US20140293215A1 - Spectacles - Google Patents

Spectacles Download PDF

Info

Publication number
US20140293215A1
US20140293215A1 US14/303,381 US201414303381A US2014293215A1 US 20140293215 A1 US20140293215 A1 US 20140293215A1 US 201414303381 A US201414303381 A US 201414303381A US 2014293215 A1 US2014293215 A1 US 2014293215A1
Authority
US
United States
Prior art keywords
temple
lens housing
lens
conductive path
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/303,381
Inventor
Ronald D. Blum
Claudio Dalla Longa
Mark Graham
Yongping Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to US14/303,381 priority Critical patent/US20140293215A1/en
Publication of US20140293215A1 publication Critical patent/US20140293215A1/en
Assigned to PIXELOPTICS, INC. reassignment PIXELOPTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLUM, RONALD D., DALLA LONGA, CLAUDIO, GRAHAM, MARK, WANG, YONGPING
Assigned to HPO ASSETS LLC reassignment HPO ASSETS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PIXELOPTICS, INC.
Assigned to MITSUI CHEMICALS, INC. reassignment MITSUI CHEMICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HPO ASSETS LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C5/00Constructions of non-optical parts
    • G02C5/14Side-members
    • G02C5/146Side-members having special front end
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/101Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve

Definitions

  • Embodiments provided herein may provide an electro-active frame that comprises a spring mechanism and a conductive path from a temple of the frame to the lens housing of the frame.
  • a first device comprises a frame.
  • the frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple movably coupled to the lens housing, and a second temple movably coupled to the lens housing.
  • the first device further comprises a first spring mechanism coupled to the first temple and the lens housing.
  • a first conductive path is provided from the first temple to the lens housing for at least one position of the first temple relative to the frame.
  • the first device as described above further comprises an electronic component coupled to the frame.
  • the conductive path is electrically connected to the electronic component for at least one position of the first temple relative to the frame.
  • the first conductive path is provided by the first spring mechanism.
  • the first spring mechanism comprises a spring that provides the first conductive path.
  • the first spring mechanism comprises a spring and a first conductor.
  • the first conductive path may be provided by the first conductor.
  • the spring is disposed substantially around the first conductor.
  • the spring is coupled to the first conductor.
  • the spring is disposed along a side of the first conductor.
  • the first conductive path further comprises pogo pins.
  • the pogo pins may be disposed within the first temple.
  • the first device further comprises a second spring mechanism. The second spring mechanism may press the pogo pins against electrical contacts on the lens housing for a plurality of positions of the first temple.
  • the first spring mechanism may include a spring hinge.
  • an electronics module is further provided in the first device as described above. The electronics module may be coupled to the first temple and the first conductive path may be electrically connected to the electronics module.
  • the first device comprises full rimmed, semi-rimless, or rimless spectacle frames.
  • the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position.
  • the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position.
  • the lens housing comprises a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact in the first position.
  • the first spring mechanism does not form an electrical connection with the first electrical contact in the second position.
  • the first spring mechanism is coupled to the first lens, the lens includes a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact when the frame is in the first position.
  • the first spring mechanism does not form an electrical connection with the first electrical contact when the frame is in the second position.
  • the first device comprises rimless spectacle frames.
  • the first spring mechanism is housed within the first temple member. In some embodiments, in the first device as described above, the first spring mechanism is in electrical contact with the electronics module. In some embodiments, the first spring mechanism is in direct electrical contact with the electronics module. In some embodiments, where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the first spring mechanism maintains electrical contact with the electronics module in both the first position and the second position.
  • the first spring mechanism is in a first condition when the first temple is in the first position and a second condition when the first temple is in the second position. In some embodiments, in the first device as described above, the first spring mechanism has a first length when the first temple is in a first position and a second length when the first temple is in a second position. The first length and the second length may be different.
  • the first position is an open position.
  • the first position may comprise the first temple and the lens housing being positioned such that there is an angle between them of between 60 degrees and 100 degrees. In some embodiments, the angle between the temple and the lens housing in the first position is between 80 degrees and 90 degrees.
  • the second position is a closed position.
  • the second position comprises the first temple and the lens housing being positioned such that there is an angle between them of between 0 degrees and 60 degrees.
  • the second position comprises the first temple at an angle between 0 degrees and 45 degrees with the lens housing.
  • a first device comprises a frame, where the frame further comprises: a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing.
  • the first device further comprises a first conductive path provided by one or more frame elements from the first temple to the lens housing and a second conductive path provided by one or more frame elements from the first temple to the lens housing. The first conductive path is electrically isolated from the second conductive path.
  • the first device as described above further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path.
  • the first device further comprises a first hinge coupled to the first temple and the lens housing, and the electrical insulator is located at least within the first hinge.
  • the electrical insulator is located at least within the first temple.
  • the electrical insulator is located at least within the lens housing.
  • the first device as described above further comprises an electronics module that is coupled to the first temple of the frame and the first and second conductive paths are electrically connected to the electronics module.
  • the first device as described above further comprises a first lens having a first electrical contact and a second lens having a second electrical contact.
  • the first conductive path electrically connects to the first electrical contact of the first lens and the second conductive path electrically connects to the second electrical contact of the second lens.
  • the first lens further includes a second electrical contact and the second lens further includes a first electrical contact.
  • the first conductive path may electrically connect to the first electrical contact of the second lens and the second conductive path may electrically connect to the second electrical contact of the first lens.
  • the lens housing comprises a non-conductive material and the frame element providing the first conductive path comprises a conductive material embedded in the lens housing.
  • the frame element providing the second conductive path comprises a conductive material embedded in the lens housing.
  • the lens housing comprises acetate.
  • the second temple or the second lens does not comprise an electronics module coupled thereto.
  • the lens housing comprises a conductive material and a first portion of the lens housing provides at least a part of the first conductive path.
  • at least a part of the second conductive path is provided by a second portion of the lens housing.
  • the first portion of the lens housing may be electrically isolated from the second portion of the lens housing by at least one piece of electrically insulating material.
  • the first device may comprise semi-rimless eyeglass frames.
  • the first conductive path and the second conductive path are each disposed within the lens housing of the semi-rimless spectacles.
  • the electrically insulating material that electrically isolates the first portion of the lens housing from the second portion of the lens housing comprises an injection moldable or similarly formed plastic material. In some embodiments, the electrically insulating material comprises nylon.
  • the lens housing comprises a conductive material, where a first portion of the lens housing provides at least a part of the first conductive path, and where at least a part of the second conductive path is provided by a second portion of the lens housing, the first portion of the lens housing and the second portion of the lens housing are separated by an air gap.
  • the lens housing further comprises a bridge disposed between the first lens and the second lens. The bridge may include the first portion and the second portion of the lens housing and the air gap may be disposed between the first portion and the second portion of the lens housing at the bridge. In some embodiments, the air gap has a maximum distance of approximately 10 mm.
  • the first device comprises a first and second lens having first and second electrical contacts
  • the first conductive path electrically connects to the first contact of the first and second lens
  • the second conductive path electrically connects to the second contact of the first and the second lens
  • the lens housing comprises a conductive material
  • a first portion of the lens housing provides at least a part of the first conductive path
  • at least a part of the second conductive path is provided by a second portion of the lens housing
  • the first portion of the lens housing and the second portion of the lens housing comprise metal.
  • the electrical insulator in the first device as described above, where the first device further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path, the electrical insulator includes a first component and a second component.
  • the first component of the electrical insulator disposed between the first conductive path and the second conductive path comprises the first lens and the second lens.
  • the second component of the electrical insulator disposed between the first conductive path and the second conductive path includes at least one of: an air gap and an electrically insulating material.
  • the second component of the electrical insulator is disposed between the first lens and the second lens.
  • the lens housing comprises full rimmed spectacle frames.
  • a first device is further provided that comprises a frame.
  • the frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing.
  • the first device further includes a first conductive path provided by one or more frame elements from the first temple to the lens housing, a second conductive path provided by one or more frame elements from the first temple to the lens housing, a third conductive path provided by one or more frame elements from the second temple to the lens housing, and a fourth conductive path provided by one or more frame elements from the second temple to the lens housing.
  • each of the first, second, third, and fourth conductive paths are electrically isolated from each other.
  • the first device further includes a first electronics module disposed on the first temple and a second electronics module disposed on the second temple. In some embodiments, the first device further includes a first lens having a first electrical contact and a second electrical contact and a second lens having a first electrical contact and a second electrical contact.
  • the first conductive path may electrically connect to the first electrical contact of the first lens
  • the second conductive path may electrically connect to the second electrical contact of the first lens
  • the third conductive path may electrically connect to the first electrical contact of the second lens
  • the fourth conductive path may electrically connect to the second electrical contact of the second lens.
  • the first and second conductive paths electrically connect to the first electronics module and the third and fourth conductive paths electrically connect to the second electronics module.
  • FIG. 1 is an illustration of spectacle frames.
  • FIGS. 2( a ) and ( b ) are cross sectional diagrams of devices in accordance with some embodiments.
  • FIG. 3 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 4 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 5 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 6 shows a portion of an exemplary device in accordance with some embodiments.
  • FIG. 7 shows components of an exemplary device in accordance with some embodiments.
  • FIG. 8 shows an exemplary portion of an exemplary device with components coupled therein.
  • FIG. 9 shows an exemplary portion of an exemplary device with components coupled therein from a different angle.
  • FIG. 10 shows a close-up view of an exemplary portion of an exemplary device with components coupled therein.
  • FIG. 11 shows an exemplary embodiment of a device in accordance with some embodiments.
  • FIG. 12 shows an exemplary design mask in accordance with some embodiments.
  • FIG. 13 shows an exemplary temple of an electro-active spectacle frame in accordance with some embodiments.
  • a “frame” may refer to a complete wearable housing that secures both spectacle lenses and aligns them in the proper place relative to the wearer's eyes when being worn.
  • the frame may comprise elements such as a first and second temple, as well as the lens housing that is configured to support the spectacle lenses.
  • a “hinged temple” may refer to a side piece of a frame that connects to the lens housing (or directly to the lens) by way of a hinge attachment mechanism, and further provides stability by resting on the wearer's ears when worn.
  • a “hinge-less temple” may refer to a side piece of a frame that connects to the lens housing (or directly to the lens) without a hinge attachment mechanism, and further provides stability by resting on the wearer's ears when worn.
  • a “temple end piece” may refer to a part of the temple that is found farthest away from the lens housing.
  • the temple end piece usually begins behind the ear of the wearer and ends at the end of the temple that is located farthest away from the lens housing, but this is not required.
  • a “lens housing end piece” may refer to a part of the lens housing farthest away from the bridge and spatial to the bridge.
  • Each frame typically has two lens housing end pieces: one on the spatial side of the right lens and one on the spatial side of the left lens.
  • a “bridge” may refer to a part of the frame that fits over/superior to the wearer's nose.
  • the bridge is usually found between the portion of the lens housing that supports the right lens and the portion of the lens housing that supports the left lens, or is between the right and left lenses themselves.
  • the bridge may comprise a portion of the lens housing.
  • a “hinge” may refer to the part of the frame that allows for connecting the lens housing and the temples in such a way that the lens housing and the temple can open and close against the lens housing on its posterior side when not being worn.
  • the hinge may connect directly to the lens.
  • eye-wire may refer to the rim that surrounds the lens of a spectacle frame. Eye-wire may comprise a portion of the lens housing that holds one lens (a right or a left) in a full rimmed or semi-rimless frame. There may be two eye-wires to each lens housing. However in a completely rimless frame there are no eye wires.
  • a “lens housing” may refer to a part of the frame that is configured or adapted to support or hold the first and the second lenses in place (preferably firmly in place).
  • the lens housing may also comprise the part of the frame to which the temples attach.
  • the lens housing may comprise any component or material adapted to support the lenses, including, for example, screws, nylon monofilament, eye-wire, etc. or any combination thereof.
  • the lens housing may comprise any material, including metal or plastic.
  • a lens housing may be included in any type of frame design, including fully rimmed, semi-rimless, and rimless.
  • the lens housing may also include the bridge, such as when the lens housing comprising a single component or two components that support both the first and the second lens.
  • an “electronics module” may refer to a housing or container that comprises a plurality of electrical components.
  • an electronics module may comprise a power source (such as a battery), a sensing mechanism (such as a capacitance switch, which may activate or deactivate the electronics) and/or a controller (such as a microprocessor).
  • an “electronic component” may refer to any electronic device, including a power source, a controller (such as a microprocessor), a sensing mechanism (such as a touch switch), etc. that may be coupled to an electro-active frame.
  • a “rimless frame” may refer to a frame that is designed having a lens housing that does not comprise eye-wires. That is, for instance, the lens housing does not comprise eye wires but may comprise, for instance, nylon monofilament wire, screws, or other material to hold the lenses in place.
  • a “semi-rimless frame” may refer to a frame that has a lens housing that comprises partial rim (i.e. eye-wire that does not completely encapsulate or encircle the lens) and/or may have a nylon monofilament wire or similar feature that secures the lenses to the frame.
  • partial rim i.e. eye-wire that does not completely encapsulate or encircle the lens
  • nylon monofilament wire or similar feature that secures the lenses to the frame.
  • a “full rimmed frame” or “fully rimmed” may refer to a frame that comprises a lens housing having a complete rim that encapsulates or encircles the first and second lens (i.e. the lens housing comprises full eye-wires).
  • a “Zyle frame” may refer to a frame that comprises mostly plastic
  • a “metal frame” may refer to a frame that comprises mostly metal
  • a “right spatial void” may refer to the space created where the right portion of the lens housing that is within the plane of the front of the wearers face turns back to meet the right temple.
  • the angle formed between the right portion of the lens housing and the right temple is approximately (but not always) 90 degrees.
  • This space is further defined as that which is bounded on three sides: On a first side by an imaginary line that is provided on the inside back surface of the right lens or inside right portion of the lens housing, on a second side by that of an imaginary line that is located in the middle of the right temple not including any electronics affixed thereto, and on a third side which is bounded by the right side of the face and/or head of the wearer.
  • a “left spatial void” may refer to the space created where the left portion of the lens housing frame front that is within the plane of the front of the wearers face turns back to meet the left temple.
  • the angle formed between the left portion of the lens housing and the left temple is approximately 90 degrees.
  • This space is further defined as that which is bounded on three sides: On a first side by an imaginary line that is provided on the inside back surface of the left lens or inside left portion of the lens housing, on a second side by that of an imaginary line that is located in the middle of the left temple not including any electronics affixed thereto, and on a third side which is bounded by the left side of the face and/or head of the wearer.
  • Coupled may refer to any manner of connecting two components together in any suitable manner, such as by way of example only: attaching (e.g. attached to a surface), disposing on, disposing within, disposing substantially within, embedding within, embedded substantially within, etc. “Coupled” may further comprise fixedly attaching two components (such as by using a screw or embedding a first component into a second component during a manufacturing process), but does not so require. That is, two components may be coupled temporarily simply by being in physical contact with one another. Two components are “electrically coupled” or “electrically connected” if current can flow from one component to another. That is, the two components do not have to be in direct contact such that current flows from the one component directly to the other component. There may be any number of other conductive materials and components disposed electrically between two components “electrically coupled” so long as current can flow there between.
  • a “conductive path” refers to a continuous path for which electrons (i.e. current) may flow from one point to another.
  • the conductive path may comprise one component, or more than one component.
  • a conductive path may comprise portions of a lens housing, a temple, a hinge, a lens, and/or conductive material disposed between some or all of the components.
  • electro-active spectacles As used herein, “electro-active spectacles,” “electro-active spectacle frames,” “electro-active eyeglasses,” “electro-active eyeglass frames,” “electro-active frames,” “electro-active lenses” or any permutation of “electro-active” may broadly refer to any eyeglass frame or lens that comprises an electronic component or components. The electrical components can be coupled to any part of the electro-active frames or lenses.
  • the eyeglass frames houses some, most, or all of the electronics and the lens comprises a component or components that may be activated and or deactivated by an electrical current, such as by way of example only, electronic focusing eyeglasses, electro-chromic eyeglasses, electronic tinted eyeglasses, eyeglasses comprising a micro-display allowing for viewing a digital image in space, eyeglasses comprising an electronic heads up display, eyeglasses that comprise an antistatic element to keep the eyeglass lenses clean, electronic shutter eyeglasses for viewing 3D, electronic eyeglasses that comprise an occlusion control for vision training; electronic eyeglasses for myopia control, eyeglasses that comprise a component of a telescope or the complete telescope, eyeglasses that comprise a microscope, eyeglasses that comprise a camera, eyeglasses that comprise a directional microphone, eyeglasses that comprise a rangefinder, eyeglasses that comprise an image intensifier, eyeglasses that comprise a
  • reference to a “first” or a “second” does not limit the referenced component to a particular location unless expressly stated.
  • reference to a “first temple” may comprise the temple located on either the left side or the right side of a wearer's head.
  • Electro-Active Frames Comprising a Spring Mechanism
  • electro-active spectacle frames may include a spring mechanism.
  • the spring mechanism may, for instance, be disposed on the frame of the spectacles (such as on the temple, embedded within the temple, coupled to the temple and the lens housing, etc.) and may provide a force that causes the temple member to apply pressure in a direction substantially perpendicular to, and in the direction of, a wearer's head.
  • the spectacle frames may fit tightly on a person's head, regardless of the size or shape. This may provide for a more comfortable fit and reduce the risk that the eyeglasses could become dislodged or accidentally fall off of the wearer's head.
  • the use of a spring mechanism for an electro-active frame may provide the additional benefit of conserving power when the frames are not in use by severing an electrical connection between electronics located on the lens housing (or in the lens) and a power source located on the temple. That is, for instance, the spring mechanism may, by moving the temple of the frame away from the lens housing, separate two conductors such that current cannot flow from the temple to the lens housing (or any other separation).
  • springs e.g. spring hinges
  • non-electro-active lenses are well known in the art.
  • spring hinges are provided in the following references, which are hereby incorporated by reference in their entireties:
  • electro-active eyeglass frames may require that an electrical path be provided from a temple to the lens housing, which is not utilized on traditional (i.e. non-electro-active frames) frames.
  • spring devices such as spring hinges
  • FIG. 1 illustrates this situation.
  • a typical position of the temple relative to the lens housing is for the first 101 and/or the second temple 102 to form approximately a ninety degree angle with the lens housing 103 .
  • this angle may be slightly smaller or greater (depending on factors such as the wearer's head size and shape, the size of the frame, etc.).
  • a conductive path may connect components on the first 101 or second temple 102 to components disposed on the lens housing 103 .
  • this angle 104 may be substantially less than ninety degrees (for instance, it may be 85 degrees or less), which could cause a separation in the conductive path between the first 101 or second 102 temple and the lens housing 103 .
  • a portion of the conductive path from the first temple 101 to the lens housing 103 comprises electrical contacts located at the respective ends of each of these components (such that, for example, when the first temple 101 and lens housing 103 are worn, there is a direct connection between the electrical contacts), then this connection may be broken as the angle 104 between the components is reduced.
  • the use of springs or similar devices in eyeglass frames to provide continuous pressure is likely to create such angles, and therefore such springs and similar devices have not been used with electro-active frames.
  • an electro-active frame that comprises a spring mechanism.
  • a “spring mechanism” may refer to an elastic object that may be used to store mechanical energy. It may comprise a spring and/or other components such as conductors located within the spring or disposed alongside the spring (or within the coils of a coil spring). When compressed or stretched, the first spring mechanism may exert a force on one or more of the components of a device, such as the temple or the lens housing of an electro-active frame. The first spring mechanism may provide a continuous force (either variable or constant) in a direction substantially perpendicular to the head of a wearer when the first device (e.g. an electro-active frame) is worn.
  • the first spring mechanism may, in some embodiments, also conduct electricity and thereby form a part of a conductive path using a spring (or components thereof) or a conductor coupled to or disposed therein.
  • the conductor may be embedded within the spring mechanism, be coupled to the spring mechanism, and/or encircled by the spring mechanism.
  • a spring mechanism may also comprise additional components, such as a hinge that may be coupled to the temple and/or the lens.
  • the spring mechanism may comprise any suitable material, including metal, plastic, or some combination thereof.
  • FIGS. 2 ( a ) and ( b ) show two examples of electro-active frames comprising spring mechanisms.
  • a first device comprises a frame that includes a lens housing adapted to support a first lens and a second lens.
  • the first device also comprises a first temple movably coupled to the lens housing, and a second temple movably coupled to the lens housing. That is, the first and second temples may be coupled to the lens housing such that each may be moved relative to the lens housing so that the angle between them (e.g. angle 104 in FIG. 1 ) may change.
  • the lens housing and the temples may be coupled in any suitable manner that allows for this movement, including, by way of example, through the use of a hinge or a screw.
  • the first device further comprises a first spring mechanism coupled to the first temple and the lens housing.
  • the spring mechanism may be fixed to the first temple and apply force to the lens housing when the first temple and lens housing (or components thereof, such as the end pieces) are within a certain distance of one another (i.e. the angle 104 between the components is close to ninety degrees (e.g. within five degrees), or some other suitable value).
  • the spring mechanism may no longer be in physical contact with the lens housing. An example of this situation is provided in FIG. 2( b ) and described in detail below.
  • the spring mechanism need not be in the form of a coil spring, but may take any suitable shape and may be located in any suitable location on the frame. Such locations, as will be described below, may include disposed on, or embedded within, the lens housing and/or on the first temple.
  • An example of a spring mechanism embedded within the first temple is shown in FIG. 2( a ), which will be described below.
  • the first device also comprises a first conductive path from the first temple to the lens housing for at least one position of the first temple relative to the frame. That is, as defined above, electrons (in the form of current) may be distributed (i.e. conducted), or be capable being distributed (i.e. conducted), from the first temple to the lens housing.
  • the first device may, for example, comprise an electro-active frame that has some electronic components (such as a power source, controller, sensing mechanism, etc.) located on the first temple, and other electronic components (such as those described below) disposed on the lens housing and/or on (or within) the lenses themselves.
  • the first conductive path may be provided by any suitable component or components.
  • the conductive path could comprise the first temple, the spring mechanism, and the lens housing themselves (i.e. each could comprise conductive material) or some or all of these components could comprise conductive components disposed on (or embedded within) them that form a part of the conductive path.
  • the conductive path need not always be present, but may be provided for at least one position of the first temple relative to the lens housing.
  • the first temple 101 may be moved to a plurality of positions relative to the lens housing 103 , each of which may have a different angle 104 .
  • the first conductive path is provided when the first temple and the lens housing are in a position corresponding to when the first device is being worn by a wearer.
  • this position may have an angle corresponding to approximately ninety degrees.
  • embodiments are not so limited and the angle may depend on many factors, as described above. It should also be understood that the conductive path may be provided for a plurality of positions.
  • the first conductive path is provided by the first spring mechanism. That is, for example, the first spring mechanism may provide some (or all) of the first conductive path between the first temple and the lens housing. This may be due, in part, to the fact that the spring mechanism may be located between (or substantially between) both the first temple and the lens housing.
  • the first spring mechanism comprises a spring that provides the first conductive path.
  • the spring of the spring mechanism need not comprise a traditional coil spring, but may comprise any elastic material that stores mechanical energy, such as when the spring is displaced.
  • An example of a non-coil spring is provided with reference to FIG. 2 ( a ).
  • the spring may comprise any conductive material when providing at least a portion of the first conductive path.
  • the spring mechanism comprises metal.
  • some embodiments may provide the advantage of reducing the number of components that are required to be coupled to the frame.
  • the use of the spring mechanism to serve as part of the conductive path may be one way in which the conductive path can be selectively provided (e.g. the conductive path may be available when the first device is being worn and unavailable when the first device is not being worn).
  • the spring mechanism may be permanently coupled (i.e. fixedly, such as through the use of a screw, adhesive, etc.) to only the first temple, and be selectively coupled (i.e.
  • the conductive path may not be provided. This may be one way of providing a selectively available conductive path between the first temple and the lens housing.
  • the first spring mechanism comprises a spring and a first conductor.
  • the conductor may comprise any suitable material and may have any suitable shape. There need not be any physical contact between the spring and the conductor.
  • the spring is disposed substantially around the first conductor.
  • substantially around it is meant, for example, that the spring may encircle or surround some (but not necessarily all) of the conductor. This is illustrated in the exemplary embodiment shown in FIG. 2( a ).
  • the conductor may be located within the coils of the spring.
  • the conductor may be disposed within (e.g.
  • the spring may comprise both the conductor (or more than one conductor) and an insulating material.
  • the insulating material may electrically insulate the conductors that are within the spring such that the a plurality of conductive paths are provided by the spring (i.e. through the embedded conductors). This may allow for multiple signals to be transmitted from the first temple to the lens housing, for a signal and power to be transmitted, etc.
  • the spring is coupled to the first conductor. That is, the spring may be attached or disposed on the conductor. Each of the spring and/or the conductor may comprise a part of the conductive path. In some embodiments, the spring is disposed along a side of the first conductor.
  • the spring and the conductor may be substantially parallel and located no more than 3 cm apart at any given point. Preferable, the spring and the conductor are no more than 1 cm apart such that the spring mechanism may have a small profile (i.e. for aesthetic reasons). Again, embodiments are not so limited, and the conductor may be located in any suitable location. Thus, in some embodiments, the first conductive path or a portion thereof may be provided by the first conductor.
  • the first conductive path further comprises pogo pins.
  • a “pogo pin” may comprise a device that establishes a (usually temporary) connection between two components. An illustration of an embodiment the utilizes pogo pins is shown in FIGS. 3-10 .
  • the pogo pins may be disposed within the first temple, but embodiments are not so limited and the pogo pins may be located in other locations, such as disposed on the first temple, on the lens housing (or embedded therein) and/or coupled to the first spring mechanism.
  • the first device further comprises a second spring mechanism that may press the pogo pins against electrical contacts on the lens housing for a plurality of positions of the first temple.
  • the use of the second spring mechanism may provide the ability to maintain the conductive path between the first temple and the lens housing for some or all of the positions of the first temple relative to the lens housing. That is, as the distance between the portion of the lens housing comprising the electrical contacts and the first temple increases (i.e. as the angle 104 in FIG. 1 decreases), the second spring mechanism may lengthen the conductive path (i.e. cause the pogo pins to extend) so as to maintain the electrical contact (and thereby the conductive path). When the angle 104 is then increased, the lens housing and/or first temple may apply force to the second spring mechanism such that it contracts (i.e. the pogo pins contract), but such that the electrical contact is still maintained.
  • embodiments may provide the ability to selectively provide a conductive path between the first temple and the lens housing.
  • the first spring mechanism may include a spring hinge. That is, the spring mechanism may comprise a fixed portion that is coupled to both the lens housing and the first temple (i.e. the hinge) that allows for the relative movement between the two components so as to change the angle 104 .
  • the spring may be coupled to either or both of the lens housing and the first temple, and may provide a force that may move the first temple to one of a plurality positions and/or presses the first temple against a wearer's head.
  • an electronics module is further provided.
  • the electronics module may, for example, comprise at least one of: a power source, a controller, and a sensing module.
  • an electronics module may, in some embodiments, provide the ability to more readily fabricate electro-active spectacles, as the electronics may be manufactured separately and inserted into a plurality of frame designs.
  • the electronics module may be coupled to the first temple or in another suitable location (note that some embodiments may dispose the electronics module or components thereof, for instance, on the lens housing).
  • the electronics module could be embedded or substantially embedded in the first temple (as is described below with reference to the exemplary embodiments shown in FIGS. 3-10 ).
  • the first conductive path may be electrically connected to the electronics module. That is, a conductive path may be provided from the electronics module to the lens housing and may comprise a number of components, such as the first spring mechanism or components thereof.
  • the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position.
  • the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position.
  • the first and second positions may correspond to relative positions between the first temple and the lens housing.
  • the first position, in which the conductive path conducts electricity may correspond to a position of the first temple when the first device is in use (e.g. when the first device is worn) and the second position may correspond to a position of the first temple when the device is not in use (i.e. when the device is not worn).
  • the conductive path may be provided by any of the components of the first device, such as the first spring mechanism, lens housing, first temple, etc.
  • Embodiments that selectively (i.e. in some instances but not all) provide the conductive path from the lens housing to the first temple may provide some or all of the advantages described above, which may include power conservation and efficiency related to some or all of the electronic components of the first device not operating when the first device is not in use (e.g. any electronics disposed on the lens housing will not be electrically connected to electronic components on the first temple).
  • the lens housing comprises a first electrical contact and the first spring mechanism forms an electrical connection with the first electrical contact in the first position.
  • the first spring mechanism does not form an electrical connection with the first electrical contact in the second position. That is, in embodiments wherein the first conductive path or a portion thereof includes the spring mechanism (or a component thereof), the spring mechanism may directly connect to (i.e. physically contact) the electrical contacts disposed on the lens housing. In this manner, the conductive path provided at least in part by the spring mechanism may be selectively provided by contacting and not contacting the electrical contacts on the lens housing.
  • the first spring mechanism is coupled to the first lens. This may be the case, for instance, when the first device comprises rimless eyeglass frames.
  • the spring mechanism may provide some or all of the same functionality as in full rimmed or semi-rimless embodiments, such as by applying a force such that the first temple applies pressure on the wearer's head.
  • the spring mechanism may also be coupled to the lens housing, even in rimless embodiments (such as when a screw or hinge is coupled to the lens).
  • the lens includes a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact when the frame is in the first position.
  • the spring mechanism may form a portion of the conductive path that drives current to the lens (and may power and/or control any electronics therein) from the first temple.
  • the spring mechanism may directly connect to the lens, and thereby may also form a direct electrical connection with the electrical contacts disposed thereon.
  • the spring mechanism may itself comprise conductive components (including in some embodiments a conductive spring) that may form the connection.
  • the spring mechanism may be fixedly coupled to the lens, but the conductive components of the spring mechanism may selectively contact the electrical contacts of the lens.
  • the first spring mechanism is housed within the first temple.
  • the term “housed within” may refer to when the first spring mechanism is coupled to the first temple in such a way that a portion of the first spring mechanism (such as a spring or a conductor) is within the structure of the first temple.
  • the first spring mechanism may have some components exposed outside of the structure of the first temple, such as to make electrical connections with other components such as the lens housing.
  • Embodiments that include the spring mechanism embedded within the temple may provide aesthetic value (that is, the electro-active frames may present a more favorable outward appearance), as it may provide a more finished look with components covered or contained within the overall structure of the device.
  • embedding the first spring mechanism in the first temple may also provide a more durable or reliable device, as the first temple may protect the spring mechanism from ambient conditions as well as physical damage that spectacle frames are typically subjected to on a regular basis.
  • the first spring mechanism is in electrical contact with the electronics module.
  • electrical contact does not require direct physical contact.
  • the spring mechanism may be disposed between the electronics module and the electronic components that it controls and/or provides power to, and therefore it may be efficient in some embodiments that the spring mechanism electrically connect to the electronics module. This connection may be made regardless of the position of the first temple, particularly in embodiments whereby the first spring mechanism is disposed on the first temple.
  • the first spring mechanism is in direct electrical contact with the electronics module. That is, there are no other conductors disposed between the electronics module and the electrical connector.
  • the first spring mechanism maintains electrical contact with the electronics module in both the first position and the second position. This may be the case, for instance, for embodiments on which the spring mechanism is disposed on the first temple. As the first temple is moved (e.g. by the spring mechanism) from the first position (where the spring mechanism may be electrically connected to the lens housing) to the second position, the electrical contact between the first spring mechanism and the lens housing may be severed (e.g. the spring mechanism and the lens housing may no longer be physically coupled). This may provide the selective conductive path discussed above. Embodiments may provide the advantage that only one electrical contact may be required to be connected/disconnected (i.e. only one electrical switch) so as to activate and deactivate the electronics on the lens housing.
  • the first spring mechanism is in a first condition when the first temple is in a first position and a second condition when the first temple is in a second position.
  • condition it is meant that any characteristic of the spring mechanism (including the position of the spring mechanism, its size, shape, or length, and/or the conductivity of the spring mechanism) may change. In some embodiments, this change in condition may provide the change in electrical connectivity.
  • the shape of the first spring mechanism may change so as to provide (or not provide) physical contact between the spring mechanism (or components) thereof and the lens housing.
  • the spring mechanism may, for example, maintain electrical contact with the lens housing and the first temple by changing its length or shape (e.g.
  • the spring mechanism may increase in length to maintain contact).
  • the first spring mechanism may have a first length when the first temple is in a first position and a second length when the first temple is in a second position. The first length and the second length are different.
  • length it is meant that the dimension of the electrical connector in a direction that is substantially parallel to the largest dimension of the temple (preferably when the first device is worn).
  • the first position is an open position.
  • open position it is meant that the first temple is in a position that is substantially perpendicular to the first and/or second lens such as when the frame is positioned on a wearer's head. However, it need not be exactly perpendicular, as in some cases there may be embodiments where the angle between the temple and the lens is less than ninety degree. The angle is shown in FIG. 1 by the angle 104 .
  • the angle 104 may vary based on both the shape and size of the wearer's head as well as the size and shape of the frames.
  • the first position may comprise the first temple and the lens housing being positioned such that the angle 104 between them is between 60 degrees and 110 degrees.
  • the angle 104 between the temple and the lens housing in the first position is between 80 degrees and 90 degrees. This typically corresponds to the angle 104 for when the first device is being worn, and thereby the electronics of the first device may be used.
  • the second position is a closed position.
  • closed position what is meant which is that the temple and the lens form an angle 104 that is significantly less than ninety degrees. This may correspond, for instance, to a situation in which the device is not in a position on a wearer's head and therefore any frame electronics may not need to be activated.
  • the second position comprises the first temple and the lens housing being positioned such that there is an angle 104 between them of between 0 degrees and 60 degrees.
  • the second position comprises the first temple at an angle 104 between 0 degrees and 45 degrees with the lens housing. Again, these angles may correspond to when the first device is not in use.
  • FIGS. 2( a ) and 2 ( b ) illustrate two exemplary embodiments of spring mechanisms that could be used in the first device.
  • a spring 202 is provided that is disposed between the lens housing 200 and the first temple 201 .
  • a portion of the spring 202 is shown as being embedded in the first temple 201 .
  • the spring 202 is illustrated as a coil spring, and a conductor 203 is shown disposed within the spring 202 (i.e. the spring substantially encircles the conductor).
  • the conductor and spring may comprise the spring mechanism.
  • a hinge 204 is shown coupled to both the lens housing 200 and the first temple 201 .
  • the hinge 204 permits the first temple to move relative to the lens housing 200 .
  • a conductive path is shown by the dotted lines 205 (within the spring mechanism), 206 (within the lens housing 200 ) and 207 (within the first temple).
  • the conductive path could comprise an embedded conductor within these elements (e.g. a wire or embedded conductive material) or it could represent the components themselves (e.g. the lens housing 200 , spring mechanism (i.e. spring 202 and/or conductor 203 ), and/or the first temple 201 could comprise conductive material).
  • the conductive path need not be provided by the spring mechanism or a component thereof.
  • the spring 202 may apply a force to the first temple 201 such that the first temple 201 applies pressure on a wearer's head.
  • the spring 212 is not a coil spring, but may comprise elastic material such that when the first temple 211 is moved close to the lens housing 210 , the spring 212 becomes depressed. Because of the nature of the material of the spring 212 , as it becomes compressed (i.e. it is displaced toward the lens housing 210 ) it provides an opposing force. This force may separate the lens housing 210 and the first temple and/or, for example, apply force to maintain the first device tightly on a wearer's head.
  • the hinge 213 (which is shown as comprising conductive material) couples the lens housing 210 and the first temple 211 such that they may move relative to one another.
  • a conductive path is shown by the dotted lines 214 (within the lens housing) and 215 (within the first temple).
  • the conductive paths 214 and 215 may be connected (and thereby form a single conductive path) when the first temple 211 is positioned close to the lens housing 210 (e.g. when the spring 212 is sufficiently compressed).
  • the conductive path is provided through the conductive hinge 213 , embodiments are not so limited. That is, a portion of the conductive path (e.g. between conductive paths 214 and 215 ) may be provided by any suitable component, such as through the spring 212 .
  • the lens housing 210 and the first temple 211 could comprise electrical contacts at the interface where each may contact the spring 212 .
  • the conductive path 214 may connect directly to the spring 212 (which, for example, may itself comprise conductive material) such that an electrical contact need only be formed (selectively) with the conductive path 215 in the first temple 211 .
  • the first temple is moved to contact 212 , but prior to fully compressing 212 to contact the lens housing 210 , an electrical path from the first temple 211 to the lens housing 210 may be established.
  • This exemplary embodiment may provide the ability to have the conductive path at angles 216 that are less than ninety degrees (which may be beneficial, for instance, to prevent connection problems when the electro-active frames are worn and the pressure applied by the spring causes an angle less than ninety degrees). It should be understood that the spring could, in some embodiments, be located on the first temple and the principles discussed herein would apply equally.
  • FIGS. 3-10 an exemplary embodiment of a first device is provided for illustration purposes only.
  • the components that comprise the exemplary embodiment in FIGS. 3-10 include: a first temple 300 ; electrical connectors 301 to connect to the pogo pins; pogo pins comprising a spring 302 and conductive portion 303 (e.g. stainless steel cable); vertebrae 304 ; an end piece 305 ; a spring box cover 306 ; an electronics module 307 ; a cavity 308 in the first temple for housing the electronics module 307 ; and electrical connectors to the electronics module 310 .
  • a spring 302 and conductive portion 303 e.g. stainless steel cable
  • Pogo pins embedded or coupled to the first temple 300 may be used to maintain an electrical contact with the lens housing throughout a plurality of positions (i.e. angles) between the first temple 300 and the lens housing.
  • Pogo pins may be used with or without a spring mechanism, but when combined with the use of a spring mechanism, embodiments may provide the benefit of maintaining the conductive path when the electro-active frames are worn despite the creation of an angle between the lens housing and the first temple that is less than ninety degrees.
  • FIG. 3 shows an exploded view of the components comprising a portion of an exemplary device in accordance with embodiments provided herein.
  • the device comprises an electronics module 307 embedded in a cavity 308 of the first temple 300 .
  • the electronics module is electrically connected to pogo pins that comprise a spring 302 and a conductor 303 .
  • the pogo pins may be used to maintain a connection as the distance (and/or relative positions) between two electrical contacts increases or decreases, because the spring 302 applies force to maintain the electrical contact with the conductor 303 .
  • embodiments may provide that as the first temple 300 is moved relative to the lens housing, the pogo pins may maintain electrical contact with the lens housing and thereby provide a portion of a conductive path from the first temple 300 to the lens housing.
  • the vertebrae 304 allow the first temple 300 to move relative to the lens housing, while covering the pogo pins.
  • the end piece 305 may comprise a hinge such that the first temple 300 and the lens housing are coupled together, but may move relative to each other.
  • the spring box 306 covers and protects the pogo pins and/or provides aesthetic value be given a finished look to the frames.
  • FIG. 4 shows the same components described above with reference to FIG. 3 from an alternative angle. It should be noted that end piece 305 , spring box cover 306 , and electronics module 307 may be coupled to the first temple 300 using any suitable method (such as adhesive, two sided tape, a screw, etc.).
  • FIG. 5 shows a close-up view of the first temple 300 of the exemplary device.
  • the pogo pins (and in particular the end of the pogo pins comprising the spring 302 ) may form an electrical connection with electrical connectors 301 .
  • the electrical connectors 301 are embedded within a cavity in the first temple 300 .
  • connectors 310 that may form an electrical connection with the connectors 301 and the electronics module 307 .
  • the electrical connectors 301 and 310 form a conductive path from the pogo pins to the electronics module (not shown) in the cavity 308 .
  • the connectors 301 and 310 may comprise a single electrical conductor.
  • FIG. 6 shows the components described above coupled together with (or disposed within) the first temple 300 .
  • the vertebrae 304 cover a portion of the conductor 303 of the pogo pins.
  • the electrical connector 301 is shown in physical contact with the pogo pins, and the pogo pins are embedded substantially within the first temple 300 .
  • FIG. 7 shows an isolated view of the connections formed between the electronics module 307 and the pogo pins.
  • the electrical connectors 301 are coupled to the electronics module 307 and are in physical (and electrical) contact with a portion 302 of the pogo pins.
  • a conductive path is provided from the electronics module 307 to the pogo pins.
  • the pogo pins (via conductor 303 ) may further form an electrical connection with a portion of the lens housing.
  • a conductive path may be provided from the first temple 300 (e.g. from the electronics module 307 ) to the lens housing.
  • the electronics module 307 may provide, for example, power and/or control signals to electronics housed on the lens housing and/or in the lens.
  • the use of the pogo pins may be beneficial, for example, with the use of a spring mechanism as they may continue to provide a portion of a conductive path between the electronics module 307 and the lens housing for a plurality of positions of the first temple 300 relative to the lens housing (e.g. a number of angles formed there between, as described above).
  • FIGS. 8 and 9 show views of the first temple 300 with each of the identified components coupled together where appropriate.
  • the exemplary embodiment may provide a finished look (which may be aesthetically pleasing), as each of the internal components (such as the pogo pins, the electrical connectors, and even the electronics module) are relatively concealed or masked with the first temple.
  • FIG. 10 shows a close up of the end piece 305 of the exemplary device.
  • the conductor 303 of the pogo pins are partially exposed so as to be capable of forming an electrical connection with the lens housing.
  • the vertebra 304 cover a portion of the pogo pins, and also provide the ability for the first temple 300 to move relative to the lens housing, while remaining coupled thereto.
  • Embodiments provided herein may thereby convey some of the advantages of utilizing a spring mechanism on eyeglass frames to embodiments comprising electro-active frames.
  • the use of the spring mechanism may provide for a better and/or more comfortable fit for the wearer, while providing the first conductive path from the first temple to the lens housing may allow for embodiments to utilize electronic components located on either or both of the lens housing (and/or the lens) and the temple.
  • some embodiments may also provide the advantage of conserving power (and/or the lifetime of the electronics) by providing a conductive path from the temple to the lens housing for some positions of the temple relative to the lens housing, while not providing the conductive path in one or more other positions.
  • Embodiments disclosed herein may provide for electro-active frames comprising multiple conductive paths that are electrically isolated from one another. As more sophisticated electronics are provided on electro-active frames, it may be necessary to provide for additional electrical connections between multiple components. To function properly, these electrical connections (and the conductive paths that provide the electrical signals and current) must be separated (i.e. electrically isolated) to properly control multiple components (or, if an electrical component must be supplied power and control signals, this may also require multiple electrically isolated paths as well). Often times, electrical components are located in the temple of the electro-active frames (typically because there may be more space to dispose such components therein in an aesthetically acceptable manner). Housing electronic components in the temple may require that electrical connections are made between these components in the temple and any electrical components coupled to the lens housing (which may include the lenses themselves).
  • a “frame element” is any structural component of a frame (including the frame itself) or a component embedded therein such as a wire, conductor (such as metal), or conductive rubber.
  • a frame element may include a temple, a bridge, a lens housing (e.g. rim wire for full rimmed or semi-rimless frames, hinges that connect to the lens housing and the temple, and/or other lens housings such as screws, nylon monofilament, etc.) or portions thereof.
  • a frame element does not comprise exterior components attached to the frame, such as a wire that runs along an outer surface. In this manner, by providing the conductive paths in a frame element or elements, the electro-active frames may remain aesthetically pleasing by not having bulky cords or other connections running across the frames or in locations where they may be visible.
  • Electro-active frames, and in particular electro-active frames that have electrical components in one or both lenses often comprise multiple electronic components such as driving and control components (e.g. one for each lens). This can result in expensive devices with duplicative components.
  • the inventors have found that by, for instance, providing multiple isolated electrical paths using frame elements, is may be possible to reduce the number of duplicative electrical components and thereby significantly decrease the costs of such devices (e.g. by only a single electronics module that may control both of the lenses). That is, the electronic components (such as the power supply, the controller (such as a micro-processor), and the sensor mechanism (such as a switch that can activate the device) are often the components that are of the greatest expense (or are at least are relatively expensive in comparison to some of the other components of the frames).
  • the inventors have provided the benefit of decreasing the costs associated with fabrication materials and decreasing the complexity and time of manufacture.
  • frame designs may be lighter and more structurally durable, as there are less components disposed thereon.
  • Described below are exemplary embodiments of devices comprising conductive paths provided by one or more frame elements (or components thereof) from the temple of a device to the lens housing.
  • the embodiments described below are for illustration purposes only and are not thereby intended to be limiting. After reading this disclosure, it may be apparent to a person of ordinary skill that various components as described below may be combined or omitted in certain embodiments, while still practicing the principles described.
  • a first device comprises a frame.
  • the frame further includes a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing.
  • the first device further comprises a first conductive path provided by one or more frame elements from the first temple to the lens housing and a second conductive path provided by one or more frame elements from the first temple to the lens housing. That is, the first device, through the use of two conductive paths, may provide, for instance, multiple electrical connections between two devices (e.g. one connection that provides power and the other that provides a control input), or between a plurality of devices (e.g. a control module or power supply that provides a signal or current to two different components, such as to two electro-active lenses).
  • the first conductive path is electrically isolated from the second conductive path.
  • Embodiments may thereby provide the ability to send separate signals (for instance, power and a control signal) from electronics that are housed in the temple to those located on the lens housing.
  • an electrical component need not be located on the lens housing (for instance, an electrical component may be located in a lens of the device).
  • the device in some embodiments, need only provide a conductive path from the temple (i.e. any part of the temple or a component thereon) to the lens housing.
  • the conductive path may further extend to the lenses or to another component disposed thereon (or it may even extend through the lens housing and to the other temple).
  • the temples typically have space available on which the additional electronic components may be disposed on and/or hidden or masked so as to remain aesthetically appealing.
  • the inventors have developed embodiments of a device that may provide the necessary conductive paths to the lens housing, while maintaining the aesthetics of the device.
  • the inventors have developed embodiments of a device that may provide multiple inputs and connections to electrical components that may be coupled to the lens housing.
  • the first device as described above further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path.
  • at least a portion it is meant that electrical insulator need not be disposed along the entire first or second conductive paths (or along an entire interface between the two paths).
  • Embodiments may provide different ways of electrically isolating the two conductive paths that may, for instance, combine the use of the insulator with other components or features (such as by providing an air gap between the two conductive paths in a region) and/or may utilize multiple insulating materials.
  • the electrical insulator may be made of any suitable material, and may in some embodiments (such as embodiments where the conductors are embedded within a frame element) comprise a part of a frame element (such as when the frame element comprises a plastic material).
  • the electrically insulating material may comprise an injection moldable or similarly formed plastic material.
  • the electrically insulating material comprises nylon.
  • the electrical insulator may be utilized in some embodiments in which the frame element comprises conductive material, and thereby two electrical paths may utilize the insulating materials to form the two conductive paths (although as described below, other methods may also be used when the frame elements comprise conductive material to isolate two conductive paths—such as by separating the paths using an air gap).
  • embodiments may comprise multiple electrical insulators (for instance multiple pieces of the same material or different material) and the insulating material may be located along different portions of the electrical paths (for instance, a portion of the insulating material may be located in the temple and another portion of the insulating material may be located in the lens housing).
  • the first device further comprises a first hinge coupled to the first temple and the lens housing.
  • the first hinge may connect the temple to the housing, and allow the temple to move relative to the housing.
  • the electrical insulator may be located at least within the first hinge.
  • a portion of the electrical path or paths may comprise the hinge (that is, the hinge may comprise conductive material or conductive material may be embedded therein).
  • the hinge may comprise a portion of the conductive paths in some embodiments because it is coupled to both the lens housing (or comprises a part of the lens housing) and the temple, and thereby may provide a conductive path between the two frame elements.
  • FIGS An example of a hinge comprising a portion of a conductive path is shown in FIGS.
  • the hinge may, for example comprise conductive material, and an insulator may be disposed therein so as to define two electrically isolated conductive paths.
  • the electrical insulator may be located in any suitable location, or in multiple locations, as needed.
  • the electrical insulator is located at least within the first temple. In some embodiments, the electrical insulator is located at least within the lens housing.
  • a partial eye-wire (which may be used to mask or hide an embedded conductor or conductors) is present only over one portion of the lenses (e.g. the top or the bottom of the lenses).
  • the two conductive paths may be located in the partial eye wire, and the electrical insulator may be used to separate the two paths.
  • the first device as described above further comprises an electronics module that is coupled to the first temple of the frame.
  • the electronics module and other components may be preferably located on the temple in some embodiments for both practical and aesthetic reasons.
  • the electronics module may comprise, for example, a controller, a power source, and/or a sensing mechanism. Some or all of these components may be used to operate electrical components located on the lens housing, which may thereby require an electrical contact between the electronics module and the component.
  • the first and second conductive paths may be electrically connected to the electronics module.
  • the electronics module (or the components therein) may be electrically connected to components coupled to the lens housing (such as those located in the lenses for the first device).
  • the electronic components e.g. coupled to an embedded electronics module
  • the conductive paths comprising a fame element or elements
  • the first device as described above further comprises a first lens having a first electrical contact and a second lens having a second electrical contact. That is, some embodiments of the first device may comprise electro-active lenses (such as lenses that perform different function when current is supplied to them or a component therein). To provide current to the electro-active lens or components therein, the lenses may comprise one or more electrical contacts.
  • the first conductive path electrically connects to the first electrical contact of the first lens and the second conductive path electrically connects to the second electrical contact of the second lens. That is, the first conductive path may electrically connect to the first lens and the second conductive path may electrically connect to the second lens.
  • embodiments may provide that a single electrical component (or electronics module) that is coupled to both the first and the second conductive paths may provide signals and/or current to the first and second lens of the device separately.
  • embodiments may provide for the first and second lens to be controlled separately utilizing the electrically isolated conductive paths.
  • the first lens and the second lens may be individually controlled by separate electrical components (i.e. the first and second conductive path may, but need not, electrically connect to a single component).
  • the first lens in the first device as described above that comprises a first lens having a first electrical contact that is electrically connected to the first conductive path, and a second lens having a second electrical contact that is electrically connected to the second conductive path, the first lens may further include a second electrical contact and the second lens may further include a first electrical contact. That is, the first and the second lenses may each comprise a first and a second electrical contact such that each may receive a plurality of signals or currents from one or more electrical components.
  • the first conductive path may electrically connect to the first electrical contact of the second lens and the second conductive path may electrically connect to the second electrical contact of the first lens.
  • first lens and second lens may each be electrically connected to both the first and second conductive paths.
  • Such embodiments may, but need not, provide for simultaneously controlling both the first and the second lens using a single electronics module or other components.
  • Embodiments may thereby utilize, for example, a single electronics module that is electrically connected to both the first and second lenses.
  • the use of a single electronics module and/or electrical components (such as those that may be coupled to the first temple of the device) to control a plurality of electrical components (such as those that are coupled to the lens housing and/or electro-active lenses of the first device) may provide several benefits. This includes, for example, removing redundant electrical components, and thereby reducing the manufacturing costs and complexity of the first device without sacrificing functionality. Such embodiments may also remove the need to synchronize the first and second lenses. That is, for example, if the first and second lenses are electro-active lenses and are controlled using two different electronics modules (or components therein), the operation of each may have to be matched with the other (otherwise, a wearer may become distorted or receive conflicting functionality from the lenses). Synchronizing the lenses could require additional electrical components and further add to the cost and the complexity of the first device.
  • the second temple or the second lens does not comprise an electronics module coupled thereto.
  • the electro-active frames may comprise less redundant features by utilizing a single electronics module (or the components therein) electrically connected to both the first and second lenses (or other components coupled to the lens housing).
  • the use of two electrical connections i.e. via the first and second conductive paths
  • the lens housing comprises a non-conductive material and the frame element providing the first conductive path (or a portion thereof) comprises a conductive material embedded in the lens housing. That is, the conductive path may comprise material embedded in the lens housing. This may provide the benefit that the lens housing material itself may electrically isolate the first conductive path from other components (such as the second conductive path). Also, utilizing a non-conductive material for the lens housing (rather than a conductive material) may prevent short faults with the electronic components, or false signals generated by outside sources (such as by static electricity).
  • the frame element providing the second conductive path (or a portion thereof) comprises a conductive material embedded in the lens housing.
  • the frame elements providing the portions of the first and second conductive paths may be embedded within the lens housing such that a sufficient amount of non-conductive material (e.g. the material that comprises the lens housing) is disposed between the two conductive paths such that they remain electrically isolated.
  • additional electrical insulation may be provided and embedded within the lens housing as well.
  • the lens housing comprises acetate. Acetate is one of the more common materials that eyeglass frames comprise. It is non-conductive and it may therefore be preferable to use this material for some of the embodiments described above utilizing non-conductive materials.
  • the lens housing may comprise a conductive material.
  • a first portion of the lens housing may provide at least a part of the first conductive path. That is, a portion of the lens housing that comprises a conductive material may form an electrical connection between the first electrical contact of each of the first and second lenses. An exemplary embodiment of this is shown in FIGS. 11 and 12 , and described in detail below.
  • the lens housing may be separated into a plurality of electrically isolated portions. This may be done in any manner, such as by having two separate conductive pieces that are shaped appropriately (e.g. shaped into the mold of the lens housing portions such that when coupled to the first device, the first and second portions may support the lenses) and coupling the two portions to the first device (such as by coupling the portions to hinges or the temples) so that the portions remain are physically separate (i.e. electrically isolated).
  • some embodiments may offer some advantages over other designs for providing electrically isolated conductive paths such as, by way of example, providing a less complicated manufacturing process. That is, for embodiments where the lens housing itself comprises conductive material, there may be no need to provide conductive material embedded within the lens housing (which could be a complex and intricate process, particularly when attempting to define multiple electrically isolated conductive paths. By utilizing a more macro approach such as physically separating the large conducting components of the frame to form the conductive paths (e.g.
  • embodiments may provide a readily achievable and commercially feasible design for providing the electrically isolated conductive paths.
  • the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, where the second conductive path electrically connects to the second contact of the first and the second lens, where the lens housing comprises a conductive material, where a first portion of the lens housing provides at least a part of the first conductive path, and where at least a part of the second conductive path is provided by a second portion of the lens housing, the first portion of the lens housing and the second portion of the lens housing may be separated by at least one of an air gap or insulating material.
  • FIGS This may again be illustrated with reference to the exemplary embodiments in FIGS.
  • the electrical isolation between the first 1101 and the second 1102 conductive paths is an air gap at the bridge 1103 .
  • Other points of electrical isolation are provided at the edges of the lens housing 1104 and 1105 where the first portion 1101 and second portion 1102 of the lens housing are coupled to the temples at different locations.
  • electrical insulation may be used. This may provide an advantage over the air gap embodiments because the portions 1101 and 1102 above and below the air gap are likely to, at some point, be misshaped such that the electrical isolation may be compromised (particularly when considering the daily abuse that eyeglasses may be subject to).
  • the bridge 1103 includes the first portion 1101 and the second portion 1102 of the lens housing (or portions thereof) and the air gap may be formed there.
  • the air gap has a maximum distance of at least approximately 10 mm. This distance for the air gap may provide enough separation between the first 1101 and second portion 1102 that the air gap is unlikely to be compromised during everyday use.
  • the first portion of the lens housing and the second portion of the lens housing comprise metal.
  • the electrical insulator may include a first component and a second component.
  • the first component of the electrical insulator disposed between the first conductive path and the second conductive path comprises the first lens and the second lens.
  • the first portion of the insulation may refer to the separation provide by the first 1106 and second 1107 lenses. That is, in some embodiments, the lenses are not made of a conductive material (or comprise embedded conductive materials) such that current could flow from the first portion 1101 to the second portion 1102 of the lens housing.
  • the second component of the electrical insulator disposed between the first conductive path and the second conductive path includes at least one of: an air gap and an electrically insulating material. That is, again with reference to FIG. 11 , the second portion of the insulation may refer to the separation provided at the bridge 1103 . In some embodiments, the second component of the electrical insulator is disposed between the first lens and the second lens. In this manner, the second portion of the insulator may prevent current from flowing between the two components and thereby compromising the electrical isolation of the first and second portions of the lens housing.
  • the electrically insulating material that electrically isolates the first portion of the lens housing from the second portion of the lens housing may comprise an injection moldable or similarly formed plastic material. This material may be preferred because of its ability to mold its shape to the particular area it is confined to. Moreover, because it is injection moldable, it may be easier to apply this material to portions of the frame, such as embedding within the lens housing or the bridge area. In some embodiments, the electrically insulating material comprises nylon.
  • the first device as described above may comprise semi-rimless eyeglass frames.
  • semi-rimless eyeglass frames typically have partial eye-wires around some of the first and second lenses to provide support. It may be preferred that the first and second conductive paths are provided in this portion of the semi-rimless eyeglass frames because, for instance, the eye-wire is typically the thicker portion of the lens housing (i.e. this portion may be better able to hide the electrical components, and may also better protect the electrical connections from damage) in comparison to the nylon monofilament or other material that may be used on the remaining sections of the lenses to hold them in place.
  • the first conductive path and the second conductive path are each disposed within the lens housing of the semi-rimless spectacles.
  • both of the electrical conductors that comprise the first and second conductive paths may be disposed over the top of the lens (or the bottom, depending on the style of frames and/or where the portion of eye-wire (or the thicker portion of the lens housing) may be located).
  • the first and second conductive paths may be separated by an electrically insulating material. That is, for instance, the lens housing in a semi-rimless design may comprise eye-wire (or any other suitable lens housing components) over the top portion of the first and second lens.
  • This portion of the lens housing may comprise both the first and the second conductive paths, as well as an insulating material (such as nylon) disposed between the conductive paths such that the first and second conductive paths may be both electrically coupled to the first and second lens, and remain electrically isolated from the other.
  • an insulating material such as nylon
  • the lens housing comprises full rimmed spectacle frames. Exemplary embodiments are shown again in FIGS. 11 and 12 , but embodiments are not so limited.
  • full rimmed design embodiments may also comprise the first conductive path and the second conductive path provided by materials embedded within the lens housing. That is, embodiments are not limited to using only lens housing that comprise conductive materials.
  • the full rim embodiments may include lens housings that comprise metal or plastic (or some combination thereof).
  • full rimmed designs may be preferred from a functional standpoint as the eye-wires that many such embodiments comprise may provide a ready means, as described in examples above, of providing a first and second conductive path from the temple to the lens housings, and/or from the lens housings to the lenses.
  • embodiments may provide one or more conductive paths from a temple to the lens housing which may, in some embodiments, provide one or more advantages related to reducing the number of components used for the electro-active frames
  • embodiments are not so limited. Indeed, the concepts discussed and described above may be equally applicable to embodiments that comprise multiple electronics modules and/or other components located on both the first and the second temple. In general, these embodiments may present advantages over single module embodiments such as, for instance, greater flexibility in controlling the individual components (such as electro-active lenses) by having individual controls located on each temple for each (or both) components.
  • additional exemplary embodiments are additional exemplary embodiments:
  • a first device is further provided that comprises a frame.
  • the frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing.
  • the first device further includes a first conductive path provided by one or more frame elements from the first temple to the lens housing, a second conductive path provided by one or more frame elements from the first temple to the lens housing, a third conductive path provided by one or more frame elements from the second temple to the lens housing, and a fourth conductive path provided by one or more frame elements from the second temple to the lens housing.
  • the use of frame elements provides many advantages over systems that may utilize exposed wires or other methods for establishing a conductive path between a temple of the frame and the lens housing.
  • each of the first, second, third, and fourth conductive paths are electrically isolated from each other.
  • the first device as described above in some embodiments may provide the advantage that multiple electronics modules and/or electronic components may be disposed on either or both of the temples of the electro-active frame. This may, for instance, allow for more functionality than single module embodiments, based on, for instance providing for additional electronics to be included on the first device. Moreover, by providing electronics modules on both temples, embodiments may provide the advantage of not having to utilize a conductive path across the bridge of the frames to power/control electronic components on both sides of the lens housing. This may, in some embodiments, reduce the complexity of manufacturing that portion of the electro-active lens frame. In addition, in some embodiments, the conductive path across the bridge may be the location in which the electrical isolation between the various conductive paths is more likely to be compromised. Some embodiments may also provide for a more robust electro-active frame (and/or lens system), with potential backup systems and redundancy provided for the electronic components on each temple.
  • the first conductive path is electrically isolated from the second conductive path by an electric insulator and the third conductive path is electrically isolated from the fourth conductive path by an electric insulator.
  • the insulator may comprise any suitable material and may be located in any suitable location, such as at least in the temple, hinge, or lens housing, as described above.
  • the first device further includes a first electronics module that may be disposed on the first temple and a second electronics module disposed on the second temple.
  • Such embodiment may provide the advantages of controlling multiple elements (such as electro-active lenses) individually, or providing a redundancy system so that the electro-active lenses may function after a failure in one of the electronics modules.
  • the first device further includes a first lens having a first electrical contact and a second electrical contact and a second lens having a first electrical contact and a second electrical contact.
  • the first conductive path may electrically connect to the first electrical contact of the first lens
  • the second conductive path may electrically connect to the second electrical contact of the first lens
  • the third conductive path may electrically connect to the first electrical contact of the second lens
  • the fourth conductive path may electrically connect to the second electrical contact of the second lens.
  • the first and second conductive paths electrically connect to the first electronics module and the third and fourth conductive paths electrically connect to the second electronics module.
  • the conductive paths that are provided from the first temple to the lens housing are segregated in both position and function from the conductive paths that are provided from the second temple to the lens housing (however, embodiments are not so limited).
  • the first and second conductive paths may be electrically connected to the first lens and the third and fourth conductive paths may be electrically connected to the second lens.
  • neither the first nor second conductive path is coupled to the second lens.
  • neither the third nor the fourth conductive path may be electrically coupled to the first lens.
  • the first and second electrical paths may be electrically isolated from the third and fourth conductive paths based largely on the fact that there is no overlap in function or coverage. That is, for instance, the first and second conductive paths may be on a first side having a first lens, and the third and fourth conductive paths may be on a second side of the lens housing having the second lens.
  • the first and second conductive paths may be on a first side having a first lens
  • the third and fourth conductive paths may be on a second side of the lens housing having the second lens.
  • embodiments are not so limited, and any or all of the conductive paths may cross the bridge of the electro-active frames.
  • exemplary embodiments of the first device comprising a plurality of electrically isolated conductive paths disposed on an electro-active spectacles frame are provided.
  • an exemplary embodiment of a device comprising electro-active lenses housed within an electro-active frame is provided.
  • one or more electronic modules that can activate and deactivate one or both of the electro-active lenses 1106 and 1107 can be positioned within either or both temples of the electro-active spectacle frame.
  • FIG. 11 a full rimmed electro-active spectacle frame is provided.
  • FIG. 11 is an example of an exemplary embodiment in which the lens housing may comprise conductive material. As was described above, embodiments are not so limited.
  • the exemplary device in FIG. 11 comprises an upper rim portion 1101 (i.e. a first portion of the lens housing) that may comprise a portion of a first conductive path.
  • the upper rim portion 1101 can be made of metal in some embodiments, but is not so limited.
  • the first conductive path can provide a first link (i.e. an electrical connection) between an electronics module and a first electronic contact or terminal (not shown) of one or both electro-active lenses or any other electronics components that may be located on the lens housing.
  • the exemplary electro-active spectacle frame comprises a lower rim portion 1102 (i.e. a second portion of the lens housing) that may comprise a portion of a second conductive path.
  • the lower rim portion 1102 may also be made of metal, but is not so limited and any conductive material may suffice.
  • the second conductive path may provide a second link (i.e. electrical connection) between the electronics module and a second electronic contact or terminal (not shown) of one or both electro-active lenses or any other electronics components that may be located on the lens housing.
  • embodiments may provide separate conductive routes to both electro-active lenses 1106 and 1107 .
  • the electro-active lenses (or any other components located on the lens housing) can be controlled/powered by a single electronics module positioned on either the right or left temple portion of the electro-active frame.
  • embodiments are not so limited and may provide for multiple electronics modules located on either or both of the temples.
  • the upper 1101 and lower 1102 rim portions which may comprise a portion of the first and second conductive paths, respectively, may together form a bridge 1103 of the electro-active spectacle frames.
  • the bridge 1103 of the electro-active spectacle frames can be formed without having the upper 1101 and lower 1102 rim portions touching (i.e. in physical or electrical contact), so as to ensure separate conductive paths (i.e. maintain the first and second conductive paths as electrically isolated from one another).
  • the upper 1101 and lower 1102 rim portions are physically and electrically separated at the ends 1104 and 1105 , so as to maintain electrical isolation from the other.
  • the upper 1101 and lower 1102 rim portions may be coupled to a hinge, temple, or other frame component at the ends 1104 and 1105 , but at different locations so as to remain electrically isolated from each other.
  • the rim portions may also be electrically connected to the other portions of the first and second conductive paths at the ends 1104 and 1105 .
  • an exemplary illustration of an aesthetic component is provided (e.g. a design mask).
  • the design mask comprises an upper snap-on element 1201 and a lower snap-on element 1202 .
  • the upper 1201 and lower 1202 snap-on elements can be positioned on top of the upper rim portion 1101 and the lower rim portion 1102 , respectively.
  • the upper 1201 and lower 1202 snap-on elements may comprise a non-conductive material, such as plastic, but are not so limited.
  • the upper 1201 and lower 1202 snap-on elements can be used to alter the style or design of the electro-active spectacles.
  • an exemplary temple 1301 may comprise a part of an electro-active spectacles frame.
  • One or more electronic components such as an electronics module, may be coupled to the temple 1301 .
  • electro-active spectacles and frames may comprise any suitable electronic components. That is, for instance, exemplary spectacle frames such those describe above, or any other electro-active spectacles such as, for instance, those described in U.S. patent application Ser. No. 12/684,490, filed Jan. 8, 2010, and entitled “ELECTRO-ACTIVE SPECTACLES AND ASSOCIATED ELECTRONICS” (incorporated by reference herein in its entirety) can comprise electronic components to provide a variety of functions, such as, for example, control of electro-active lenses. Additional exemplary functions (and components to accomplish the functions) are described below.
  • components can be built into or otherwise coupled to the spectacle lens frame or lenses and/or be located remotely and be in communication with components on the electro-active spectacle frame or lens. Some of the components may be controlled by the wearer. Moreover, each of the components described below may be located on electro-active frames that comprise some or all of the features described above. Furthermore, the components (including the electrical components referenced) and descriptions provided herein are exemplary, and many variations and combinations of these features may be included.
  • a fall detector module may be used by seniors or other individuals to determine if a fall has occurred. This may comprise an accelerometer or other motion sensor coupled to the electro-active spectacles worn by user. If a fall is detected, it can trigger an alarm system in a house, an alarm can be sent to preset phone numbers (e.g., 911) or e-mail addresses. Electrical components located on the electro-active spectacles can also enable a manual call to a preset phone or e-mail address with, for example, a finger touch to the temple or press button located somewhere on the electro-active spectacles (e.g., alarm trigger).
  • preset phone numbers e.g., 911
  • Electrical components located on the electro-active spectacles can also enable a manual call to a preset phone or e-mail address with, for example, a finger touch to the temple or press button located somewhere on the electro-active spectacles (e.g., alarm trigger).
  • a fall detector module may comprise a small electronic module coupled to or disposed within the frame that can contain a fall sensor (e.g., an accelerometer) and may also comprise a small transmitter.
  • a modified cell phone or a number of signal relay devices preset in the house can detect the alarm signal from the module, and send a series of emergency information (e.g. test message, e-mail, phone call, etc.) via an existing network (e.g. internet, cell phone, or custom network) to individuals or health care institutes.
  • the device can use an ITO patterned layer (or other transparent or translucent materials) of electro-active lenses as an antenna.
  • a step counter and timer module may, in some embodiments, count the number of steps by a wearer (e.g. for jogger). This can be used to determine distance traveled, time, pace, or any other relevant information. In some embodiments, this may be displayed to a user via a heads-up display in the lenses of the electro-active lenses.
  • the module may also comprise one button (or touch) to reset or display the result on a small LCD housed on the frame.
  • the components of the module may include motion detection/distance detection system and display system.
  • a drowsiness detector and alarm module may, for instance, be used for long distance drivers to determine their level of alertness and their ability to operate a motor vehicle or other heavy machinery safely.
  • the module may, for example, detect sudden head motion and trigger an alarm when a pre-defined sudden motion is detected.
  • Some exemplary components of such a module may include a motion sensor that can trigger an audible or visible alarm.
  • the alarm may, in some embodiments, be included in the electro-active spectacle frame.
  • the motion sensor may, similar to the fall detector module discussed above, relay an alarm signal to a remote alarm as well.
  • a timer as taking pill reminder module may, for example, using audio (for user to hear) or an LED (for others to see), remind user or other individuals to take medication.
  • a module comprising a timer and an alarm (that may be set by a user for any purpose) may also be included.
  • the module may, for example, comprise components that can include a timer and a visible or audible alarm.
  • UV Light Monitor Module
  • a UV light monitor module may, for example, be utilized for outdoor activities to determine the risk associated with harmful UV rays and alert the user to this risk.
  • a sensor may be provided on the frame that can detector the UV intensity of light.
  • the module may further comprise a display to show the result using an LED indicator or other display (e.g., LCD) or a heads up display in the lenses of the electro-active spectacles.
  • a visible or audio indicator e.g., an LED or audible beeper
  • the module may comprise any suitable electronic components can include a UV sensor and display system.
  • An emergency wireless call module may, for example, be used by seniors or other individuals to alert authorities as to an emergency.
  • the module may utilize a preset a phone number, e-mail address, or other device or communication medium to send out to signal related to an emergency.
  • the module may be activated, for instance, with a finger touch to the temple or press button.
  • the module may be combined for instance, with a GPS or other position locator to identify the location of the individual and/or the emergency.
  • the module may comprise a signal processing path and components similar for connecting to outside network as those described with reference to the fall detector module, or any other suitable components.
  • the electro-active spectacles may comprise hearing aids or other auditory assistance devices coupled to the frame.
  • a single power source may power both devices; however, this need not be the case.
  • a pulse and partial oxygen concentration (PO2) monitor module may, for example, comprise a small electro-optical sensor or acoustic sensor that can be placed at the area near the ear of the user, or other suitable location to detect hear rate and other vital signs.
  • the electro-optical sensor (or other similar device) may also be capable of measuring the blood oxygen level.
  • the module may also comprise components for displaying the results of the vital statistics that were measured, such an LCD display or in a head-up display in the lenses.
  • the module may be programmed or configured to trigger alarm if abnormal readings are found. Other components may be similar to the fall detector described above for alerting emergency services or other individuals.
  • a RFID monitor module may comprise, for example, an antenna that can embedded in the lenses or elsewhere in the frame.
  • the module may be coupled to the frame, such as be inserting the module into a portion of the frame can contain other electronics (such as the electronics module).
  • the “working mode” can be passive or active.
  • the module may be sued for any suitable purpose, such as for security, to make payments, to identify individuals etc.
  • the module may be used by a locator.
  • a flash memory module may be included with the electrical components of the electro active spectacles.
  • a personal computer or other communication device may read or write to the module contained, for instance in the temple containing the flash memory. This may be done, in some embodiments, wirelessly by a device (which may be custom), or through an USB port.
  • the electro-active spectacles may comprise a digital watch and or alarm to maintain the current time and alert an individual of a pre set time.
  • This module may comprise, for example, a press button to display the time and or a press button to set alarm.
  • the electro-active spectacles may comprise a tool box for immediate eyeglass maintenance. This may, for instance, store such components as conductive rubber strips, conductive glue dispenser, screws, screw driver, etc.
  • a voice recorder module may also be included in some embodiments of electro-active spectacles. This may comprise, for instance, a push button to activate voice recording function. A recorded voice may be read by a wireless reader and played on a speaker, or any other suitable playback mode.
  • an extra battery pack may be included in the electro-active spectacles.
  • the extra power can be stored, for instance, as a backup power for the lens drive module.
  • the electro-active spectacles may comprise a miniature video camera (e.g., a Pin hole camera) or other recording devices and associate equipment.
  • a miniature video camera e.g., a Pin hole camera
  • the electro-active spectacles may comprise a digital thermometer to measure and display the temperature of the environment.
  • the electro-active spectacles may include a controller for other devices (e.g. a garage door, a car, etc.), by touch or pressing the side of the temple in certain predefined finger moves, very convenient for seniors.
  • a controller for other devices e.g. a garage door, a car, etc.
  • touch or pressing the side of the temple in certain predefined finger moves very convenient for seniors.
  • a similar to the signal path and components described in fall monitor above may be utilized for this component.
  • a data collection unit may be used by a user and located on the electro-active spectacles.
  • Data that can be collected can include the on and off angles when the eyeglass are controlled manually, the time interval between two sequential battery charges, the wearer's behavior or physical date, such as daily calorie burning rate, real time pulse, skin moisture, daily UV exposure, etc.
  • Data can be wirelessly transferred to a device with high computation power in-real time, or stored in the memory residing in the module and transferred after data collection.
  • the receiving device can use artificial intelligence to analyze the data for specific applications, such as to train the software to reset the personalized control parameter, or provides some recommendations for wearer's daily activity.
  • the data collection can be a unit separate from the frame/lens electronics that can be used to capture data stored in the electronic frames.
  • data stored in RAM included in the lens electronics can be relayed to the remote unit.
  • Data can be relayed via a wireless or wired link including infrared.
  • Data can be stored in local storage of the frame electronics for long periods of time and collected periodically or instantaneous data collection can be provided.

Abstract

A device includes a lens, a lens housing configured to support the lens, an end piece, and a plurality of vertebrae. One of the plurality of vertebrae is coupled to the end piece. The device also includes a temple coupled to another one of the plurality of vertebrae, an electronics module coupled to the temple, and a conductive path provided from the electronics module to the lens housing. The plurality of vertebrae are configured to allow the temple to move relative to the lens housing, and the vertebrae cover a portion of the conductive path.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/175,633, filed Jul. 1, 2011, which claims benefit under 35 U.S.C. §119(e) of U.S. provisional patent application No. 61/361,110, filed on Jul. 2, 2010; U.S. provisional patent application No. 61/376,719, filed on Aug. 25, 2010; and U.S. provisional patent application No. 61/415,391, filed on Nov. 19, 2010, the entire disclosure of each these applications is incorporated herein by reference for all purposes.
  • BACKGROUND
  • In today's world, spectacle eyeglass frames are very fashionable. While the trend for the eyeglass lenses is to make them thinner, lighter, and less visible, at the same time, it is the eyeglass frame that makes the fashion statement for the eyeglass wearer.
  • Concurrent with these trends is another concerning including electronics into spectacle eyewear. The trend of utilizing electronics in eyewear appears to be accelerating and the applications being developed by others are expanding. As these trends continue, it is becoming important to find ways to incorporate electronics into eyewear without harming the aesthetics and functionality of the eyewear. Some of the challenges may be to not limit the fashion design of the eyeglass frame or limit the materials which the eyeglass frame can be made of, maintain as few completed eyeglass frames or eyeglass frame components (frame fronts, bridges, temples) stock keeping units (SKUs) as possible, allow for robust placement of the electronics, and in a way that can be manufactured so that it remains affordable, and aesthetically desirable.
  • BRIEF SUMMARY
  • Embodiments provided herein may provide an electro-active frame that comprises a spring mechanism and a conductive path from a temple of the frame to the lens housing of the frame.
  • A first device is provided that comprises a frame. The frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple movably coupled to the lens housing, and a second temple movably coupled to the lens housing. The first device further comprises a first spring mechanism coupled to the first temple and the lens housing. A first conductive path is provided from the first temple to the lens housing for at least one position of the first temple relative to the frame.
  • In some embodiments, the first device as described above further comprises an electronic component coupled to the frame. In some embodiments, the conductive path is electrically connected to the electronic component for at least one position of the first temple relative to the frame.
  • In some embodiments, in the first device as described above, the first conductive path is provided by the first spring mechanism. In some embodiments, the first spring mechanism comprises a spring that provides the first conductive path.
  • In some embodiments, in the first device as described above, the first spring mechanism comprises a spring and a first conductor. The first conductive path may be provided by the first conductor. In some embodiments, the spring is disposed substantially around the first conductor. In some embodiments, the spring is coupled to the first conductor. In some embodiments, the spring is disposed along a side of the first conductor.
  • In some embodiments, in the first device as described above, the first conductive path further comprises pogo pins. The pogo pins may be disposed within the first temple. In some embodiments, the first device further comprises a second spring mechanism. The second spring mechanism may press the pogo pins against electrical contacts on the lens housing for a plurality of positions of the first temple.
  • In some embodiments, in the first device as described above, the first spring mechanism may include a spring hinge. In some embodiments, in the first device as described above, an electronics module is further provided. The electronics module may be coupled to the first temple and the first conductive path may be electrically connected to the electronics module.
  • In some embodiments, in the first device as described above, the first device comprises full rimmed, semi-rimless, or rimless spectacle frames.
  • In some embodiments, in the first device as described above, the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position. The first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position. In some embodiments, the lens housing comprises a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact in the first position. In some embodiments, the first spring mechanism does not form an electrical connection with the first electrical contact in the second position. In some embodiments, the first spring mechanism is coupled to the first lens, the lens includes a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact when the frame is in the first position. In some embodiments, the first spring mechanism does not form an electrical connection with the first electrical contact when the frame is in the second position. In some embodiments, the first device comprises rimless spectacle frames.
  • In some embodiments, in the first device as described above, the first spring mechanism is housed within the first temple member. In some embodiments, in the first device as described above, the first spring mechanism is in electrical contact with the electronics module. In some embodiments, the first spring mechanism is in direct electrical contact with the electronics module. In some embodiments, where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the first spring mechanism maintains electrical contact with the electronics module in both the first position and the second position.
  • In some embodiments, in the first device as describe above, the first spring mechanism is in a first condition when the first temple is in the first position and a second condition when the first temple is in the second position. In some embodiments, in the first device as described above, the first spring mechanism has a first length when the first temple is in a first position and a second length when the first temple is in a second position. The first length and the second length may be different.
  • In some embodiments, in the first device as described above where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position, and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the first position is an open position. The first position may comprise the first temple and the lens housing being positioned such that there is an angle between them of between 60 degrees and 100 degrees. In some embodiments, the angle between the temple and the lens housing in the first position is between 80 degrees and 90 degrees.
  • In some embodiments, in the first device as described above where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position, and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the second position is a closed position. In some embodiments, the second position comprises the first temple and the lens housing being positioned such that there is an angle between them of between 0 degrees and 60 degrees. In some embodiments, the second position comprises the first temple at an angle between 0 degrees and 45 degrees with the lens housing.
  • Embodiments provided herein may provide an electro-active frame that comprises a first and second conductive path provided by frame elements from a frame temple to the lens housing
  • A first device is provided. The first device comprises a frame, where the frame further comprises: a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing. The first device further comprises a first conductive path provided by one or more frame elements from the first temple to the lens housing and a second conductive path provided by one or more frame elements from the first temple to the lens housing. The first conductive path is electrically isolated from the second conductive path.
  • In some embodiments, the first device as described above further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path. In some embodiments, the first device further comprises a first hinge coupled to the first temple and the lens housing, and the electrical insulator is located at least within the first hinge. In some embodiments, the electrical insulator is located at least within the first temple. In some embodiments, the electrical insulator is located at least within the lens housing.
  • In some embodiments, the first device as described above further comprises an electronics module that is coupled to the first temple of the frame and the first and second conductive paths are electrically connected to the electronics module.
  • In some embodiments, the first device as described above further comprises a first lens having a first electrical contact and a second lens having a second electrical contact. The first conductive path electrically connects to the first electrical contact of the first lens and the second conductive path electrically connects to the second electrical contact of the second lens. In some embodiments, the first lens further includes a second electrical contact and the second lens further includes a first electrical contact. The first conductive path may electrically connect to the first electrical contact of the second lens and the second conductive path may electrically connect to the second electrical contact of the first lens. In some embodiments, the lens housing comprises a non-conductive material and the frame element providing the first conductive path comprises a conductive material embedded in the lens housing. In some embodiments, the frame element providing the second conductive path comprises a conductive material embedded in the lens housing. In some embodiments, the lens housing comprises acetate. In some embodiments, the second temple or the second lens does not comprise an electronics module coupled thereto.
  • In some embodiments, in the first device as described above where the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, and where the second conductive path electrically connects to the second contact of the first and the second lens, the lens housing comprises a conductive material and a first portion of the lens housing provides at least a part of the first conductive path. In some embodiments, at least a part of the second conductive path is provided by a second portion of the lens housing. The first portion of the lens housing may be electrically isolated from the second portion of the lens housing by at least one piece of electrically insulating material. In some embodiments, the first device may comprise semi-rimless eyeglass frames. In some embodiments, the first conductive path and the second conductive path are each disposed within the lens housing of the semi-rimless spectacles. In some embodiments, the electrically insulating material that electrically isolates the first portion of the lens housing from the second portion of the lens housing comprises an injection moldable or similarly formed plastic material. In some embodiments, the electrically insulating material comprises nylon.
  • In some embodiments, in the first device as described above where the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, where the second conductive path electrically connects to the second contact of the first and the second lens, where the lens housing comprises a conductive material, where a first portion of the lens housing provides at least a part of the first conductive path, and where at least a part of the second conductive path is provided by a second portion of the lens housing, the first portion of the lens housing and the second portion of the lens housing are separated by an air gap. In some embodiments, the lens housing further comprises a bridge disposed between the first lens and the second lens. The bridge may include the first portion and the second portion of the lens housing and the air gap may be disposed between the first portion and the second portion of the lens housing at the bridge. In some embodiments, the air gap has a maximum distance of approximately 10 mm.
  • In some embodiments, in the first device as described above where the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, where the second conductive path electrically connects to the second contact of the first and the second lens, where the lens housing comprises a conductive material, where a first portion of the lens housing provides at least a part of the first conductive path, and where at least a part of the second conductive path is provided by a second portion of the lens housing, the first portion of the lens housing and the second portion of the lens housing comprise metal.
  • In some embodiments, in the first device as described above, where the first device further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path, the electrical insulator includes a first component and a second component. The first component of the electrical insulator disposed between the first conductive path and the second conductive path comprises the first lens and the second lens. In some embodiments, the second component of the electrical insulator disposed between the first conductive path and the second conductive path includes at least one of: an air gap and an electrically insulating material. In some embodiments, the second component of the electrical insulator is disposed between the first lens and the second lens.
  • In some embodiments, in the first device as described, the lens housing comprises full rimmed spectacle frames.
  • A first device is further provided that comprises a frame. The frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing. The first device further includes a first conductive path provided by one or more frame elements from the first temple to the lens housing, a second conductive path provided by one or more frame elements from the first temple to the lens housing, a third conductive path provided by one or more frame elements from the second temple to the lens housing, and a fourth conductive path provided by one or more frame elements from the second temple to the lens housing. In the first device, each of the first, second, third, and fourth conductive paths are electrically isolated from each other.
  • In some embodiments, in the first device as described above, at least a portion of the first conductive path is electrically isolated from at least a portion of the second conductive path by an electric insulator, and at least a portion of the third conductive path is electrically isolated from at least a portion of the fourth conductive path by an electric insulator. In some embodiments, the first device further includes a first electronics module disposed on the first temple and a second electronics module disposed on the second temple. In some embodiments, the first device further includes a first lens having a first electrical contact and a second electrical contact and a second lens having a first electrical contact and a second electrical contact. In some embodiments, the first conductive path may electrically connect to the first electrical contact of the first lens, the second conductive path may electrically connect to the second electrical contact of the first lens, the third conductive path may electrically connect to the first electrical contact of the second lens, and the fourth conductive path may electrically connect to the second electrical contact of the second lens. In some embodiments, the first and second conductive paths electrically connect to the first electronics module and the third and fourth conductive paths electrically connect to the second electronics module.
  • It should be understood that, after reading the disclosure provided herein, a person of ordinary skill in the art may understand that various combination of the devices described above may be made such that some or all of the features described with regards to one device may be combined with some or all of the features of another device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of spectacle frames.
  • FIGS. 2( a) and (b) are cross sectional diagrams of devices in accordance with some embodiments.
  • FIG. 3 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 4 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 5 shows an exploded view of components of a portion of an exemplary device in accordance with some embodiments.
  • FIG. 6 shows a portion of an exemplary device in accordance with some embodiments.
  • FIG. 7 shows components of an exemplary device in accordance with some embodiments.
  • FIG. 8 shows an exemplary portion of an exemplary device with components coupled therein.
  • FIG. 9 shows an exemplary portion of an exemplary device with components coupled therein from a different angle.
  • FIG. 10 shows a close-up view of an exemplary portion of an exemplary device with components coupled therein.
  • FIG. 11 shows an exemplary embodiment of a device in accordance with some embodiments.
  • FIG. 12 shows an exemplary design mask in accordance with some embodiments.
  • FIG. 13 shows an exemplary temple of an electro-active spectacle frame in accordance with some embodiments.
  • DETAILED DESCRIPTION
  • The following disclosure provides exemplary devices comprising electro-active spectacles. Before discussing specific embodiments, some descriptions of some specific terms are provided below.
  • As used herein, a “frame” may refer to a complete wearable housing that secures both spectacle lenses and aligns them in the proper place relative to the wearer's eyes when being worn. The frame may comprise elements such as a first and second temple, as well as the lens housing that is configured to support the spectacle lenses.
  • As used herein, a “hinged temple” may refer to a side piece of a frame that connects to the lens housing (or directly to the lens) by way of a hinge attachment mechanism, and further provides stability by resting on the wearer's ears when worn.
  • As used herein, a “hinge-less temple” may refer to a side piece of a frame that connects to the lens housing (or directly to the lens) without a hinge attachment mechanism, and further provides stability by resting on the wearer's ears when worn.
  • As used herein, a “temple end piece” may refer to a part of the temple that is found farthest away from the lens housing. The temple end piece usually begins behind the ear of the wearer and ends at the end of the temple that is located farthest away from the lens housing, but this is not required.
  • As used herein, a “lens housing end piece” may refer to a part of the lens housing farthest away from the bridge and spatial to the bridge. Each frame typically has two lens housing end pieces: one on the spatial side of the right lens and one on the spatial side of the left lens.
  • As used herein, a “bridge” may refer to a part of the frame that fits over/superior to the wearer's nose. The bridge is usually found between the portion of the lens housing that supports the right lens and the portion of the lens housing that supports the left lens, or is between the right and left lenses themselves. In some embodiments, the bridge may comprise a portion of the lens housing.
  • As used herein, a “hinge” may refer to the part of the frame that allows for connecting the lens housing and the temples in such a way that the lens housing and the temple can open and close against the lens housing on its posterior side when not being worn. In some embodiments, the hinge may connect directly to the lens.
  • As used herein, “eye-wire” may refer to the rim that surrounds the lens of a spectacle frame. Eye-wire may comprise a portion of the lens housing that holds one lens (a right or a left) in a full rimmed or semi-rimless frame. There may be two eye-wires to each lens housing. However in a completely rimless frame there are no eye wires.
  • As used herein, a “lens housing” may refer to a part of the frame that is configured or adapted to support or hold the first and the second lenses in place (preferably firmly in place). The lens housing may also comprise the part of the frame to which the temples attach. The lens housing may comprise any component or material adapted to support the lenses, including, for example, screws, nylon monofilament, eye-wire, etc. or any combination thereof. The lens housing may comprise any material, including metal or plastic. A lens housing may be included in any type of frame design, including fully rimmed, semi-rimless, and rimless. In some embodiments, the lens housing may also include the bridge, such as when the lens housing comprising a single component or two components that support both the first and the second lens.
  • As used herein, an “electronics module” may refer to a housing or container that comprises a plurality of electrical components. For instance, an electronics module may comprise a power source (such as a battery), a sensing mechanism (such as a capacitance switch, which may activate or deactivate the electronics) and/or a controller (such as a microprocessor).
  • As used herein, an “electronic component” may refer to any electronic device, including a power source, a controller (such as a microprocessor), a sensing mechanism (such as a touch switch), etc. that may be coupled to an electro-active frame.
  • As used herein, a “rimless frame” may refer to a frame that is designed having a lens housing that does not comprise eye-wires. That is, for instance, the lens housing does not comprise eye wires but may comprise, for instance, nylon monofilament wire, screws, or other material to hold the lenses in place.
  • As used herein, a “semi-rimless frame” may refer to a frame that has a lens housing that comprises partial rim (i.e. eye-wire that does not completely encapsulate or encircle the lens) and/or may have a nylon monofilament wire or similar feature that secures the lenses to the frame.
  • As used herein, a “full rimmed frame” or “fully rimmed” may refer to a frame that comprises a lens housing having a complete rim that encapsulates or encircles the first and second lens (i.e. the lens housing comprises full eye-wires).
  • As used herein, a “Zyle frame” may refer to a frame that comprises mostly plastic
  • As used herein, a “metal frame” may refer to a frame that comprises mostly metal
  • As used herein, a “right spatial void” may refer to the space created where the right portion of the lens housing that is within the plane of the front of the wearers face turns back to meet the right temple. The angle formed between the right portion of the lens housing and the right temple is approximately (but not always) 90 degrees. This space is further defined as that which is bounded on three sides: On a first side by an imaginary line that is provided on the inside back surface of the right lens or inside right portion of the lens housing, on a second side by that of an imaginary line that is located in the middle of the right temple not including any electronics affixed thereto, and on a third side which is bounded by the right side of the face and/or head of the wearer.
  • As used herein, a “left spatial void” may refer to the space created where the left portion of the lens housing frame front that is within the plane of the front of the wearers face turns back to meet the left temple. The angle formed between the left portion of the lens housing and the left temple is approximately 90 degrees. This space is further defined as that which is bounded on three sides: On a first side by an imaginary line that is provided on the inside back surface of the left lens or inside left portion of the lens housing, on a second side by that of an imaginary line that is located in the middle of the left temple not including any electronics affixed thereto, and on a third side which is bounded by the left side of the face and/or head of the wearer.
  • As used herein, “coupled” may refer to any manner of connecting two components together in any suitable manner, such as by way of example only: attaching (e.g. attached to a surface), disposing on, disposing within, disposing substantially within, embedding within, embedded substantially within, etc. “Coupled” may further comprise fixedly attaching two components (such as by using a screw or embedding a first component into a second component during a manufacturing process), but does not so require. That is, two components may be coupled temporarily simply by being in physical contact with one another. Two components are “electrically coupled” or “electrically connected” if current can flow from one component to another. That is, the two components do not have to be in direct contact such that current flows from the one component directly to the other component. There may be any number of other conductive materials and components disposed electrically between two components “electrically coupled” so long as current can flow there between.
  • As used herein, a “conductive path” refers to a continuous path for which electrons (i.e. current) may flow from one point to another. The conductive path may comprise one component, or more than one component. For instance, a conductive path may comprise portions of a lens housing, a temple, a hinge, a lens, and/or conductive material disposed between some or all of the components.
  • As used herein, “electro-active spectacles,” “electro-active spectacle frames,” “electro-active eyeglasses,” “electro-active eyeglass frames,” “electro-active frames,” “electro-active lenses” or any permutation of “electro-active” may broadly refer to any eyeglass frame or lens that comprises an electronic component or components. The electrical components can be coupled to any part of the electro-active frames or lenses. This may comprise, for instance, any and all uses where by the eyeglass frames houses some, most, or all of the electronics and the lens comprises a component or components that may be activated and or deactivated by an electrical current, such as by way of example only, electronic focusing eyeglasses, electro-chromic eyeglasses, electronic tinted eyeglasses, eyeglasses comprising a micro-display allowing for viewing a digital image in space, eyeglasses comprising an electronic heads up display, eyeglasses that comprise an antistatic element to keep the eyeglass lenses clean, electronic shutter eyeglasses for viewing 3D, electronic eyeglasses that comprise an occlusion control for vision training; electronic eyeglasses for myopia control, eyeglasses that comprise a component of a telescope or the complete telescope, eyeglasses that comprise a microscope, eyeglasses that comprise a camera, eyeglasses that comprise a directional microphone, eyeglasses that comprise a rangefinder, eyeglasses that comprise an image intensifier, eyeglasses that comprise a night vision enhancement feature, occupation eyeglasses, gaming eyeglasses. Additional functionality and electrical components that may comprise portions of electro-active spectacles are discussed in more detail below.
  • As used herein, reference to a “first” or a “second” does not limit the referenced component to a particular location unless expressly stated. For instance, reference to a “first temple” may comprise the temple located on either the left side or the right side of a wearer's head.
  • Electro-Active Frames Comprising a Spring Mechanism
  • Some embodiments of electro-active spectacle frames provided herein may include a spring mechanism. The spring mechanism may, for instance, be disposed on the frame of the spectacles (such as on the temple, embedded within the temple, coupled to the temple and the lens housing, etc.) and may provide a force that causes the temple member to apply pressure in a direction substantially perpendicular to, and in the direction of, a wearer's head. In this manner, the spectacle frames may fit tightly on a person's head, regardless of the size or shape. This may provide for a more comfortable fit and reduce the risk that the eyeglasses could become dislodged or accidentally fall off of the wearer's head. Moreover, the use of a spring mechanism for an electro-active frame may provide the additional benefit of conserving power when the frames are not in use by severing an electrical connection between electronics located on the lens housing (or in the lens) and a power source located on the temple. That is, for instance, the spring mechanism may, by moving the temple of the frame away from the lens housing, separate two conductors such that current cannot flow from the temple to the lens housing (or any other separation).
  • The use of springs (e.g. spring hinges) for non-electro-active lenses is well known in the art. Examples of such spring hinges are provided in the following references, which are hereby incorporated by reference in their entireties:
  • U.S. Pat. No. 6,336,250 to Takeda entitled “Spring hinge for Eyeglasses.”
    U.S. Pat. No. 5,760,869 to Mitamura entitled “Eyeglasses Frame with Spring Hinges.”
    U.S. Pat. No. 5,657,107 to Wagner et al. entitled “Spring Hinge for Eyewear”
    U.S. Pat. No. 4,991,258 to Drlik entitled “Eyeglass Spring Hinges.”
  • To date, there has not been a similar approach used for electro-active eyeglasses. In addition to some of the benefits provided by a spring mechanism (including those noted above, such as a tighter fit and the ability to conserve power by disconnecting components), there are additional considerations that the inventors have identified related to the use of such devices in electro-active frames. For instance, electro-active eyeglass frames may require that an electrical path be provided from a temple to the lens housing, which is not utilized on traditional (i.e. non-electro-active frames) frames. However, the use of spring devices (such as spring hinges) in electro-active eyeglass frames may cause the temple and lens housing to form an angle that is less than 90 degrees, even when the frames are in use. This could cause a disruption in electrical connectivity between electronics or a power source located on a temple with any electronics located on the lens housing (or in the lens itself). FIG. 1 illustrates this situation.
  • As shown in FIG. 1, a typical position of the temple relative to the lens housing (e.g. when the frames are being worn) is for the first 101 and/or the second temple 102 to form approximately a ninety degree angle with the lens housing 103. In practice, this angle may be slightly smaller or greater (depending on factors such as the wearer's head size and shape, the size of the frame, etc.). In this position, a conductive path may connect components on the first 101 or second temple 102 to components disposed on the lens housing 103. However, the use of a spring mechanism that applies force in the direction of a wearer's head may cause this angle 104 to be substantially less than ninety degrees (for instance, it may be 85 degrees or less), which could cause a separation in the conductive path between the first 101 or second 102 temple and the lens housing 103. For example, if a portion of the conductive path from the first temple 101 to the lens housing 103 comprises electrical contacts located at the respective ends of each of these components (such that, for example, when the first temple 101 and lens housing 103 are worn, there is a direct connection between the electrical contacts), then this connection may be broken as the angle 104 between the components is reduced. As noted above, the use of springs or similar devices in eyeglass frames to provide continuous pressure is likely to create such angles, and therefore such springs and similar devices have not been used with electro-active frames.
  • Provided herein is an electro-active frame that comprises a spring mechanism. As used herein, a “spring mechanism” may refer to an elastic object that may be used to store mechanical energy. It may comprise a spring and/or other components such as conductors located within the spring or disposed alongside the spring (or within the coils of a coil spring). When compressed or stretched, the first spring mechanism may exert a force on one or more of the components of a device, such as the temple or the lens housing of an electro-active frame. The first spring mechanism may provide a continuous force (either variable or constant) in a direction substantially perpendicular to the head of a wearer when the first device (e.g. an electro-active frame) is worn. The first spring mechanism may, in some embodiments, also conduct electricity and thereby form a part of a conductive path using a spring (or components thereof) or a conductor coupled to or disposed therein. In some embodiments, the conductor may be embedded within the spring mechanism, be coupled to the spring mechanism, and/or encircled by the spring mechanism. As used herein, a spring mechanism may also comprise additional components, such as a hinge that may be coupled to the temple and/or the lens. The spring mechanism may comprise any suitable material, including metal, plastic, or some combination thereof. FIGS. 2 (a) and (b) show two examples of electro-active frames comprising spring mechanisms.
  • A first device is provided that comprises a frame that includes a lens housing adapted to support a first lens and a second lens. The first device also comprises a first temple movably coupled to the lens housing, and a second temple movably coupled to the lens housing. That is, the first and second temples may be coupled to the lens housing such that each may be moved relative to the lens housing so that the angle between them (e.g. angle 104 in FIG. 1) may change. In this regard, the lens housing and the temples may be coupled in any suitable manner that allows for this movement, including, by way of example, through the use of a hinge or a screw.
  • The first device further comprises a first spring mechanism coupled to the first temple and the lens housing. As defined above, this does not require that the spring mechanism be permanently attached to both components. For example, the spring mechanism may be fixed to the first temple and apply force to the lens housing when the first temple and lens housing (or components thereof, such as the end pieces) are within a certain distance of one another (i.e. the angle 104 between the components is close to ninety degrees (e.g. within five degrees), or some other suitable value). When the first temple and the lens housing are moved sufficiently apart the spring mechanism may no longer be in physical contact with the lens housing. An example of this situation is provided in FIG. 2( b) and described in detail below. Although defined above, it is worth noting that the spring mechanism need not be in the form of a coil spring, but may take any suitable shape and may be located in any suitable location on the frame. Such locations, as will be described below, may include disposed on, or embedded within, the lens housing and/or on the first temple. An example of a spring mechanism embedded within the first temple is shown in FIG. 2( a), which will be described below.
  • The first device also comprises a first conductive path from the first temple to the lens housing for at least one position of the first temple relative to the frame. That is, as defined above, electrons (in the form of current) may be distributed (i.e. conducted), or be capable being distributed (i.e. conducted), from the first temple to the lens housing. In so doing, the first device may, for example, comprise an electro-active frame that has some electronic components (such as a power source, controller, sensing mechanism, etc.) located on the first temple, and other electronic components (such as those described below) disposed on the lens housing and/or on (or within) the lenses themselves.
  • As defined above, the first conductive path may be provided by any suitable component or components. For instance, the conductive path could comprise the first temple, the spring mechanism, and the lens housing themselves (i.e. each could comprise conductive material) or some or all of these components could comprise conductive components disposed on (or embedded within) them that form a part of the conductive path. As indicated above, the conductive path need not always be present, but may be provided for at least one position of the first temple relative to the lens housing. With reference again to FIG. 1, the first temple 101 may be moved to a plurality of positions relative to the lens housing 103, each of which may have a different angle 104. Preferably, the first conductive path is provided when the first temple and the lens housing are in a position corresponding to when the first device is being worn by a wearer. In some embodiments, this position may have an angle corresponding to approximately ninety degrees. However, embodiments are not so limited and the angle may depend on many factors, as described above. It should also be understood that the conductive path may be provided for a plurality of positions.
  • In some embodiments, in the first device as described above, the first conductive path is provided by the first spring mechanism. That is, for example, the first spring mechanism may provide some (or all) of the first conductive path between the first temple and the lens housing. This may be due, in part, to the fact that the spring mechanism may be located between (or substantially between) both the first temple and the lens housing. In some embodiments, the first spring mechanism comprises a spring that provides the first conductive path. The spring of the spring mechanism need not comprise a traditional coil spring, but may comprise any elastic material that stores mechanical energy, such as when the spring is displaced. An example of a non-coil spring is provided with reference to FIG. 2 (a). As noted above, the spring may comprise any conductive material when providing at least a portion of the first conductive path. Preferable, the spring mechanism comprises metal.
  • By utilizing the spring mechanism to form a part of the conductive path, some embodiments may provide the advantage of reducing the number of components that are required to be coupled to the frame. Moreover, in some embodiments, the use of the spring mechanism to serve as part of the conductive path may be one way in which the conductive path can be selectively provided (e.g. the conductive path may be available when the first device is being worn and unavailable when the first device is not being worn). For instance, the spring mechanism may be permanently coupled (i.e. fixedly, such as through the use of a screw, adhesive, etc.) to only the first temple, and be selectively coupled (i.e. temporally, such as coming into physical contact, but not being adhered to, screwed together, etc.) to the lens housing such that the spring mechanism is in physical contact with the lens housing in some but not all positions of the first temple relative to the lens housing. In embodiments where the first spring mechanism provides some or all of the conductive path, then in positions where the first spring mechanism is no longer contacting the lens housing, the conductive path may not be provided. This may be one way of providing a selectively available conductive path between the first temple and the lens housing.
  • In some embodiments, in the first device as described above, the first spring mechanism comprises a spring and a first conductor. The conductor may comprise any suitable material and may have any suitable shape. There need not be any physical contact between the spring and the conductor. For instance, in some embodiments, the spring is disposed substantially around the first conductor. By “substantially around,” it is meant, for example, that the spring may encircle or surround some (but not necessarily all) of the conductor. This is illustrated in the exemplary embodiment shown in FIG. 2( a). For instance, if the spring comprises a coil spring, then the conductor may be located within the coils of the spring. In some embodiments, the conductor may be disposed within (e.g. embedded in) the spring, such that the spring may comprise both the conductor (or more than one conductor) and an insulating material. The insulating material may electrically insulate the conductors that are within the spring such that the a plurality of conductive paths are provided by the spring (i.e. through the embedded conductors). This may allow for multiple signals to be transmitted from the first temple to the lens housing, for a signal and power to be transmitted, etc. In some embodiments, the spring is coupled to the first conductor. That is, the spring may be attached or disposed on the conductor. Each of the spring and/or the conductor may comprise a part of the conductive path. In some embodiments, the spring is disposed along a side of the first conductor. By “along side,” it is meant that the spring and the conductor may be substantially parallel and located no more than 3 cm apart at any given point. Preferable, the spring and the conductor are no more than 1 cm apart such that the spring mechanism may have a small profile (i.e. for aesthetic reasons). Again, embodiments are not so limited, and the conductor may be located in any suitable location. Thus, in some embodiments, the first conductive path or a portion thereof may be provided by the first conductor.
  • In some embodiments, in the first device as described above, the first conductive path further comprises pogo pins. A “pogo pin” may comprise a device that establishes a (usually temporary) connection between two components. An illustration of an embodiment the utilizes pogo pins is shown in FIGS. 3-10. The pogo pins may be disposed within the first temple, but embodiments are not so limited and the pogo pins may be located in other locations, such as disposed on the first temple, on the lens housing (or embedded therein) and/or coupled to the first spring mechanism. In some embodiments, the first device further comprises a second spring mechanism that may press the pogo pins against electrical contacts on the lens housing for a plurality of positions of the first temple. The use of the second spring mechanism may provide the ability to maintain the conductive path between the first temple and the lens housing for some or all of the positions of the first temple relative to the lens housing. That is, as the distance between the portion of the lens housing comprising the electrical contacts and the first temple increases (i.e. as the angle 104 in FIG. 1 decreases), the second spring mechanism may lengthen the conductive path (i.e. cause the pogo pins to extend) so as to maintain the electrical contact (and thereby the conductive path). When the angle 104 is then increased, the lens housing and/or first temple may apply force to the second spring mechanism such that it contracts (i.e. the pogo pins contract), but such that the electrical contact is still maintained. By providing a force on the pogo pins so as to press against the electrical contacts of the lens housing (or congruently, against the first temple) for some, but not all, of the position of the temple, embodiments may provide the ability to selectively provide a conductive path between the first temple and the lens housing.
  • In some embodiments, in the first device as described above, the first spring mechanism may include a spring hinge. That is, the spring mechanism may comprise a fixed portion that is coupled to both the lens housing and the first temple (i.e. the hinge) that allows for the relative movement between the two components so as to change the angle 104. The spring may be coupled to either or both of the lens housing and the first temple, and may provide a force that may move the first temple to one of a plurality positions and/or presses the first temple against a wearer's head. In some embodiments, in the first device as described above, an electronics module is further provided. The electronics module may, for example, comprise at least one of: a power source, a controller, and a sensing module. The use of an electronics module may, in some embodiments, provide the ability to more readily fabricate electro-active spectacles, as the electronics may be manufactured separately and inserted into a plurality of frame designs. The electronics module may be coupled to the first temple or in another suitable location (note that some embodiments may dispose the electronics module or components thereof, for instance, on the lens housing). For example, the electronics module could be embedded or substantially embedded in the first temple (as is described below with reference to the exemplary embodiments shown in FIGS. 3-10). In some embodiments, the first conductive path may be electrically connected to the electronics module. That is, a conductive path may be provided from the electronics module to the lens housing and may comprise a number of components, such as the first spring mechanism or components thereof.
  • In some embodiments, in the first device as described above, the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position. The first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position. As was described above, the first and second positions may correspond to relative positions between the first temple and the lens housing. The first position, in which the conductive path conducts electricity, may correspond to a position of the first temple when the first device is in use (e.g. when the first device is worn) and the second position may correspond to a position of the first temple when the device is not in use (i.e. when the device is not worn). As noted above, the conductive path may be provided by any of the components of the first device, such as the first spring mechanism, lens housing, first temple, etc. Embodiments that selectively (i.e. in some instances but not all) provide the conductive path from the lens housing to the first temple may provide some or all of the advantages described above, which may include power conservation and efficiency related to some or all of the electronic components of the first device not operating when the first device is not in use (e.g. any electronics disposed on the lens housing will not be electrically connected to electronic components on the first temple).
  • In some embodiments, where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the lens housing comprises a first electrical contact and the first spring mechanism forms an electrical connection with the first electrical contact in the first position. In some embodiments, the first spring mechanism does not form an electrical connection with the first electrical contact in the second position. That is, in embodiments wherein the first conductive path or a portion thereof includes the spring mechanism (or a component thereof), the spring mechanism may directly connect to (i.e. physically contact) the electrical contacts disposed on the lens housing. In this manner, the conductive path provided at least in part by the spring mechanism may be selectively provided by contacting and not contacting the electrical contacts on the lens housing.
  • In some embodiments, in the first device as described above, the first spring mechanism is coupled to the first lens. This may be the case, for instance, when the first device comprises rimless eyeglass frames. The spring mechanism may provide some or all of the same functionality as in full rimmed or semi-rimless embodiments, such as by applying a force such that the first temple applies pressure on the wearer's head. The spring mechanism may also be coupled to the lens housing, even in rimless embodiments (such as when a screw or hinge is coupled to the lens). In some embodiments, the lens includes a first electrical contact, and the first spring mechanism forms an electrical connection with the first electrical contact when the frame is in the first position. That is, the spring mechanism may form a portion of the conductive path that drives current to the lens (and may power and/or control any electronics therein) from the first temple. As noted above, in some embodiments, the spring mechanism may directly connect to the lens, and thereby may also form a direct electrical connection with the electrical contacts disposed thereon. The spring mechanism may itself comprise conductive components (including in some embodiments a conductive spring) that may form the connection. In such embodiments, the spring mechanism may be fixedly coupled to the lens, but the conductive components of the spring mechanism may selectively contact the electrical contacts of the lens.
  • In some embodiments, in the first device as described above, the first spring mechanism is housed within the first temple. As used herein, the term “housed within” may refer to when the first spring mechanism is coupled to the first temple in such a way that a portion of the first spring mechanism (such as a spring or a conductor) is within the structure of the first temple. However, the first spring mechanism may have some components exposed outside of the structure of the first temple, such as to make electrical connections with other components such as the lens housing. Embodiments that include the spring mechanism embedded within the temple may provide aesthetic value (that is, the electro-active frames may present a more favorable outward appearance), as it may provide a more finished look with components covered or contained within the overall structure of the device. In addition, embedding the first spring mechanism in the first temple (or any component, such as the lens housing) may also provide a more durable or reliable device, as the first temple may protect the spring mechanism from ambient conditions as well as physical damage that spectacle frames are typically subjected to on a regular basis.
  • In some embodiments, in the first device as described above, the first spring mechanism is in electrical contact with the electronics module. As defined above, electrical contact does not require direct physical contact. There may be any number of conductors located between two components that are in electrical contact. The spring mechanism may be disposed between the electronics module and the electronic components that it controls and/or provides power to, and therefore it may be efficient in some embodiments that the spring mechanism electrically connect to the electronics module. This connection may be made regardless of the position of the first temple, particularly in embodiments whereby the first spring mechanism is disposed on the first temple. In some embodiments, the first spring mechanism is in direct electrical contact with the electronics module. That is, there are no other conductors disposed between the electronics module and the electrical connector. Some exemplary embodiments are illustrated in FIGS. 3-10.
  • In some embodiments, where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the first spring mechanism maintains electrical contact with the electronics module in both the first position and the second position. This may be the case, for instance, for embodiments on which the spring mechanism is disposed on the first temple. As the first temple is moved (e.g. by the spring mechanism) from the first position (where the spring mechanism may be electrically connected to the lens housing) to the second position, the electrical contact between the first spring mechanism and the lens housing may be severed (e.g. the spring mechanism and the lens housing may no longer be physically coupled). This may provide the selective conductive path discussed above. Embodiments may provide the advantage that only one electrical contact may be required to be connected/disconnected (i.e. only one electrical switch) so as to activate and deactivate the electronics on the lens housing.
  • In some embodiments, in the first device as describe above, the first spring mechanism is in a first condition when the first temple is in a first position and a second condition when the first temple is in a second position. By “condition,” it is meant that any characteristic of the spring mechanism (including the position of the spring mechanism, its size, shape, or length, and/or the conductivity of the spring mechanism) may change. In some embodiments, this change in condition may provide the change in electrical connectivity. For instance, the shape of the first spring mechanism may change so as to provide (or not provide) physical contact between the spring mechanism (or components) thereof and the lens housing. In some embodiments, the spring mechanism may, for example, maintain electrical contact with the lens housing and the first temple by changing its length or shape (e.g. as the distance between the first temple and the lens housing increases, the spring mechanism may increase in length to maintain contact). In this regard, the first spring mechanism may have a first length when the first temple is in a first position and a second length when the first temple is in a second position. The first length and the second length are different. By “length” it is meant that the dimension of the electrical connector in a direction that is substantially parallel to the largest dimension of the temple (preferably when the first device is worn).
  • In some embodiments, in the first device as described above where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position, and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the first position is an open position. By “open position,” it is meant that the first temple is in a position that is substantially perpendicular to the first and/or second lens such as when the frame is positioned on a wearer's head. However, it need not be exactly perpendicular, as in some cases there may be embodiments where the angle between the temple and the lens is less than ninety degree. The angle is shown in FIG. 1 by the angle 104. The angle 104 may vary based on both the shape and size of the wearer's head as well as the size and shape of the frames. For instance, in some embodiments, the first position may comprise the first temple and the lens housing being positioned such that the angle 104 between them is between 60 degrees and 110 degrees. Preferably, the angle 104 between the temple and the lens housing in the first position is between 80 degrees and 90 degrees. This typically corresponds to the angle 104 for when the first device is being worn, and thereby the electronics of the first device may be used.
  • In some embodiments, in the first device as described above where the first conductive path conducts electricity from the first temple to the lens housing when the first temple is in a first position, and the first conductive path does not conduct electricity from the first temple to the lens housing when the first temple is in a second position, the second position is a closed position. By “closed position,” what is meant which is that the temple and the lens form an angle 104 that is significantly less than ninety degrees. This may correspond, for instance, to a situation in which the device is not in a position on a wearer's head and therefore any frame electronics may not need to be activated. In some embodiments, the second position comprises the first temple and the lens housing being positioned such that there is an angle 104 between them of between 0 degrees and 60 degrees. Preferable, the second position comprises the first temple at an angle 104 between 0 degrees and 45 degrees with the lens housing. Again, these angles may correspond to when the first device is not in use.
  • FIGS. 2( a) and 2(b) illustrate two exemplary embodiments of spring mechanisms that could be used in the first device. First, with reference to FIG. 2( a), a spring 202 is provided that is disposed between the lens housing 200 and the first temple 201. In this exemplary embodiment, a portion of the spring 202 is shown as being embedded in the first temple 201. The spring 202 is illustrated as a coil spring, and a conductor 203 is shown disposed within the spring 202 (i.e. the spring substantially encircles the conductor). In some embodiments, the conductor and spring may comprise the spring mechanism. A hinge 204 is shown coupled to both the lens housing 200 and the first temple 201. The hinge 204 permits the first temple to move relative to the lens housing 200. A conductive path is shown by the dotted lines 205 (within the spring mechanism), 206 (within the lens housing 200) and 207 (within the first temple). The conductive path could comprise an embedded conductor within these elements (e.g. a wire or embedded conductive material) or it could represent the components themselves (e.g. the lens housing 200, spring mechanism (i.e. spring 202 and/or conductor 203), and/or the first temple 201 could comprise conductive material). However, embodiments are not so limited, and the conductive path need not be provided by the spring mechanism or a component thereof. The spring 202 may apply a force to the first temple 201 such that the first temple 201 applies pressure on a wearer's head.
  • With reference to FIG. 2( b), another exemplary spring mechanism for use in an electro-active frame is provided. The spring 212 is not a coil spring, but may comprise elastic material such that when the first temple 211 is moved close to the lens housing 210, the spring 212 becomes depressed. Because of the nature of the material of the spring 212, as it becomes compressed (i.e. it is displaced toward the lens housing 210) it provides an opposing force. This force may separate the lens housing 210 and the first temple and/or, for example, apply force to maintain the first device tightly on a wearer's head. The hinge 213 (which is shown as comprising conductive material) couples the lens housing 210 and the first temple 211 such that they may move relative to one another. A conductive path is shown by the dotted lines 214 (within the lens housing) and 215 (within the first temple). The conductive paths 214 and 215 may be connected (and thereby form a single conductive path) when the first temple 211 is positioned close to the lens housing 210 (e.g. when the spring 212 is sufficiently compressed). Although as illustrated, the conductive path is provided through the conductive hinge 213, embodiments are not so limited. That is, a portion of the conductive path (e.g. between conductive paths 214 and 215) may be provided by any suitable component, such as through the spring 212.
  • For example, the lens housing 210 and the first temple 211 could comprise electrical contacts at the interface where each may contact the spring 212. When the spring is compressed, there may be formed electrical contacts between the lens housing 210, the spring 212 and the first temple 211. In some embodiments, the conductive path 214 may connect directly to the spring 212 (which, for example, may itself comprise conductive material) such that an electrical contact need only be formed (selectively) with the conductive path 215 in the first temple 211. For instance, when the first temple is moved to contact 212, but prior to fully compressing 212 to contact the lens housing 210, an electrical path from the first temple 211 to the lens housing 210 may be established. This exemplary embodiment may provide the ability to have the conductive path at angles 216 that are less than ninety degrees (which may be beneficial, for instance, to prevent connection problems when the electro-active frames are worn and the pressure applied by the spring causes an angle less than ninety degrees). It should be understood that the spring could, in some embodiments, be located on the first temple and the principles discussed herein would apply equally.
  • With reference to FIGS. 3-10, an exemplary embodiment of a first device is provided for illustration purposes only. The components that comprise the exemplary embodiment in FIGS. 3-10 include: a first temple 300; electrical connectors 301 to connect to the pogo pins; pogo pins comprising a spring 302 and conductive portion 303 (e.g. stainless steel cable); vertebrae 304; an end piece 305; a spring box cover 306; an electronics module 307; a cavity 308 in the first temple for housing the electronics module 307; and electrical connectors to the electronics module 310. It should be noted that this is for illustration purposes only, and is provided to demonstrate an exemplary embodiment in which pogo pins embedded or coupled to the first temple 300 may be used to maintain an electrical contact with the lens housing throughout a plurality of positions (i.e. angles) between the first temple 300 and the lens housing. Pogo pins may be used with or without a spring mechanism, but when combined with the use of a spring mechanism, embodiments may provide the benefit of maintaining the conductive path when the electro-active frames are worn despite the creation of an angle between the lens housing and the first temple that is less than ninety degrees.
  • FIG. 3 shows an exploded view of the components comprising a portion of an exemplary device in accordance with embodiments provided herein. The device comprises an electronics module 307 embedded in a cavity 308 of the first temple 300. The electronics module is electrically connected to pogo pins that comprise a spring 302 and a conductor 303. The pogo pins may be used to maintain a connection as the distance (and/or relative positions) between two electrical contacts increases or decreases, because the spring 302 applies force to maintain the electrical contact with the conductor 303. Thus, for instance, embodiments may provide that as the first temple 300 is moved relative to the lens housing, the pogo pins may maintain electrical contact with the lens housing and thereby provide a portion of a conductive path from the first temple 300 to the lens housing. The vertebrae 304 allow the first temple 300 to move relative to the lens housing, while covering the pogo pins. The end piece 305 may comprise a hinge such that the first temple 300 and the lens housing are coupled together, but may move relative to each other. The spring box 306 covers and protects the pogo pins and/or provides aesthetic value be given a finished look to the frames.
  • FIG. 4 shows the same components described above with reference to FIG. 3 from an alternative angle. It should be noted that end piece 305, spring box cover 306, and electronics module 307 may be coupled to the first temple 300 using any suitable method (such as adhesive, two sided tape, a screw, etc.).
  • FIG. 5 shows a close-up view of the first temple 300 of the exemplary device. As shown, the pogo pins (and in particular the end of the pogo pins comprising the spring 302) may form an electrical connection with electrical connectors 301. The electrical connectors 301 are embedded within a cavity in the first temple 300. Also shown are connectors 310 that may form an electrical connection with the connectors 301 and the electronics module 307. Thus, the electrical connectors 301 and 310 form a conductive path from the pogo pins to the electronics module (not shown) in the cavity 308. In some embodiments, the connectors 301 and 310 may comprise a single electrical conductor.
  • FIG. 6 shows the components described above coupled together with (or disposed within) the first temple 300. As shown, the vertebrae 304 cover a portion of the conductor 303 of the pogo pins. The electrical connector 301 is shown in physical contact with the pogo pins, and the pogo pins are embedded substantially within the first temple 300.
  • FIG. 7 shows an isolated view of the connections formed between the electronics module 307 and the pogo pins. As shown, the electrical connectors 301 are coupled to the electronics module 307 and are in physical (and electrical) contact with a portion 302 of the pogo pins. In this manner, a conductive path is provided from the electronics module 307 to the pogo pins. The pogo pins (via conductor 303) may further form an electrical connection with a portion of the lens housing. In so doing, a conductive path may be provided from the first temple 300 (e.g. from the electronics module 307) to the lens housing. In this manner, the electronics module 307 may provide, for example, power and/or control signals to electronics housed on the lens housing and/or in the lens. Further, as described above, the use of the pogo pins may be beneficial, for example, with the use of a spring mechanism as they may continue to provide a portion of a conductive path between the electronics module 307 and the lens housing for a plurality of positions of the first temple 300 relative to the lens housing (e.g. a number of angles formed there between, as described above).
  • FIGS. 8 and 9 show views of the first temple 300 with each of the identified components coupled together where appropriate. The exemplary embodiment may provide a finished look (which may be aesthetically pleasing), as each of the internal components (such as the pogo pins, the electrical connectors, and even the electronics module) are relatively concealed or masked with the first temple.
  • FIG. 10 shows a close up of the end piece 305 of the exemplary device. As shown the conductor 303 of the pogo pins are partially exposed so as to be capable of forming an electrical connection with the lens housing. The vertebra 304 cover a portion of the pogo pins, and also provide the ability for the first temple 300 to move relative to the lens housing, while remaining coupled thereto.
  • The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
  • Embodiments provided herein may thereby convey some of the advantages of utilizing a spring mechanism on eyeglass frames to embodiments comprising electro-active frames. For example, the use of the spring mechanism may provide for a better and/or more comfortable fit for the wearer, while providing the first conductive path from the first temple to the lens housing may allow for embodiments to utilize electronic components located on either or both of the lens housing (and/or the lens) and the temple. In addition, some embodiments may also provide the advantage of conserving power (and/or the lifetime of the electronics) by providing a conductive path from the temple to the lens housing for some positions of the temple relative to the lens housing, while not providing the conductive path in one or more other positions.
  • Exemplary Embodiments Comprising Separate Conductive Paths
  • Embodiments disclosed herein may provide for electro-active frames comprising multiple conductive paths that are electrically isolated from one another. As more sophisticated electronics are provided on electro-active frames, it may be necessary to provide for additional electrical connections between multiple components. To function properly, these electrical connections (and the conductive paths that provide the electrical signals and current) must be separated (i.e. electrically isolated) to properly control multiple components (or, if an electrical component must be supplied power and control signals, this may also require multiple electrically isolated paths as well). Often times, electrical components are located in the temple of the electro-active frames (typically because there may be more space to dispose such components therein in an aesthetically acceptable manner). Housing electronic components in the temple may require that electrical connections are made between these components in the temple and any electrical components coupled to the lens housing (which may include the lenses themselves).
  • Embodiments may provide that these conductive paths from the temple to the lens housing of an electro-active frame are provided by frame elements of electro-active frames. As used herein, a “frame element” is any structural component of a frame (including the frame itself) or a component embedded therein such as a wire, conductor (such as metal), or conductive rubber. Thus, for instance, a frame element may include a temple, a bridge, a lens housing (e.g. rim wire for full rimmed or semi-rimless frames, hinges that connect to the lens housing and the temple, and/or other lens housings such as screws, nylon monofilament, etc.) or portions thereof. A frame element does not comprise exterior components attached to the frame, such as a wire that runs along an outer surface. In this manner, by providing the conductive paths in a frame element or elements, the electro-active frames may remain aesthetically pleasing by not having bulky cords or other connections running across the frames or in locations where they may be visible.
  • Electro-active frames, and in particular electro-active frames that have electrical components in one or both lenses, often comprise multiple electronic components such as driving and control components (e.g. one for each lens). This can result in expensive devices with duplicative components. The inventors have found that by, for instance, providing multiple isolated electrical paths using frame elements, is may be possible to reduce the number of duplicative electrical components and thereby significantly decrease the costs of such devices (e.g. by only a single electronics module that may control both of the lenses). That is, the electronic components (such as the power supply, the controller (such as a micro-processor), and the sensor mechanism (such as a switch that can activate the device) are often the components that are of the greatest expense (or are at least are relatively expensive in comparison to some of the other components of the frames). By reducing the number of components in each device, the inventors have provided the benefit of decreasing the costs associated with fabrication materials and decreasing the complexity and time of manufacture. Moreover, frame designs may be lighter and more structurally durable, as there are less components disposed thereon.
  • Described below are exemplary embodiments of devices comprising conductive paths provided by one or more frame elements (or components thereof) from the temple of a device to the lens housing. The embodiments described below are for illustration purposes only and are not thereby intended to be limiting. After reading this disclosure, it may be apparent to a person of ordinary skill that various components as described below may be combined or omitted in certain embodiments, while still practicing the principles described.
  • A first device is provided that comprises a frame. The frame further includes a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing. The first device further comprises a first conductive path provided by one or more frame elements from the first temple to the lens housing and a second conductive path provided by one or more frame elements from the first temple to the lens housing. That is, the first device, through the use of two conductive paths, may provide, for instance, multiple electrical connections between two devices (e.g. one connection that provides power and the other that provides a control input), or between a plurality of devices (e.g. a control module or power supply that provides a signal or current to two different components, such as to two electro-active lenses). In this regard, the first conductive path is electrically isolated from the second conductive path. Embodiments may thereby provide the ability to send separate signals (for instance, power and a control signal) from electronics that are housed in the temple to those located on the lens housing. It should be noted that an electrical component need not be located on the lens housing (for instance, an electrical component may be located in a lens of the device). The device, in some embodiments, need only provide a conductive path from the temple (i.e. any part of the temple or a component thereon) to the lens housing. The conductive path may further extend to the lenses or to another component disposed thereon (or it may even extend through the lens housing and to the other temple).
  • It is often desirable (and/or necessary) for electrical components to be located or disposed on the lens housing to serve their intended purposes. For instance, if an electronic component displays an image to the viewer, changes the refractive index of the lens, or otherwise provides functions related to the wearer's vision, then these components may need to be located on (or near) the lenses. However, as noted above, the lens housing (or the lenses themselves) often does not have adequate space for the additional electrical components that may be required to activate and/or utilize the electronic components located on the lens housing or lenses (such as a power source, controller, or sensing module). In addition, these components may be aesthetically unpleasing and noticeable if disposed on the lens housing (or the lenses themselves). It may therefore be desirable in some embodiments to locate some or all of these additional electrical components on (or within) the temples of the frame. The temples typically have space available on which the additional electronic components may be disposed on and/or hidden or masked so as to remain aesthetically appealing.
  • However, as noted above, it may be necessary to provide a conductive path between the components in the temple and those located on the lens housing (or on the lenses). By using the frame element (e.g. the components themselves or conductors embedded therein), the inventors have developed embodiments of a device that may provide the necessary conductive paths to the lens housing, while maintaining the aesthetics of the device. Moreover, by electrically isolating the components so as to provide separate conductive paths, the inventors have developed embodiments of a device that may provide multiple inputs and connections to electrical components that may be coupled to the lens housing.
  • In some embodiments, the first device as described above further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path. By “at least a portion” it is meant that electrical insulator need not be disposed along the entire first or second conductive paths (or along an entire interface between the two paths). Embodiments may provide different ways of electrically isolating the two conductive paths that may, for instance, combine the use of the insulator with other components or features (such as by providing an air gap between the two conductive paths in a region) and/or may utilize multiple insulating materials.
  • The electrical insulator may be made of any suitable material, and may in some embodiments (such as embodiments where the conductors are embedded within a frame element) comprise a part of a frame element (such as when the frame element comprises a plastic material). For instance, in some embodiments, the electrically insulating material may comprise an injection moldable or similarly formed plastic material. In some embodiments, the electrically insulating material comprises nylon. The electrical insulator may be utilized in some embodiments in which the frame element comprises conductive material, and thereby two electrical paths may utilize the insulating materials to form the two conductive paths (although as described below, other methods may also be used when the frame elements comprise conductive material to isolate two conductive paths—such as by separating the paths using an air gap). Additional exemplary embodiments related to similar embodiments are shown in FIGS. 11-12. In addition, embodiments may comprise multiple electrical insulators (for instance multiple pieces of the same material or different material) and the insulating material may be located along different portions of the electrical paths (for instance, a portion of the insulating material may be located in the temple and another portion of the insulating material may be located in the lens housing).
  • In this regard, in some embodiments, the first device further comprises a first hinge coupled to the first temple and the lens housing. The first hinge may connect the temple to the housing, and allow the temple to move relative to the housing. The electrical insulator may be located at least within the first hinge. For instance, in some embodiments, a portion of the electrical path or paths may comprise the hinge (that is, the hinge may comprise conductive material or conductive material may be embedded therein). The hinge may comprise a portion of the conductive paths in some embodiments because it is coupled to both the lens housing (or comprises a part of the lens housing) and the temple, and thereby may provide a conductive path between the two frame elements. An example of a hinge comprising a portion of a conductive path is shown in FIGS. 2( a) (e.g. path 205-206) and (b) (e.g. path 214-215). The hinge may, for example comprise conductive material, and an insulator may be disposed therein so as to define two electrically isolated conductive paths. However, as noted above, the electrical insulator may be located in any suitable location, or in multiple locations, as needed. For instance, in some embodiments, the electrical insulator is located at least within the first temple. In some embodiments, the electrical insulator is located at least within the lens housing. This may be preferred, for example, in embodiments of semi-rimless frames wherein a partial eye-wire (which may be used to mask or hide an embedded conductor or conductors) is present only over one portion of the lenses (e.g. the top or the bottom of the lenses). The two conductive paths may be located in the partial eye wire, and the electrical insulator may be used to separate the two paths.
  • In some embodiments, the first device as described above further comprises an electronics module that is coupled to the first temple of the frame. As noted above, the electronics module and other components may be preferably located on the temple in some embodiments for both practical and aesthetic reasons. The electronics module may comprise, for example, a controller, a power source, and/or a sensing mechanism. Some or all of these components may be used to operate electrical components located on the lens housing, which may thereby require an electrical contact between the electronics module and the component. In this regard, the first and second conductive paths may be electrically connected to the electronics module. In this manner, the electronics module (or the components therein) may be electrically connected to components coupled to the lens housing (such as those located in the lenses for the first device). In some embodiments, the use of frame elements to provide portions of the conductive paths, in addition to the electronics module being embedded in the first temple, results in a device that may appear to an observer to be an ordinary (non-electro-active) frame. Furthermore, in some embodiments, the electronic components (e.g. coupled to an embedded electronics module) and the conductive paths (comprising a fame element or elements) may be protected from the elements, and may, for example, reduce the likelihood that a short may occurs from an outside charge or force.
  • In some embodiments, the first device as described above further comprises a first lens having a first electrical contact and a second lens having a second electrical contact. That is, some embodiments of the first device may comprise electro-active lenses (such as lenses that perform different function when current is supplied to them or a component therein). To provide current to the electro-active lens or components therein, the lenses may comprise one or more electrical contacts. In some embodiments, the first conductive path electrically connects to the first electrical contact of the first lens and the second conductive path electrically connects to the second electrical contact of the second lens. That is, the first conductive path may electrically connect to the first lens and the second conductive path may electrically connect to the second lens. In this manner, for example, embodiments may provide that a single electrical component (or electronics module) that is coupled to both the first and the second conductive paths may provide signals and/or current to the first and second lens of the device separately. For instance, embodiments may provide for the first and second lens to be controlled separately utilizing the electrically isolated conductive paths. Rather than a single electrical component (or electronics module), the first lens and the second lens may be individually controlled by separate electrical components (i.e. the first and second conductive path may, but need not, electrically connect to a single component).
  • In some embodiments, in the first device as described above that comprises a first lens having a first electrical contact that is electrically connected to the first conductive path, and a second lens having a second electrical contact that is electrically connected to the second conductive path, the first lens may further include a second electrical contact and the second lens may further include a first electrical contact. That is, the first and the second lenses may each comprise a first and a second electrical contact such that each may receive a plurality of signals or currents from one or more electrical components. In some embodiments, the first conductive path may electrically connect to the first electrical contact of the second lens and the second conductive path may electrically connect to the second electrical contact of the first lens. In this regard, the first lens and second lens may each be electrically connected to both the first and second conductive paths. Such embodiments may, but need not, provide for simultaneously controlling both the first and the second lens using a single electronics module or other components. Embodiments may thereby utilize, for example, a single electronics module that is electrically connected to both the first and second lenses.
  • As was described above, the use of a single electronics module and/or electrical components (such as those that may be coupled to the first temple of the device) to control a plurality of electrical components (such as those that are coupled to the lens housing and/or electro-active lenses of the first device) may provide several benefits. This includes, for example, removing redundant electrical components, and thereby reducing the manufacturing costs and complexity of the first device without sacrificing functionality. Such embodiments may also remove the need to synchronize the first and second lenses. That is, for example, if the first and second lenses are electro-active lenses and are controlled using two different electronics modules (or components therein), the operation of each may have to be matched with the other (otherwise, a wearer may become distorted or receive conflicting functionality from the lenses). Synchronizing the lenses could require additional electrical components and further add to the cost and the complexity of the first device.
  • Indeed, in some embodiments, the second temple or the second lens does not comprise an electronics module coupled thereto. In this manner, the electro-active frames may comprise less redundant features by utilizing a single electronics module (or the components therein) electrically connected to both the first and second lenses (or other components coupled to the lens housing). In some embodiments, the use of two electrical connections (i.e. via the first and second conductive paths) may be the minimal number of electrical contacts needed for electrical components located on the lens housing or the electro-active lenses (e.g. the first and second lenses) to function properly.
  • In some embodiments, in the first device as described above, the lens housing comprises a non-conductive material and the frame element providing the first conductive path (or a portion thereof) comprises a conductive material embedded in the lens housing. That is, the conductive path may comprise material embedded in the lens housing. This may provide the benefit that the lens housing material itself may electrically isolate the first conductive path from other components (such as the second conductive path). Also, utilizing a non-conductive material for the lens housing (rather than a conductive material) may prevent short faults with the electronic components, or false signals generated by outside sources (such as by static electricity). In some embodiments, the frame element providing the second conductive path (or a portion thereof) comprises a conductive material embedded in the lens housing. In such embodiments, the frame elements providing the portions of the first and second conductive paths may be embedded within the lens housing such that a sufficient amount of non-conductive material (e.g. the material that comprises the lens housing) is disposed between the two conductive paths such that they remain electrically isolated. In some embodiments, additional electrical insulation may be provided and embedded within the lens housing as well. In some embodiments, the lens housing comprises acetate. Acetate is one of the more common materials that eyeglass frames comprise. It is non-conductive and it may therefore be preferable to use this material for some of the embodiments described above utilizing non-conductive materials.
  • In some embodiments, in the first device as described above where the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, and where the second conductive path electrically connects to the second contact of the first and the second lens, the lens housing may comprise a conductive material. A first portion of the lens housing may provide at least a part of the first conductive path. That is, a portion of the lens housing that comprises a conductive material may form an electrical connection between the first electrical contact of each of the first and second lenses. An exemplary embodiment of this is shown in FIGS. 11 and 12, and described in detail below. In some embodiments, at least a part of the second conductive path is provided by a second portion of the lens housing. That is, for example, the lens housing may be separated into a plurality of electrically isolated portions. This may be done in any manner, such as by having two separate conductive pieces that are shaped appropriately (e.g. shaped into the mold of the lens housing portions such that when coupled to the first device, the first and second portions may support the lenses) and coupling the two portions to the first device (such as by coupling the portions to hinges or the temples) so that the portions remain are physically separate (i.e. electrically isolated).
  • In this manner, some embodiments may offer some advantages over other designs for providing electrically isolated conductive paths such as, by way of example, providing a less complicated manufacturing process. That is, for embodiments where the lens housing itself comprises conductive material, there may be no need to provide conductive material embedded within the lens housing (which could be a complex and intricate process, particularly when attempting to define multiple electrically isolated conductive paths. By utilizing a more macro approach such as physically separating the large conducting components of the frame to form the conductive paths (e.g. a top portion 1101 and a bottom portion 1102 that are separated at the ends 1104 and 1105 where they may be coupled to the temples (or a hinge) of the first device and in the center 1103 by an air gap or insulation), embodiments may provide a readily achievable and commercially feasible design for providing the electrically isolated conductive paths.
  • Continuing with these exemplary embodiments, wherein the first device comprises a first and second lens having first and second electrical contacts, where the first conductive path electrically connects to the first contact of the first and second lens, where the second conductive path electrically connects to the second contact of the first and the second lens, where the lens housing comprises a conductive material, where a first portion of the lens housing provides at least a part of the first conductive path, and where at least a part of the second conductive path is provided by a second portion of the lens housing, the first portion of the lens housing and the second portion of the lens housing may be separated by at least one of an air gap or insulating material. This may again be illustrated with reference to the exemplary embodiments in FIGS. 11 and 12, where the electrical isolation between the first 1101 and the second 1102 conductive paths is an air gap at the bridge 1103. Other points of electrical isolation are provided at the edges of the lens housing 1104 and 1105 where the first portion 1101 and second portion 1102 of the lens housing are coupled to the temples at different locations. In some embodiments, rather than an air gap at the bridge 1103, electrical insulation may be used. This may provide an advantage over the air gap embodiments because the portions 1101 and 1102 above and below the air gap are likely to, at some point, be misshaped such that the electrical isolation may be compromised (particularly when considering the daily abuse that eyeglasses may be subject to). In contrast, if insulation is used at 1103, even if the portions 1101 and 1102 change shape, there may still be insulation disposed between the two portions, thereby potentially maintaining the electrical isolation. As noted above, in some embodiments, the bridge 1103 includes the first portion 1101 and the second portion 1102 of the lens housing (or portions thereof) and the air gap may be formed there. In some embodiments, the air gap has a maximum distance of at least approximately 10 mm. This distance for the air gap may provide enough separation between the first 1101 and second portion 1102 that the air gap is unlikely to be compromised during everyday use. In some embodiments, the first portion of the lens housing and the second portion of the lens housing comprise metal.
  • Continuing further with these exemplary embodiments, in some embodiments, where the first device further comprises at least one electrical insulator disposed between at least a portion of the first conductive path and the second conductive path, the electrical insulator may include a first component and a second component. The first component of the electrical insulator disposed between the first conductive path and the second conductive path comprises the first lens and the second lens. That is, again with reference to FIG. 11 for illustration purposes only, the first portion of the insulation may refer to the separation provide by the first 1106 and second 1107 lenses. That is, in some embodiments, the lenses are not made of a conductive material (or comprise embedded conductive materials) such that current could flow from the first portion 1101 to the second portion 1102 of the lens housing. In some embodiments, the second component of the electrical insulator disposed between the first conductive path and the second conductive path includes at least one of: an air gap and an electrically insulating material. That is, again with reference to FIG. 11, the second portion of the insulation may refer to the separation provided at the bridge 1103. In some embodiments, the second component of the electrical insulator is disposed between the first lens and the second lens. In this manner, the second portion of the insulator may prevent current from flowing between the two components and thereby compromising the electrical isolation of the first and second portions of the lens housing.
  • In some embodiments, and as noted above, the electrically insulating material that electrically isolates the first portion of the lens housing from the second portion of the lens housing may comprise an injection moldable or similarly formed plastic material. This material may be preferred because of its ability to mold its shape to the particular area it is confined to. Moreover, because it is injection moldable, it may be easier to apply this material to portions of the frame, such as embedding within the lens housing or the bridge area. In some embodiments, the electrically insulating material comprises nylon.
  • In some embodiments, the first device as described above may comprise semi-rimless eyeglass frames. As defined above, in some embodiments, semi-rimless eyeglass frames typically have partial eye-wires around some of the first and second lenses to provide support. It may be preferred that the first and second conductive paths are provided in this portion of the semi-rimless eyeglass frames because, for instance, the eye-wire is typically the thicker portion of the lens housing (i.e. this portion may be better able to hide the electrical components, and may also better protect the electrical connections from damage) in comparison to the nylon monofilament or other material that may be used on the remaining sections of the lenses to hold them in place. In this regard, in some embodiments, the first conductive path and the second conductive path are each disposed within the lens housing of the semi-rimless spectacles. For semi-rimless frame design embodiments, both of the electrical conductors that comprise the first and second conductive paths, respectively, may be disposed over the top of the lens (or the bottom, depending on the style of frames and/or where the portion of eye-wire (or the thicker portion of the lens housing) may be located). The first and second conductive paths may be separated by an electrically insulating material. That is, for instance, the lens housing in a semi-rimless design may comprise eye-wire (or any other suitable lens housing components) over the top portion of the first and second lens. This portion of the lens housing may comprise both the first and the second conductive paths, as well as an insulating material (such as nylon) disposed between the conductive paths such that the first and second conductive paths may be both electrically coupled to the first and second lens, and remain electrically isolated from the other.
  • In some embodiments, in the first device as described, the lens housing comprises full rimmed spectacle frames. Exemplary embodiments are shown again in FIGS. 11 and 12, but embodiments are not so limited. For example and as described above, full rimmed design embodiments may also comprise the first conductive path and the second conductive path provided by materials embedded within the lens housing. That is, embodiments are not limited to using only lens housing that comprise conductive materials. The full rim embodiments may include lens housings that comprise metal or plastic (or some combination thereof). In general, full rimmed designs may be preferred from a functional standpoint as the eye-wires that many such embodiments comprise may provide a ready means, as described in examples above, of providing a first and second conductive path from the temple to the lens housings, and/or from the lens housings to the lenses.
  • Although embodiments may provide one or more conductive paths from a temple to the lens housing which may, in some embodiments, provide one or more advantages related to reducing the number of components used for the electro-active frames, embodiments are not so limited. Indeed, the concepts discussed and described above may be equally applicable to embodiments that comprise multiple electronics modules and/or other components located on both the first and the second temple. In general, these embodiments may present advantages over single module embodiments such as, for instance, greater flexibility in controlling the individual components (such as electro-active lenses) by having individual controls located on each temple for each (or both) components. Provided below are additional exemplary embodiments:
  • A first device is further provided that comprises a frame. The frame further comprises a lens housing adapted to support a first lens and a second lens, a first temple coupled to the lens housing, and a second temple coupled to the lens housing. The first device further includes a first conductive path provided by one or more frame elements from the first temple to the lens housing, a second conductive path provided by one or more frame elements from the first temple to the lens housing, a third conductive path provided by one or more frame elements from the second temple to the lens housing, and a fourth conductive path provided by one or more frame elements from the second temple to the lens housing. As noted above, the use of frame elements provides many advantages over systems that may utilize exposed wires or other methods for establishing a conductive path between a temple of the frame and the lens housing. In the first device, each of the first, second, third, and fourth conductive paths are electrically isolated from each other. As noted above, it is generally beneficial to provide multiple electrically isolated conductive paths so as to control multiple electronic components and/or provide additional functionality, such as by providing power and signal paths to the components.
  • The first device as described above in some embodiments may provide the advantage that multiple electronics modules and/or electronic components may be disposed on either or both of the temples of the electro-active frame. This may, for instance, allow for more functionality than single module embodiments, based on, for instance providing for additional electronics to be included on the first device. Moreover, by providing electronics modules on both temples, embodiments may provide the advantage of not having to utilize a conductive path across the bridge of the frames to power/control electronic components on both sides of the lens housing. This may, in some embodiments, reduce the complexity of manufacturing that portion of the electro-active lens frame. In addition, in some embodiments, the conductive path across the bridge may be the location in which the electrical isolation between the various conductive paths is more likely to be compromised. Some embodiments may also provide for a more robust electro-active frame (and/or lens system), with potential backup systems and redundancy provided for the electronic components on each temple.
  • In some embodiments, in the first device as provided above, the first conductive path is electrically isolated from the second conductive path by an electric insulator and the third conductive path is electrically isolated from the fourth conductive path by an electric insulator. The insulator may comprise any suitable material and may be located in any suitable location, such as at least in the temple, hinge, or lens housing, as described above. In some embodiments, the first device further includes a first electronics module that may be disposed on the first temple and a second electronics module disposed on the second temple. Such embodiment, as noted above, may provide the advantages of controlling multiple elements (such as electro-active lenses) individually, or providing a redundancy system so that the electro-active lenses may function after a failure in one of the electronics modules.
  • In some embodiments, the first device further includes a first lens having a first electrical contact and a second electrical contact and a second lens having a first electrical contact and a second electrical contact. In some embodiments, the first conductive path may electrically connect to the first electrical contact of the first lens, the second conductive path may electrically connect to the second electrical contact of the first lens, the third conductive path may electrically connect to the first electrical contact of the second lens, and the fourth conductive path may electrically connect to the second electrical contact of the second lens. In some embodiments, the first and second conductive paths electrically connect to the first electronics module and the third and fourth conductive paths electrically connect to the second electronics module.
  • That is, it may be the case that in some embodiments, the conductive paths that are provided from the first temple to the lens housing are segregated in both position and function from the conductive paths that are provided from the second temple to the lens housing (however, embodiments are not so limited). For instance, in some embodiments comprising electro-active lenses, the first and second conductive paths may be electrically connected to the first lens and the third and fourth conductive paths may be electrically connected to the second lens. In some embodiments, neither the first nor second conductive path is coupled to the second lens. Similarly, in some embodiments, neither the third nor the fourth conductive path may be electrically coupled to the first lens. In this regard, the first and second electrical paths may be electrically isolated from the third and fourth conductive paths based largely on the fact that there is no overlap in function or coverage. That is, for instance, the first and second conductive paths may be on a first side having a first lens, and the third and fourth conductive paths may be on a second side of the lens housing having the second lens. This, as noted above, in some embodiments, there may be no need to have a conductive path across the bridge. However, embodiments are not so limited, and any or all of the conductive paths may cross the bridge of the electro-active frames.
  • With reference to FIGS. 11-13, exemplary embodiments of the first device comprising a plurality of electrically isolated conductive paths disposed on an electro-active spectacles frame are provided. With reference to FIG. 11, an exemplary embodiment of a device comprising electro-active lenses housed within an electro-active frame is provided. As described above, one or more electronic modules that can activate and deactivate one or both of the electro- active lenses 1106 and 1107 can be positioned within either or both temples of the electro-active spectacle frame.
  • As shown in FIG. 11, a full rimmed electro-active spectacle frame is provided. Moreover, as shown, FIG. 11 is an example of an exemplary embodiment in which the lens housing may comprise conductive material. As was described above, embodiments are not so limited.
  • The exemplary device in FIG. 11 comprises an upper rim portion 1101 (i.e. a first portion of the lens housing) that may comprise a portion of a first conductive path. The upper rim portion 1101 can be made of metal in some embodiments, but is not so limited. The first conductive path can provide a first link (i.e. an electrical connection) between an electronics module and a first electronic contact or terminal (not shown) of one or both electro-active lenses or any other electronics components that may be located on the lens housing.
  • Continuing with the description of the exemplary embodiment shown in FIG. 11, the exemplary electro-active spectacle frame comprises a lower rim portion 1102 (i.e. a second portion of the lens housing) that may comprise a portion of a second conductive path. The lower rim portion 1102 may also be made of metal, but is not so limited and any conductive material may suffice. The second conductive path may provide a second link (i.e. electrical connection) between the electronics module and a second electronic contact or terminal (not shown) of one or both electro-active lenses or any other electronics components that may be located on the lens housing.
  • By providing the upper 1101 and lower 1102 rim portions, embodiments may provide separate conductive routes to both electro- active lenses 1106 and 1107. Thus, in some embodiments and as described above, the electro-active lenses (or any other components located on the lens housing) can be controlled/powered by a single electronics module positioned on either the right or left temple portion of the electro-active frame. However, embodiments are not so limited and may provide for multiple electronics modules located on either or both of the temples.
  • As shown in FIG. 11, the upper 1101 and lower 1102 rim portions, which may comprise a portion of the first and second conductive paths, respectively, may together form a bridge 1103 of the electro-active spectacle frames. The bridge 1103 of the electro-active spectacle frames can be formed without having the upper 1101 and lower 1102 rim portions touching (i.e. in physical or electrical contact), so as to ensure separate conductive paths (i.e. maintain the first and second conductive paths as electrically isolated from one another). In addition, the upper 1101 and lower 1102 rim portions are physically and electrically separated at the ends 1104 and 1105, so as to maintain electrical isolation from the other. The upper 1101 and lower 1102 rim portions may be coupled to a hinge, temple, or other frame component at the ends 1104 and 1105, but at different locations so as to remain electrically isolated from each other. The rim portions may also be electrically connected to the other portions of the first and second conductive paths at the ends 1104 and 1105.
  • With reference to FIG. 12, an exemplary illustration of an aesthetic component is provided (e.g. a design mask). The design mask comprises an upper snap-on element 1201 and a lower snap-on element 1202. The upper 1201 and lower 1202 snap-on elements can be positioned on top of the upper rim portion 1101 and the lower rim portion 1102, respectively. The upper 1201 and lower 1202 snap-on elements may comprise a non-conductive material, such as plastic, but are not so limited. The upper 1201 and lower 1202 snap-on elements can be used to alter the style or design of the electro-active spectacles.
  • With reference to FIG. 13, an exemplary temple 1301 is shown that may comprise a part of an electro-active spectacles frame. One or more electronic components, such as an electronics module, may be coupled to the temple 1301.
  • Spectacle Lens Frame Electronics
  • As noted above, electro-active spectacles and frames may comprise any suitable electronic components. That is, for instance, exemplary spectacle frames such those describe above, or any other electro-active spectacles such as, for instance, those described in U.S. patent application Ser. No. 12/684,490, filed Jan. 8, 2010, and entitled “ELECTRO-ACTIVE SPECTACLES AND ASSOCIATED ELECTRONICS” (incorporated by reference herein in its entirety) can comprise electronic components to provide a variety of functions, such as, for example, control of electro-active lenses. Additional exemplary functions (and components to accomplish the functions) are described below.
  • These components, whether alone or in some combination, can be built into or otherwise coupled to the spectacle lens frame or lenses and/or be located remotely and be in communication with components on the electro-active spectacle frame or lens. Some of the components may be controlled by the wearer. Moreover, each of the components described below may be located on electro-active frames that comprise some or all of the features described above. Furthermore, the components (including the electrical components referenced) and descriptions provided herein are exemplary, and many variations and combinations of these features may be included.
  • Fall Detector Module:
  • A fall detector module may be used by seniors or other individuals to determine if a fall has occurred. This may comprise an accelerometer or other motion sensor coupled to the electro-active spectacles worn by user. If a fall is detected, it can trigger an alarm system in a house, an alarm can be sent to preset phone numbers (e.g., 911) or e-mail addresses. Electrical components located on the electro-active spectacles can also enable a manual call to a preset phone or e-mail address with, for example, a finger touch to the temple or press button located somewhere on the electro-active spectacles (e.g., alarm trigger).
  • A fall detector module may comprise a small electronic module coupled to or disposed within the frame that can contain a fall sensor (e.g., an accelerometer) and may also comprise a small transmitter. In some embodiments, a modified cell phone or a number of signal relay devices preset in the house can detect the alarm signal from the module, and send a series of emergency information (e.g. test message, e-mail, phone call, etc.) via an existing network (e.g. internet, cell phone, or custom network) to individuals or health care institutes. In some embodiments, the device can use an ITO patterned layer (or other transparent or translucent materials) of electro-active lenses as an antenna.
  • Step Counter and Timer Module:
  • A step counter and timer module may, in some embodiments, count the number of steps by a wearer (e.g. for jogger). This can be used to determine distance traveled, time, pace, or any other relevant information. In some embodiments, this may be displayed to a user via a heads-up display in the lenses of the electro-active lenses. The module may also comprise one button (or touch) to reset or display the result on a small LCD housed on the frame. In some embodiments, the components of the module may include motion detection/distance detection system and display system.
  • Drowsiness Detector and Alarm Module:
  • A drowsiness detector and alarm module may, for instance, be used for long distance drivers to determine their level of alertness and their ability to operate a motor vehicle or other heavy machinery safely. The module may, for example, detect sudden head motion and trigger an alarm when a pre-defined sudden motion is detected.
  • Some exemplary components of such a module may include a motion sensor that can trigger an audible or visible alarm. The alarm may, in some embodiments, be included in the electro-active spectacle frame. For example, in some embodiments, the motion sensor may, similar to the fall detector module discussed above, relay an alarm signal to a remote alarm as well.
  • Timer as Taking Pill Reminder Module:
  • A timer as taking pill reminder module may, for example, using audio (for user to hear) or an LED (for others to see), remind user or other individuals to take medication. However, it should be understood that a module comprising a timer and an alarm (that may be set by a user for any purpose) may also be included. The module may, for example, comprise components that can include a timer and a visible or audible alarm.
  • UV Light Monitor Module:
  • A UV light monitor module may, for example, be utilized for outdoor activities to determine the risk associated with harmful UV rays and alert the user to this risk. For example, a sensor may be provided on the frame that can detector the UV intensity of light. The module may further comprise a display to show the result using an LED indicator or other display (e.g., LCD) or a heads up display in the lenses of the electro-active spectacles. When UV intensity passes a certain predetermined limit, for example, a visible or audio indicator (e.g., an LED or audible beeper) may provide a warning signal. The module may comprise any suitable electronic components can include a UV sensor and display system.
  • Emergency Wireless Call Module:
  • An emergency wireless call module may, for example, be used by seniors or other individuals to alert authorities as to an emergency. The module may utilize a preset a phone number, e-mail address, or other device or communication medium to send out to signal related to an emergency. The module may be activated, for instance, with a finger touch to the temple or press button. The module may be combined for instance, with a GPS or other position locator to identify the location of the individual and/or the emergency. The module may comprise a signal processing path and components similar for connecting to outside network as those described with reference to the fall detector module, or any other suitable components.
  • Directional Hearing Aids Module:
  • The electro-active spectacles may comprise hearing aids or other auditory assistance devices coupled to the frame. For instance, a single power source may power both devices; however, this need not be the case.
  • Pulse and Partial Oxygen Concentration (PO2) Monitor Module:
  • A pulse and partial oxygen concentration (PO2) monitor module may, for example, comprise a small electro-optical sensor or acoustic sensor that can be placed at the area near the ear of the user, or other suitable location to detect hear rate and other vital signs. The electro-optical sensor (or other similar device) may also be capable of measuring the blood oxygen level. The module may also comprise components for displaying the results of the vital statistics that were measured, such an LCD display or in a head-up display in the lenses. The module may be programmed or configured to trigger alarm if abnormal readings are found. Other components may be similar to the fall detector described above for alerting emergency services or other individuals.
  • RFID Monitor Module:
  • A RFID monitor module (or other near field communication device such as Bluetooth®, etc.) may comprise, for example, an antenna that can embedded in the lenses or elsewhere in the frame. The module may be coupled to the frame, such as be inserting the module into a portion of the frame can contain other electronics (such as the electronics module). In some embodiments, the “working mode” can be passive or active. The module may be sued for any suitable purpose, such as for security, to make payments, to identify individuals etc. The module may be used by a locator.
  • Flash Memory Card Module:
  • A flash memory module may be included with the electrical components of the electro active spectacles. For example, a personal computer or other communication device may read or write to the module contained, for instance in the temple containing the flash memory. This may be done, in some embodiments, wirelessly by a device (which may be custom), or through an USB port.
  • Digital Watch and Alarm:
  • The electro-active spectacles may comprise a digital watch and or alarm to maintain the current time and alert an individual of a pre set time. This module may comprise, for example, a press button to display the time and or a press button to set alarm.
  • Electronic Eyewear Repairing Kits:
  • In some embodiments, the electro-active spectacles may comprise a tool box for immediate eyeglass maintenance. This may, for instance, store such components as conductive rubber strips, conductive glue dispenser, screws, screw driver, etc.
  • Voice Recorder Module:
  • A voice recorder module may also be included in some embodiments of electro-active spectacles. This may comprise, for instance, a push button to activate voice recording function. A recorded voice may be read by a wireless reader and played on a speaker, or any other suitable playback mode.
  • Battery Pack:
  • In some embodiments, an extra battery pack may be included in the electro-active spectacles. The extra power can be stored, for instance, as a backup power for the lens drive module.
  • Spy Video or Still Picture Recorder:
  • In some embodiments, the electro-active spectacles may comprise a miniature video camera (e.g., a Pin hole camera) or other recording devices and associate equipment.
  • Thermometer
  • In some embodiments, the electro-active spectacles may comprise a digital thermometer to measure and display the temperature of the environment.
  • Remote Controller
  • In some embodiments, the electro-active spectacles may include a controller for other devices (e.g. a garage door, a car, etc.), by touch or pressing the side of the temple in certain predefined finger moves, very convenient for seniors. A similar to the signal path and components described in fall monitor above may be utilized for this component.
  • Data Collection Unit
  • A data collection unit may be used by a user and located on the electro-active spectacles. Data that can be collected can include the on and off angles when the eyeglass are controlled manually, the time interval between two sequential battery charges, the wearer's behavior or physical date, such as daily calorie burning rate, real time pulse, skin moisture, daily UV exposure, etc. Data can be wirelessly transferred to a device with high computation power in-real time, or stored in the memory residing in the module and transferred after data collection. The receiving device can use artificial intelligence to analyze the data for specific applications, such as to train the software to reset the personalized control parameter, or provides some recommendations for wearer's daily activity.
  • In some embodiments, the data collection can be a unit separate from the frame/lens electronics that can be used to capture data stored in the electronic frames. For example, data stored in RAM included in the lens electronics can be relayed to the remote unit. Data can be relayed via a wireless or wired link including infrared. Data can be stored in local storage of the frame electronics for long periods of time and collected periodically or instantaneous data collection can be provided.
  • The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
  • A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary

Claims (17)

What is claimed is:
1. A device comprising:
a lens;
a lens housing configured to support the lens;
an end piece;
a plurality of vertebrae, one of the plurality of vertebrae being coupled to the end piece;
a temple coupled to another one of the plurality of vertebrae;
an electronics module coupled to the temple; and
a conductive path provided from the electronics module to the lens housing;
wherein the plurality of vertebrae are configured to allow the temple to move relative to the lens housing; and
wherein the vertebrae cover a portion of the conductive path.
2. The device of claim 1, further comprising an electronic component coupled to the lens housing; and wherein the conductive path is provided from the electronics module to the electronic component.
3. The device of claim 2, wherein the electronic component comprising at least one of the group consisting essentially of an electronic focusing component, an electro-chromic component, an electronic tinted component, a micro-display, an electronic heads up display, an antistatic component, an electronic shutter component, an occlusion control component, a myopia control component, a telescopic component, a microscopic component, a camera, a directional microphone, a rangefinder, an image intensifier, and a night vision enhancement component.
4. The device of claim 1, wherein the electronics module comprises an electronic component.
5. The device of claim 4, wherein the electronic component of the electronics module comprises a power source, a controller, or a sensing mechanism.
6. The device of claim 1, further comprising a pogo pin coupled to the temple and configured to maintain an electrical contact between the conductive path and the lens housing throughout a plurality of positions between the temple and the lens housing.
7. The device of claim 6, wherein the pogo pin comprises a spring and a conductor that forms a portion of the conductive path.
8. The device of claim 7, wherein the temple defines a cavity configured to house the spring of the pogo pin.
9. The device of claim 8, wherein the temple defines a second cavity configured to house the electronics module.
10. The device of claim 8, wherein the conductive path further comprises an electrical connector embedded in the temple that connects the electronics module to the pogo pin.
11. The device of claim 7, wherein the end piece is configured to expose a portion of the conductor of the pogo pin.
12. The device of claim 6, further comprising a second conductive path provided from the electronics module to the lens housing and a second pogo comprising a conductor that forms a portion of the second conductive path.
13. The device of claim 1, further comprising a second conductive path provided from the electronics module to the lens housing.
14. The device of claim 1, wherein the plurality of vertebrae comprises three vertebrae.
15. The device of claim 1, wherein the lens housing is rimless.
16. The device of claim 1, wherein the lens housing is semi-rimless.
17. The device of claim 1, wherein the lens housing is full rimmed.
US14/303,381 2010-07-02 2014-06-12 Spectacles Abandoned US20140293215A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/303,381 US20140293215A1 (en) 2010-07-02 2014-06-12 Spectacles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36111010P 2010-07-02 2010-07-02
US37671910P 2010-08-25 2010-08-25
US41539110P 2010-11-19 2010-11-19
US13/175,633 US8783861B2 (en) 2010-07-02 2011-07-01 Frame design for electronic spectacles
US14/303,381 US20140293215A1 (en) 2010-07-02 2014-06-12 Spectacles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/175,633 Continuation US8783861B2 (en) 2007-05-04 2011-07-01 Frame design for electronic spectacles

Publications (1)

Publication Number Publication Date
US20140293215A1 true US20140293215A1 (en) 2014-10-02

Family

ID=45399484

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/175,634 Abandoned US20120002160A1 (en) 2007-05-04 2011-07-01 Frame design for electronic spectacles
US13/175,633 Active 2032-03-08 US8783861B2 (en) 2007-05-04 2011-07-01 Frame design for electronic spectacles
US14/303,381 Abandoned US20140293215A1 (en) 2010-07-02 2014-06-12 Spectacles

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/175,634 Abandoned US20120002160A1 (en) 2007-05-04 2011-07-01 Frame design for electronic spectacles
US13/175,633 Active 2032-03-08 US8783861B2 (en) 2007-05-04 2011-07-01 Frame design for electronic spectacles

Country Status (4)

Country Link
US (3) US20120002160A1 (en)
AR (2) AR082108A1 (en)
TW (2) TW201224572A (en)
WO (2) WO2012003500A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9451068B2 (en) 2001-06-21 2016-09-20 Oakley, Inc. Eyeglasses with electronic components
US9494807B2 (en) 2006-12-14 2016-11-15 Oakley, Inc. Wearable high resolution audio visual interface
US9619201B2 (en) 2000-06-02 2017-04-11 Oakley, Inc. Eyewear with detachable adjustable electronics module
US9720260B2 (en) 2013-06-12 2017-08-01 Oakley, Inc. Modular heads-up display system
US9720258B2 (en) 2013-03-15 2017-08-01 Oakley, Inc. Electronic ornamentation for eyewear
US10222617B2 (en) 2004-12-22 2019-03-05 Oakley, Inc. Wearable electronically enabled interface system
EP3483647A1 (en) 2017-11-08 2019-05-15 Essilor International (Compagnie Generale D'optique) Spectacle frame comprising electrical conductors and having a controlled foldability, method of manufacturing
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US10698205B2 (en) 2018-02-01 2020-06-30 Beijing Forever Technology Co., Ltd. Device adapted to eyeglasses
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
US11300813B2 (en) 2016-06-13 2022-04-12 Essilor International Frame for a head mounted device
US11402668B2 (en) * 2017-09-25 2022-08-02 Mitsui Chemicals, Inc. Frame component, temple, frame, and eyewear

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944590B2 (en) 2010-07-02 2015-02-03 Mitsui Chemicals, Inc. Electronic spectacle frames
US8905541B2 (en) 2010-07-02 2014-12-09 Mitsui Chemicals, Inc. Electronic spectacle frames
CA2844986A1 (en) 2011-08-17 2013-02-21 Pixeloptics, Inc. Moisture-resistant electronic spectacle frames
JP5767082B2 (en) * 2011-11-04 2015-08-19 シャープ株式会社 Glasses type wireless communication device
CA3167661A1 (en) * 2012-01-06 2013-07-11 E-Vision Smart Optics, Inc. Eyewear docking station and electronic module
WO2013163038A1 (en) * 2012-04-25 2013-10-31 Pixeloptics, Inc. Electrically conductive lens connection and methods of making the same
US9436009B1 (en) 2013-06-28 2016-09-06 Google Inc. Modular accessories for head-mountable device
KR102102643B1 (en) * 2013-11-12 2020-04-21 엘지전자 주식회사 Glass Type Terminal
US10020476B2 (en) * 2014-03-28 2018-07-10 American Lithium Energy Corporation Articulate battery case
USD747760S1 (en) * 2014-11-18 2016-01-19 Wen-Tse HUANG Set of eyeglasses frame components
KR20160101497A (en) * 2015-02-17 2016-08-25 삼성전자주식회사 Wearable device and method for operating thereof
US10054801B2 (en) * 2015-06-26 2018-08-21 Visottica Industrie S.P.A. Process for mounting an elastic hinge
WO2017051094A1 (en) * 2015-09-24 2017-03-30 Essilor International (Compagnie Generale D'optique) Electronic spectacle frame
US10901234B2 (en) * 2015-09-24 2021-01-26 Essilor International Electronic frame for optical device and optical device comprising such a frame
EP3264162B1 (en) * 2016-06-30 2022-01-12 Essilor International Spectacle frame element
SE540628C2 (en) * 2016-11-01 2018-10-09 Skugga Tech Ab Hinge between a frame and a temple of spectacles
IT201600125574A1 (en) * 2016-12-13 2018-06-13 Safilo Sa Fabbrica Italiana Lavorazione Occhiali Spa Glasses with bio-sensors
US11526034B1 (en) * 2017-02-01 2022-12-13 Ram Pattikonda Eyewear with flexible audio and advanced functions
IT201700062337A1 (en) * 2017-06-07 2018-12-07 Safilo Sa Fabbrica Italiana Lavorazione Occhiali Spa Glasses with earphones
IT201700062334A1 (en) * 2017-06-07 2018-12-07 Safilo Sa Fabbrica Italiana Lavorazione Occhiali Spa Glasses with bio-sensors
US20190198981A1 (en) * 2017-12-22 2019-06-27 North Inc. Wearable heads-up displays employing a core wire communicatively coupled to a radio as an antenna
CN108490639A (en) * 2018-05-31 2018-09-04 北京达佳互联信息技术有限公司 Fixing bracket, spectacle frame and intelligent glasses
US10353221B1 (en) * 2018-07-31 2019-07-16 Bose Corporation Audio eyeglasses with cable-through hinge and related flexible printed circuit
US20220357598A1 (en) * 2019-08-09 2022-11-10 Mitsui Chemicals, Inc. Frame and eyewear
CN111596471B (en) * 2020-05-11 2023-01-31 维沃移动通信有限公司 Wearable device
TWM606182U (en) * 2020-09-17 2021-01-01 鄭溪州 Multifunctional glasses with Bluetooth wireless dual-channel headset
US11489336B1 (en) 2021-06-29 2022-11-01 Microsoft Technology Licensing, Llc Two wire power delivery system for mobile devices with passive orientation detection
CN113820861B (en) * 2021-09-03 2023-04-25 歌尔科技有限公司 Intelligent glasses and control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177277A1 (en) * 2009-01-09 2010-07-15 Pixeloptics, Inc. Electro-active spectacles and associated electronics
US8757797B2 (en) * 2008-12-30 2014-06-24 Guido Medana Elastic constraint system for eyeglasses assembly and eyeglasses obtained by such system

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930857A (en) * 1953-12-31 1960-03-29 Eleanor Humphries Spectacles concealed hearing-aid
DE2304134B2 (en) 1972-02-17 1974-06-12 Gould Inc., Chicago, Ill. (V.St.A.) Hearing glasses
CA1068950A (en) 1975-10-23 1980-01-01 Robert H. Postal Variable light transmissive electro-optical lenses
US4021935A (en) 1976-02-20 1977-05-10 Frank Witt Flight training hood
US4283127A (en) 1979-11-29 1981-08-11 Marvin Glass & Associates Novelty eyeglasses
IT8130628V0 (en) 1981-03-05 1981-03-05 Desil Occhialeria S P A METAL CIRCLE WITH PLASTIC GASKET PARTICULARLY FOR GLASSES FRAMES.
US4418990A (en) 1981-07-20 1983-12-06 Gerber Scientific, Inc. Eyeglasses and other lenses of variable focal length and means and method for varying such focal length
US4756605A (en) 1985-02-01 1988-07-12 Olympus Optical Co., Ltd. Liquid crystal spectacles
US4907860A (en) 1988-03-03 1990-03-13 Noble Lowell A Three dimensional viewing glasses
US4875030A (en) 1989-03-13 1989-10-17 Chiu Shui W Sleep-preventing alarm device
JP2817178B2 (en) 1989-04-07 1998-10-27 株式会社ニコン Metal frame for glasses
US4967268A (en) 1989-07-31 1990-10-30 Stereographics Liquid crystal shutter system for stereoscopic and other applications
DE4008086A1 (en) 1989-11-04 1991-09-19 Obe Werk Kg SPRING HINGE FOR EYEWEAR
US5182585A (en) 1991-09-26 1993-01-26 The Arizona Carbon Foil Company, Inc. Eyeglasses with controllable refracting power
DE9306387U1 (en) 1992-07-27 1993-07-08 Obe-Werk Ohnmacht & Baumgaertner Gmbh & Co Kg, 7536 Ispringen, De
US5835185A (en) * 1993-09-10 1998-11-10 Kallman; William R. Spring-hinged frame for eyeware
US5463428A (en) 1994-02-08 1995-10-31 Stereographics Corporation Wireless active eyewear for stereoscopic applications
US5742379A (en) 1995-11-29 1998-04-21 Reifer; Michael H. Device and method for electronically measuring distances
JPH09294654A (en) 1996-05-02 1997-11-18 Morisaki Kogei Kk Seat for bedding
JP2739572B2 (en) 1996-05-13 1998-04-15 アイテック株式会社 Hinge with spring mechanism for glasses
US5764338A (en) 1996-07-09 1998-06-09 Mack; Carol Anne Holder for a mask or the like
US6097450A (en) 1996-09-20 2000-08-01 Humphrey Engineering, Inc. Method and apparatus for enhanced high-speed perception (EHP) of a moving object using an optical shutter spectacle
US6626532B1 (en) 1997-06-10 2003-09-30 Olympus Optical Co., Ltd. Vari-focal spectacles
NL1007321C2 (en) 1997-10-20 1999-04-21 Univ Delft Tech Hearing aid to improve audibility for the hearing impaired.
JP2975361B1 (en) 1998-11-10 1999-11-10 株式会社タケダ企画 Spring hinge for glasses
US6115177A (en) 1999-04-06 2000-09-05 Gateway, Inc. Interactive 3-D viewing glasses
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6871951B2 (en) 2000-06-23 2005-03-29 E-Vision, Llc Electro-optic lens with integrated components
US7290875B2 (en) 2004-11-02 2007-11-06 Blum Ronald D Electro-active spectacles and method of fabricating same
US20070258039A1 (en) 1999-07-02 2007-11-08 Duston Dwight P Spectacle frame bridge housing electronics for electro-active spectacle lenses
US6163926A (en) * 1999-11-12 2000-12-26 Ppg Industries Ohio, Inc. Split-pin hinge with wire extending therethrough
WO2001035159A1 (en) 1999-11-12 2001-05-17 Ppg Industries Ohio, Inc. Split-pin hinge with wire extending therethrough
JP3110736B1 (en) 2000-01-12 2000-11-20 増永眼鏡株式会社 Rimless spectacle frames and rimless spectacles
US20010043266A1 (en) 2000-02-02 2001-11-22 Kerry Robinson Method and apparatus for viewing stereoscopic three- dimensional images
US6769767B2 (en) 2001-04-30 2004-08-03 Qr Spex, Inc. Eyewear with exchangeable temples housing a transceiver forming ad hoc networks with other devices
US6582075B1 (en) 2001-10-18 2003-06-24 Qr Spex, Inc. Eyeglass temple attachment mechanism
US6719425B2 (en) 2002-03-15 2004-04-13 Microvision Optical, Inc. Ultra-light, hingeless plastic eyeglass frame
US7140727B2 (en) 2002-07-10 2006-11-28 Isl Technologies, Llc Eyeglass frame assembly
US6595634B1 (en) 2002-07-10 2003-07-22 James F. Pilat, Jr. Eyeglass frame assembly
US7104645B2 (en) 2002-07-10 2006-09-12 Pilat Jr James F Eyeglass frame assembly
NL1021485C2 (en) 2002-09-18 2004-03-22 Stichting Tech Wetenschapp Hearing glasses assembly.
US7192136B2 (en) 2003-04-15 2007-03-20 Howell Thomas A Tethered electrical components for eyeglasses
US7922321B2 (en) 2003-10-09 2011-04-12 Ipventure, Inc. Eyewear supporting after-market electrical components
US7500747B2 (en) 2003-10-09 2009-03-10 Ipventure, Inc. Eyeglasses with electrical components
US8465151B2 (en) 2003-04-15 2013-06-18 Ipventure, Inc. Eyewear with multi-part temple for supporting one or more electrical components
US6866386B1 (en) 2003-12-22 2005-03-15 Joy Chen Combination of a plastic frame and a lens
GB2412431B (en) 2004-03-25 2007-11-07 Hewlett Packard Development Co Self-calibration for an eye tracker
US20050237485A1 (en) 2004-04-21 2005-10-27 Blum Ronald D Method and apparatus for correcting vision
US20050242771A1 (en) 2004-04-30 2005-11-03 Blum Ronald D Method and apparatus for recharging eyeglasses
US7063420B2 (en) 2004-05-14 2006-06-20 Isl Technologies, Llc Adjustable tensioning system for rimless eyewear
US7237892B2 (en) 2004-06-02 2007-07-03 Bacou-Dalloz Eye & Face Protection, Inc. Temple bar with ball and socket hinge and method of making same
EP1647854A1 (en) 2004-10-14 2006-04-19 Sunshine Optical Company Limited Ornamentation for eyeglasses
CA2586235C (en) 2004-11-02 2014-06-03 E-Vision, Llc Electro-active spectacles and method of fabricating same
US7108371B1 (en) 2005-03-11 2006-09-19 Aspex Eyeware, Inc. Eyeglasses with magnetic mounting including a magnetic field blocking member
EP1727393A1 (en) 2005-05-24 2006-11-29 Varibel B.V. Connector assembly for connecting an earpiece of a hearing aid to a glasses temple
ATE408975T1 (en) 2005-05-24 2008-10-15 Varibel B V CONNECTION ARRANGEMENT FOR CONNECTING AN EAR MOLD OF A HEARING AID TO A GLASSES TEMPLE
KR100704494B1 (en) 2005-11-30 2007-04-09 주식회사 에이텍옵티컬 Eye glasses spring hinge
US7784935B2 (en) 2006-01-20 2010-08-31 Jackson Michael T Eyewear with removable audio system
US20090002626A1 (en) * 2006-02-28 2009-01-01 Temco Japan Co., Ltd. Glasses Type Sound/Communication Device
US20080273166A1 (en) * 2007-05-04 2008-11-06 William Kokonaski Electronic eyeglass frame
NL2000085C2 (en) 2006-06-02 2007-12-04 Varibel B V Glasses with hearing aids that only use one omnidirectional microphone per ear bracket.
MX2008016278A (en) 2006-06-23 2009-03-26 Pixeloptics Inc Electronic adapter for electro-active spectacle lenses.
TW200815817A (en) * 2006-09-11 2008-04-01 Alphamicron Inc Interconnection tab used with optical devices
JP2008083299A (en) 2006-09-27 2008-04-10 Biito:Kk Structure for lens mounting part of spectacle frame, and lens mounting method
FR2907559B1 (en) 2006-10-19 2009-02-13 Essilor Int ELECRO-COMMANDABLE OPTICAL COMPONENT COMPRISING A SET OF CELLS
US20080106695A1 (en) 2006-10-23 2008-05-08 William Kokonaski Low battery indicator for electro-active spectacles
US7524057B2 (en) 2007-06-21 2009-04-28 Mazal Agazarova Finished leather covered eyewear device and method
US7813048B2 (en) 2007-10-30 2010-10-12 Supertex, Inc. Inductorless electroactive lens driver and system
EP2637059B1 (en) 2007-12-21 2014-09-17 Panasonic Healthcare Co., Ltd. Method for manufacturing lens for electronic spectacles
EP2115529B1 (en) 2008-02-05 2012-04-18 Laura Maria Cozzani Spectacles with light sources for illuminating an object observed through the lens and related earpieces
US8523354B2 (en) 2008-04-11 2013-09-03 Pixeloptics Inc. Electro-active diffractive lens and method for making the same
JP5551587B2 (en) 2008-05-09 2014-07-16 スカラ株式会社 Variable focus lens, liquid crystal lens, and apparatus for stimulating eyes using the same
US8092013B2 (en) 2008-10-28 2012-01-10 Johnson & Johnson Vision Care, Inc. Apparatus and method for activation of components of an energized ophthalmic lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8757797B2 (en) * 2008-12-30 2014-06-24 Guido Medana Elastic constraint system for eyeglasses assembly and eyeglasses obtained by such system
US20100177277A1 (en) * 2009-01-09 2010-07-15 Pixeloptics, Inc. Electro-active spectacles and associated electronics

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9619201B2 (en) 2000-06-02 2017-04-11 Oakley, Inc. Eyewear with detachable adjustable electronics module
US9451068B2 (en) 2001-06-21 2016-09-20 Oakley, Inc. Eyeglasses with electronic components
US10222617B2 (en) 2004-12-22 2019-03-05 Oakley, Inc. Wearable electronically enabled interface system
US10120646B2 (en) 2005-02-11 2018-11-06 Oakley, Inc. Eyewear with detachable adjustable electronics module
US10288886B2 (en) 2006-12-14 2019-05-14 Oakley, Inc. Wearable high resolution audio visual interface
US9494807B2 (en) 2006-12-14 2016-11-15 Oakley, Inc. Wearable high resolution audio visual interface
US9720240B2 (en) 2006-12-14 2017-08-01 Oakley, Inc. Wearable high resolution audio visual interface
US11061252B2 (en) 2007-05-04 2021-07-13 E-Vision, Llc Hinge for electronic spectacles
US10613355B2 (en) 2007-05-04 2020-04-07 E-Vision, Llc Moisture-resistant eye wear
US11586057B2 (en) 2007-05-04 2023-02-21 E-Vision, Llc Moisture-resistant eye wear
US9720258B2 (en) 2013-03-15 2017-08-01 Oakley, Inc. Electronic ornamentation for eyewear
US9720260B2 (en) 2013-06-12 2017-08-01 Oakley, Inc. Modular heads-up display system
US10288908B2 (en) 2013-06-12 2019-05-14 Oakley, Inc. Modular heads-up display system
US11300813B2 (en) 2016-06-13 2022-04-12 Essilor International Frame for a head mounted device
US11402668B2 (en) * 2017-09-25 2022-08-02 Mitsui Chemicals, Inc. Frame component, temple, frame, and eyewear
EP3483647A1 (en) 2017-11-08 2019-05-15 Essilor International (Compagnie Generale D'optique) Spectacle frame comprising electrical conductors and having a controlled foldability, method of manufacturing
WO2019092121A1 (en) 2017-11-08 2019-05-16 Essilor International Spectacle frame comprising electrical conductors and having a controlled foldability, method of manufacturing
US11668954B2 (en) 2017-11-08 2023-06-06 Essilor International Spectacle frame comprising electrical conductors and having a controlled foldability, method of manufacturing
US10698205B2 (en) 2018-02-01 2020-06-30 Beijing Forever Technology Co., Ltd. Device adapted to eyeglasses

Also Published As

Publication number Publication date
WO2012003500A3 (en) 2012-03-29
AR082108A1 (en) 2012-11-14
WO2012003500A4 (en) 2012-05-31
US20120002159A1 (en) 2012-01-05
WO2012003499A2 (en) 2012-01-05
WO2012003500A2 (en) 2012-01-05
WO2012003499A4 (en) 2012-05-31
US20120002160A1 (en) 2012-01-05
US8783861B2 (en) 2014-07-22
TW201227046A (en) 2012-07-01
TW201224572A (en) 2012-06-16
AR082107A1 (en) 2012-11-14
WO2012003499A3 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US8783861B2 (en) Frame design for electronic spectacles
US8979259B2 (en) Electro-active spectacle frames
US8944590B2 (en) Electronic spectacle frames
US8905541B2 (en) Electronic spectacle frames
WO2012068527A2 (en) Electronic spectacle frames
US20230086814A1 (en) Eyewear docking station and electronic module
CN111512211B (en) Augmented reality display system
JP2020523628A (en) Detachable augmented reality system for eyewear
US20130235332A1 (en) Eyewear including a docking station
WO2012006631A2 (en) Electro-active spectacles frames
US20220057657A1 (en) Moisture-resistant eye wear
CN109254419A (en) Micro- Expression Recognition glasses and spectacle case
CN110780462A (en) Intelligent glasses with eye protection function

Legal Events

Date Code Title Description
AS Assignment

Owner name: HPO ASSETS LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PIXELOPTICS, INC.;REEL/FRAME:034576/0397

Effective date: 20140731

Owner name: PIXELOPTICS, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLUM, RONALD D.;DALLA LONGA, CLAUDIO;GRAHAM, MARK;AND OTHERS;SIGNING DATES FROM 20120410 TO 20120703;REEL/FRAME:034576/0255

Owner name: MITSUI CHEMICALS, INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HPO ASSETS LLC;REEL/FRAME:034576/0447

Effective date: 20140922

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION