EP0234595A2 - Light collecting optics for a flame detector - Google Patents

Light collecting optics for a flame detector Download PDF

Info

Publication number
EP0234595A2
EP0234595A2 EP87102853A EP87102853A EP0234595A2 EP 0234595 A2 EP0234595 A2 EP 0234595A2 EP 87102853 A EP87102853 A EP 87102853A EP 87102853 A EP87102853 A EP 87102853A EP 0234595 A2 EP0234595 A2 EP 0234595A2
Authority
EP
European Patent Office
Prior art keywords
prismatic body
collecting optics
light collecting
light
flame detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87102853A
Other languages
German (de)
French (fr)
Other versions
EP0234595A3 (en
Inventor
Gerhard Dr. Gaida
Franz Krug
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Carl Zeiss AG
Original Assignee
Carl Zeiss SMT GmbH
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH, Carl Zeiss AG filed Critical Carl Zeiss SMT GmbH
Publication of EP0234595A2 publication Critical patent/EP0234595A2/en
Publication of EP0234595A3 publication Critical patent/EP0234595A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • G01J5/022Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/042High-temperature environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/044Environment with strong vibrations or shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts

Definitions

  • the invention relates to light-collecting optics for the flame detector of an afterburner in an aircraft engine.
  • Detectors that provide a reliable indication of whether a flame has ignited in the afterburner must have a response time of less than 100 msec. exhibit.
  • a gas-filled switching tube sensitive to the ultraviolet spectral range from 200 nm to 270 nm is usually used as the radiation receiver, which has a sensitive area of approximately 10 mm in length and 1 mm in width, and the responds in a very wide angular range of more than 120 °. If the radiation receiver is attached to the periphery of the combustion chamber, the flame fills a very large part of the possible face angle of the radiation receiver.
  • the display sensitivity of the flame detector can be increased with light-collecting optics.
  • the invention has for its object to provide a light-collecting optics that are insensitive to vibration, not misaligned, work as maintenance-free as possible and can be used at temperatures up to 250oC.
  • a prismatic body with totally reflecting surfaces is provided as the light-collecting optics and that this prismatic body contains at least one hole for a radiation detector, and that this prismatic body also has a conical shape towards the combustion chamber of the afterburner one is transparent to the wavelength range detected by the radiation detector.
  • the prismatic body consists of a quartz transparent for the wavelength range from 200 nm to 270 nm, which is known under the name Suprasil.
  • the prismatic body is expediently designed as a light shaft with an inlet surface facing the combustion chamber of the afterburner and with side surfaces that are mirrored on the outside.
  • the execution of the light well from a transparent material in the mentioned wavelength range means that no end window or radiation inlet window is necessary.
  • two bores are provided in the prismatic body for receiving one radiation detector each, the second bore being arranged directly behind the first.
  • the use of two radiation detectors increases operational safety because two independent signals are delivered.
  • the advantages achieved by the invention are in particular that the reliability of the detector device is increased by the use of a single highly effective optical part.
  • the prismatic body is denoted by (1) and a borehole for receiving a radiation detector is denoted by (2).
  • a radiation detector is denoted by (2).
  • FIG. 3 a further borehole (3) for receiving a gas-filled switching tube used as a radiation receiver is shown behind the borehole (2).
  • the use of a second tube increases the operational safety of the detector device since two independent signals are obtained for the display.
  • the end face (4) of the prismatic body (1) designed as a light shaft connects directly to the combustion chamber so that the flame can fill a large part of the possible viewing angle of the detector device.
  • the prismatic body (1) designed as a light shaft is cast with a heat-resistant silicone adhesive (5) in a housing (6) which has a connecting flange (7) for mounting on the engine (not shown).
  • gas-filled switching tubes (8,9) which are in a circuit not shown are controlled with a voltage of several 100 V and which ignite a gas discharge when light in the wavelength range from 200 nm to 270 nm strikes their cathodes.

Abstract

Collecting optics for the flame detector of a reheater in an aeroplane power unit are indicated, which consist of a single transparent prismatic member. With this prismatic member, the sensitivity of the radiation indication can be increased significantly, without maintenance or readjustment work having to be taken into account. <IMAGE>

Description

Die Erfindung betrifft eine lichtsammelnde Optik für den Flammendetektor eines Nachbrenners in einem Flugzeugtriebwerk.The invention relates to light-collecting optics for the flame detector of an afterburner in an aircraft engine.

Für die optimale Steuerung von Triebwerken ist die korrekte Zündung der Nachbrennerflamme eine wichtige Voraussetzung. Detektoren, die eine sichere Aussage darüber liefern, ob eine Flamme im Nachbrenner gezündet hat, müssen eine Ansprechzeit von weniger als 100 msec. aufweisen. Als Detektor fur die Anzeige der von der Flamme emittierten Strahlen wird üblicher­weise eine für den ultravioletten Spektralbereich von 200 nm bis 270 nm empfindliche, gasgefüllte Schaltröhre als Strahlungsempfänger verwendet, die eine empfindliche Fläche von ca. 10 mm Länge und 1 mm Breite aufweist, und die in einem sehr großen Winkelbereich von mehr als 120° anspricht. Wenn der Strahlungsempfänger an der Peripherie des Brennraumes ange­bracht ist, füllt die Flamme einen sehr großen Teil des möglichen Gesichtwinkels des Strahlungsempfängers aus. Mit einer lichtsammelnden Optik kann die Anzeigeempfindlichkeit des Flammendetektors erhöht werden.Correct ignition of the afterburner flame is an important prerequisite for the optimal control of engines. Detectors that provide a reliable indication of whether a flame has ignited in the afterburner must have a response time of less than 100 msec. exhibit. As a detector for the display of the rays emitted by the flame, a gas-filled switching tube sensitive to the ultraviolet spectral range from 200 nm to 270 nm is usually used as the radiation receiver, which has a sensitive area of approximately 10 mm in length and 1 mm in width, and the responds in a very wide angular range of more than 120 °. If the radiation receiver is attached to the periphery of the combustion chamber, the flame fills a very large part of the possible face angle of the radiation receiver. The display sensitivity of the flame detector can be increased with light-collecting optics.

Der Erfindung liegt die Aufgabe zugrunde, eine lichtsammelnde Optik anzugeben, die erschütterungsunempfindlich ist, sich nicht dejustiert, möglichst wartungsfrei arbeitet und bei Temperaturen bis 250oC einsetzbar ist.The invention has for its object to provide a light-collecting optics that are insensitive to vibration, not misaligned, work as maintenance-free as possible and can be used at temperatures up to 250oC.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als lichtsammelnde Optik ein prismatischer Körper mit total reflek­tierenden Flächen vorgesehen ist und daß dieser prismatische Körper mindestens eine Bohrung für einen Strahlungsdetektor enthält, und daß dieser prismatische Körper außerdem zum Brenn­raum des Nachbrenners hin einen konischen Verlauf aufweist und aus einem für den vom Strahlungsdetektor nachgewiesenen Wellen­längenbereich transparent ist.This object is achieved in that a prismatic body with totally reflecting surfaces is provided as the light-collecting optics and that this prismatic body contains at least one hole for a radiation detector, and that this prismatic body also has a conical shape towards the combustion chamber of the afterburner one is transparent to the wavelength range detected by the radiation detector.

In einem vorteilhaften Ausführungsbeispiel der Erfindung be­steht der prismatische Körper aus einem fur den Wellenlängenbe­reich von 200 nm bis 270 nm transparenten Quarz, der unter der Bezeichnung Suprasil bekannt ist.In an advantageous embodiment of the invention, the prismatic body consists of a quartz transparent for the wavelength range from 200 nm to 270 nm, which is known under the name Suprasil.

Zweckmäßigerweise ist der prismatische Körper als Lichtschacht mit einer dem Brennraum des Nachbrenners zugewandten Eintritts­fläche und mit außenverspiegelten Seitenflächen ausgebildet. Die Ausführung des Lichtschachtes aus einem im genannten Wellenlängenbereich transparenten Material hat zur Folge, daß kein Abschlußfenster bzw. Strahleneinlaßfenster notwendig ist.The prismatic body is expediently designed as a light shaft with an inlet surface facing the combustion chamber of the afterburner and with side surfaces that are mirrored on the outside. The execution of the light well from a transparent material in the mentioned wavelength range means that no end window or radiation inlet window is necessary.

In einem bevorzugten Ausführungsbeispiel der Erfindung sind in dem prismatischen Körper zwei Bohrungen zur Aufnahme von je einem Strahlungsdetektor vorgesehen, wobei die zweite Bohrung unmittelbar hinter der ersten angeordnet ist. Die Verwendung von zwei Strahlungsdetekoren erhöht die Betriebssicherheit, da zwei voneinander unabhängige Signale geliefert werden.In a preferred exemplary embodiment of the invention, two bores are provided in the prismatic body for receiving one radiation detector each, the second bore being arranged directly behind the first. The use of two radiation detectors increases operational safety because two independent signals are delivered.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Verwendung eines einzigen hochwirksamen optischen Teiles die Zuverlässigkeit der Detektorvorrichtung erhöht wird.The advantages achieved by the invention are in particular that the reliability of the detector device is increased by the use of a single highly effective optical part.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:

  • Fig. 1 eine Darstellung des Strahlenverlaufes ohne Reflektio­nen an den Seitenwänden des prismatischen Körpers;
  • Fig. 2 eine Darstellung des Strahlenganges mit je einer Reflektion der Begrenzungsstrahlen;
  • Fig. 3 eine perspektivische Darstellung des prismatischen Körpers;
  • Fig. 4 eine Schnittdarstellung durch den in ein Gehäuse eingegossenen prismatischen Körper.
An embodiment of the invention is shown in the drawing and will be described in more detail below. Show it:
  • Figure 1 is a representation of the beam path without reflections on the side walls of the prismatic body.
  • 2 shows a representation of the beam path, each with a reflection of the boundary beams;
  • Figure 3 is a perspective view of the prismatic body.
  • Fig. 4 is a sectional view through the prismatic body cast in a housing.

In den Darstellungen der Figuren 1 und 2 ist mit (1) der prismatische Körper bezeichnet und mit (2) ein Bohrloch zur Aufnahme eines Strahlungsdetektors. Mit dem in Fig. 1 einge­zeichneten Eintrittsgrenzwinkel α der Strahlung ergibt sich eine zentrale Empfindlichkeitskeule für die Strahlungsanzeige im Mittelpunkt der Bohrung (2) ohne Reflektionen an den Seiten­flächen des prismatischen Körpers (1).In the illustrations in FIGS. 1 and 2, the prismatic body is denoted by (1) and a borehole for receiving a radiation detector is denoted by (2). With the entry limit angle α of the radiation shown in FIG. 1, there is a central sensitivity lobe for the radiation display in the center of the bore (2) without reflections on the side surfaces of the prismatic body (1).

In dem in Fig. 2 eingezeichneten Strahlungsverlauf mit dem Akzeptanzwinkel β ergibt sich für die Begrenzungsstrahlen je eine Reflektion innerhalb des als Lichtschacht wirkenden prismatischen Körpers (1), und im Mittelpunkt des Bohrloches (2) ist die sogenannte erste Nebenkeule der Eintrittsstrahlung gekennzeichnet. Mit dem Winkel γ ist die Konizität des Lichtschachtes definiert. Der konische Verlauf des Lichtschach­tes beeinflußt den Akzeptanzwinkel β.In the radiation course shown in FIG. 2 with the acceptance angle β, there is a reflection for the limiting rays within the prismatic body (1) acting as a light shaft, and the so-called first side lobe of the entry radiation is identified in the center of the borehole (2). The conicity of the light well is defined with the angle γ. The conical shape of the light well influences the acceptance angle β.

In der Darstellung der Fig. 3 ist hinter dem Bohrloch (2) ein weiteres Bohrloch (3) zur Aufnahme einer als Strahlungsempfän­ger verwendeten gasgefüllten Schaltröhre eingezeichnet. Die Verwendung einer zweiten Röhre erhöht die Betriebssicherheit der Detektorvorrichtung, da zwei unabhängige Signale für dieAnzeige erhalten werden. Die Abschlußfläche (4) des als Licht­schacht ausgebildeten prismatischen Körpers (1) schließt direkt an den Brennraum an, damit die Flamme einen großen Teil des möglichen Gesichtswinkels der Detektorvorrichtung ausfüllen kann.In the illustration in FIG. 3, a further borehole (3) for receiving a gas-filled switching tube used as a radiation receiver is shown behind the borehole (2). The use of a second tube increases the operational safety of the detector device since two independent signals are obtained for the display. The end face (4) of the prismatic body (1) designed as a light shaft connects directly to the combustion chamber so that the flame can fill a large part of the possible viewing angle of the detector device.

In der Schnittdarstellung der Fig. 4 ist der als Lichtschacht ausgebildete prismatische Körper (1) mit einem hitzebeständigen Silikonkleber (5) in einem Gehäuse (6) eingegossen, das einen Anschlußflansch (7) zur Montage am Triebwerk (nicht gezeichnet) besitzt. In den Bohrlöchern (2 und 3) befinden sich gasgefullte Schaltröhren (8,9), die in einer nicht gezeichneten Schaltung mit einer Spannung von mehreren 100 V angesteuert werden und die beim Auftreffen von Licht im Wellenlängenbereich von 200 nm bis 270 nm auf ihre Kathoden eine Gasentladung zunden.In the sectional view of FIG. 4, the prismatic body (1) designed as a light shaft is cast with a heat-resistant silicone adhesive (5) in a housing (6) which has a connecting flange (7) for mounting on the engine (not shown). In the drill holes (2 and 3) there are gas-filled switching tubes (8,9), which are in a circuit not shown are controlled with a voltage of several 100 V and which ignite a gas discharge when light in the wavelength range from 200 nm to 270 nm strikes their cathodes.

Claims (5)

1. Lichtsammëlnde Optik für den Flammendetektor eines Nachbren­ners in einem Flugzeugtriebwerk, dadurch gekennzeichnet, daß in einem prismatischen Körper (1) mit reflektierenden Flächen mindestens eine Bohrung (2) für einen Strahlungsde­tektor vorgesehen ist und daß der prismatische Körper (1) zum Brennraum des Nachbrenners hin einen konischen Verlauf aufweist und aus einem für den vom Strahlungsdetektor nach­gewiesenen Wellenlängenbereich transparent ist.1. Light collecting optics for the flame detector of an afterburner in an aircraft engine, characterized in that in a prismatic body (1) with reflecting surfaces at least one hole (2) is provided for a radiation detector and that the prismatic body (1) to the combustion chamber of the afterburner has a conical shape and is transparent for the wavelength range detected by the radiation detector. 2. Lichtsammelnde Optik nach Anspruch 1, dadurch gekennzeich­net, daß der prismatische Körper (1) aus einem für den Wellenlängenbereich von 200 nm bis 270 nm transparenten Quarz besteht.2. Light-collecting optics according to claim 1, characterized in that the prismatic body (1) consists of a quartz transparent for the wavelength range from 200 nm to 270 nm. 3. Lichtsammelnde Optik nach Anspruch 2, dadurch gekennzeich­net, daß der prismatische Körper (1) als Lichtschacht mit einer dem Brennraum zugewandten Eintrittsfläche (4) und außenverspiegelten Seitenflächen ausgebildet ist.3. Light collecting optics according to claim 2, characterized in that the prismatic body (1) is designed as a light shaft with an inlet surface facing the combustion chamber (4) and externally mirrored side surfaces. 4. Lichtsammelnde Optik nach Anspruch 3, dadurch gekennzeich­net, daß in dem prismatischen Körper (1) zwei oder mehr Bohrungen (2,3) zur Aufnahme von je einem Strahlungsdetektor vorgesehen sind.4. Light collecting optics according to claim 3, characterized in that in the prismatic body (1) two or more bores (2, 3) are provided for receiving one radiation detector each. 5. Lichtsammelnde Optik nach Anspruch 4, dadurch gekennzeich­net, daß die Bohrungen (2,3) in Längsrichtung des prismati­schen Körpers (1) hintereinander angeordnet sind.5. Light collecting optics according to claim 4, characterized in that the bores (2, 3) in the longitudinal direction of the prismatic body (1) are arranged one behind the other.
EP87102853A 1986-02-27 1987-02-27 Light collecting optics for a flame detector Withdrawn EP0234595A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863606352 DE3606352A1 (en) 1986-02-27 1986-02-27 LIGHT COLLECTING OPTICS FOR A FLAME DETECTOR
DE3606352 1986-02-27

Publications (2)

Publication Number Publication Date
EP0234595A2 true EP0234595A2 (en) 1987-09-02
EP0234595A3 EP0234595A3 (en) 1990-02-14

Family

ID=6295062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87102853A Withdrawn EP0234595A3 (en) 1986-02-27 1987-02-27 Light collecting optics for a flame detector

Country Status (2)

Country Link
EP (1) EP0234595A3 (en)
DE (1) DE3606352A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448310A1 (en) * 1990-03-23 1991-09-25 General Electric Company Gas turbine flame detection system
WO2015080795A1 (en) * 2013-11-27 2015-06-04 Detector Electronics Corporation Ultraviolet light flame detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952781A (en) * 1955-10-11 1960-09-13 Sidney H Hersh Photodetector system
DE1945874A1 (en) * 1968-09-12 1970-03-19 Shell Int Research Safety device for monitoring the combustion of gases in a chamber burner
US4225782A (en) * 1978-08-14 1980-09-30 Sanders Associates, Inc. Wide field of view-narrow band detection system
DE3538066A1 (en) * 1984-10-26 1986-04-30 Osakeyhtiö Wärtsilä Ab, Helsinki ARRANGEMENT FOR MONITORING THE TIGHTNESS OF THE EXHAUST VALVES OF AN INTERNAL COMBUSTION ENGINE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952781A (en) * 1955-10-11 1960-09-13 Sidney H Hersh Photodetector system
DE1945874A1 (en) * 1968-09-12 1970-03-19 Shell Int Research Safety device for monitoring the combustion of gases in a chamber burner
US4225782A (en) * 1978-08-14 1980-09-30 Sanders Associates, Inc. Wide field of view-narrow band detection system
DE3538066A1 (en) * 1984-10-26 1986-04-30 Osakeyhtiö Wärtsilä Ab, Helsinki ARRANGEMENT FOR MONITORING THE TIGHTNESS OF THE EXHAUST VALVES OF AN INTERNAL COMBUSTION ENGINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0448310A1 (en) * 1990-03-23 1991-09-25 General Electric Company Gas turbine flame detection system
WO2015080795A1 (en) * 2013-11-27 2015-06-04 Detector Electronics Corporation Ultraviolet light flame detector

Also Published As

Publication number Publication date
DE3606352A1 (en) 1987-09-03
EP0234595A3 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
EP0652422A2 (en) Device for receiving light rays
EP1343446B1 (en) Antiglare device for welding protective masks
DE69934662T2 (en) ULTRAVIOLET DETECTOR
EP0311561B1 (en) Measuring head
DE2901738A1 (en) SPECTRAL PHOTOMETER
DE69726222T2 (en) photomultiplier
DE4431889B4 (en) Light scattering type smoke sensor
EP0373550A3 (en) Time-of-flight mass spectrometer with a high resolution and transmission
DE3513475C2 (en)
DE3022737C2 (en)
EP1104540B1 (en) Ignition element with a laser light source
DE2714130A1 (en) OPTICAL FIRE DETECTOR
EP0025188A1 (en) Optical arrangement for a photodetector
EP0234595A2 (en) Light collecting optics for a flame detector
DE19851010B4 (en) Device for the detection and localization of laser radiation sources
DE60226145T2 (en) DEVICE FOR AN OPTICAL SYSTEM
DE102005003658B4 (en) Modular built infrared radiation detector
DE2326841B2 (en) OPTICAL COLLIMATOR DEVICE FOR FIELD OF VIEW
DE102016117411A1 (en) System for lighting a motor vehicle with a laser light source
DE102020212657A1 (en) System for the optical detection of deposits on a surface and a sensor with a system
DE10031636A1 (en) Spectrometer, has focal length of optical system set so that projected light image is at least as large as fiber opening diameter
DE2742488A1 (en) LIGHTING SYSTEM FOR LIGHTING A RING AREA
DE2749229C2 (en) Non-dispersive infrared gas analyzer
DE2134563A1 (en) Smoke detector for the optical detection of aerosols generated by combustion
WO1997035178A1 (en) Analysis system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900816

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRUG, FRANZ

Inventor name: GAIDA, GERHARD, DR.