Skip to main content
Log in

Genetic Differentiation of the Fourhorn Sculpin Myoxocephalus quadricornis (Linnaeus, 1758) and Its Position in the Myoxocephalini Taranetz Tribe (Cottidae: Myoxocephalinae)

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A molecular genetic and karyological study of the fourhorn sculpin Myoxocephalus quadricornis (Linnaeus, 1758) has been carried out. The karyotype was studied for the first time and the results of Ag-staining of the chromosomes of specimens of the species from the East Siberian Sea are presented. The karyotype of M. quadricornis is stable; it contains 32 (10 metacentric, 2 submetacentric, and 20 subtelocentric) chromosomes, while the number of chromosome arms is 44. Nucleolar organizers were found in the telomeric regions of the short arms of two homologous medium-sized subtelocentrics. Variability in the number of nucleolar-forming chromosomes and stained blocks of nucleolar organizers was found. Common features in the chromosome sets of M. quadricornis and Megalocottus platycephalus indicate their greater similarity compared to species of the genus Myoxocephalus. The results of the karyological analysis are consistent with the molecular genetic data about the sister relationships between M. quadricornis and Megalocottus platycephalus. A complex of karyological and molecular-genetic features has been identified that allow one to reliably distinguish M. quadricornis from species of the tribe Myoxocephalini and indicate the need for its removal from the genus Myoxocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Neelov, A.V., Seismosensornaya sistema i klassifikatsiya kerchakovykh ryb (Cottidae: Myoxocephalinae, Artediellinae) (Seismosensory System and Classification of Sculpin Fishes (Cottidae: Myoxocephalinae, Artediellinae)), Leningrad: Nauka, 1979.

  2. Parin, N.V., Evseenko, S.A., and Vasil’eva, E.D., Ryby morei Rossii: annotirovannyi katalog (Fishes of Russian Seas: Annotated Catalogue), Moscow: KMK, 2014.

  3. Mecklenburg, C.W., Mecklenburg, T.A., Sheiko, B.A., and Steinke, D., Pacific Arctic Marine Fishes: Conservation of Arctic Flora and Fauna, Akureyri, Iceland: CAFF, 2016.

    Google Scholar 

  4. McAllister, D.E., Atlas of North American Freshwater Fishes, Onawa, Canada: Queen’s Printer, 1978.

    Google Scholar 

  5. Dickman, M., An isolated population of fourhorn sculpins (Myoxocephalus quadricornis, family Cottidae) in a hypersaline high arctic Canadian lake, Hydrobiologia, 1995, vol. 12, pp. 27—35.

    Article  Google Scholar 

  6. Neelov, A.V., Fishes of the Chaun Bay of the East Siberian Sea, in Arktika i Antarktika, Moscow: Nauka, 2008, pp. 154—184.

    Google Scholar 

  7. Kottelat, M. and Freyhof, J., Handbook of European Freshwater Fishes, Berlin: Kottelat, Cornol and Freyhof, 2007.

    Google Scholar 

  8. Dadswell, M.J., Post-glacial dispersal of four freshwater fishes on the basis of new distribution records from eastern Ontario and western Quebec, J. Fish. Res. Board Can., 1972, vol. 29, pp. 545—553.

    Article  Google Scholar 

  9. Kontula, T. and Väinöla, R. Relationships of Palearctic and Nearctic ‘glacial relict’ Myoxocephalus sculpins from mitochondrial DNA data, Mol. Ecol., 2003, vol. 12, pp. 3179—3184.

    Article  PubMed  Google Scholar 

  10. Sheldon, T.A., Mandrak, N.E., and Lovejoy, N.R., Biogeography of the deepwater sculpin (Myoxocephalus thompsonii), a Nearctic glacial relict, Can. J. Zool., 2008, no. 86, pp. 108—115.

  11. Scott, W.B. and Crossman, E.J., The freshwater fishes of Canada, Bull. Fish. Res. Board Can., 1973, no. 184, pp. 842—848.

  12. McAllister, D.E. and Aniskowicz, J., Vertebral number in North American sculpins of the Myoxocephalus quadricornis complex, J. Fish. Res. Board Can., 1976, vol. 33, pp. 2792—2799.

    Article  Google Scholar 

  13. Morrow, J.E., The Freshwater Fishes of Alaska, Anchorage: Alaska Northwest Publishing, 1980.

    Google Scholar 

  14. Fallis, B.W., Harbicht, S.M., and MacKenzie, B.J., A Preliminary Study of the Limnology and Biology of Garrow Lake, Northwest Territories, an Arctic Meromictic Lake, Winnipeg, MB: Department of Fisheries and Oceans, 1987.

    Google Scholar 

  15. Mecklenburg, C.W., Møller, P.R., and Steinke, D., Biodiversity of Arctic marine fishes: taxonomy and zoogeography, Mar. Biodiversity, 2011, vol. 41, pp. 109—140.

    Article  Google Scholar 

  16. Radchenko, O.A., Moreva, I.N., and Petrovskaya, A.V., Karyological and molecular genetic divergence of sculpins Myoxocephalus Gill, 1859 (Cottidae), Russ. J. Genet., 2020, vol. 56, no. 10, pp. 1212—1223. https://doi.org/10.1134/S1022795420100117

    Article  CAS  Google Scholar 

  17. Balakirev, E.S., Kravchenko, A.Yu., and Semenchenko, A.A., Genetic evidence for a mixed composition of the genus Myoxocephalus (Cottoidei: Cottidae) necessitates generic realignment, Genes, 2020, vol. 11, p. 1071. https://doi.org/10.3390/genes11091071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eschmeyer’s Catalog of Fishes: Genera, Species, References, Fricke, R., Eschmeyer, W.N., and van der Laan, R., Eds., 2022. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed March 1, 2022.

  19. Kligerman, A.D. and Bloom, S.E., Rapid chromosome preparations from solid tissues of fishes, J. Fish. Res. Board Can., 1977, vol. 34, pp. 266—269.

    Article  Google Scholar 

  20. Howell, W.M. and Black, D.A., Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method, Experientia, 1980, vol. 36, pp. 1014—1015.

    Article  CAS  PubMed  Google Scholar 

  21. Levan, A., Fredga, K., and Sandberg, A.A., Nomenclature for centromeric position on chromosomes, Hereditas, 1964, vol. 52, pp. 201—220.

    Article  Google Scholar 

  22. Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes), Moscow: Nauka, 1985.

  23. Moreva, I.N. and Borisenko, S.A., The karyotype of the flathead sculpin Megalocottus platycephalus platycephalus (Pallas, 1814) (Pisces: Cottidae) from Odyan Bay, Sea of Okhotsk, Russ. J. Mar. Biol., 2014, vol. 40, no. 2, pp. 125—130. https://doi.org/10.1134/S1063074014020072

    Article  Google Scholar 

  24. Moreva, I.N. and Borisenko, S.A., The karyotype of the flathead sculpin Megalocottus platycephalus taeniopterus (Kner, 1868) (Pisces: Cottidae) from Vostok Bay, Sea of Japan, Russ. J. Mar. Biol., 2015, vol. 41, no. 6, pp. 456—460. https://doi.org/10.1134/S1063074015060103

    Article  Google Scholar 

  25. Moreva, I.N. and Borisenko, S.A., The karyotype of the great sculpin, Myoxocephalus polyacanthocephalus (Pallas, 1814) (Pisces: Cottidae), from the Russian part of the species range, Russ. J. Mar. Biol., 2017, vol. 43, no. 1, pp. 64—69. https://doi.org/10.1134/S1063074017010096

    Article  Google Scholar 

  26. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  27. Moreva, I.N., Radchenko, O.A., and Petrovskaya, A.V., Differentiation of the frog sculpin Myoxocephalus stelleri Tilesius, 1811 (Actinopterygii, Cottidae) based on mtDNA and karyotype analyses, Comp. Cytogenet., 2021, vol. 15, no. 2, pp. 179—197. https://doi.org/10.3897/CompCytogen.v15.i2.63207

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ronquist, F., Teslenko, M., Van Der Mark, P., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rambaut, A., Drummond, A.J., Xie, D., et al., Posterior summarisation in Bayesian phylogenetics using tracer 1.7, Syst. Biol., 2018, vol. 67, pp. 901—904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leache, A.D. and Reeder, T.W., Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches, Syst. Biol., 2002, vol. 51, pp. 44—68.

    Article  PubMed  Google Scholar 

  31. Kirillov, A.F., Apsolikhova, O.D., Zhirkov, F.N., et al., The annotated list of lampreys and fish of the East-Siberian Sea basin, Issled. Vodn. Biol. Resur. Vodoemov Kamchatki Sev.-Zapadn. Chasti Tikhogo Okeana, 2016, no. 42, pp. 78—87.

  32. Chereshnev, I.A. and Kirillov, A.F., Lampreys and fishes of marine and fresh waters of the basins of the Laptev and East Siberian seas, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2007, no. 2, pp. 95—100.

  33. Lajus, D.L., Chromosome sets of 13 fish species from the White Sea, Problemy izucheniya, ratsional’nogo ispol’zovaniya, okhrany prirodnykh resursov Belogo morya (Challenges in Study, Rational Exploration, Protection of Natural Resources of the White Sea) (Proc. Regular Conf.), Petrozavodsk, 1992, pp. 179—180.

  34. Arai, R., Fish Karyotypes: A Check List, Tokyo: Springer-Verlag, 2011. https://doi.org/10.1007/978-4-431-53877-6

  35. Radchenko, O.A., Moreva, I.N., and Petrovskaya, A.V., The subfamily Myoxocephalinae of cottid fishes (Cottidae): genetic divergence and phylogenetic relationships, J. Fish Biol., 2021, vol. 99, pp. 1857—1868. https://doi.org/10.1111/jfb.14886

    Article  PubMed  Google Scholar 

  36. Bogutskaya, N.G. and Naseka, A.M., Katalog beschelyustnykh i ryb presnykh i solonovatykh vod Rossii s nomenklaturnymi i taksonomicheskimi kommentariyami (Catalogue of Agnathans and Fishes of Fresh and Brackish Waters of Russia with Comments on Nomenclature and Taxonomy), Moscow: KMK, 2004.

  37. Knope, M.L., Phylogenetics of the marine sculpins (Teleostei: Cottidae) of the North American Pacific coast, Mol. Phylogenet. Evol., 2013, vol. 66, pp. 341—349. https://doi.org/10.1016/j.ympev.2012.10.008

    Article  PubMed  Google Scholar 

  38. Page, L.M., Espinoza-Perez, H., Findley, L.T., et al., Common and Scientific Names of Fishes from the United States, Canada, and Mexico, Bethesda: American Fisheries Society, 2013, 7th ed.

    Google Scholar 

  39. Goto, A., Yokoyama, R., and Sideleva, V.G., Evolutionary diversification in freshwater sculpins (Cottoidea): a review of two major adaptive radiations, Environ. Biol. Fish., 2014, vol. 98, pp. 307—335. https://doi.org/10.1007/s10641-014-0262-7

    Article  Google Scholar 

Download references

Funding

The work was carried out with budgetary support within the framework of the research project Fauna, Systematics, and Ecology of Marine and Freshwater Hydrobionts of the Northeast of Russia (Russian Federation, no. 0290-2019-0004), Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Moreva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national and/or institutional principles of animal care and use have been observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreva, I.N., Radchenko, O.A. & Petrovskaya, A.V. Genetic Differentiation of the Fourhorn Sculpin Myoxocephalus quadricornis (Linnaeus, 1758) and Its Position in the Myoxocephalini Taranetz Tribe (Cottidae: Myoxocephalinae). Russ J Genet 59, 158–168 (2023). https://doi.org/10.1134/S1022795423020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423020060

Keywords:

Navigation