US20110303533A1 - Electrolyzer device having cooling structure - Google Patents

Electrolyzer device having cooling structure Download PDF

Info

Publication number
US20110303533A1
US20110303533A1 US12/802,552 US80255210A US2011303533A1 US 20110303533 A1 US20110303533 A1 US 20110303533A1 US 80255210 A US80255210 A US 80255210A US 2011303533 A1 US2011303533 A1 US 2011303533A1
Authority
US
United States
Prior art keywords
housing
electrolyzer
fluid
communicative
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/802,552
Inventor
Wen Shing Shyu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/802,552 priority Critical patent/US20110303533A1/en
Publication of US20110303533A1 publication Critical patent/US20110303533A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to an electrolyzer device, and more particularly to an electrolyzer device including a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.
  • Typical electrolytic cells or electrolyzer devices comprise one or more anodes and one or more cathodes disposed within a cell body or container that is provided for receiving electrolyte therein, for generating anolyte and catholyte by energizing or actuating or operating the anodes and the cathodes, and for utilizing the anolyte and the catholyte to electroplate various kinds of work pieces, for example.
  • the anolyte and the catholyte are required to be separated from each other, for such as manufacturing or separating chlorine and caustic from brine. Accordingly, one or more separators or separating devices are required to be disposed or engaged into the electrolytic cells or electrolyzers for separating the anolyte and the catholyte from each other in the typical electrolytic cells.
  • U.S. Pat. No. 4,457,813 to Rogers et al. discloses three of the typical electrolytic cells or electrolyzer devices each comprising one or more anodes and one or more cathodes disposed within a cell body or container that is provided for receiving electrolyte therein, for generating anolyte and catholyte by energizing or actuating or operating the anodes and the cathodes respectively, and for employing or utilizing the anolyte and the catholyte to electroplate various kinds of work pieces, for example.
  • the typical electrolytic cells or electrolyzer devices each comprise one or more parts or elements that may generate the heat and that may have a greatly increased temperature, such as transformers, capacitors, diodes, field effect transistors, rectifiers, resistors, coils, relays, and the heat generating parts or elements may be overheated and damaged inadvertently when no suitable cooling structure has been provided for suitably cooling the parts or elements.
  • the present invention has arisen to mitigate and/or obviate the afore-described disadvantages of the conventional electrolyzer devices.
  • the primary objective of the present invention is to provide an electrolyzer device including a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.
  • an electrolyzer assembly comprising a housing, a partition disposed in the housing for separating an inner portion of the housing into a chamber and a compartment, at least one heat generating element received and engaged in the chamber of the housing, an insert filled and engaged into the chamber of the housing for sealing and retaining the heat generating element within the chamber of the housing, and the housing includes an inlet port communicative with the compartment of the housing for receiving a fluid and for heat exchanging with and for cooling the heat generating element, and includes an outlet port also communicative with the compartment of the housing for outward flowing of the fluid.
  • the fluid is preferably selected from water, brine, anolyte, catholyte, or electrolytic solution, and the insert is preferably selected from epoxy.
  • the housing includes at least one fin extended therein for defining an inlet conduit which is communicative with the inlet port of the housing, and for defining an outlet conduit which is communicative with the outlet port of the housing.
  • the housing includes a first fin extended therein for defining an inlet conduit which is communicative with the inlet port of the housing for receiving the fluid, and includes a second fin extended therein for defining an outlet conduit which is communicative with the outlet port of the housing and for outward flowing of the fluid.
  • the housing includes an intermediate conduit formed between the first fin and the second fin, and includes a passage in a lower portion of the first fin for communicating with the inlet conduit and the intermediate conduit of the housing.
  • the housing includes an upper pathway and a lower pathway formed in the second fin for allowing the fluid to flow from the intermediate conduit into the outlet conduit and the outlet port of the housing.
  • the housing includes a circuit board disposed and engaged into the chamber of the housing, and the heat generating element is attached to the circuit board.
  • the heat generating element is selected from transformer, capacitor, diode, transistor, rectifier, resistor, coil, or relay.
  • a container may further be provided for receiving the housing, and an electrolyzer may further be provided and mounted on an upper portion of the container and includes an entrance for receiving the fluid and includes an exit coupled to the inlet port of the housing for supplying the fluid into the inlet port and the chamber of the housing.
  • FIG. 1 is a partial exploded view of an electrolyzer device in accordance with the present invention
  • FIG. 2 is a perspective view of the electrolyzer device
  • FIG. 3 is a front plan schematic view of the electrolyzer device, in which a portion of the electrolyzer device has been cut off for showing the inner structure of the electrolyzer device;
  • FIGS. 4 , 5 are cross sectional views of the electrolyzer device, taken along lines 4 - 4 and 5 - 5 of FIG. 3 respectively;
  • FIG. 6 is another partial exploded view of the electrolyzer device
  • FIG. 7 is a further partial exploded view of the electrolyzer device, as seen from the direction opposite to that shown in FIG. 6 ;
  • FIG. 8 is a partial cross sectional view of the electrolyzer device, taken along lines 8 - 8 of FIG. 1 ;
  • FIG. 9 is a partial cross sectional view similar to FIG. 8 , illustrating the operation of the electrolyzer device.
  • FIG. 10 is a diagram illustrating the time-and-temperature curvature formed by the electrolyzer device.
  • an electrolyzer device or combination or assembly 1 in accordance with the present invention comprises a container 10 , an electrolyzer 20 attached or mounted or secured onto the upper portion 11 of the container 10 and including an entrance 21 for receiving a fluid 80 , such as water or brine or anolyte or catholyte or other fluid or electrolytic solutions 80 ( FIGS.
  • the electrolyzer device or assembly 1 further includes a housing 30 including a partition 31 disposed or attached or mounted in the housing 30 for separating the inner portion of the housing 30 into a chamber 32 and a compartment 33 , and includes a circuit board 50 disposed or attached or engaged into the chamber 32 of the housing 30 and having a number of parts or elements 51 - 58 attached to the circuit board 50 and also received or engaged in the chamber 32 of the housing 30 , that may generate the heat and that may have a greatly increased temperature, such as transformers 51 , capacitors 52 , diodes 53 , field effect transistors 54 , rectifiers 55 , resistors 56 , coils 57 , relays 58 , etc.
  • a heat dissipating glue or filling member or insert 60 is filled or engaged into the chamber 32 of the housing 30 ( FIGS. 1 , 4 , 5 ) for suitably covering and sealing and retaining the circuit board 50 and the parts or elements 51 - 58 within the chamber 32 of the housing 30 , and for heat dissipating purposes, for example, the filling member or insert 60 may be selected from epoxy, or the like.
  • the housing 30 includes an inlet port 34 formed or provided on the upper portion 35 thereof and communicative with the compartment 33 of the housing 30 , and an outlet port 36 formed or provided on the lower portion 37 thereof and also communicative with the compartment 33 of the housing 30 .
  • the inlet port 34 of the housing 30 is coupled to the exit 22 of the electrolyzer 20 ( FIGS. 5-9 ) for receiving the fluid or electrolytic solution 80 or either the anolyte or the catholyte from the exit 22 of the electrolyzer 20 .
  • the housing 30 includes one or more (such as two) flaps or ribs or separating fins 38 , 39 provided or extended therein, for example, the fin 38 is extended downwardly from the upper portion 35 of the housing 30 , but not coupled to the lower portion 37 of the housing 30 , for forming or defining a passage 40 in the lower portion of the fin 38 , and for forming or defining an inlet or flowing conduit 41 that is communicative with the inlet port 34 of the housing 30 and for receiving the fluid or electrolytic solution 80 or either the anolyte or the catholyte from the inlet port 34 of the housing 30 , and for forming or defining a middle or intermediate or flowing conduit 42 between the fins 38 , 39 , in which the intermediate conduit 42 is communicative with the inlet conduit 41 with the passage 40 of the fin 38 and/or of the housing 30 .
  • the intermediate conduit 42 is communicative with the inlet conduit 41 with the passage 40 of the fin 38 and/or of the housing 30 .
  • An outlet or flowing conduit 43 is formed or defined by the other fin 39 and is communicative with the outlet port 36 of the housing 30 , and the fin 39 includes an upper pathway 44 and a lower pathway 45 formed therein for allowing the fluid or electrolytic solution 80 to flow from the intermediate conduit 42 into the outlet conduit 43 and then to flow out through the outlet port 36 of the housing 30 .
  • the fins 38 , 39 and/or the pathways 44 , 45 of the housing 30 are arranged to guide the fluid or electrolytic solution 80 to flow from the inlet conduit 41 into the intermediate conduit 42 and then to flow into the outlet conduit 43 and then to flow out through the outlet port 36 of the housing 30 when the fluid or electrolytic solution 80 continuously flows into the inlet conduit 41 of the housing 30 .
  • the lower pathway 45 of the fin 39 and/or of the housing 30 includes a width or height or dimension smaller than that of the passage 40 of the fin 38 and/or of the housing 30 , and is arranged to allow the fluid or electrolytic solution 80 to flow from the intermediate conduit 42 into the outlet conduit 43 of the housing 30 and then to flow out through the outlet port 36 of the housing 30 when the fluid or electrolytic solution 80 is no longer supplied into the inlet conduit 41 of the housing 30 .
  • the lower pathway 45 of the fin 39 and/or of the housing 30 includes a width or height or dimension smaller than that of the passage 40 of the fin 38 and/or of the housing 30 , and is arranged to allow the fluid or electrolytic solution 80 to flow from the intermediate conduit 42 into the outlet conduit 43 of the housing 30 and then to flow out through the outlet port 36 of the housing 30 when the fluid or electrolytic solution 80 is no longer supplied into the inlet conduit 41 of the housing 30 .
  • the fluid or electrolytic solution 80 may heat exchange with the heat generating parts or elements 51 - 58 for suitably cooling the parts or elements 51 - 58 under the temperature of about 70° C. ( FIG. 10 ), and for preventing the heat generating parts or elements 51 - 58 from being overheated and damaged by the high temperature.
  • the electrolyzer device or assembly in accordance with the present invention includes a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.

Abstract

An electrolyzer device includes a partition disposed in a housing for separating the housing into a chamber and a compartment, one or more heat generating elements received in the chamber of the housing, an insert or epoxy filled into the housing for retaining the heat generating elements within the chamber of the housing, and the housing includes an inlet port communicative with the compartment of the housing for receiving a fluid, such as water, brine, anolyte, catholyte, or electrolytic solution, and for heat exchanging with and for cooling the heat generating element, and includes an outlet port communicative with the compartment of the housing for outward flowing of the fluid.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an electrolyzer device, and more particularly to an electrolyzer device including a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.
  • 2. Description of the Prior Art
  • Typical electrolytic cells or electrolyzer devices comprise one or more anodes and one or more cathodes disposed within a cell body or container that is provided for receiving electrolyte therein, for generating anolyte and catholyte by energizing or actuating or operating the anodes and the cathodes, and for utilizing the anolyte and the catholyte to electroplate various kinds of work pieces, for example.
  • In some circumstances, the anolyte and the catholyte are required to be separated from each other, for such as manufacturing or separating chlorine and caustic from brine. Accordingly, one or more separators or separating devices are required to be disposed or engaged into the electrolytic cells or electrolyzers for separating the anolyte and the catholyte from each other in the typical electrolytic cells.
  • For example, U.S. Pat. No. 4,457,813 to Rogers et al., U.S. Pat. No. 4,761,208 to Gram et al., and U.S. Pat. No. 5,308,507to Robson disclose three of the typical electrolytic cells or electrolyzer devices each comprising one or more anodes and one or more cathodes disposed within a cell body or container that is provided for receiving electrolyte therein, for generating anolyte and catholyte by energizing or actuating or operating the anodes and the cathodes respectively, and for employing or utilizing the anolyte and the catholyte to electroplate various kinds of work pieces, for example.
  • However, the typical electrolytic cells or electrolyzer devices each comprise one or more parts or elements that may generate the heat and that may have a greatly increased temperature, such as transformers, capacitors, diodes, field effect transistors, rectifiers, resistors, coils, relays, and the heat generating parts or elements may be overheated and damaged inadvertently when no suitable cooling structure has been provided for suitably cooling the parts or elements.
  • The present invention has arisen to mitigate and/or obviate the afore-described disadvantages of the conventional electrolyzer devices.
  • SUMMARY OF THE INVENTION
  • The primary objective of the present invention is to provide an electrolyzer device including a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.
  • In accordance with one aspect of the invention, there is provided an electrolyzer assembly comprising a housing, a partition disposed in the housing for separating an inner portion of the housing into a chamber and a compartment, at least one heat generating element received and engaged in the chamber of the housing, an insert filled and engaged into the chamber of the housing for sealing and retaining the heat generating element within the chamber of the housing, and the housing includes an inlet port communicative with the compartment of the housing for receiving a fluid and for heat exchanging with and for cooling the heat generating element, and includes an outlet port also communicative with the compartment of the housing for outward flowing of the fluid.
  • The fluid is preferably selected from water, brine, anolyte, catholyte, or electrolytic solution, and the insert is preferably selected from epoxy.
  • The housing includes at least one fin extended therein for defining an inlet conduit which is communicative with the inlet port of the housing, and for defining an outlet conduit which is communicative with the outlet port of the housing.
  • For example, the housing includes a first fin extended therein for defining an inlet conduit which is communicative with the inlet port of the housing for receiving the fluid, and includes a second fin extended therein for defining an outlet conduit which is communicative with the outlet port of the housing and for outward flowing of the fluid.
  • The housing includes an intermediate conduit formed between the first fin and the second fin, and includes a passage in a lower portion of the first fin for communicating with the inlet conduit and the intermediate conduit of the housing.
  • The housing includes an upper pathway and a lower pathway formed in the second fin for allowing the fluid to flow from the intermediate conduit into the outlet conduit and the outlet port of the housing.
  • The housing includes a circuit board disposed and engaged into the chamber of the housing, and the heat generating element is attached to the circuit board. The heat generating element is selected from transformer, capacitor, diode, transistor, rectifier, resistor, coil, or relay.
  • A container may further be provided for receiving the housing, and an electrolyzer may further be provided and mounted on an upper portion of the container and includes an entrance for receiving the fluid and includes an exit coupled to the inlet port of the housing for supplying the fluid into the inlet port and the chamber of the housing.
  • Further objectives and advantages of the present invention will become apparent from a careful reading of the detailed description provided hereinbelow, with appropriate reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial exploded view of an electrolyzer device in accordance with the present invention;
  • FIG. 2 is a perspective view of the electrolyzer device;
  • FIG. 3 is a front plan schematic view of the electrolyzer device, in which a portion of the electrolyzer device has been cut off for showing the inner structure of the electrolyzer device;
  • FIGS. 4, 5 are cross sectional views of the electrolyzer device, taken along lines 4-4 and 5-5 of FIG. 3 respectively;
  • FIG. 6 is another partial exploded view of the electrolyzer device;
  • FIG. 7 is a further partial exploded view of the electrolyzer device, as seen from the direction opposite to that shown in FIG. 6;
  • FIG. 8 is a partial cross sectional view of the electrolyzer device, taken along lines 8-8 of FIG. 1;
  • FIG. 9 is a partial cross sectional view similar to FIG. 8, illustrating the operation of the electrolyzer device; and
  • FIG. 10 is a diagram illustrating the time-and-temperature curvature formed by the electrolyzer device.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the drawings, and initially to FIGS. 1-5, an electrolyzer device or combination or assembly 1 in accordance with the present invention comprises a container 10, an electrolyzer 20 attached or mounted or secured onto the upper portion 11 of the container 10 and including an entrance 21 for receiving a fluid 80, such as water or brine or anolyte or catholyte or other fluid or electrolytic solutions 80 (FIGS. 4-5, 8-9) and for allowing the fluid or electrolytic solution 80 to flow into the electrolyzer 20, and including an exit 22, and including an anode plate 23 and a cathode plate 24 disposed or attached or mounted in the electrolyzer 20 for generating and attracting an anolyte and a catholyte toward the anode plate 23 and the cathode plate 24 respectively, and for directing or supplying either the anolyte or the catholyte toward the exit 22 of the electrolyzer 20.
  • The above-described structure for the electrolyzer 20, such as the anode plate 23 and the cathode plate 24 is typical and will not be described in further details. The electrolyzer device or assembly 1 further includes a housing 30 including a partition 31 disposed or attached or mounted in the housing 30 for separating the inner portion of the housing 30 into a chamber 32 and a compartment 33, and includes a circuit board 50 disposed or attached or engaged into the chamber 32 of the housing 30 and having a number of parts or elements 51-58 attached to the circuit board 50 and also received or engaged in the chamber 32 of the housing 30, that may generate the heat and that may have a greatly increased temperature, such as transformers 51, capacitors 52, diodes 53, field effect transistors 54, rectifiers 55, resistors 56, coils 57, relays 58, etc.
  • A heat dissipating glue or filling member or insert 60 is filled or engaged into the chamber 32 of the housing 30 (FIGS. 1, 4, 5) for suitably covering and sealing and retaining the circuit board 50 and the parts or elements 51-58 within the chamber 32 of the housing 30, and for heat dissipating purposes, for example, the filling member or insert 60 may be selected from epoxy, or the like. The housing 30 includes an inlet port 34 formed or provided on the upper portion 35 thereof and communicative with the compartment 33 of the housing 30, and an outlet port 36 formed or provided on the lower portion 37 thereof and also communicative with the compartment 33 of the housing 30. The inlet port 34 of the housing 30 is coupled to the exit 22 of the electrolyzer 20 (FIGS. 5-9) for receiving the fluid or electrolytic solution 80 or either the anolyte or the catholyte from the exit 22 of the electrolyzer 20.
  • The housing 30 includes one or more (such as two) flaps or ribs or separating fins 38, 39 provided or extended therein, for example, the fin 38 is extended downwardly from the upper portion 35 of the housing 30, but not coupled to the lower portion 37 of the housing 30, for forming or defining a passage 40 in the lower portion of the fin 38, and for forming or defining an inlet or flowing conduit 41 that is communicative with the inlet port 34 of the housing 30 and for receiving the fluid or electrolytic solution 80 or either the anolyte or the catholyte from the inlet port 34 of the housing 30, and for forming or defining a middle or intermediate or flowing conduit 42 between the fins 38, 39, in which the intermediate conduit 42 is communicative with the inlet conduit 41 with the passage 40 of the fin 38 and/or of the housing 30.
  • An outlet or flowing conduit 43 is formed or defined by the other fin 39 and is communicative with the outlet port 36 of the housing 30, and the fin 39 includes an upper pathway 44 and a lower pathway 45 formed therein for allowing the fluid or electrolytic solution 80 to flow from the intermediate conduit 42 into the outlet conduit 43 and then to flow out through the outlet port 36 of the housing 30. In operation, as shown in FIG. 8, the fins 38, 39 and/or the pathways 44, 45 of the housing 30 are arranged to guide the fluid or electrolytic solution 80 to flow from the inlet conduit 41 into the intermediate conduit 42 and then to flow into the outlet conduit 43 and then to flow out through the outlet port 36 of the housing 30 when the fluid or electrolytic solution 80 continuously flows into the inlet conduit 41 of the housing 30.
  • As shown in FIG. 9, the lower pathway 45 of the fin 39 and/or of the housing 30 includes a width or height or dimension smaller than that of the passage 40 of the fin 38 and/or of the housing 30, and is arranged to allow the fluid or electrolytic solution 80 to flow from the intermediate conduit 42 into the outlet conduit 43 of the housing 30 and then to flow out through the outlet port 36 of the housing 30 when the fluid or electrolytic solution 80 is no longer supplied into the inlet conduit 41 of the housing 30. In operation, as shown in FIG. 5, when the fluid or electrolytic solution 80 flows through the inlet conduit 41 and/or the intermediate conduit 42 and the outlet conduit 43 of the housing 30, the fluid or electrolytic solution 80 may heat exchange with the heat generating parts or elements 51-58 for suitably cooling the parts or elements 51-58 under the temperature of about 70° C. (FIG. 10), and for preventing the heat generating parts or elements 51-58 from being overheated and damaged by the high temperature.
  • Accordingly, the electrolyzer device or assembly in accordance with the present invention includes a cooling structure for suitably cooling the parts or elements that may generate the heat and that may have a greatly increased temperature and for preventing the heat generating parts or elements from being overheated and damaged.
  • Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made by way of example only and that numerous changes in the detailed construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.

Claims (10)

1. An electrolyzer assembly comprising:
a housing,
a partition disposed in said housing for separating an inner portion of said housing into a chamber and a compartment,
at least one heat generating element received and engaged in said chamber of said housing,
an insert filled and engaged into said chamber of said housing for sealing and retaining said at least one heat generating element within said chamber of said housing, and
said housing including an inlet port communicative with said compartment of said housing for receiving a fluid and for heat exchanging with and for cooling said at least one heat generating element, and including an outlet port also communicative with said compartment of said housing for outward flowing of said fluid.
2. The electrolyzer assembly as claimed in claim 1, wherein said fluid is selected from water, brine, anolyte, catholyte, or electrolytic solution.
3. The electrolyzer assembly as claimed in claim 1, wherein said insert is selected from epoxy.
4. The electrolyzer assembly as claimed in claim 1, wherein said housing includes at least one fin extended therein for defining an inlet conduit which is communicative with said inlet port of said housing, and for defining an outlet conduit which is communicative with said outlet port of said housing.
5. The electrolyzer assembly as claimed in claim 1, wherein said housing includes a first fin extended therein for defining an inlet conduit which is communicative with said inlet port of said housing, and includes a second fin extended therein for defining an outlet conduit which is communicative with said outlet port of said housing.
6. The electrolyzer assembly as claimed in claim 5, wherein said housing includes an intermediate conduit formed between said first fin and said second fin, and includes a passage in a lower portion of said first fin for communicating with said inlet conduit and said intermediate conduit of said housing.
7. The electrolyzer assembly as claimed in claim 5, wherein said housing includes an upper pathway and a lower pathway formed in said second fin for allowing said fluid to flow into said outlet conduit and said outlet port of said housing.
8. The electrolyzer assembly as claimed in claim 1, wherein said housing includes a circuit board disposed and engaged into said chamber of said housing, and said at least one heat generating element is attached to said circuit board.
9. The electrolyzer assembly as claimed in claim 1, wherein said at least one heat generating element is selected from transformer, capacitor, diode, transistor, rectifier, resistor, coil, or relay.
10. The electrolyzer assembly as claimed in claim 1 further comprising a container, and an electrolyzer mounted on an upper portion of said container and including an entrance for receiving said fluid and including an exit coupled to said inlet port of said housing.
US12/802,552 2010-06-09 2010-06-09 Electrolyzer device having cooling structure Abandoned US20110303533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/802,552 US20110303533A1 (en) 2010-06-09 2010-06-09 Electrolyzer device having cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/802,552 US20110303533A1 (en) 2010-06-09 2010-06-09 Electrolyzer device having cooling structure

Publications (1)

Publication Number Publication Date
US20110303533A1 true US20110303533A1 (en) 2011-12-15

Family

ID=45095344

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/802,552 Abandoned US20110303533A1 (en) 2010-06-09 2010-06-09 Electrolyzer device having cooling structure

Country Status (1)

Country Link
US (1) US20110303533A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042019A1 (en) * 2010-12-22 2014-02-13 Techcross Co., Ltd. Electrolysis Device Integrating Rectifier
USD852244S1 (en) * 2017-07-04 2019-06-25 Tae Young E&T Co., Ltd. Fluid guiding device for electrolyzer
US10513447B2 (en) 2016-01-18 2019-12-24 Magen Eco Energy A.C.S. Ltd Chlorinator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060169647A1 (en) * 2004-10-26 2006-08-03 Kevin Doyle Inline chlorinator with integral control package and heat dissipation
US20070267296A1 (en) * 2006-05-16 2007-11-22 Wen Shing Shyu Electrolyzer having radial flowing passage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060169647A1 (en) * 2004-10-26 2006-08-03 Kevin Doyle Inline chlorinator with integral control package and heat dissipation
US20070267296A1 (en) * 2006-05-16 2007-11-22 Wen Shing Shyu Electrolyzer having radial flowing passage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042019A1 (en) * 2010-12-22 2014-02-13 Techcross Co., Ltd. Electrolysis Device Integrating Rectifier
US9394187B2 (en) * 2010-12-22 2016-07-19 Techcross Co., Ltd. Electrolysis device integrating rectifier
US10513447B2 (en) 2016-01-18 2019-12-24 Magen Eco Energy A.C.S. Ltd Chlorinator
US11091377B2 (en) 2016-01-18 2021-08-17 Magen Eco Energy A.C.S. Ltd Chlorinator
USD852244S1 (en) * 2017-07-04 2019-06-25 Tae Young E&T Co., Ltd. Fluid guiding device for electrolyzer

Similar Documents

Publication Publication Date Title
EP2253742A1 (en) Electrolysis device for preparation of hypochlorous water
US9169570B2 (en) Method and device for disinfectant production
US5888361A (en) Apparatus for producing hydrogen and oxygen
US20120031754A1 (en) Electrolyzer having radial flowing passage
US20110303533A1 (en) Electrolyzer device having cooling structure
EP2561121B1 (en) Electrolyzing system
JP2002129369A (en) Equipment for generating gas mixture of oxygen and hydrogen
CA2124616A1 (en) Apparatus for producing electrolyzed water
CN110684986B (en) Hydrogen production plant
US10280524B2 (en) Ozone water manufacturing device
CN106029582A (en) Apparatus for generating functional water
CN103648964A (en) Water server and air sterilization chamber for water server
CN106103805B (en) Electrolysis unit and electrode
KR101693826B1 (en) Water electrolysis apparatus and driving method thereof
CN104335404A (en) Drainage structure for gas outlet region in fuel cell stack
AR087123A1 (en) ELECTROLYSIS PLANT THAT INCLUDES CUBAS WITH CATHODIC OUTPUT BY THE FUND OF THE BOX AND MEANS OF STABILIZATION OF THE CUBAS
JP7382571B2 (en) Electrolyzed water generator
JP7022918B2 (en) Electrolyzed water generator
WO2017006911A1 (en) Electrolytic cell and electrolyzed-water generation device
JP4302386B2 (en) Electrolyzer
US20210148622A1 (en) Ice maker affixed with ozonated water and hypochlorous acid water capable of sterilizing bacteria
JP7122558B2 (en) Electrolyzed water generator
EP3397795A1 (en) Electrolytic cell for internal combustion engine
JP4929404B2 (en) Electrolysis using electrolysis
US7833390B2 (en) Electrolyzer having radial flowing passage

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION