for the device, as shown in FIG. 7 .
  • the method S 100 of the preferred embodiments preferably includes the step of detecting the acceleration of the device S 111 and providing a bumper for the device when the acceleration of the device is detected to be above a threshold that may indicate that the device is falling Step S 332 .
  • This variation may also include the step of predicting the face of the device closest to the potential impact Step S 112 and providing a bumper for the face of the predicted face of impact Step S 334 .
  • the second type of tactilely distinguishable formation is configured to provide “feet” or risers for the device, as shown in FIG. 8 .
  • the method S 100 of the preferred embodiments preferably includes the step of detecting the proximity of a face of the device to an external surface Step S 120 and providing a bumper for surface detected to be in substantial proximity to an external surface Step S 336 .
  • any other suitable protection may be provided to the device by the second type of tactilely distinguishable formation.
  • the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to change the orientation of the device Step S 340 , as shown in FIG. 9 .
  • the method S 100 of the preferred embodiments preferably includes the step of detecting the orientation of the device Step S 130 , for example, the angle of the device relative to the ground, a surface, or any other suitable reference. In the example as shown in FIG.
  • the second type of tactilely distinguishable formation of the third variation may be arranged similar to the “feet′ of the second variation where a portion is located on one side of a face of the device and another portion is located on another side of a face of the device, preferably opposite of the first portion and both portions preferably are in contact with an external surface.
  • the external surface may be an irregular surface, such as those seen on rocks, or may be a substantially planar surface, such as a table, but may alternatively be any other suitable type of surface.
  • the fluid is preferably manipulated to deform the portions of the tactilely distinguishable formation in substantially different degrees to substantially affect the orientation of the device, for example, one portion will be deformed to a higher degree than another to raise the corresponding side of the face and change the orientation of the device.
  • any other suitable arrangement of the second tactilely distinguishable formation of the third variation may be used.
  • the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide an aesthetic feature to the device, as shown in FIG. 10 .
  • This variation of the method S 100 may include actuating the aesthetic feature at a desired time.
  • the aesthetic feature may be activated at a preprogrammed time, for example, every five minutes, whenever the device is turned on and/or off, when a function of the device is turned on and/or off, or any other suitable time.
  • the preprogrammed time may be preset by a manufacturer, but may alternatively be set by the user.
  • the aesthetic feature may be activated on a case by case basis, for example, when the user selects to activate the feature or when an event occurs. However, any other suitable activation of the aesthetic feature may be used.
  • a channel 138 couples a first group of cavities 325 and a second group of cavities 325 to the displacement device 130 .
  • the first and second groups of cavities 325 are preferably not directly connected to each other.
  • the channel 138 preferably forms a T-junction between the displacement device 130 and the two groups of cavities 325 , and the channel preferably includes a valve 132 at the T-junction to direct fluid displaced by the displacement device 130 to one or both of the groups of cavities 325 .
  • the channel 138 may be of any other suitable orientation.
  • the valve 132 is preferably of the type described above in the second preferred embodiment. In a variation where one cavity 325 may belong to more than one group of cavities 325 , for example, as shown in FIG.
  • each of the shared cavities 325 may be coupled to more than one channel 138 , as shown in FIG. 18 . This allows expansion of each shared cavity 325 when any of the displacement devices 130 pertaining to each of the groups to which the cavity 325 belongs is activated.
  • the cavity 325 may include a valve of a type described above for valve 132 that prevents fluid from a first channel 238 belonging to a first group to flow through the cavity 325 to a second channel 338 belonging to a second group.
  • the valve may also be used to prevent fluid from more than one channel 138 to expand the cavity 325 , which may potentially cause the over-expansion of the cavity 325 .
  • any other suitable arrangement of a cavity 325 that may belong to more than one group may be used.”

Abstract

A user interface system for a device that includes a first deformable layer that with a first sheet that defines a first surface, a first fluid vessel arranged underneath the first surface, and a first volume of fluid contained within the first fluid vessel that is manipulated to deform a first particular region of the first surface to receive a user input; a second deformable layer with a second sheet that defines a second surface, a second fluid vessel arranged underneath the second surface, and a second volume of fluid contained within the second fluid vessel that is manipulated to deform a second particular region of the second surface to change the shape of the device; and a displacement device a displacement device coupled to at least one of the first and second fluid vessels and configured to manipulate the volumes of fluid to deform particular regions of the surface.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/046,467, filed 11 Mar. 2011, which claims the benefit of U.S. Provisional Application No. 61/313,054, filed on 11 Mar. 2010, and U.S. Provisional Application No. 61/313,064, filed 11 Mar. 2010, which are incorporated in their entirety by this reference.
  • This application is related to U.S. application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System”, U.S. application Ser. No. 12/652,708 entitled “User Interface System” filed on 5 Jan. 2010, and U.S. application Ser. No. 12/652,704 entitled “User Interface System” filed on 5 Jan. 2010, which are all incorporated in their entirety by this reference.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic representation of the system of the preferred embodiments as applied to a device.
  • FIGS. 2, 3 a, 3 b, and 4 are schematic representations of variations of the first and second deformable layers of the user interface system.
  • FIG. 5 is a schematic representation of a variation of the arrangement of the first and second deformable layers of the user interface system.
  • FIGS. 6, 7, 8 a, 8 b, 9 a, 9 b, boa and bob are schematic representations of variations of the deformation of the second deformable layer when applied to a device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
  • The System of the Preferred Embodiments
  • As shown in FIGS. 1 and 2, the user interface system boo of the preferred embodiments comprises a first deformable layer 200 that includes a first sheet 202 that defines a first surface 215, a first fluid vessel 227 arranged underneath the first surface, and a first volume of fluid 212 contained within the first fluid vessel 227 that is manipulated to deform a first particular region 213 of the first surface 215 to receive a user input; a second deformable layer 300 that includes a second sheet 302 that defines a second surface 315, and a second volume of fluid 312 contained within the second fluid vessel 327 that is manipulated to deform a second particular region 313 of the second surface 315 to change the shape of the device; and a displacement device 130 coupled to at least one of the first and second fluid vessels 227 and 327 and configured to manipulate at least one of the first and second volumes of fluid 212 and 312, thereby deforming at least one of the first and second particular regions 213 and 313.
  • The user interface system 100 is preferably applied to a device 10 (as shown in FIGS. 1 and 5-10). The first deformable layer 200 preferably functions as the touch interface system that is applied to the device 10 where tactile guidance is to be provided to the user, such as a touch sensitive display, any other type of sensor or display, or any other suitable device as described in U.S. application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, and U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” and the second deformable layer 300 preferably functions as an accessory interface system that provides any other suitable tactile experience related to the device 10. For example, the second deformable layer 300 may function to provide information to the user such as a tactile communication to the user to indicate the occurrence of an event or a tactile locator for a feature of the device (such as the speaker or the volume button as shown in FIG. 6); to provide protection for the device (such as a bumper to protect the device or “feet” that support the device when placed on a surface, as shown in FIGS. 7 and 8); to change the orientation of the device (such as when the device is placed on an unlevel surface, as shown in FIG. 9); to provide a visual aesthetic (such as to provide a decoration on the device 10 or to provide an aesthetic enhancement to the logo of the company manufacturing and/or designing the device 10, as shown in FIG. 10); or any other suitable tactile experience related to the device 10. The device 10 is preferably an electronic device such as a cellular phone, a media player, a laptop, a computer, a camera, television, automated teller machine, or any other suitable device. Alternatively, the device 10 may be an interface component of a larger device, for example, the steering wheel of a vehicle or the center control console of a vehicle. However, the device 10 may be any other suitable device.
  • The first and second deformable layers may be arranged in any suitable arrangement along the surfaces of the device 10. For example, the first deformable layer 200 may be arranged on the main touch interface surface of the device 10 while the second deformable layer 300 is arranged on a side face of the device 10 and/or on a face opposite the main touch interface surface where a volume button, camera button, an on/off button, a ringer on/off switch, or any other suitable feature may be located, as shown in FIGS. 1 and 7. Alternatively, the second deformable layer may be located on the same face as the first deformable layer, for example, the second deformable layer may be located along the perimeter of the first deformable layer as shown in FIGS. 5 and 8 or exterior to one edge of the first deformable layer, as shown in FIGS. 6 and 10, or in any other suitable arrangement. Alternatively, the first and second deformable layers 200 and 300 may both be of the touch interface system as described in U.S. application Ser. No. 11/969,848 filed on 4 Jan. 2008 and entitled “System and Method for Raised Touch Screens”, and U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” The first and second deformable layers 200 and 300 may be applied to the same display and/or touch sensitive display, but may also be applied to devices 10 that include two displays and/or touch sensitive displays (for example, dual screen laptops, or handheld game consoles). However, the first and second deformable layers 200 and 300 may be any other suitable type of system.
  • The first and second deformable layers are preferably structurally similar. In particular, the first and second sheets 202 and 302 are preferably substantially identical. Each of the first and second sheets 202 and 302 may include a first and second layer portion 210 and 310, respectively, that are substantially similar, and a first and second substrate portion 220 and 320, respectively, that are substantially similar. The first and second layer portions 210 and 310 preferably define the first and second surfaces 215 and 315, respectively, and are preferably of the type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System.” The first and second substrate portions 220 and 320 preferably support the first and second layers 210 and 310, respectively, and at least partially define the first and second fluid vessels 227 and 327, respectively, that are substantially similar and of the type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System.” The first and second fluid vessels 227 and 327 may include a first and second cavity 225 and 325, respectively, and/or a first and second channel 238 and 338, respectively, but may alternatively include any other suitable combination of cavities and channels. Alternatively, the first and second sheets 202 and 302 may alternatively be substantially different. For example, the first sheet 202 may include a first layer portion 210 and a first substrate portion 220 of the type described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” while the second sheet 302 may be a substantially continuous sheet that defines the second surface 315 and the second fluid vessel 327. However, any other suitable arrangement of the first and second sheets 202 and 302 may be used.
  • The displacement device 130 functions to manipulate at least one of the first and second volumes of fluid 202 and 302, thereby deforming at least one of the first and second particular regions 213 and 313 and is preferably of a type as described in U.S. application Ser. No. 12/319,334 filed on 5 Jan. 2009 and entitled “User Interface System,” but may alternatively be any other suitable type of displacement device. The displacement device 130 is preferably coupled to at least one of the first fluid vessel 227 and 327 and functions to manipulate the volume of fluid within the coupled fluid vessel to expand at least a portion of the fluid vessel to deform a corresponding particular region. The displacement device 130 preferably subsequently manipulates the volume of fluid within the coupled fluid vessel to un-deform the corresponding particular region.
  • In a first variation of user interface system 100, as shown in FIG. 2, the first deformable layer is separate from the second deformable layer, where the displacement device includes a first displacement device 130 a that is coupled to the first fluid vessel 227 of the first deformable layer 200 and functions to manipulate the first volume of fluid 212 to deform a first particular region 213 of the first surface 215 and a second displacement device 130 b that is coupled to the second fluid vessel 327 of the second deformable layer 300 and functions to manipulate the second volume of fluid 312 to deform a second particular region 313 of the second surface 315. A processing unit preferably controls both the displacement devices 130 a and 130 b of the first variation to manipulate the first and second volumes of fluid 212 and 312 independently of each other.
  • In a second variation of the user interface system 100, as shown in FIGS. 3a and 3b , the first and second deformable layers 200 and 300 are connected and the first and second deformable layers 200 and 300 share a displacement device 130. In particular, the first and second fluid vessels 227 and 327 are both coupled to the displacement device 130. In the example as shown in FIGS. 3a and 3b , the first and second layer portions 210 and 310 and the first and second substrate portions 220 and 320 are substantially continuous. In this second variation, the surface 115 may be planar (shown in FIG. 3a ), but may alternatively be non-planar (shown in FIG. 3b ). This may be useful in usage scenarios where the device has more than one face where tactile guidance is desired. To provide tactile guidance on more than one face of a device 10, as shown in FIG. 1, in the first variation of the user interface system 100, the first surface 215 may be arranged on a first face of the device and the second surface 315 may be arranged on a second face of the device. In the second variation of the user interface system 100, as shown in FIG. 3b , the connected first and second deformable layers 200 and 300 may be wrapped around the device to reach more than one face. The second variation may allow fewer parts and more cost effective manufacturing. A processing unit preferably controls the displacement device 130 to manipulate the first and second volumes of fluid 212 and 312 independently of each other. The user interface system 100 of this second variation may include a valve 132 or any other suitable fluid directing component may also be used to direct fluid displaced by the displacement device 130 to the desired fluid vessel or vessels.
  • In a third variation of the user interface system 100, as shown in FIG. 4, the first and second deformable layers 200 and 300 are physically separated, but still share a displacement device 130. This allows for one displacement device to actuate the expansion and retraction of both the first and second fluid vessels 227 and 327 of the first and second deformable layers, respectively while allowing additional flexibility in characteristics and arrangement of the first and second deformable layers. A processing unit preferably controls the displacement device 130 to manipulate the first and second volumes of fluid 212 and 312 independently of each other. The user interface system 100 of this second variation may include a valve 132 or any other suitable fluid directing component may also be used to direct fluid displaced by the displacement device 130 to the desired fluid vessel or vessels. In this third variation, the first and second deformable layers 200 and 300 may be combined to function similarly to the second variation where the first and second deformable layers 200 and 300 are connected. However, any other suitable arrangement of the first and second deformable layers 200 and 300 may be used.
  • While the user interface system 100 of the preferred embodiments is preferably one of the above mentioned variations, the user interface system 100 may be of any suitable combination of the above variations and/or any other suitable variation.
  • In the first and third variations, the first deformable layer 200 and the second deformable layer 300 are preferably identical. For example, the first layer 210, first substrate 220, first fluid vessel 227, and the displacement device 130 a of the first deformable layer are each substantially similar or identical to the corresponding second layer 310, second substrate 320, second fluid vessel 327, and the displacement device 130 b of the second deformable layer. The corresponding components in the first and second deformable layers may be substantially similar or include slightly different properties that allow each portion to better provide the desired performance of each portion. For example, the first layer 210 of the first deformable layer functions to provide substantially rectangular deformed first particular region 213 of the first surface 215 and/or buttons that provide a “clicking” sensation to the user when the user inwardly deforms the deformed first particular region 213, while the second deformable layer functions to provide a relatively smaller, substantially round deformed second particular region 313 of the second surface 315 that may be used to indicate the location of a volume button and does not need to be inwardly deformed by the user. A “clicking” sensation may be further defined as a binary button that transitions between an unactuated button and an actuated button, for example, as seen in a key on a typical keyboard. Alternatively, the deformed first particular region 213 of the first surface 213 may provide a substantially linear response to a user when the user inwardly deforms the deformed first particular region 213 or any other suitable type of sensation as described in U.S. application Ser. No. 12/652,708, which is hereby incorporated in its entirety by this reference. In this example, the second fluid vessel 327 may be relatively smaller than the first fluid vessel 227 and the layer 310 may have a simpler geometry than the layer 210, which may have geometrical features built in to allow for inward deformation of the deformed second particular region 313 and/or provide the “clicking” sensation to the user. The layer 210 and the layer 310 may also be of materials with different stiffness and/or thickness. In a second example, the first surface 215 may also include a different texture than the second surface 315, which allows the user to distinguish between the first and second deformable layers by the tactile sensation provided by the surface. However, the corresponding components between the first and second deformable layers may be of any other suitable variation.
  • Similarly, the first and second deformable layers of the second variation may also include variations. For example, the second surface 315 of second deformable layer may include a coating that changes the texture of the second surface 315 relative to the first surface 215 the first deformable layer. The sizes of the first fluid vessel 227 and second fluid vessel 327 may also be different. Additionally, the geometry of the first layer portion 210 of the first deformable layer may include geometrical features or any other suitable features that are different from the geometry of the second layer portion 310 of the second deformable layer to deliver different tactile experiences between the first and second deformable layers, including, for example, the devices and techniques described in U.S. application Ser. No. 12/652,708 entitled “User Interface System” filed on 5 Jan. 2010, which is hereby incorporated in its entirety by this reference. Alternatively, the first and second deformable layers 200 and 300 may include different visual properties, for example, one may be substantially transparent while the other substantially opaque. However, any other suitable variation within portions of the first and second layer portions 210 and 310 and the first and second substrate portions 220 and 320 and the first fluid vessel 227 and second fluid vessel 327 may be used.
  • As mentioned above, in a variation of the user interface system 100, the first deformable layer preferably functions as the touch interface system that is applied to a touch sensitive display or any other type of touch sensor or display that may be included in the device 10 and the second deformable layer preferably functions as an accessory interface system that provides any other suitable tactile experience related to the device 10. In a first variation, the second deformable layer 300 may function to provide information to the user such as a tactile communication to the user, for a example, a tactile communication to indicate the occurrence of an event or a tactile locator for a feature of the device (such as the speaker or the volume button as shown in FIG. 6). In a second variation, the second deformable layer 300 may function to provide protection for the device, for example, a bumper to protect the device or “feet” or risers that support the device when placed on a surface, as shown in FIGS. 7 and 8. In a third variation, the second deformable layer 300 may function to change the orientation of the device, for example, when the device is placed on an unlevel surface, as shown in FIG. 9. This may be particular useful in the variation where the device is a projector and the second deformable layer 300 may change the orientation of the device to affect the resulting projected image. In a fourth variation, the second deformable layer 300 may function to provide a visual aesthetic, for example, to provide a decoration on the device 10 or to provide an aesthetic enhancement to the logo of the company manufacturing and/or designing the device 10, as shown in FIG. 10. In a second example of a visual aesthetic, the fluid 312 of the second deformable layer 300 may be of a different color such that the deformed particular region 313 of the second deformable layer 300 may include a different color. However, any other suitable tactile experience related to the device 10 may be provided by the second deformable layer 300.
  • In the first variation, the second deformable layer 300 functions to provide information to the user. In a first example, the second deformable layer 300 may provide a tactile communication to the user to indicate the occurrence of an event. The displacement device 130 may function to expand and retract the second fluid vessel 327 in a pulsating fashion to provide a tactile pulse to indicate the occurrence of an event. The pulse may vary the stiffness, height, or any other suitable tactilely distinguishable property of the deformed particular region 313. In this variation, the second deformable layer 300 may be located along a side face of the device 10 (as shown in FIGS. 1 and 7). The fluid vessel 327 may include a plurality of cavities 325 that the displacement device 130 expands concurrently or in a certain sequence, using, for example, the devices and techniques described in U.S. application Ser. No. 12/652,704 entitled “User Interface System” filed on 5 Jan. 2010. By expanding the plurality of cavities 325 in a certain sequence, a certain type of pulsating pattern may be exhibited on the second deformable layer 300, for example, if adjacent cavities 325 are expanded one after the other, a ripple effect or a wave may be exhibited on the surface 115 of the second deformable layer 300. Alternatively, if cavities 325 located substantially apart from each other are expanded one after another, a “boiling water” effect may be exhibited on the surface 115 of the second deformable layer 300. However, any other suitable sequence of expansion of the cavities 325 to allow the surface 115 of the second deformable layer 300 to exhibit any suitable effect may be used. The sequence of expansion may be selected by the user or may alternatively be pre-programmed by the manufacturer or an application of the device. In the substantially rectangular prism type geometry of the device 10, as shown in the FIGURES, the second deformable layer 300 may be also located along all four side faces of the rectangular prism geometry to provide tactile communication along all sides faces of the device 10. Alternatively, the second deformable layer 300 may be placed on the front main face and/or the back main face opposite the front main face of the device 10. The displacement device 130 may alternatively function to only expand or only retract the second fluid vessel 327 to communicate the occurrence of an event. For example, a second fluid vessel 327 may include a single cavity 325 that may be expanded to indicate to the user the occurrence of an event, or, a pattern of cavities 325 may be expanded. The pattern of cavities 325 may indicate the type of message, for example, a triangle may indicate a text message while a square may indicate an email. The pattern of cavities 325 may also spell out a word to indicate the event or the contents of an event such as a text message. In another example, the second deformable layer 300 may function to inform the user regarding the state of the device. For example, the device may “go to sleep” after a period of no use. When the user picks the device up again, a processor may detect the movement of the device (for example, through an accelerometer), and the second deformable layer 300 may deform a particular region to indicate that the device is “awake” and ready to receive a user command. However, any other suitable arrangement or tactile communication may be provided by the second deformable layer 300, for example, a particular region may be deformed and maintained in the deformed state substantially statically to indicate to the user the occurrence of an event.
  • In a second example of the first variation, the second deformable layer 300 functions to provide a tactile locator for a feature of the device, as shown in FIG. 6. The second deformable layer 300 preferably provides the tactile locator when the device 10 is performing a related task. In the variation of the device 10 that is a phone, if the user indicates that he or she desires to make a phone call, the displacement device 130 may expand a second fluid vessel 327 of the second deformable layer 300 that is located in relative close proximity or adjacent to the ear speaker of the device 10, indicating to the user where to locate the device relative to his/her ear. In this variation, the deformed particular region 313 may be of a shape that is customized to the shape of the ear of the user to increase the potential comfort of placing the device 10 by the user's ear. However, any other suitable shape of the deformed particular region 313 may be used. In the variation of the device that includes a media player, when the user initiates playback of music and/or video, the displacement device 130 may deform a cavity 325 of the second fluid vessel 327 of the second deformable layer 300 that is located in relative close proximity or adjacent to the volume button and/or the play/pause button. This may also be applicable to when the user is making a phone call on the phone variation of the device 10. Because the handset will be by the user's ear and not easily visible, a tactile locator for the volume button may be useful to allow the user to easily adjust the volume of the call. However, any other arrangement or function of the second deformable layer 300 to provide tactile locating features may be used.
  • In a second variation, the second deformable layer 300 may function to provide protection for the device, for example, from falling or from scratching. In a first example, the second deformable layer 300 may function to deform the second particular region 313 to form a bumper, as shown in FIG. 7, that functions to protect a face of the device from, for example, a fall. In this example, a processor may function to detect the acceleration of the device (for example, through accelerometer), and based on the detected acceleration, the processor may actuate the deformation of the particular region 313 to form a bumper. In this example, the processor may also detect the face of the device 10 that is closest to impact upon the fall and function to actuate the deformation of the particular region 313 that is substantially proximal to the predicted face of impact. This allows the fluid manipulation performed by the displacement device 130 to be allocated to a particular face with a higher chance of damage. In variations of the displacement device 130 where the volume of fluid displaced per unit time is not high enough to form bumpers on all the possible faces of the device 10 in time to protect the device 10 upon impact, allocation of the fluid manipulation to create a bumper on the face of impact may increase the effectiveness of a bumper that is located at the face of impact. However, any other suitable arrangement of the bumper may be used.
  • In a second example of the second variation, the second deformable layer 300 may function to put distance between the device 10 and an external surface and/or object, for example, to provide feet or risers that prop the device away from a surface that the device 10 may be placed on, as shown in FIGS. 8a and 8b , to help prevent scratching of the device, in particular, the main face of the device 10 that may include the touch sensitive display. In this example, the second deformable layer 300 may be located on the same face of the device 10 as the first deformable layer because the first deformable layer may be associated with the touch sensitive display. When the device 10 senses that the device is placed on a surface (through accelerometers, proximity sensors such as infrared sensors, or any other suitable sensor), the displacement device 130 may expand a plurality of cavities of the second deformable layer 300 along the face of the device 10 facing the surface to be used as “feet” or risers to prop up the device 10. Alternatively, the second deformable layer 300 of this variation may also be used to put distance between a user and the device 10, for example, to protect a user from the device. In particular, a device may emit radiation and the deformed particular region 313 functions to maintain a particular distance between the device 10 and the user. In another example, if the device 10 is emitting heat, the second deformed particular region 313 may function to put distance between the user and the device 10 to substantially prevent the user from being injured by the heat of the device 10. Alternatively, the user or an application of the device may actuate the employment of the second deformable layer 300. However, any other method may be used to employ the second deformable layer 300 to maintain a distance between the device 10 and a surface, user, and/or any other suitable type of object. In this example, the second deformable layer may be integrated into the first deformable layer, for example, cavities 225 that belong to the first deformable layer may be alternatively be used as “feet” to prop up the device. The second deformable layer may also be located on a face opposite of the main face of the device 10 that may include the touch sensitive display and may be used to stabilize the device 10 as the user applies pressure on the main face and/or touch sensitive display. However, any other suitable arrangement of the second deformable layer 300 may be used.
  • In a third variation, the second deformable layer 300 may function to change the orientation of the device 10, as shown in FIGS. 9a and 9b . This variation may be thought of as similar the second example of the second variation where “feet” are employed to lift the device 10. In this third variation, the “feet” are used to change the orientation of the device, preferably relative to a surface, for example, when the surface is not flat. The “feet” provided by the second deformable layer and/or the first deformable layer may also be used to level the device to a desired angle. For example, in devices that include image projection functionality, the “feet” may be used align the device as desired by the user. In another example, in the device 10 may include a touch sensitive display that displays a keyboard and the “feet” may be used to orient the device 10 at the desired angle for typing on the touch sensitive display. However, the second deformable layer may provide any other suitable physical feature.
  • In a fourth variation, the second deformable layer 300 may function to provide a visual aesthetic, as shown in FIG. 10. The second deformable layer 300 may include a plurality of cavities 325 and may function to expand a pattern of cavities 325 to add a certain aesthetic detail to the device 10. The second deformable layer 300 may also function to pulsate the pattern of cavities 325 to add a pulsating aesthetic to the decoration and/or the logo of the company manufacturing the device 10. For example, the company logo of a laptop in standby mode may pulsate. The particular decoration to be exhibited may be selected by the user. Alternatively, a processor may detect the presence of the hand of a user (for example, with a proximity sensor such as an infrared sensor) and employ the decoration. However, any other suitable method to employ the second deformable layer 300 may be used. The decoration may be of any suitable decoration, for example, a shape, the profile of an animal, the user's name, or a message.
  • The second deformable layer 300 of the user interface 100 may be used to provide any other suitable tactile experience to the user. A light source may also be coupled to the user interface system 100 to augment the experience provided by the device. For example, in the first example of the second deformable layer 300 providing a tactile communication to the user, a set of light sources may be integrated to provide light in phase with the pulsation of the expansion and retraction of the second fluid vessel 327. Alternatively, the fluid 312 of the second deformable layer 300 may function to direct light through the second deformable layer 300 such that the effect of light aimed through the fluid vessel of the second deformable layer 300 may be affected by the arrangement of fluid within the fluid vessel. However, any other suitable experience may be provided to the user of the device 10, for example, a vibration motor may be coupled to the user interface system 100 to provide vibration along with the expansion/retraction of the second fluid vessel 327. The user interface system 100 of the preferred embodiments may alternatively be applied to any other suitable device, for example, the device may be a musical instrument where the deformed particular region 313 of the second deformable layer 300 functions to affect the passage of air or any other suitable type of fluid through the instrument to affect the musical qualities of the instrument. Alternatively, the deformed particular region 313 may come into contact with a string of a stringed instrument and affect the vibration of the string. However, any other suitable application of the user interface system 100 may be used.
  • The Method of the Preferred Embodiments
  • As shown in FIGS. 7-9, the method S100 of the preferred embodiments preferably includes providing a first deformable layer Step S200 that defines a first surface and a first fluid vessel that contains a first volume of fluid, providing a second deformable layer Step S300 that defines a second surface and a second fluid vessel that contains a second volume of fluid, selectively deforming at least one of the first and second surfaces Step S110, wherein selectively deforming at least one of the first and second surfaces includes at least one of: manipulating the first volume of fluid to deform a first particular region of the first surface into a tactilely distinguishable formation of a first type Step S210 and manipulating the second volume of fluid to deform a second particular region on the second surface into a tactilely distinguishable formation of a second type that substantially changes the shape of the device Step S310. As described above, the step of manipulating the first volume of fluid preferably includes configuring the first type of tactilely distinguishable formation to receive a user input Step S120. However, the first type of tactilely distinguishable formation may function to provide any other suitable function to the device.
  • In a first variation of the step of manipulating the second volume of fluid, the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide information to the user Step S320. In a first example, the information may include alerting the user regarding the operation of the device Step S322, for example, in the variation of the device 10 that receives messages, such as a mobile phone, the second volume of fluid may be manipulated to alert the user on a received message. In a second example of the first variation, the information may include indicating the location of a particular feature of the device Step S324, for example, the location of the speaker on a device 10 that is a mobile phone. However, the second type of tactilely distinguishable formation may provide any other suitable type of information.
  • In a second variation of the step of manipulating the second volume of fluid, the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide protection for the device Step S330, as shown in FIGS. 7 and 8. In a first example, the second type of tactilely distinguishable formation is configured to provide a bumper for the device, as shown in FIG. 7. In this first example, the method S100 of the preferred embodiments preferably includes the step of detecting the acceleration of the device S111 and providing a bumper for the device when the acceleration of the device is detected to be above a threshold that may indicate that the device is falling Step S332. This variation may also include the step of predicting the face of the device closest to the potential impact Step S112 and providing a bumper for the face of the predicted face of impact Step S334. In a second example of the second variation, the second type of tactilely distinguishable formation is configured to provide “feet” or risers for the device, as shown in FIG. 8. In this example, the method S100 of the preferred embodiments preferably includes the step of detecting the proximity of a face of the device to an external surface Step S120 and providing a bumper for surface detected to be in substantial proximity to an external surface Step S336. However, any other suitable protection may be provided to the device by the second type of tactilely distinguishable formation.
  • In a third variation of the step of manipulating the second volume of fluid, the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to change the orientation of the device Step S340, as shown in FIG. 9. In this variation, the method S100 of the preferred embodiments preferably includes the step of detecting the orientation of the device Step S130, for example, the angle of the device relative to the ground, a surface, or any other suitable reference. In the example as shown in FIG. 9, the second type of tactilely distinguishable formation of the third variation may be arranged similar to the “feet′ of the second variation where a portion is located on one side of a face of the device and another portion is located on another side of a face of the device, preferably opposite of the first portion and both portions preferably are in contact with an external surface. The external surface may be an irregular surface, such as those seen on rocks, or may be a substantially planar surface, such as a table, but may alternatively be any other suitable type of surface. The fluid is preferably manipulated to deform the portions of the tactilely distinguishable formation in substantially different degrees to substantially affect the orientation of the device, for example, one portion will be deformed to a higher degree than another to raise the corresponding side of the face and change the orientation of the device. However, any other suitable arrangement of the second tactilely distinguishable formation of the third variation may be used.
  • In a fourth variation of the step of manipulating the second volume of fluid, the second volume of fluid is manipulated to configure the second type of tactilely distinguishable formation to provide an aesthetic feature to the device, as shown in FIG. 10. This variation of the method S100 may include actuating the aesthetic feature at a desired time. In a first example, the aesthetic feature may be activated at a preprogrammed time, for example, every five minutes, whenever the device is turned on and/or off, when a function of the device is turned on and/or off, or any other suitable time. The preprogrammed time may be preset by a manufacturer, but may alternatively be set by the user. Alternatively, the aesthetic feature may be activated on a case by case basis, for example, when the user selects to activate the feature or when an event occurs. However, any other suitable activation of the aesthetic feature may be used.
  • “A channel 138 couples a first group of cavities 325 and a second group of cavities 325 to the displacement device 130. The first and second groups of cavities 325 are preferably not directly connected to each other. The channel 138 preferably forms a T-junction between the displacement device 130 and the two groups of cavities 325, and the channel preferably includes a valve 132 at the T-junction to direct fluid displaced by the displacement device 130 to one or both of the groups of cavities 325. However, the channel 138 may be of any other suitable orientation. The valve 132 is preferably of the type described above in the second preferred embodiment. In a variation where one cavity 325 may belong to more than one group of cavities 325, for example, as shown in FIG. 17 where a first group of cavities 325 that correlate to a landscape QWERTY keyboard and a second group of cavities 325 that correlate to a portrait QWERTY cavity 325 group share cavities 325. The shared cavities 325 may be thought of as a third group of cavities 325 that cooperates with the first group of cavities 325 to correlate to a landscape QWERTY keyboard and cooperates with the second group of cavities 325 to correlate to a portrait QWERTY keyboard. In this variation, each of the shared cavities 325 may be coupled to more than one channel 138, as shown in FIG. 18. This allows expansion of each shared cavity 325 when any of the displacement devices 130 pertaining to each of the groups to which the cavity 325 belongs is activated. To regulate the expansion of the cavity 325, the cavity 325 may include a valve of a type described above for valve 132 that prevents fluid from a first channel 238 belonging to a first group to flow through the cavity 325 to a second channel 338 belonging to a second group. The valve may also be used to prevent fluid from more than one channel 138 to expand the cavity 325, which may potentially cause the over-expansion of the cavity 325. However, any other suitable arrangement of a cavity 325 that may belong to more than one group may be used.”
  • As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims (1)

We claim:
1. A user interface system for a device, comprising:
a first deformable layer that includes a first sheet that defines a first surface, a first fluid vessel arranged underneath the first surface, and a first volume of fluid contained within the first fluid vessel that is manipulated to deform a first particular region of the first surface to receive a user input;
a second deformable layer that includes a second sheet that defines a second surface, a second fluid vessel arranged underneath the second surface, and a second volume of fluid contained within the second fluid vessel that is manipulated to deform a second particular region of the second surface to change the shape of the device; and
a displacement device coupled to the first and second fluid vessels and configured to selectively manipulate at least one of the first and second volumes of fluid, thereby deforming at least one of the first and second particular regions.
US15/152,408 2008-01-04 2016-05-11 User interface system Abandoned US20160252961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/152,408 US20160252961A1 (en) 2008-01-04 2016-05-11 User interface system
US15/480,990 US20170212595A1 (en) 2008-01-04 2017-04-06 User interface system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11/969,848 US8547339B2 (en) 2008-01-04 2008-01-04 System and methods for raised touch screens
US12/319,334 US8154527B2 (en) 2008-01-04 2009-01-05 User interface system
US31306410P 2010-03-11 2010-03-11
US31305410P 2010-03-11 2010-03-11
US13/046,467 US9367132B2 (en) 2008-01-04 2011-03-11 User interface system
US15/152,408 US20160252961A1 (en) 2008-01-04 2016-05-11 User interface system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/046,467 Continuation US9367132B2 (en) 2008-01-04 2011-03-11 User interface system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/480,990 Continuation US20170212595A1 (en) 2008-01-04 2017-04-06 User interface system

Publications (1)

Publication Number Publication Date
US20160252961A1 true US20160252961A1 (en) 2016-09-01

Family

ID=44563876

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/046,467 Expired - Fee Related US9367132B2 (en) 2008-01-04 2011-03-11 User interface system
US15/152,408 Abandoned US20160252961A1 (en) 2008-01-04 2016-05-11 User interface system
US15/480,990 Abandoned US20170212595A1 (en) 2008-01-04 2017-04-06 User interface system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/046,467 Expired - Fee Related US9367132B2 (en) 2008-01-04 2011-03-11 User interface system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/480,990 Abandoned US20170212595A1 (en) 2008-01-04 2017-04-06 User interface system

Country Status (2)

Country Link
US (3) US9367132B2 (en)
WO (1) WO2011112984A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9052790B2 (en) 2008-01-04 2015-06-09 Tactus Technology, Inc. User interface and methods
US8547339B2 (en) 2008-01-04 2013-10-01 Tactus Technology, Inc. System and methods for raised touch screens
US8570295B2 (en) 2008-01-04 2013-10-29 Tactus Technology, Inc. User interface system
US9372565B2 (en) 2008-01-04 2016-06-21 Tactus Technology, Inc. Dynamic tactile interface
US8922503B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US9552065B2 (en) 2008-01-04 2017-01-24 Tactus Technology, Inc. Dynamic tactile interface
US8922510B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US9128525B2 (en) 2008-01-04 2015-09-08 Tactus Technology, Inc. Dynamic tactile interface
US9612659B2 (en) 2008-01-04 2017-04-04 Tactus Technology, Inc. User interface system
US9720501B2 (en) 2008-01-04 2017-08-01 Tactus Technology, Inc. Dynamic tactile interface
US9588683B2 (en) 2008-01-04 2017-03-07 Tactus Technology, Inc. Dynamic tactile interface
US8947383B2 (en) 2008-01-04 2015-02-03 Tactus Technology, Inc. User interface system and method
US8154527B2 (en) 2008-01-04 2012-04-10 Tactus Technology User interface system
US8456438B2 (en) 2008-01-04 2013-06-04 Tactus Technology, Inc. User interface system
US9274612B2 (en) 2008-01-04 2016-03-01 Tactus Technology, Inc. User interface system
US8243038B2 (en) 2009-07-03 2012-08-14 Tactus Technologies Method for adjusting the user interface of a device
US9557915B2 (en) 2008-01-04 2017-01-31 Tactus Technology, Inc. Dynamic tactile interface
US9298261B2 (en) 2008-01-04 2016-03-29 Tactus Technology, Inc. Method for actuating a tactile interface layer
US20160187981A1 (en) 2008-01-04 2016-06-30 Tactus Technology, Inc. Manual fluid actuator
US9063627B2 (en) 2008-01-04 2015-06-23 Tactus Technology, Inc. User interface and methods
US9423875B2 (en) 2008-01-04 2016-08-23 Tactus Technology, Inc. Dynamic tactile interface with exhibiting optical dispersion characteristics
US8553005B2 (en) 2008-01-04 2013-10-08 Tactus Technology, Inc. User interface system
US9588684B2 (en) 2009-01-05 2017-03-07 Tactus Technology, Inc. Tactile interface for a computing device
EP2449452B1 (en) 2009-07-03 2016-02-10 Tactus Technology User interface enhancement system
WO2011087816A1 (en) 2009-12-21 2011-07-21 Tactus Technology User interface system
US9298262B2 (en) 2010-01-05 2016-03-29 Tactus Technology, Inc. Dynamic tactile interface
US8619035B2 (en) 2010-02-10 2013-12-31 Tactus Technology, Inc. Method for assisting user input to a device
WO2011112984A1 (en) 2010-03-11 2011-09-15 Tactus Technology User interface system
KR20130141344A (en) 2010-04-19 2013-12-26 택투스 테크놀로지, 아이엔씨. Method of actuating a tactile interface layer
WO2011133604A1 (en) 2010-04-19 2011-10-27 Tactus Technology User interface system
WO2012054780A1 (en) 2010-10-20 2012-04-26 Tactus Technology User interface system
CN103124946B (en) 2010-10-20 2016-06-29 泰克图斯科技公司 User interface system and method
CN104662497A (en) 2012-09-24 2015-05-27 泰克图斯科技公司 Dynamic tactile interface and methods
US9405417B2 (en) 2012-09-24 2016-08-02 Tactus Technology, Inc. Dynamic tactile interface and methods
WO2014081813A1 (en) * 2012-11-21 2014-05-30 SomniQ, Inc. Devices, systems, and methods for empathetic computing
CN104076870B (en) * 2013-03-29 2017-08-29 联想(北京)有限公司 A kind of electronic equipment
US9557813B2 (en) 2013-06-28 2017-01-31 Tactus Technology, Inc. Method for reducing perceived optical distortion
WO2015077728A1 (en) * 2013-11-22 2015-05-28 Tactus Technology, Inc. Dynamic tactile interface
US20150277563A1 (en) * 2014-03-28 2015-10-01 Wen-Ling M. Huang Dynamic tactile user interface
JP6743036B2 (en) 2015-02-23 2020-08-19 ソムニック インク. Empathic user interface, system and method for interfacing with an empathic computing device
US10991269B2 (en) 2015-06-18 2021-04-27 The Regents Of The University Of Michigan Microfluidic actuators with integrated addressing
JP6707641B2 (en) 2015-12-11 2020-06-10 ソムニック インク. Device, system and method for interfacing with a user and/or external device by detection of a stationary state
USD806711S1 (en) 2015-12-11 2018-01-02 SomniQ, Inc. Portable electronic device
USD886767S1 (en) 2017-08-31 2020-06-09 Google Llc Speaker device
USD886766S1 (en) 2017-08-31 2020-06-09 Google Llc Speaker device
CA178576S (en) 2017-08-31 2022-04-06 Google Llc Speaker device
USD938382S1 (en) 2019-09-20 2021-12-14 Google Llc Speaker device with lights
US11641722B2 (en) * 2021-06-25 2023-05-02 Motorola Mobility Llc Electronic device with extendable gripping feet and corresponding methods

Family Cites Families (450)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL270860A (en) 1960-10-31 1900-01-01
US3659354A (en) 1970-10-21 1972-05-02 Mitre Corp Braille display device
US3780236A (en) 1971-05-18 1973-12-18 Gen Signal Corp Push button switch assembly with slidable interlocking means preventing simultaneous operation of two or more pushbuttons
US3759108A (en) 1971-09-16 1973-09-18 Gen Electric Single gauge multi-time constant and multi-tissue ratio automatic decompression instruments
US3818487A (en) 1972-08-24 1974-06-18 W Brody Soft control materials
US4109118A (en) 1976-09-01 1978-08-22 Victor Kley Keyswitch pad
US4209819A (en) 1978-03-13 1980-06-24 Key Tronic Corporation Capacitive keyswitch
US4290343A (en) 1978-10-30 1981-09-22 Mts Systems Corporation High volume poppet valve with orifice opening speed control
US4307268A (en) 1978-11-17 1981-12-22 Rogers Corporation Tactile element and keyboard including the tactile element
US4517421A (en) 1980-01-28 1985-05-14 Margolin George D Resilient deformable keyboard
US4543000A (en) 1981-10-13 1985-09-24 Hasenbalg Ralph D Latching actuator
US4467321A (en) 1982-04-30 1984-08-21 Volnak William M Chording keyboard for generating binary data
US4477700A (en) 1983-11-14 1984-10-16 Rogers Corporation Tactile membrane keyboard with elliptical tactile key elements
GB8408847D0 (en) 1984-04-05 1984-05-16 Ti Group Services Ltd Electrical switches
US4584625A (en) 1984-09-11 1986-04-22 Kellogg Nelson R Capacitive tactile sensor
AT387100B (en) 1986-05-06 1988-11-25 Siemens Ag Oesterreich TACTILE DOTS OR PICTURE DISPLAY
JPH0439613Y2 (en) 1986-05-23 1992-09-17
US5194852A (en) 1986-12-01 1993-03-16 More Edward S Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information
US4920343A (en) 1988-09-30 1990-04-24 Honeywell Inc. Capacitive keyswitch membrane with self contained sense-to-ground capacitance
US4940734A (en) 1988-11-23 1990-07-10 American Cyanamid Process for the preparation of porous polymer beads
GB2239376A (en) 1989-12-18 1991-06-26 Ibm Touch sensitive display
US5631861A (en) 1990-02-02 1997-05-20 Virtual Technologies, Inc. Force feedback and texture simulating interface device
DE4012267A1 (en) 1990-03-13 1991-11-28 Joerg Fricke DEVICE FOR TASTABLE PRESENTATION OF INFORMATION
US5212473A (en) 1991-02-21 1993-05-18 Typeright Keyboard Corp. Membrane keyboard and method of using same
DE4133000C2 (en) 1991-10-04 1993-11-18 Siegfried Dipl Ing Kipke Piezo-hydraulic module for the implementation of tactile information
US5195659A (en) 1991-11-04 1993-03-23 Eiskant Ronald E Discreet amount toothpaste dispenser
US5369228A (en) 1991-11-30 1994-11-29 Signagraphics Corporation Data input device with a pressure-sensitive input surface
US5346476A (en) 1992-04-29 1994-09-13 Edward E. Elson Fluid delivery system
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
US5889236A (en) 1992-06-08 1999-03-30 Synaptics Incorporated Pressure sensitive scrollbar feature
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5412189A (en) 1992-12-21 1995-05-02 International Business Machines Corporation Touch screen apparatus with tactile information
AU6018494A (en) 1993-05-21 1994-12-20 Arthur D. Little Enterprises, Inc. User-configurable control device
US5731804A (en) 1995-01-18 1998-03-24 Immersion Human Interface Corp. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems
US6437771B1 (en) 1995-01-18 2002-08-20 Immersion Corporation Force feedback device including flexure member between actuator and user object
US5767839A (en) 1995-01-18 1998-06-16 Immersion Human Interface Corporation Method and apparatus for providing passive force feedback to human-computer interface systems
US5721566A (en) 1995-01-18 1998-02-24 Immersion Human Interface Corp. Method and apparatus for providing damping force feedback
US5739811A (en) 1993-07-16 1998-04-14 Immersion Human Interface Corporation Method and apparatus for controlling human-computer interface systems providing force feedback
US5459461A (en) 1993-07-29 1995-10-17 Crowley; Robert J. Inflatable keyboard
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5496174A (en) 1994-08-04 1996-03-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and device for producing a tactile display using an electrorheological fluid
US5717423A (en) 1994-12-30 1998-02-10 Merltec Innovative Research Three-dimensional display
US6850222B1 (en) 1995-01-18 2005-02-01 Immersion Corporation Passive force feedback for computer interface devices
NL9500589A (en) 1995-03-28 1996-11-01 Tieman Bv F J Braille cell with an actuator containing a mechanically active, intrinsically conductive polymer.
US7113166B1 (en) 1995-06-09 2006-09-26 Immersion Corporation Force feedback devices using fluid braking
US6166723A (en) 1995-11-17 2000-12-26 Immersion Corporation Mouse interface device providing force feedback
US7973773B2 (en) 1995-06-29 2011-07-05 Pryor Timothy R Multipoint, virtual control, and force based touch screen applications
US8228305B2 (en) 1995-06-29 2012-07-24 Apple Inc. Method for providing human input to a computer
US5959613A (en) 1995-12-01 1999-09-28 Immersion Corporation Method and apparatus for shaping force signals for a force feedback device
JP3524247B2 (en) 1995-10-09 2004-05-10 任天堂株式会社 Game machine and game machine system using the same
US6384743B1 (en) 1999-06-14 2002-05-07 Wisconsin Alumni Research Foundation Touch screen for the vision-impaired
US5754023A (en) 1995-10-26 1998-05-19 Cybernet Systems Corporation Gyro-stabilized platforms for force-feedback applications
JPH09146708A (en) 1995-11-09 1997-06-06 Internatl Business Mach Corp <Ibm> Driving method for touch panel and touch input method
US6639581B1 (en) 1995-11-17 2003-10-28 Immersion Corporation Flexure mechanism for interface device
US6100874A (en) 1995-11-17 2000-08-08 Immersion Corporation Force feedback mouse interface
US5825308A (en) 1996-11-26 1998-10-20 Immersion Human Interface Corporation Force feedback interface having isotonic and isometric functionality
JP2000501033A (en) 1995-11-30 2000-02-02 ヴァーチャル テクノロジーズ インコーポレイテッド Human / machine interface with tactile feedback
US6219032B1 (en) 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
US6169540B1 (en) 1995-12-01 2001-01-02 Immersion Corporation Method and apparatus for designing force sensations in force feedback applications
US6028593A (en) 1995-12-01 2000-02-22 Immersion Corporation Method and apparatus for providing simulated physical interactions within computer generated environments
US7027032B2 (en) 1995-12-01 2006-04-11 Immersion Corporation Designing force sensations for force feedback computer applications
US6300936B1 (en) 1997-11-14 2001-10-09 Immersion Corporation Force feedback system including multi-tasking graphical host environment and interface device
US6078308A (en) 1995-12-13 2000-06-20 Immersion Corporation Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
US6374255B1 (en) 1996-05-21 2002-04-16 Immersion Corporation Haptic authoring
US7629969B2 (en) 1996-08-12 2009-12-08 Tyco Electronics Corporation Acoustic condition sensor employing a plurality of mutually non-orthogonal waves
US6407757B1 (en) 1997-12-18 2002-06-18 E-Book Systems Pte Ltd. Computer-based browsing method and computer program product for displaying information in an electronic book form
US6024576A (en) 1996-09-06 2000-02-15 Immersion Corporation Hemispherical, high bandwidth mechanical interface for computer systems
JP3842876B2 (en) 1996-09-27 2006-11-08 株式会社リコー Digital camera
US6411276B1 (en) 1996-11-13 2002-06-25 Immersion Corporation Hybrid control of haptic feedback for host computer and interface device
US6686911B1 (en) 1996-11-26 2004-02-03 Immersion Corporation Control knob with control modes and force feedback
US7489309B2 (en) 1996-11-26 2009-02-10 Immersion Corporation Control knob with multiple degrees of freedom and force feedback
US6154201A (en) 1996-11-26 2000-11-28 Immersion Corporation Control knob with multiple degrees of freedom and force feedback
US6278441B1 (en) 1997-01-09 2001-08-21 Virtouch, Ltd. Tactile interface system for electronic data display system
CA2278726C (en) 1997-01-27 2004-08-31 Immersion Corporation Method and apparatus for providing high bandwidth, realistic force feedback including an improved actuator
JPH10255106A (en) 1997-03-10 1998-09-25 Toshiba Corp Touch panel, touch panel input device and automatic teller machine
US5982304A (en) 1997-03-24 1999-11-09 International Business Machines Corporation Piezoelectric switch with tactile response
US7091948B2 (en) 1997-04-25 2006-08-15 Immersion Corporation Design of force sensations for haptic feedback computer interfaces
US6243074B1 (en) 1997-08-29 2001-06-05 Xerox Corporation Handedness detection for a physical manipulatory grammar
US6268857B1 (en) 1997-08-29 2001-07-31 Xerox Corporation Computer user interface using a physical manipulatory grammar
US5917906A (en) 1997-10-01 1999-06-29 Ericsson Inc. Touch pad with tactile feature
GB2332940A (en) 1997-10-17 1999-07-07 Patrick Eldridge Mouse pad
US6088019A (en) 1998-06-23 2000-07-11 Immersion Corporation Low cost force feedback device with actuator for non-primary axis
US6243078B1 (en) 1998-06-23 2001-06-05 Immersion Corporation Pointing device with forced feedback button
US6211861B1 (en) 1998-06-23 2001-04-03 Immersion Corporation Tactile mouse device
US6448977B1 (en) 1997-11-14 2002-09-10 Immersion Corporation Textures and other spatial sensations for a relative haptic interface device
US8020095B2 (en) 1997-11-14 2011-09-13 Immersion Corporation Force feedback system including multi-tasking graphical host environment
US6256011B1 (en) 1997-12-03 2001-07-03 Immersion Corporation Multi-function control device with force feedback
US6667738B2 (en) 1998-01-07 2003-12-23 Vtech Communications, Ltd. Touch screen overlay apparatus
US6160540A (en) 1998-01-12 2000-12-12 Xerox Company Zoomorphic computer user interface
US20060033724A1 (en) 2004-07-30 2006-02-16 Apple Computer, Inc. Virtual input device placement on a touch screen user interface
US8479122B2 (en) 2004-07-30 2013-07-02 Apple Inc. Gestures for touch sensitive input devices
EP1717684A3 (en) 1998-01-26 2008-01-23 Fingerworks, Inc. Method and apparatus for integrating manual input
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US7614008B2 (en) 2004-07-30 2009-11-03 Apple Inc. Operation of a computer with touch screen interface
EP1051698B1 (en) 1998-01-28 2018-01-17 Immersion Medical, Inc. Interface device and method for interfacing instruments to vascular access simulation systems
US6100541A (en) 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
US5977867A (en) 1998-05-29 1999-11-02 Nortel Networks Corporation Touch pad panel with tactile feedback
US6369803B2 (en) 1998-06-12 2002-04-09 Nortel Networks Limited Active edge user interface
US6429846B2 (en) 1998-06-23 2002-08-06 Immersion Corporation Haptic feedback for touchpads and other touch controls
US6697043B1 (en) 1999-12-21 2004-02-24 Immersion Corporation Haptic interface device and actuator assembly providing linear haptic sensations
US6188391B1 (en) 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
JP2000029612A (en) 1998-07-15 2000-01-28 Smk Corp Touch panel input device
JP2000029611A (en) 1998-07-15 2000-01-28 Smk Corp Touch panel input device
US6681031B2 (en) 1998-08-10 2004-01-20 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6359572B1 (en) 1998-09-03 2002-03-19 Microsoft Corporation Dynamic keyboard
US6354839B1 (en) 1998-10-10 2002-03-12 Orbital Research, Inc. Refreshable braille display system
US7038667B1 (en) 1998-10-26 2006-05-02 Immersion Corporation Mechanisms for control knobs and other interface devices
US6218966B1 (en) 1998-11-05 2001-04-17 International Business Machines Corporation Tactile feedback keyboard
US6756970B2 (en) 1998-11-20 2004-06-29 Microsoft Corporation Pen-based computer system
GB2345193B (en) 1998-12-22 2002-07-24 Nokia Mobile Phones Ltd Metallic keys
CA2278832A1 (en) 1999-01-06 2000-07-06 Vtech Communications, Ltd. Touch screen overlay apparatus
US7124425B1 (en) 1999-03-08 2006-10-17 Immersion Entertainment, L.L.C. Audio/video system and method utilizing a head mounted apparatus with noise attenuation
JP3817965B2 (en) 1999-04-21 2006-09-06 富士ゼロックス株式会社 Detection device
US6377685B1 (en) 1999-04-23 2002-04-23 Ravi C. Krishnan Cluster key arrangement
US6903721B2 (en) 1999-05-11 2005-06-07 Immersion Corporation Method and apparatus for compensating for position slip in interface devices
CA2273113A1 (en) 1999-05-26 2000-11-26 Tactex Controls Inc. Touch pad using a non-electrical deformable pressure sensor
US7210160B2 (en) 1999-05-28 2007-04-24 Immersion Entertainment, L.L.C. Audio/video programming and charging system and method
US7151528B2 (en) 1999-06-22 2006-12-19 Cirque Corporation System for disposing a proximity sensitive touchpad behind a mobile phone keypad
US6899137B2 (en) 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6929030B2 (en) 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7144616B1 (en) 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6501462B1 (en) 1999-07-01 2002-12-31 Gateway, Inc. Ergonomic touch pad
US6982696B1 (en) 1999-07-01 2006-01-03 Immersion Corporation Moving magnet actuator for providing haptic feedback
US7561142B2 (en) 1999-07-01 2009-07-14 Immersion Corporation Vibrotactile haptic feedback devices
US8169402B2 (en) 1999-07-01 2012-05-01 Immersion Corporation Vibrotactile haptic feedback devices
US6337678B1 (en) 1999-07-21 2002-01-08 Tactiva Incorporated Force feedback computer input and output device with coordinated haptic elements
US6529183B1 (en) 1999-09-13 2003-03-04 Interval Research Corp. Manual interface combining continuous and discrete capabilities
DE20080209U1 (en) 1999-09-28 2001-08-09 Immersion Corp Control of haptic sensations for interface devices with vibrotactile feedback
US6680729B1 (en) 1999-09-30 2004-01-20 Immersion Corporation Increasing force transmissibility for tactile feedback interface devices
FI19992510A (en) 1999-11-24 2001-05-25 Nokia Mobile Phones Ltd Electronic device and method in the electronic device
US6693626B1 (en) 1999-12-07 2004-02-17 Immersion Corporation Haptic feedback using a keyboard device
US6509892B1 (en) 1999-12-17 2003-01-21 International Business Machines Corporation Method, system and program for topographical interfacing
US20010008396A1 (en) 2000-01-14 2001-07-19 Nobuhiro Komata Recording medium, computer and method for selecting computer display items
US6573844B1 (en) 2000-01-18 2003-06-03 Microsoft Corporation Predictive keyboard
US6822635B2 (en) 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
AU2001244340A1 (en) 2000-03-30 2001-10-15 Electrotextiles Company Limited Input device
US6924787B2 (en) 2000-04-17 2005-08-02 Immersion Corporation Interface for controlling a graphical image
US6937225B1 (en) 2000-05-15 2005-08-30 Logitech Europe S.A. Notification mechanisms on a control device
AU2001264781A1 (en) 2000-05-22 2001-12-17 Digit Wireless, Llc Input devices and their use
US7196688B2 (en) 2000-05-24 2007-03-27 Immersion Corporation Haptic devices using electroactive polymers
FR2810779B1 (en) 2000-06-21 2003-06-13 Commissariat Energie Atomique ELEMENT A RELIEF EVOLUTIF
US7159008B1 (en) 2000-06-30 2007-01-02 Immersion Corporation Chat interface with haptic feedback functionality
US7233476B2 (en) 2000-08-11 2007-06-19 Immersion Corporation Actuator thermal protection in haptic feedback devices
DE10046099A1 (en) 2000-09-18 2002-04-04 Siemens Ag Touch sensitive display with tactile feedback
US6683627B1 (en) 2000-09-28 2004-01-27 International Business Machines Corporation Scroll box controls
US7182691B1 (en) 2000-09-28 2007-02-27 Immersion Corporation Directional inertial tactile feedback using rotating masses
AU2002213043A1 (en) 2000-10-06 2002-04-15 Protasis Corporation Fluid separation conduit cartridge
US7006081B2 (en) 2000-10-20 2006-02-28 Elo Touchsystems, Inc. Acoustic touch sensor with laminated substrate
US7463249B2 (en) 2001-01-18 2008-12-09 Illinois Tool Works Inc. Acoustic wave touch actuated switch with feedback
US6949176B2 (en) 2001-02-28 2005-09-27 Lightwave Microsystems Corporation Microfluidic control using dielectric pumping
US7567232B2 (en) 2001-03-09 2009-07-28 Immersion Corporation Method of using tactile feedback to deliver silent status information to a user of an electronic device
US6819316B2 (en) 2001-04-17 2004-11-16 3M Innovative Properties Company Flexible capacitive touch sensor
US6636202B2 (en) 2001-04-27 2003-10-21 International Business Machines Corporation Interactive tactile display for computer screen
US7202851B2 (en) 2001-05-04 2007-04-10 Immersion Medical Inc. Haptic interface for palpation simulation
US6924752B2 (en) 2001-05-30 2005-08-02 Palmone, Inc. Three-dimensional contact-sensitive feature for electronic devices
US6937033B2 (en) 2001-06-27 2005-08-30 Immersion Corporation Position sensor with resistive element
US7154470B2 (en) 2001-07-17 2006-12-26 Immersion Corporation Envelope modulator for haptic feedback devices
US6700556B2 (en) 2001-07-26 2004-03-02 Xerox Corporation Display sheet with stacked electrode structure
JP3708508B2 (en) 2001-08-23 2005-10-19 株式会社アイム Fingertip tactile input device and portable information terminal using the same
US6937229B2 (en) 2001-08-28 2005-08-30 Kevin Murphy Keycap for displaying a plurality of indicia
US6995745B2 (en) 2001-09-13 2006-02-07 E-Book Systems Pte Ltd. Electromechanical information browsing device
US7151432B2 (en) 2001-09-19 2006-12-19 Immersion Corporation Circuit and method for a switch matrix and switch sensing
US6703550B2 (en) 2001-10-10 2004-03-09 Immersion Corporation Sound data output and manipulation using haptic feedback
AU2002336708A1 (en) 2001-11-01 2003-05-12 Immersion Corporation Method and apparatus for providing tactile sensations
FI112415B (en) 2001-11-28 2003-11-28 Nokia Oyj Piezoelectric user interface
US6975305B2 (en) 2001-12-07 2005-12-13 Nec Infrontia Corporation Pressure-sensitive touch panel
EP1459245B1 (en) 2001-12-12 2006-03-08 Koninklijke Philips Electronics N.V. Display system with tactile guidance
US7352356B2 (en) 2001-12-13 2008-04-01 United States Of America Refreshable scanning tactile graphic display for localized sensory stimulation
US6703924B2 (en) 2001-12-20 2004-03-09 Hewlett-Packard Development Company, L.P. Tactile display apparatus
KR100769783B1 (en) 2002-03-29 2007-10-24 가부시끼가이샤 도시바 Display input device and display input system
US6904823B2 (en) 2002-04-03 2005-06-14 Immersion Corporation Haptic shifting devices
CN1692401B (en) 2002-04-12 2011-11-16 雷斯里·R·奥柏梅尔 Multi-axis transducer means and joystick
US7369115B2 (en) 2002-04-25 2008-05-06 Immersion Corporation Haptic devices having multiple operational modes including at least one resonant mode
US7161580B2 (en) 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
US7209113B2 (en) 2002-05-09 2007-04-24 Gateway Inc. Stylus pen expansion slot
JP3974451B2 (en) 2002-05-15 2007-09-12 株式会社 日立ディスプレイズ Liquid crystal display
US6655788B1 (en) 2002-05-17 2003-12-02 Viztec Inc. Composite structure for enhanced flexibility of electro-optic displays with sliding layers
FI20021024A (en) 2002-05-30 2003-12-01 Nokia Corp Cover structure for a keyboard
FI20021162A0 (en) 2002-06-14 2002-06-14 Nokia Corp Electronic device and a method for administering its keypad
US6930234B2 (en) 2002-06-19 2005-08-16 Lanny Davis Adjustable keyboard apparatus and method
KR20050012802A (en) 2002-06-19 2005-02-02 코닌클리케 필립스 일렉트로닉스 엔.브이. Tactile device
US6776546B2 (en) 2002-06-21 2004-08-17 Microsoft Corporation Method and system for using a keyboard overlay with a touch-sensitive display screen
US20060087479A1 (en) 2002-06-21 2006-04-27 Bridgestone Corporation Image display and method for manufacturing image display
US7068782B2 (en) * 2002-06-27 2006-06-27 Motorola, Inc. Communications devices with receiver earpieces and methods therefor
US11275405B2 (en) 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
US7656393B2 (en) * 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
JP3600606B2 (en) 2002-09-20 2004-12-15 株式会社東芝 Electronics
WO2004028955A2 (en) 2002-09-25 2004-04-08 California Institute Of Technology Microfluidic large scale integration
US7253807B2 (en) 2002-09-25 2007-08-07 Uievolution, Inc. Interactive apparatuses with tactiley enhanced visual imaging capability and related methods
US7138985B2 (en) 2002-09-25 2006-11-21 Ui Evolution, Inc. Tactilely enhanced visual image display
US6965370B2 (en) 2002-11-19 2005-11-15 Immersion Corporation Haptic feedback devices for simulating an orifice
US20040106360A1 (en) 2002-11-26 2004-06-03 Gilbert Farmer Method and apparatus for cleaning combustor liners
US7453442B1 (en) 2002-12-03 2008-11-18 Ncr Corporation Reconfigurable user interface systems
FR2849258B1 (en) 2002-12-19 2006-12-22 Commissariat Energie Atomique SURFACE MODIFICATION PLATE
US7138977B2 (en) 2003-01-15 2006-11-21 Motorola, Inc. Proportional force input apparatus for an electronic device
US7336266B2 (en) 2003-02-20 2008-02-26 Immersion Corproation Haptic pads for use with user-interface devices
WO2004077379A2 (en) 2003-02-24 2004-09-10 Peichun Yang Electroactive polymer actuator braille cell and braille display
JP3669363B2 (en) 2003-03-06 2005-07-06 ソニー株式会社 Electrodeposition type display panel manufacturing method, electrodeposition type display panel, and electrodeposition type display device
US7064748B2 (en) 2003-03-11 2006-06-20 Eastman Kodak Company Resistive touch screen with variable resistivity layer
US7081888B2 (en) 2003-04-24 2006-07-25 Eastman Kodak Company Flexible resistive touch screen
WO2004097788A1 (en) 2003-04-28 2004-11-11 Immersion Corporation Systems and methods for user interfaces designed for rotary input devices
US7280095B2 (en) 2003-04-30 2007-10-09 Immersion Corporation Hierarchical methods for generating force feedback effects
EP1816545A3 (en) 2003-05-30 2007-08-15 Immersion Corporation System and method for low power haptic feedback
DE10324579A1 (en) 2003-05-30 2004-12-16 Daimlerchrysler Ag operating device
JP2005316931A (en) 2003-06-12 2005-11-10 Alps Electric Co Ltd Input method and input device
GB0313808D0 (en) 2003-06-14 2003-07-23 Binstead Ronald P Improvements in touch technology
US7056051B2 (en) 2003-06-16 2006-06-06 Fiffie Artiss J Inflatable device for displaying information
US7098897B2 (en) 2003-06-30 2006-08-29 Motorola, Inc. Touch screen assembly and display for an electronic device
US20050020325A1 (en) 2003-07-24 2005-01-27 Motorola, Inc. Multi-configuration portable electronic device and method for operating the same
DE10340188A1 (en) 2003-09-01 2005-04-07 Siemens Ag Screen with a touch-sensitive user interface for command input
US7245292B1 (en) 2003-09-16 2007-07-17 United States Of America As Represented By The Secretary Of The Navy Apparatus and method for incorporating tactile control and tactile feedback into a human-machine interface
US20050073506A1 (en) 2003-10-05 2005-04-07 Durso Nick P. C-frame slidable touch input apparatus for displays of computing devices
JP2005117313A (en) 2003-10-07 2005-04-28 Fujitsu Ltd Piezo-electric element and touch panel device
US7161276B2 (en) 2003-10-24 2007-01-09 Face International Corp. Self-powered, electronic keyed, multifunction switching system
US20050088417A1 (en) 2003-10-24 2005-04-28 Mulligan Roger C. Tactile touch-sensing system
US7096852B2 (en) 2003-10-30 2006-08-29 Immersion Corporation Haptic throttle devices and methods
US7218313B2 (en) 2003-10-31 2007-05-15 Zeetoo, Inc. Human interface system
WO2005050428A2 (en) 2003-11-18 2005-06-02 Johnson Controls Technology Company Reconfigurable user interface
US7495659B2 (en) 2003-11-25 2009-02-24 Apple Inc. Touch pad for handheld device
US8164573B2 (en) 2003-11-26 2012-04-24 Immersion Corporation Systems and methods for adaptive interpretation of input from a touch-sensitive input device
EP1544048A1 (en) 2003-12-17 2005-06-22 IEE INTERNATIONAL ELECTRONICS &amp; ENGINEERING S.A. Device for the classification of seat occupancy
US7112737B2 (en) 2003-12-31 2006-09-26 Immersion Corporation System and method for providing a haptic effect to a musical instrument
US7064655B2 (en) 2003-12-31 2006-06-20 Sony Ericsson Mobile Communications Ab Variable-eccentricity tactile generator
US7283120B2 (en) 2004-01-16 2007-10-16 Immersion Corporation Method and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component
US7307626B2 (en) 2004-01-27 2007-12-11 Tyco Electronics Corporation Capacitive touch sensor
US7403191B2 (en) 2004-01-28 2008-07-22 Microsoft Corporation Tactile overlay for an imaging display
US7129854B2 (en) 2004-02-10 2006-10-31 Motorola, Inc. Electronic device with force sensing key
US7432911B2 (en) 2004-02-26 2008-10-07 Research In Motion Limited Keyboard for mobile devices
CA2460943A1 (en) 2004-03-16 2005-09-16 Unknown Pocket size computers
US7205981B2 (en) 2004-03-18 2007-04-17 Immersion Corporation Method and apparatus for providing resistive haptic feedback using a vacuum source
US7289111B2 (en) 2004-03-25 2007-10-30 International Business Machines Corporation Resistive touch pad with multiple regions of sensitivity
US7289106B2 (en) 2004-04-01 2007-10-30 Immersion Medical, Inc. Methods and apparatus for palpation simulation
US7319374B2 (en) 2004-04-14 2008-01-15 Immersion Corporation Moving magnet actuator
US20050231489A1 (en) 2004-04-15 2005-10-20 Research In Motion Limited System and method for providing dynamic tactile feedback on hand-held electronic devices
US7522152B2 (en) 2004-05-27 2009-04-21 Immersion Corporation Products and processes for providing haptic feedback in resistive interface devices
US7515122B2 (en) 2004-06-02 2009-04-07 Eastman Kodak Company Color display device with enhanced pixel pattern
JP4148187B2 (en) 2004-06-03 2008-09-10 ソニー株式会社 Portable electronic device, input operation control method and program thereof
JP2006011646A (en) 2004-06-23 2006-01-12 Pioneer Electronic Corp Tactile sense display device and tactile sense display function-equipped touch panel
US7743348B2 (en) 2004-06-30 2010-06-22 Microsoft Corporation Using physical objects to adjust attributes of an interactive display application
US7342573B2 (en) 2004-07-07 2008-03-11 Nokia Corporation Electrostrictive polymer as a combined haptic-seal actuator
US7198137B2 (en) 2004-07-29 2007-04-03 Immersion Corporation Systems and methods for providing haptic feedback with position sensing
US20070229233A1 (en) 2004-08-02 2007-10-04 Dort David B Reconfigurable tactile-enhanced display including "tap-and-drop" computing system for vision impaired users
US7245202B2 (en) 2004-09-10 2007-07-17 Immersion Corporation Systems and methods for networked haptic devices
US8002089B2 (en) 2004-09-10 2011-08-23 Immersion Corporation Systems and methods for providing a haptic device
US7324020B2 (en) 2004-09-21 2008-01-29 Nokia Corporation General purpose input board for a touch actuation
US8232969B2 (en) 2004-10-08 2012-07-31 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
US7397466B2 (en) 2004-11-12 2008-07-08 Eastman Kodak Company Integral spacer dots for touch screen
US8207945B2 (en) 2004-12-01 2012-06-26 Koninklijke Philips Electronics, N.V. Image display that moves physical objects and causes tactile sensation
US8199107B2 (en) 2004-12-22 2012-06-12 University Of Waterloo Input interface device with transformable form factor
US7551161B2 (en) 2004-12-30 2009-06-23 Mann W Stephen G Fluid user interface such as immersive multimediator or input/output device with one or more spray jets
DE102005004480A1 (en) 2005-01-31 2006-08-17 Bartels Mikrotechnik Gmbh Haptic operating device
JP2006268068A (en) 2005-03-22 2006-10-05 Fujitsu Ten Ltd Touch panel device
TWI258709B (en) 2005-03-28 2006-07-21 Elan Microelectronics Corp Touch panel capable of soliciting keying feel
JP2006285785A (en) 2005-04-01 2006-10-19 Fujitsu Ten Ltd Touch panel device
US7355595B2 (en) 2005-04-15 2008-04-08 Microsoft Corporation Tactile device for scrolling
US7382357B2 (en) 2005-04-25 2008-06-03 Avago Technologies Ecbu Ip Pte Ltd User interface incorporating emulated hard keys
US7692637B2 (en) 2005-04-26 2010-04-06 Nokia Corporation User input device for electronic device
US7825903B2 (en) 2005-05-12 2010-11-02 Immersion Corporation Method and apparatus for providing haptic effects to a touch panel
US7609178B2 (en) 2006-04-20 2009-10-27 Pressure Profile Systems, Inc. Reconfigurable tactile sensor input device
US7433719B2 (en) 2005-06-03 2008-10-07 Research In Motion Limited Handheld electronic device and keypad having tactile features
US7195170B2 (en) 2005-06-09 2007-03-27 Fuji Xerox Co., Ltd. Post-bit: multimedia ePaper stickies
US20070013662A1 (en) 2005-07-13 2007-01-18 Fauth Richard M Multi-configurable tactile touch-screen keyboard and associated methods
WO2007016704A2 (en) 2005-08-02 2007-02-08 Ipifini, Inc. Input device having multifunctional keys
TWI428937B (en) 2005-08-12 2014-03-01 Cambrios Technologies Corp Nanowires-based transparent conductors
US7233722B2 (en) 2005-08-15 2007-06-19 General Display, Ltd. System and method for fiber optics based direct view giant screen flat panel display
US7671837B2 (en) 2005-09-06 2010-03-02 Apple Inc. Scrolling input arrangements using capacitive sensors on a flexible membrane
US20070085837A1 (en) 2005-10-17 2007-04-19 Eastman Kodak Company Touch input device with display front
JP5208362B2 (en) 2005-10-28 2013-06-12 ソニー株式会社 Electronics
US7307231B2 (en) 2005-11-16 2007-12-11 Matsushita Electric Industrial Co., Ltd. Touch panel, method of manufacturing the same, and input device using the same
US8166649B2 (en) 2005-12-12 2012-05-01 Nupix, LLC Method of forming an electroded sheet
KR100677624B1 (en) 2005-12-19 2007-02-02 삼성전자주식회사 Liquid cooling system and electric appliances adopting the same
US20070152983A1 (en) 2005-12-30 2007-07-05 Apple Computer, Inc. Touch pad with symbols based on mode
US8421755B2 (en) 2006-01-17 2013-04-16 World Properties, Inc. Capacitive touch sensor with integral EL backlight
US8068605B2 (en) 2006-03-07 2011-11-29 Sony Ericsson Mobile Communications Ab Programmable keypad
KR100826532B1 (en) 2006-03-28 2008-05-02 엘지전자 주식회사 Mobile communication terminal and its method for detecting a key input
US20070236469A1 (en) 2006-03-30 2007-10-11 Richard Woolley Fluid level sensing utilizing a mutual capacitance touchpad device
US7511702B2 (en) 2006-03-30 2009-03-31 Apple Inc. Force and location sensitive display
US7538760B2 (en) 2006-03-30 2009-05-26 Apple Inc. Force imaging input device and system
WO2007115316A2 (en) 2006-04-04 2007-10-11 Chaffee Robert B Method and apparatus for monitoring and controlling pressure in an inflatable device
ATE473278T1 (en) 2006-04-22 2010-07-15 Scarab Genomics Llc METHOD AND COMPOSITIONS FOR PRODUCING RECOMBINANT PROTEINS USING A GENE FOR TRNA
US7978181B2 (en) 2006-04-25 2011-07-12 Apple Inc. Keystroke tactility arrangement on a smooth touch surface
US7727806B2 (en) 2006-05-01 2010-06-01 Charles Stark Draper Laboratory, Inc. Systems and methods for high density multi-component modules
US20070257634A1 (en) 2006-05-05 2007-11-08 Leschin Stephen J Self-powered portable electronic device
US7903092B2 (en) 2006-05-25 2011-03-08 Atmel Corporation Capacitive keyboard with position dependent reduced keying ambiguity
US8139035B2 (en) 2006-06-21 2012-03-20 Nokia Corporation Touch sensitive keypad with tactile feedback
US7841385B2 (en) 2006-06-26 2010-11-30 International Business Machines Corporation Dual-chamber fluid pump for a multi-fluid electronics cooling system and method
US8068097B2 (en) 2006-06-27 2011-11-29 Cypress Semiconductor Corporation Apparatus for detecting conductive material of a pad layer of a sensing device
US7916002B2 (en) 2006-06-30 2011-03-29 Nokia Corporation Haptic operative user interface input apparatus
US7545289B2 (en) 2006-07-17 2009-06-09 Synaptics Incorporated Capacitive sensing using a repeated pattern of sensing elements
US7834853B2 (en) 2006-07-24 2010-11-16 Motorola, Inc. Handset keypad
JP2008033739A (en) 2006-07-31 2008-02-14 Sony Corp Touch screen interaction method and apparatus based on tactile force feedback and pressure measurement
US8144271B2 (en) 2006-08-03 2012-03-27 Perceptive Pixel Inc. Multi-touch sensing through frustrated total internal reflection
CN101501989B (en) 2006-08-07 2012-06-27 京瓷株式会社 Method for manufacturing surface acoustic wave device
JP4697095B2 (en) 2006-08-29 2011-06-08 ソニー株式会社 Touch panel display device, electronic device and game device
US8786033B2 (en) 2006-09-01 2014-07-22 IVI Holdings, Ltd. Biometric sensor and sensor panel, method for detecting biometric pattern using the same, and method for manufacturing the same
US8564544B2 (en) * 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
DE102006045174A1 (en) 2006-09-25 2008-04-03 Siemens Ag Method for manufacturing contrast-improved image data set of analysis range of patient, involves loading image data set of analysis range, by which healthy tissue with lower intensity is represented as blood and deficient tissue
US20100315345A1 (en) 2006-09-27 2010-12-16 Nokia Corporation Tactile Touch Screen
US7890863B2 (en) 2006-10-04 2011-02-15 Immersion Corporation Haptic effects with proximity sensing
KR101144423B1 (en) 2006-11-16 2012-05-10 엘지전자 주식회사 Mobile phone and display method of the same
KR100851279B1 (en) 2006-12-07 2008-08-08 한국전자통신연구원 Braille Display Device for the physically challenged and Manufacturing Method Thereof
US20080136791A1 (en) 2006-12-07 2008-06-12 Sony Ericsson Mobile Communications Ab Liquid resistive touch panel
KR101330697B1 (en) 2006-12-21 2013-11-18 삼성디스플레이 주식회사 Display device
US8144129B2 (en) 2007-01-05 2012-03-27 Apple Inc. Flexible touch sensing circuits
US20080165139A1 (en) 2007-01-05 2008-07-10 Apple Inc. Touch screen stack-up processing
US20080202251A1 (en) 2007-02-27 2008-08-28 Iee International Electronics & Engineering S.A. Capacitive pressure sensor
US20080238448A1 (en) 2007-03-30 2008-10-02 Cypress Semiconductor Corporation Capacitance sensing for percussion instruments and methods therefor
US20080248836A1 (en) * 2007-04-04 2008-10-09 Motorola, Inc. Method and apparatus for controlling a skin texture surface on a device using hydraulic control
US20080251368A1 (en) 2007-04-12 2008-10-16 Sony Ericsson Mobile Communications Ab Input device
US8130202B2 (en) 2007-05-01 2012-03-06 International Business Machines Corporation Infrared touch screen gated by touch force
US20080291169A1 (en) 2007-05-21 2008-11-27 Brenner David S Multimodal Adaptive User Interface for a Portable Electronic Device
US7733575B2 (en) 2007-05-31 2010-06-08 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
KR20080107080A (en) 2007-06-05 2008-12-10 엘지이노텍 주식회사 Display module and lcd having the same
US20080303796A1 (en) 2007-06-08 2008-12-11 Steven Fyke Shape-changing display for a handheld electronic device
EP2000884A1 (en) 2007-06-08 2008-12-10 Research In Motion Limited Shape-changing disply for a handheld electronic device
EP2171756A1 (en) 2007-06-21 2010-04-07 Nxp B.V. Esd protection circuit
US20090002328A1 (en) * 2007-06-26 2009-01-01 Immersion Corporation, A Delaware Corporation Method and apparatus for multi-touch tactile touch panel actuator mechanisms
US7880106B2 (en) 2007-06-28 2011-02-01 Apple Inc. Switch assembly constructions
US7956770B2 (en) 2007-06-28 2011-06-07 Sony Ericsson Mobile Communications Ab Data input device and portable electronic device
TW200901014A (en) 2007-06-28 2009-01-01 Sense Pad Tech Co Ltd Touch panel device
US7952498B2 (en) 2007-06-29 2011-05-31 Verizon Patent And Licensing Inc. Haptic computer interface
US20090009480A1 (en) 2007-07-06 2009-01-08 Sony Ericsson Mobile Communications Ab Keypad with tactile touch glass
US20090015547A1 (en) 2007-07-12 2009-01-15 Franz Roger L Electronic Device with Physical Alert
US7828771B2 (en) 2007-07-26 2010-11-09 Entra Pharmaceuticals, Inc. Systems and methods for delivering drugs
US20090033617A1 (en) 2007-08-02 2009-02-05 Nokia Corporation Haptic User Interface
US8077154B2 (en) 2007-08-13 2011-12-13 Motorola Mobility, Inc. Electrically non-interfering printing for electronic devices having capacitive touch sensors
US20090132093A1 (en) 2007-08-21 2009-05-21 Motorola, Inc. Tactile Conforming Apparatus and Method for a Device
US8270158B2 (en) * 2007-08-30 2012-09-18 Hewlett-Packard Development Company, L.P. Housing construction for mobile computing device
FR2920628B1 (en) 2007-08-30 2011-07-01 Celsius X Vi Ii PORTABLE PHONE WITH A MECHANICAL WATCH
JP5106955B2 (en) * 2007-09-07 2012-12-26 ソニーモバイルコミュニケーションズ株式会社 User interface device and portable information terminal
US8098235B2 (en) 2007-09-28 2012-01-17 Immersion Corporation Multi-touch device having dynamic haptic effects
KR101404745B1 (en) 2007-10-15 2014-06-12 엘지전자 주식회사 Jog input device and portable terminal having the same
US8232976B2 (en) 2010-03-25 2012-07-31 Panasonic Corporation Of North America Physically reconfigurable input and output systems and methods
US20090115734A1 (en) 2007-11-02 2009-05-07 Sony Ericsson Mobile Communications Ab Perceivable feedback
US8217903B2 (en) 2007-11-02 2012-07-10 Research In Motion Limited Electronic device and tactile touch screen
KR100896812B1 (en) 2007-11-12 2009-05-11 한국과학기술원 Haptic module using magnetic force, electronic apparatuses having the module
US8379182B2 (en) 2007-11-16 2013-02-19 Manufacturing Resources International, Inc. Cooling system for outdoor electronic displays
US8208115B2 (en) 2007-11-16 2012-06-26 Manufacturing Resources International, Inc. Fluid cooled display
US8174508B2 (en) 2007-11-19 2012-05-08 Microsoft Corporation Pointing and data entry input device
US8866641B2 (en) * 2007-11-20 2014-10-21 Motorola Mobility Llc Method and apparatus for controlling a keypad of a device
US10488926B2 (en) 2007-11-21 2019-11-26 Immersion Corporation Method and apparatus for providing a fixed relief touch screen with locating features using deformable haptic surfaces
US8253698B2 (en) 2007-11-23 2012-08-28 Research In Motion Limited Tactile touch screen for electronic device
US20090140989A1 (en) 2007-12-04 2009-06-04 Nokia Corporation User interface
US7679839B2 (en) 2007-12-10 2010-03-16 Artificial Muscle, Inc. Optical lens displacement systems
JP2009151684A (en) 2007-12-21 2009-07-09 Sony Corp Touch-sensitive sheet member, input device and electronic equipment
US8123660B2 (en) 2007-12-28 2012-02-28 Immersion Corporation Method and apparatus for providing communications with haptic cues
US9857872B2 (en) 2007-12-31 2018-01-02 Apple Inc. Multi-touch display screen with localized tactile feedback
US8373549B2 (en) 2007-12-31 2013-02-12 Apple Inc. Tactile feedback in an electronic device
US20090167567A1 (en) 2008-01-02 2009-07-02 Israeli Aerospace Industries Ltd. Method for avoiding collisions and a collision avoidance system
US8179377B2 (en) 2009-01-05 2012-05-15 Tactus Technology User interface system
US8179375B2 (en) 2008-01-04 2012-05-15 Tactus Technology User interface system and method
US9274612B2 (en) 2008-01-04 2016-03-01 Tactus Technology, Inc. User interface system
US8553005B2 (en) 2008-01-04 2013-10-08 Tactus Technology, Inc. User interface system
US9063627B2 (en) 2008-01-04 2015-06-23 Tactus Technology, Inc. User interface and methods
US8570295B2 (en) 2008-01-04 2013-10-29 Tactus Technology, Inc. User interface system
US9128525B2 (en) 2008-01-04 2015-09-08 Tactus Technology, Inc. Dynamic tactile interface
US8547339B2 (en) 2008-01-04 2013-10-01 Tactus Technology, Inc. System and methods for raised touch screens
US8154527B2 (en) 2008-01-04 2012-04-10 Tactus Technology User interface system
US8922503B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US8456438B2 (en) 2008-01-04 2013-06-04 Tactus Technology, Inc. User interface system
US8922510B2 (en) 2008-01-04 2014-12-30 Tactus Technology, Inc. User interface system
US8243038B2 (en) 2009-07-03 2012-08-14 Tactus Technologies Method for adjusting the user interface of a device
US8199124B2 (en) 2009-01-05 2012-06-12 Tactus Technology User interface system
US9052790B2 (en) 2008-01-04 2015-06-09 Tactus Technology, Inc. User interface and methods
US8947383B2 (en) 2008-01-04 2015-02-03 Tactus Technology, Inc. User interface system and method
US9372565B2 (en) 2008-01-04 2016-06-21 Tactus Technology, Inc. Dynamic tactile interface
US8125461B2 (en) 2008-01-11 2012-02-28 Apple Inc. Dynamic input graphic display
US20090181724A1 (en) 2008-01-14 2009-07-16 Sony Ericsson Mobile Communications Ab Touch sensitive display with ultrasonic vibrations for tactile feedback
US7890257B2 (en) 2008-01-14 2011-02-15 Research In Motion Limited Using a shape-changing display as an adaptive lens for selectively magnifying information displayed onscreen
US8004501B2 (en) 2008-01-21 2011-08-23 Sony Computer Entertainment America Llc Hand-held device with touchscreen and digital tactile pixels
US20090195512A1 (en) 2008-02-05 2009-08-06 Sony Ericsson Mobile Communications Ab Touch sensitive display with tactile feedback
US8022933B2 (en) 2008-02-21 2011-09-20 Sony Corporation One button remote control with haptic feedback
US8416196B2 (en) 2008-03-04 2013-04-09 Apple Inc. Touch event model programming interface
US20090243998A1 (en) 2008-03-28 2009-10-01 Nokia Corporation Apparatus, method and computer program product for providing an input gesture indicator
EP3484135A1 (en) 2008-04-02 2019-05-15 Twilio Inc. System and method for processing telephony sessions
US9829977B2 (en) 2008-04-02 2017-11-28 Immersion Corporation Method and apparatus for providing multi-point haptic feedback texture systems
US8212795B2 (en) 2008-05-21 2012-07-03 Hypercom Corporation Payment terminal stylus with touch screen contact detection
DE602008005865D1 (en) 2008-05-29 2011-05-12 Lg Electronics Inc Transparent display and operating procedures for it
US7924143B2 (en) 2008-06-09 2011-04-12 Research In Motion Limited System and method for providing tactile feedback to a user of an electronic device
US8421483B2 (en) 2008-06-13 2013-04-16 Sony Ericsson Mobile Communications Ab Touch and force sensing for input devices
US8115745B2 (en) 2008-06-19 2012-02-14 Tactile Displays, Llc Apparatus and method for interactive display with tactile feedback
US8174372B2 (en) 2008-06-26 2012-05-08 Immersion Corporation Providing haptic feedback on a touch surface
TWI489329B (en) 2008-08-20 2015-06-21 Au Optronics Corp Touch panel, display, and manufacturing method of touch panel
US8174452B2 (en) 2008-09-25 2012-05-08 Apple Inc. Cavity antenna for wireless electronic devices
US8441450B2 (en) 2008-09-30 2013-05-14 Apple Inc. Movable track pad with added functionality
TW201013259A (en) 2008-09-30 2010-04-01 J Touch Corp Double-sided composite touch panel structure
US7999660B2 (en) 2008-10-10 2011-08-16 Motorola Mobility, Inc. Electronic device with suspension interface for localized haptic response
US20100097323A1 (en) 2008-10-17 2010-04-22 Honeywell International Inc. Hydrogel-based tactile-feedback touch screen
US8427433B2 (en) 2008-10-17 2013-04-23 Honeywell International Inc. Tactile-feedback touch screen
US8436816B2 (en) 2008-10-24 2013-05-07 Apple Inc. Disappearing button or slider
US8222799B2 (en) 2008-11-05 2012-07-17 Bayer Materialscience Ag Surface deformation electroactive polymer transducers
US20100121928A1 (en) 2008-11-07 2010-05-13 Penango, Inc. Methods and systems for allocating and indicating trustworthiness of secure communications
US8106787B2 (en) 2008-11-14 2012-01-31 Nokia Corporation Warning system indicating excessive force on a touch screen or display
US20100141608A1 (en) 2008-12-09 2010-06-10 Lili Huang Index Matching For Touch Screens
US9600070B2 (en) 2008-12-22 2017-03-21 Apple Inc. User interface having changeable topography
US8345013B2 (en) 2009-01-14 2013-01-01 Immersion Corporation Method and apparatus for generating haptic feedback from plasma actuation
EP2500924B1 (en) 2009-02-24 2015-07-22 BlackBerry Limited Breathable sealed dome switch assembly
US8077021B2 (en) 2009-03-03 2011-12-13 Empire Technology Development Llc Dynamic tactile interface
US8253703B2 (en) 2009-03-03 2012-08-28 Empire Technology Development Llc Elastomeric wave tactile interface
US8361334B2 (en) 2009-03-18 2013-01-29 Medtronic, Inc. Plasma deposition to increase adhesion
US8169306B2 (en) 2009-03-23 2012-05-01 Methode Electronics, Inc. Touch panel assembly with haptic effects and method of manufacturing thereof
US8125347B2 (en) 2009-04-09 2012-02-28 Samsung Electronics Co., Ltd. Text entry system with depressable keyboard on a dynamic display
US8224392B2 (en) 2009-04-29 2012-07-17 Lg Electronics Inc. Mobile terminal capable of recognizing fingernail touch and method of controlling the operation thereof
US8279200B2 (en) 2009-05-19 2012-10-02 Microsoft Corporation Light-induced shape-memory polymer display screen
US8417297B2 (en) 2009-05-22 2013-04-09 Lg Electronics Inc. Mobile terminal and method of providing graphic user interface using the same
US8400410B2 (en) 2009-05-26 2013-03-19 Microsoft Corporation Ferromagnetic user interfaces
KR101658991B1 (en) 2009-06-19 2016-09-22 삼성전자주식회사 Touch panel and electronic device including the touch panel
EP2449452B1 (en) 2009-07-03 2016-02-10 Tactus Technology User interface enhancement system
US8120588B2 (en) 2009-07-15 2012-02-21 Sony Ericsson Mobile Communications Ab Sensor assembly and display including a sensor assembly
US8378797B2 (en) 2009-07-17 2013-02-19 Apple Inc. Method and apparatus for localization of haptic feedback
US8395591B2 (en) 2009-07-22 2013-03-12 Empire Technology Development Llc Electro-osmotic tactile display
US8723825B2 (en) 2009-07-28 2014-05-13 Cypress Semiconductor Corporation Predictive touch surface scanning
US20110029862A1 (en) 2009-07-30 2011-02-03 Research In Motion Limited System and method for context based predictive text entry assistance
US8456430B2 (en) 2009-08-21 2013-06-04 Motorola Mobility Llc Tactile user interface for an electronic device
EP2473927A4 (en) 2009-09-04 2016-05-11 Iii Holdings 2 Llc System and method for managing internet media content
US8816965B2 (en) 2009-09-30 2014-08-26 At&T Mobility Ii Llc Predictive force sensitive keypad
US8558802B2 (en) 2009-11-21 2013-10-15 Freescale Semiconductor, Inc. Methods and apparatus for performing capacitive touch sensing and proximity detection
GB0922165D0 (en) 2009-12-18 2010-02-03 Pelikon Ltd Human interface device and related methods
WO2011087816A1 (en) 2009-12-21 2011-07-21 Tactus Technology User interface system
US8994666B2 (en) 2009-12-23 2015-03-31 Colin J. Karpfinger Tactile touch-sensing interface system
KR101616875B1 (en) 2010-01-07 2016-05-02 삼성전자주식회사 Touch panel and electronic device including the touch panel
US8519974B2 (en) 2010-01-19 2013-08-27 Sony Corporation Touch sensing device, touch screen device comprising the touch sensing device, mobile device, method for sensing a touch and method for manufacturing a touch sensing device
KR101631892B1 (en) 2010-01-28 2016-06-21 삼성전자주식회사 Touch panel and electronic device including the touch panel
US8619035B2 (en) 2010-02-10 2013-12-31 Tactus Technology, Inc. Method for assisting user input to a device
US20110193787A1 (en) * 2010-02-10 2011-08-11 Kevin Morishige Input mechanism for providing dynamically protruding surfaces for user interaction
US8330305B2 (en) 2010-02-11 2012-12-11 Amazon Technologies, Inc. Protecting devices from impact damage
US8253052B2 (en) 2010-02-23 2012-08-28 Research In Motion Limited Keyboard dome stiffener assembly
US20120056846A1 (en) 2010-03-01 2012-03-08 Lester F. Ludwig Touch-based user interfaces employing artificial neural networks for hdtp parameter and symbol derivation
WO2011112984A1 (en) 2010-03-11 2011-09-15 Tactus Technology User interface system
US8450627B2 (en) 2010-04-01 2013-05-28 Apple Inc. Capacitive dome switch
KR20130141344A (en) 2010-04-19 2013-12-26 택투스 테크놀로지, 아이엔씨. Method of actuating a tactile interface layer
WO2011133604A1 (en) 2010-04-19 2011-10-27 Tactus Technology User interface system
US8599165B2 (en) 2010-08-16 2013-12-03 Perceptive Pixel Inc. Force and true capacitive touch measurement techniques for capacitive touch sensors
US8592699B2 (en) 2010-08-20 2013-11-26 Apple Inc. Single support lever keyboard mechanism
KR101323052B1 (en) 2010-10-01 2013-10-29 엘지디스플레이 주식회사 Electrostatic capacity type touch screen panel
WO2012054780A1 (en) 2010-10-20 2012-04-26 Tactus Technology User interface system
CN103124946B (en) 2010-10-20 2016-06-29 泰克图斯科技公司 User interface system and method
US8780060B2 (en) 2010-11-02 2014-07-15 Apple Inc. Methods and systems for providing haptic control
JP5648437B2 (en) 2010-11-15 2015-01-07 セイコーエプソン株式会社 Electro-optical device and projection display device
US8966408B2 (en) 2011-07-11 2015-02-24 Apple Inc. Removable clip with user interface
US8963886B2 (en) 2011-07-13 2015-02-24 Flatfrog Laboratories Ab Touch-sensing display panel
US8842057B2 (en) 2011-09-27 2014-09-23 Z124 Detail on triggers: transitional states
US8947105B2 (en) 2011-12-01 2015-02-03 Atmel Corporation Capacitive coupling of bond pads
US8711118B2 (en) 2012-02-15 2014-04-29 Immersion Corporation Interactivity model for shared feedback on mobile devices
US9471185B2 (en) 2012-02-21 2016-10-18 Atmel Corporation Flexible touch sensor input device
EP2730995B1 (en) 2012-05-25 2016-11-30 Nintendo Co., Ltd. Controller device, information processing system, and communication method
US9405417B2 (en) 2012-09-24 2016-08-02 Tactus Technology, Inc. Dynamic tactile interface and methods
KR102023938B1 (en) 2012-12-26 2019-09-23 엘지디스플레이 주식회사 Touch sensing apparatus and method
KR20150004714A (en) 2013-07-03 2015-01-13 삼성전자주식회사 Input device and portable terminal therewith
US20150091834A1 (en) 2013-10-02 2015-04-02 Thomas M. Johnson Display screen with dynamic tactile pixels and methods of manufacture and use thereof

Also Published As

Publication number Publication date
US20170212595A1 (en) 2017-07-27
US9367132B2 (en) 2016-06-14
WO2011112984A1 (en) 2011-09-15
US20120062483A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US20170212595A1 (en) User interface system
US8243038B2 (en) Method for adjusting the user interface of a device
EP2223197B1 (en) Method and apparatus for controlling a keypad of a device
JP6580838B2 (en) Tactile effects by proximity sensing
EP1860530B1 (en) Touch screen device and operating method thereof
US8493338B2 (en) Mobile terminal
US11656711B2 (en) Method and apparatus for configuring a plurality of virtual buttons on a device
KR101425443B1 (en) Pouch and mobile device having the same
CA2599071C (en) Hand held electronic device with multiple touch sensing devices
US10824265B2 (en) Method and system for an electronic device
US8799803B2 (en) Configurable input device
CN103620534B (en) A portable electronic device having interchangeable user interfaces and method thereof
US20090132093A1 (en) Tactile Conforming Apparatus and Method for a Device
US20090015560A1 (en) Method and apparatus for controlling a display of a device
US20110148774A1 (en) Handling Tactile Inputs
KR20140108919A (en) Double unlock apparatus of portable device containing expandable display and method thereof
KR20150096952A (en) Display device and method for controlling the same
KR20150079445A (en) Devices, systems, and methods for using corrugated tessellation to create surface features

Legal Events

Date Code Title Description
AS Assignment

Owner name: TACTUS TECHNOLOGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CIESLA, CRAIG MICHAEL;YAIRI, MICAH B;SAAL, NATHANIEL MARK;REEL/FRAME:038559/0106

Effective date: 20140922

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:TACTUS TECHNOLOGY, INC.;REEL/FRAME:043445/0953

Effective date: 20170803

AS Assignment

Owner name: TACTUS TECHNOLOGY, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:046492/0687

Effective date: 20180508

AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:TACTUS TECHNOLOGY, INC.;REEL/FRAME:047155/0587

Effective date: 20180919