CN101832472B - System implementing pipeline leak detection by utilizing infrasonic wave - Google Patents

System implementing pipeline leak detection by utilizing infrasonic wave Download PDF

Info

Publication number
CN101832472B
CN101832472B CN 201010198542 CN201010198542A CN101832472B CN 101832472 B CN101832472 B CN 101832472B CN 201010198542 CN201010198542 CN 201010198542 CN 201010198542 A CN201010198542 A CN 201010198542A CN 101832472 B CN101832472 B CN 101832472B
Authority
CN
China
Prior art keywords
infrasonic
signal
infrasonic wave
utilizes
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010198542
Other languages
Chinese (zh)
Other versions
CN101832472A (en
Inventor
杨霄峰
张健
孙旭
贾宗贤
狄彦
邹润
于殿强
杨文新
尹振兴
孙清源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Pipeline Storage and Transportation Co
Original Assignee
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp filed Critical China Petroleum and Chemical Corp
Priority to CN 201010198542 priority Critical patent/CN101832472B/en
Publication of CN101832472A publication Critical patent/CN101832472A/en
Application granted granted Critical
Publication of CN101832472B publication Critical patent/CN101832472B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a system implementing pipeline leak detection by utilizing an infrasonic wave. Two infrasonic wave sensors are respectively installed on an upstream detection point and a downstream detection point of a pipeline needing to be detected; infrasonic wave signals collected by the infrasonic wave sensors and generated by pipeline leakage are input to a signal acquisition analysis system. The signal acquisition analysis system determines the position of leakage generation according to the condition that the time difference of the infrasonic wave signals to upstream detection point and to downstream multiplies the speed of the sound wave in fluid, and exchanges information with external through the two communication modules of GPRS and CDMA, fiber optic communication or Ethernet communication, etc. The invention discloses a system satisfying several leak conditions, and implementing pipeline leak detection by infrasonic at different working conditions.

Description

Utilize infrasonic wave to realize the system of pipeline leakage testing
Technical field
The present invention relates to a kind of Discussion on Pipe Leakage Detection Technology, relate in particular to a kind of system that utilizes infrasonic wave to realize pipeline leakage testing.
Background technology
Oil and Natural Gas Transportation Pipeline is comprised of the pipeline that connects pressurizing point, minute defeated station, heating station, pipeline distance in the middle of two pressurizing points does not wait from 20~100 kms, because the pipeline major part is located in the field, installation site, power supply and communication apparatus can't be provided, therefore, pipeline leakage checking system is required effectively to detect distance more than 20 kms.
In the prior art, being applied to Discussion on Pipe Leakage Detection Technology mainly is that negative pressure wave method detects, its principle is: when pipeline occurs to leak, the fluid of leakage point runs off rapidly, pressure drop causes having pressure differential inside and outside the pipeline, and then produces the process that the fluid of leakage point two side positions constantly replenishes to the leakage point position, this process successively upstream conveying terminal in initial station and downstream of carrying is transmitted, and is equivalent to produce in the leakage point position negative pressure wave of propagating with certain speed.Propagate into the time t1 that carries the initial station and the mistiming that propagates into the time t2 that carries terminal according to negative pressure wave, and the velocity of propagation of the interior negative pressure wave of pipeline calculates the position of leakage point.The important feature of this technology is to need to produce pressure drop, and whether the fluctuation that pressure drop produces can effectively detect also largely depends on the accuracy of instrument that adopts.As under the 1Mpa working condition pressure, the pressure drop that the leakage that the 1/4inch aperture produces produces after decaying through 20 km oil-pipings is about 0.001Mpa, a general tensimeter that full scale is 1Mpa, be difficult to effectively detect so little pressure drop, although the higher tensimeter of resolution is arranged, does not meet the detection limit range request of large pressure drop.
There is following shortcoming at least in above-mentioned prior art:
Be difficult to adapt to the pipeline leakage testing requirement under the varying environment, be difficult to satisfy on-the-spot practical application for leaking this paroxysmal detection of pressure wave that produces.
Summary of the invention
The purpose of this invention is to provide a kind of infrasonic wave that utilizes that can satisfy under various different leakage situation, the different working condition and realize the system of pipeline leakage testing.
The objective of the invention is to be achieved through the following technical solutions:
The system that utilizes infrasonic wave to realize pipeline leakage testing of the present invention, the pipeline that detects at need arranges upstream detection point and detected downstream point, at described upstream detection point and detected downstream point place at least one infrasonic sensor is installed respectively, that described infrasonic sensor collects because the infrasonic wave signal that pipe leakage produces is input to the signal processing and analysis system;
Described signal processing and analysis system multiply by the position that sound wave velocity of propagation in fluid is determined the leakage generation according to the mistiming that described infrasonic wave signal arrives upstream detection point and detected downstream point, and by communication module and outside interactive information.
As seen from the above technical solution provided by the invention, the system that utilizes infrasonic wave to realize pipeline leakage testing of the present invention, owing at least one infrasonic sensor is installed respectively at upstream detection point and the detected downstream point place of the pipeline that detects at need, that infrasonic sensor collects because the infrasonic wave signal that pipe leakage produces is input to the signal processing and analysis system; The signal processing and analysis system multiply by the position that sound wave velocity of propagation in fluid determines to leak generation according to the mistiming that described infrasonic wave signal arrives upstream detection point and detected downstream point, and by communication module and outside interactive information.The infrasonic wave that utilizes that can satisfy under various different leakage situation, the different working condition is realized the system of pipeline leakage testing.
Description of drawings
Fig. 1 is that system architecture of the present invention forms synoptic diagram;
Fig. 2 is on-the-spot scheme of installation of the present invention;
Fig. 3 is working-flow figure of the present invention;
Fig. 4 is the leakage infrasonic wave synoptic diagram that the present invention surveys at the scene;
Fig. 5 is another leakage infrasonic sound synoptic diagram that the present invention surveys at the scene.
Embodiment
The system that utilizes infrasonic wave to realize pipeline leakage testing of the present invention, its better embodiment is:
The pipeline that detects at need arranges upstream detection point and detected downstream point, at described upstream detection point and detected downstream point place at least one infrasonic sensor is installed respectively, that described infrasonic sensor collects because the infrasonic wave signal that pipe leakage produces is input to the signal processing and analysis system;
Described signal processing and analysis system multiply by the position that sound wave velocity of propagation in fluid is determined the leakage generation according to the mistiming that described infrasonic wave signal arrives upstream detection point and detected downstream point, and by communication module and outside interactive information.
The Hz-KHz of described infrasonic sensor is 0.01Hz~20Hz.
Described infrasonic sensor is connected with described signal processing and analysis system by the pre-filtering amplifier;
Described pre-filtering amplifier carries out signal identification to the infrasonic sensor of receiving, therefrom filtering changes the undesired signal that causes because of working conditions change and external environment, and amplifies.
Described upstream detection point and detected downstream point are equipped with respectively two infrasonic sensors;
Can remove because operating mode changes by the mode of reverse addition when described signal processing and analysis system utilizes two infrasonic sensors to receive simultaneously large-signal when operating mode changes and cause the abnormal problem of system works.
Spacing between described two infrasonic sensors is 40-100 rice.
Described signal processing and analysis system adopts the signal processing mode of expert database, fuzzy neural network algorithm and wavelet transformation that signal is carried out comprehensive analysis and judgement in signal Recognition Algorithm.
Described communication module adopts two kinds of communication modules and the external communication of GPRS and CDMA.
Described communication module comprises Redundancy Design, and described Redundancy Design comprises fiber optic communications and/or ethernet communication.
System also comprises the high precision time service of GPS, is used for solving the time synchronization problem of described upstream detection point and detected downstream point.The time service precision of described GPS is below 1ns, and system carried out at every interval the time service calibration of a GPS in one hour.
System comprises that also sun power adds the storage battery power supply system, is used to the field detecting device power supply.
The present invention can satisfy various different leakage situation, the pipeline leakage checking system under the different working conditions.Native system is based on infrasonic Discussion on Pipe Leakage Detection Technology, its principle is: pipeline when occur leaking because the pressure surge meeting produces the very low sound wave of frequency, according to the working condition of pipeline and the size in leakage aperture, the infrasonic wave frequency that produces also is not quite similar, low-limit frequency can be hanged down 0.05Hz, and high-frequency energy reaches about 4Hz.The infrasonic sensor that the present invention adopts is ultralow frequency high sensitivity infrasonic sensor, and its sensitivity can reach-195dB, and Hz-KHz is 0.01Hz~20Hz.Adopt this requirement that can meet the Leak Detection of different pore size under the various working conditions for the infrasonic sensor of pipeline leakage testing.Infrasonic sensor is converted into electric signal output with detected infrasonic wave signal, carries out necessary signal identification after gathering by AD, and therefrom filtering changes the undesired signal that causes because of working conditions change and external environment.The mistiming that arrives upstream and downstream according to the infrasonic wave signal be multiply by the position that sound wave velocity of propagation in fluid determines to leak generation.
In order to reach wider frequency response range on the basis that does not reduce transducer sensitivity to satisfy the requirement under the various application conditions, can connect a preposition coupling amplifying circuit in the rear end of sensor, the input impedance value of this preposition coupling amplifying circuit is 1000M ohm.Change in the internal memory that digital signal stores DSP into through the A/D converter of system through the infrasonic wave signal behind the pre-amplification circuit.DSP carries out to the received signal that signal is processed and judges, processes the most at last and the result that judges uploads to main control room by communication module.
System can adopt the signal processing modes such as expert database, fuzzy neural network algorithm and wavelet transformation that signal is carried out comprehensive analysis and judgement in signal Recognition Algorithm in order to reach very high warning accuracy rate and higher bearing accuracy.The employing expert database can be so that system has good self-learning function.The concrete signal that can arrive according to on-site collection is in actual applications trained in the situation of human intervention, and the raising system is to the recognition capability of undesired signal.
Utilizing wavelet transformation mainly is for outstanding waveform sharpness issues.Because the infrasonic wave signal is because frequency is lower, and wavelength is longer, the infrasonic wave signal that upstream and downstream is received carries out need to finding identical point to calculate when digital calculates.By wavelet transformation maximum of points is carried out sharpening.Thereby the mistiming that arrives the upstream and downstream checkout equipment according to same particle (maximum of points) positions calculating.
For better realization the present invention practical application at the scene, preferably also to comprise following content:
When upstream and downstream end installation and measuring equipment, each end is preferably installed two infrasonic sensors when infrasonic sensor is installed, can effectively remove the system works deviant circumstance because operating mode changes by the mode of reverse addition when its objective is the large-signal when utilizing two infrasonic sensors to receive simultaneously the operating mode change.
The Redundancy Design of communication module: because communication applied environment at the scene is comparatively complicated, require again that system can in time send alarm when leak occuring, therefore need the communication failure rate as far as possible little, network delay is short as far as possible, therefore, adopted the Integrated using of two kinds of communication modules of GPRS and CDMA in the present invention, system can also use more reliable communication scheme instead according to the actual conditions at scene, as adopting fiber optic communications or ethernet communication.
The high precision time service of GPS: it is in order to solve the time synchronization problem of upstream and downstream checkout equipment that system adopts the GPS time service, and the time service precision of GPS can reach below the 1ns, and system carried out at every interval the time service calibration of a GPS in one hour.
For making the purpose, technical solutions and advantages of the present invention can explain more clearly, below with instantiation and with reference to accompanying drawing, the present invention is described in detail.
Such as Fig. 1, Fig. 2, shown in Figure 3, two infrasonic sensors 2 are installed in initial station at pipeline 1, sensor 2 requires to lay and fully contact with the pipeline inner fluid with pipeline 1 is vertical, and two sensors are installed in the pipeline 1 by valve 3 and joint flange 4, about 40 meters at interval.The signal that sensor receives carries out numeral by the preposition rear output of signal filtering amplifier processing by the A/D conversion chip and transforms and store in the internal memory of DSP (TMS320DSP28335) chip.Owing to might produce infrasonic wave signal stronger, that produce when being similar to pipe leakage during Operating condition adjustment, two sensors oppositely superpose the signal of sequentially receiving, gather through A/D again, can effectively remove the impact of system signal being obtained because of Operating condition adjustment.When any one generation of pipeline is leaked, can produce the acoustic signals that comprises the multi-frequency composition, after the decay of long distance, the part that frequency is higher all will decay to and can't detect, only have frequency can propagate into far distance along with fluid at the acoustic wave segment of 0.05Hz~2Hz, each two sensor that is installed in upstream and downstream can be judged operating mode noise or leakage signal according to the sequencing of the signal that receives, and calculate by the product of mistiming and the velocity of sound and leak the particular location that occurs.
The basic theory of acoustics shows that the velocity of sound is inversely proportional to the density of propagating mass transfer.For one section oil and gas pipeline, fluid density in the pipeline is not to be uniform, if adopting fixedly when positioning calculating, the velocity of sound will produce larger positioning error, therefore, what adopt when calculating is that the first utilization fixedly velocity of sound determines roughly to leak the place that occurs, and determines the pressure of leakage point, utilize the corresponding relation curve of the velocity of sound and pressure that necessary correction is carried out in the position location, to reach 100 meters with interior positioning error requirement.
Expert database and neuron network simulation recognizer that system adopts can adapt to conduit running operating mode complicated and changeable and pipeline external environmental interference better.In a new system of installing, being difficult to provides the expert database of finishing needed sample material at short notice, therefore needs to use for reference the sample material that similar scene obtains in system after installation and carries out training and the identification of neural network.In system's operational process, the incipient stage of particularly just having put into operation, need to combine with the concrete condition at scene, reject false alarm, join in the expert database in the situation of human intervention for the false alarm type that takes place frequently, thereby it is excluded fully, improve accuracy and the reliability of system alarm.
The data communication device of thinking leakage signal after will the identifying of system is crossed wireless communication module (GPRS and CDMA module) and is uploaded on the main control computer.When communication, system will at first select wherein a kind of network to connect and upload, if the answer signal that can't obtain main control computer in setting time thinks that then this network communication is not smooth, then select another communication network to carry out communication.
The mode that system adopts sun power to add accumulator is the field detecting device power supply, the mounting condition at scene is dropped to minimum, has also improved system's security at the scene.
Such as Fig. 4, shown in Figure 5, two that survey at the scene for the present invention leak the infrasonic sound synoptic diagram.
The infrasonic wave that the present invention sends when detecting pipe leakage is realized the Leak Detection of pipeline.System comprises infrasonic sensor, signal processing and analysis system, electric power system and the communication system that order links to each other.Infrasonic sensor is installed in the inside of pipeline and detects in real time the interior infrasonic wave signal of pipeline, by signal processing and analysis system acquisition infrasonic wave signal and carry out online analytical calculation, the result of discriminatory analysis is uploaded to master-control room by communication system, at master-control room data are carried out secondary discrimination and final output alarm result on terminal.
The main innovative point of the present invention is:
Pipeline can produce the sound wave that comprises various frequencies when occuring to leak, utilize infrasonic wave can propagate into the technical characterstic of far distance, can realize utilizing infrasonic sensor to detect and leak the infrasonic wave signal, thereby the system that can realize effectively detects distance more than 20 kms; Installing of sensor, adopt the mode of two probes.The signal that receives by two sensors oppositely superposes, thereby reaches the purpose of removing noise; The Intelligent Recognition pattern of signal does not need to carry out human intervention and can obtain accurately alarming result.System applies comprise the identification of template matches, Neural Fuzzy and Algorithms of Wavelet Analysis etc., can be applied to the applied environment of various complexity; The Redundancy Design of system reduces the possibility that the system failure occurs.Field apparatus adopts the backup design, also can guarantee the normal operation of system even certain part breaks down; Adopt the GPS time service to improve the bearing accuracy of system.The time service precision of GPS can be below 10ns, and a general segment length is no more than the pipeline feasible system bearing accuracy error of 20 kms below 100 meters; Take the computing method of the dynamic velocity of sound, revise the position location.
The above; only for the better embodiment of the present invention, but protection scope of the present invention is not limited to this, anyly is familiar with those skilled in the art in the technical scope that the present invention discloses; the variation that can expect easily or replacement all should be encompassed within protection scope of the present invention.

Claims (7)

1. system that utilizes infrasonic wave to realize pipeline leakage testing, it is characterized in that, the pipeline that detects at need arranges upstream detection point and detected downstream point, at described upstream detection point and detected downstream point place at least one infrasonic sensor is installed respectively, that described infrasonic sensor collects because the infrasonic wave signal that pipe leakage produces is input to the signal processing and analysis system;
Described signal processing and analysis system multiply by the position that sound wave velocity of propagation in fluid is determined the leakage generation according to the mistiming that described infrasonic wave signal arrives upstream detection point and detected downstream point, and by communication module and outside interactive information;
The Hz-KHz of described infrasonic sensor is 0.01Hz~20Hz;
Described infrasonic sensor is connected with described signal processing and analysis system by the pre-filtering amplifier;
Described pre-filtering amplifier carries out signal identification to the infrasonic wave signal of receiving, therefrom filtering changes the undesired signal that causes because of working conditions change and external environment, and amplifies;
Described upstream detection point and detected downstream point are equipped with respectively two infrasonic sensors;
Can remove because operating mode changes by the mode of reverse addition when described signal processing and analysis system utilizes two infrasonic sensors to receive simultaneously amplifying signal when operating mode changes and cause the abnormal problem of system works.
2. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 1 is characterized in that the spacing between described two infrasonic sensors is 40-100 rice.
3. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 2, it is characterized in that described signal processing and analysis system adopts the signal processing mode of expert database, fuzzy neural network algorithm and wavelet transformation that signal is carried out comprehensive analysis and judgement in signal Recognition Algorithm.
4. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 3 is characterized in that, described communication module adopts two kinds of communication modules and the external communication of GPRS and CDMA.
5. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 4 is characterized in that described communication module comprises Redundancy Design, and described Redundancy Design comprises fiber optic communications and/or ethernet communication.
6. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 1, it is characterized in that, system also comprises the high precision time service of GPS, be used for solving the time synchronization problem of described upstream detection point and detected downstream point, the time service precision of described GPS is below 1ns, and system carried out at every interval the time service calibration of a GPS in one hour.
7. the system that utilizes infrasonic wave to realize pipeline leakage testing according to claim 6 is characterized in that system comprises that also sun power adds the storage battery power supply system, is used to the field detecting device power supply.
CN 201010198542 2010-06-12 2010-06-12 System implementing pipeline leak detection by utilizing infrasonic wave Expired - Fee Related CN101832472B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010198542 CN101832472B (en) 2010-06-12 2010-06-12 System implementing pipeline leak detection by utilizing infrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010198542 CN101832472B (en) 2010-06-12 2010-06-12 System implementing pipeline leak detection by utilizing infrasonic wave

Publications (2)

Publication Number Publication Date
CN101832472A CN101832472A (en) 2010-09-15
CN101832472B true CN101832472B (en) 2013-03-27

Family

ID=42716638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010198542 Expired - Fee Related CN101832472B (en) 2010-06-12 2010-06-12 System implementing pipeline leak detection by utilizing infrasonic wave

Country Status (1)

Country Link
CN (1) CN101832472B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182935B (en) * 2011-02-18 2013-04-24 郑国范 Sonar detecting and positioning method and system for underwater oil delivery pipeline leakage
GB201110403D0 (en) * 2011-06-20 2011-08-03 Qinetiq Ltd Monitoring of conduits
CN102537671A (en) * 2012-03-07 2012-07-04 张钧 Sensor module for monitoring leakage of natural gas transmission pipeline
CN103234121A (en) * 2013-05-10 2013-08-07 中国石油大学(华东) Acoustic signal based device and method for detecting gas pipeline leakages
CN104100841A (en) * 2014-07-14 2014-10-15 青岛厚科化学有限公司 Pipeline monitoring method based on distributed fiber sensors and acoustic wave
CN105156905A (en) * 2015-07-09 2015-12-16 南京声宏毅霆网络科技有限公司 Leakage monitoring system, method and device for pipeline and server
CN105799191B (en) * 2015-12-30 2018-11-09 万海科技股份有限公司 A kind of supersized composite material layered product vacuum forming system and its technique
CN106090629A (en) * 2016-06-15 2016-11-09 中冶南方工程技术有限公司 Urban Underground piping lane water supply line leak detection system and method
CN106151887A (en) * 2016-07-01 2016-11-23 北京华科合创科技发展有限公司 A kind of gas oil pipe leakage comprehensive monitor system
CN106643871B (en) * 2016-10-10 2019-02-12 大连中智精工科技有限责任公司 A kind of trap leaking detection module
CN106322127A (en) * 2016-11-22 2017-01-11 北京科创三思科技发展有限公司 Method for installing built-in infrasonic wave sensor
US11156525B2 (en) * 2017-12-28 2021-10-26 Phyn Llc Egress point localization
CN108398217A (en) * 2018-02-05 2018-08-14 张桂华 Plugging device is monitored automatically at a kind of pressure-bearing pipeline leakage
CN110145694A (en) * 2019-07-02 2019-08-20 北京中计新业科技发展有限公司 A kind of gas distributing system leakage monitoring system and detection method
CN110469782B (en) * 2019-07-31 2020-07-17 中国科学院声学研究所 Pipeline leakage positioning device based on self-adaptive filter
CN111121543A (en) * 2020-03-19 2020-05-08 南京铭伟装备科技有限公司 Automatic target-scoring system for E-shaped array direct-aiming heavy weapon
CN111457257B (en) * 2020-03-23 2021-10-15 中国人民解放军国防科技大学 Detection method and system for positioning leakage position of pipeline
US11668621B2 (en) 2020-11-02 2023-06-06 Tata Consultancy Services Limited Method and system for inspecting and detecting fluid in a pipeline
CN112460040A (en) * 2020-11-23 2021-03-09 中国华能集团清洁能源技术研究院有限公司 Pump sound wave monitoring system and method
CN112594559A (en) * 2020-11-25 2021-04-02 中国海洋石油集团有限公司 Submarine oil pipeline leakage monitoring system and method
CN114383054A (en) * 2021-01-27 2022-04-22 福州大学 Pipe gallery gas pipeline leakage experiment system and method
CN113048404B (en) * 2021-03-12 2022-08-16 常州大学 Urban gas pipeline tiny leakage diagnosis method
CN114935116B (en) * 2022-05-19 2023-10-13 北京中计新业科技发展有限公司 Ultra-high pressure gas pipeline infrasonic wave monitoring device, monitoring system and method
CN115388343B (en) * 2022-10-12 2024-04-16 广东海洋大学 Efficient marine oil and gas pipeline leakage detection and positioning method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289019A (en) * 1979-10-30 1981-09-15 The United States Of America As Represented By The United States Department Of Energy Method and means of passive detection of leaks in buried pipes
CN1755342A (en) * 2004-09-28 2006-04-05 北京埃德尔黛威新技术有限公司 Method and apparatus for detecting leakage of liquid pressure pipeline
CN101260976A (en) * 2008-04-17 2008-09-10 中国特种设备检测研究院 Pipeline leakage checking system
CN101358689A (en) * 2008-09-22 2009-02-04 郑欢 Pipe detection device
CN201297502Y (en) * 2008-05-15 2009-08-26 中国石油大学(北京) Infrasound-based remote natural gas pipeline leakage detection device and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201859A (en) * 1998-01-13 1999-07-30 Mitsui Eng & Shipbuild Co Ltd Method for detecting leak in pipe by frequency band division

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289019A (en) * 1979-10-30 1981-09-15 The United States Of America As Represented By The United States Department Of Energy Method and means of passive detection of leaks in buried pipes
CN1755342A (en) * 2004-09-28 2006-04-05 北京埃德尔黛威新技术有限公司 Method and apparatus for detecting leakage of liquid pressure pipeline
CN101260976A (en) * 2008-04-17 2008-09-10 中国特种设备检测研究院 Pipeline leakage checking system
CN201297502Y (en) * 2008-05-15 2009-08-26 中国石油大学(北京) Infrasound-based remote natural gas pipeline leakage detection device and system
CN101358689A (en) * 2008-09-22 2009-02-04 郑欢 Pipe detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平11-201859A 1999.07.30

Also Published As

Publication number Publication date
CN101832472A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN101832472B (en) System implementing pipeline leak detection by utilizing infrasonic wave
CN106352243B (en) A kind of gas pipeline leak detection systems based on sonic method
CN101561081B (en) Method for detecting and positioning leakage of oil-gas pipeline by utilizing autonomous navigation robot
CN201273457Y (en) Pipe leakage monitoring device
CN101684894B (en) Method and device for monitoring pipeline leakage
CN100567794C (en) Oil and gas pipeline leakage online test method based on orienting suction wave identification technology
Van Hieu et al. Wireless transmission of acoustic emission signals for real-time monitoring of leakage in underground pipes
CN102563361A (en) Device and method for detecting and positioning leakage of gas transmission pipeline based on conventional data and sound wave signals
CN106352246A (en) Pipeline leakage detecting and positioning experimental system and detection method thereof
CN111222743B (en) Method for judging vertical offset distance and threat level of optical fiber sensing event
CN102980036B (en) Welding seam recognition-based pipeline leakage positioning method
CN102997045A (en) Optical fiber sensing natural gas pipeline leakage event identification method and device
CN106813108A (en) A kind of leakage locating method based on speed difference
CN111520615A (en) Pipe network leakage identification and positioning method based on line spectrum pair and cubic interpolation search
CN111486345B (en) Grain depot underground pipe network liquid leakage on-line monitoring and early warning method and device
CN102168809A (en) Method and system for detecting leakage of parking apron aviation gasoline pipe network based on pressure and temperature analysis
CN201297502Y (en) Infrasound-based remote natural gas pipeline leakage detection device and system
CN102997055A (en) Leakage point locating method and system of optical fiber sensing natural gas pipeline leakage monitoring system
CN102032447A (en) System for monitoring urban gas pipeline in real time and using method thereof
CN103047541A (en) Optical fiber sensing natural gas pipeline leakage accident recognition device
CN104696711A (en) Method for rapid and accurate positioning of pipeline leakage point
CN111879479B (en) Micro-leakage signal monitoring system and method for non-Gaussian noise environment of gas collecting and conveying pipeline
KR20200092503A (en) Diagnosis method of sewage condition using Deep Learning based on acoustic in-out data
CN210141480U (en) Natural gas pipe network leakage monitoring system
CN107504374A (en) Gas pipeline acoustic monitoring system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130327

Termination date: 20170612

CF01 Termination of patent right due to non-payment of annual fee