Skip to main content

Advertisement

Log in

Histopathological effects of short-term aqueous exposure to environmentally relevant concentration of lead (Pb) in shorthorn sculpin (Myoxocephalus scorpius) under laboratory conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Shorthorn sculpin (Myoxocephalus scorpius) has been used as a sentinel species for environmental monitoring, including heavy metal contamination from mining activities. Former lead–zinc (Pb–Zn) mines in Greenland resulted in elevated concentrations of metals, especially Pb, in marine biota. However, the potential accumulation of Pb and effects of the presence of Pb residues in fish on health of sculpins observed in the field have not been validated in laboratory experiments. Therefore, our aim was to validate field observation of shorthorn sculpin via controlled laboratory exposure to environmentally relevant concentrations of dissolved Pb. We evaluated the effects of a short-term (28 days) exposure to Pb on Pb residues in sculpin blood, gills, liver, and muscle and the morphology of gills and liver. The highest level of Pb was found in the gills, followed by muscle and then liver. Pb levels in liver, gills, and blood of Pb-exposed sculpins were significantly higher than those in control fish, showing that blood is suitable for assessing Pb accumulation and exposure in sculpins. Histopathological investigations showed that the severity score of liver necrosis and gill telangiectasia of Pb-exposed sculpins was significantly greater than in control fish. The number of mucous cells in gills was positively correlated with Pb concentrations in organs. Overall, the results validated field observation for the effects of Pb on wild sculpin and contributed to the improved use of the shorthorn sculpin as sentinel species for monitoring contamination from Pb mines in the Arctic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldoghachi MA, Azirun MS, Yusoff I, Ashraf MA (2016) Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure. Saudi J Biol Sci 23(5):634–641. https://doi.org/10.1016/j.sjbs.2015.08.004

    Article  CAS  Google Scholar 

  • Allen P (1995) Chronic accumulation of cadmium in the edible tissues of Oreochromis aureus (Steindachner): modification by mercury and lead. Arch Environ Contam Toxicol 29(1):8–14. https://doi.org/10.1007/BF00213079

    Article  CAS  Google Scholar 

  • Angel BM, Apte SC, Batley GE, Raven MD (2016) Lead solubility in seawater: an experimental study. Environ Chem 13(3):489–495. https://doi.org/10.1071/EN15150

    Article  CAS  Google Scholar 

  • Araújo FG, Morado CN, Parente TTE, Paumgartten FJR, Gomes ID (2018) Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil. Brazilian. J Biol 78(2):351–359. https://doi.org/10.1590/1519-6984.167209

    Article  Google Scholar 

  • Asmund G, Johansen P (1999) Short and long term environmental effects of marne tailings and waste rock disposal from a lead/zink mine in Greenland. Mine, Water Environ IMWA Int Congr Sevilla, Spain 1(1):177–181

    Google Scholar 

  • Bach L, Larsen MB (2018) Environmental monitoring at the Nalunaq Gold Mine, South Greenland, 2017. Aarhus University, National Environmental Research Institute

  • Barker DE, Khan RA, Lee EM, Hooper RG, Ryan K (1994) Anomalies in sculpins (Myoxocephalus spp.) sampled near a pulp and paper mill. Arch Environ Contam Toxicol 26(4):491–496. https://doi.org/10.1007/BF00214152

    Article  Google Scholar 

  • Bengtsson BE, Larsson Å (1986) Vertebral deformities and physiological effects in fourhorn sculpin (Myoxocephalus quadricornis) after long-term exposure to a simulated heavy metal-containing effluent. Aquat Toxicol 9(4–5):215–229. https://doi.org/10.1016/0166-445X(86)90010-X

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x

    Article  Google Scholar 

  • Bohn A, Fallis BW (1978) Metal concentrations (As, Cd, Cu, Pb and Zn) in shorthorn sculpins, Myoxocephalus scorpius (Linnaeus), and Arctic char, Salvelinus alpinus (Linnaeus), from the vicinity of Strathcona Sound, Northwest Territories. Water Res 12(9):659–663. https://doi.org/10.1016/0043-1354(78)90175-6

    Article  CAS  Google Scholar 

  • Bruno DW, Nowak B, Elliott DG (2006) Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections. Dis Aquat Org 70(1–2):1–36. https://doi.org/10.3354/dao070001

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Burke S, Stamm T (2007) Metal levels in flathead sole (Hippoglossoides elassodon) and great sculpin (Myoxocephalus polyacanthocephalus) from Adak Island, Alaska: Potential risk to predators and fishermen. Environ Res 103(1):62–69. https://doi.org/10.1016/J.ENVRES.2006.02.005

    Article  CAS  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575. https://doi.org/10.2307/3284227

    Article  CAS  Google Scholar 

  • Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136. https://doi.org/10.1016/S0269-7491(02)00194-X

    Article  CAS  Google Scholar 

  • Chua EM, Flint N, Wilson SP, Vink S (2018) Potential for biomonitoring metals and metalloids using fish condition and tissue analysis in an agricultural and coal mining region. Chemosphere 202:598–608. https://doi.org/10.1016/j.chemosphere.2018.03.080

    Article  CAS  Google Scholar 

  • Cicik B, Ay Ö, Karayakar F (2004) Effects of lead and cadmium interactions on the metal accumulation in tissue and organs of the Nile tilapia (Oreochromis niloticus). Bull Environ Contam Toxicol 72(1):141–148. https://doi.org/10.1007/s00128-003-0252-5

    Article  CAS  Google Scholar 

  • Ciesielski TM, Pastukhov MV, Leeves SA, Farkas J, Lierhagen S, Poletaeva VI, Jenssen BM (2016) Differential bioaccumulation of potentially toxic elements in benthic and pelagic food chains in Lake Baikal. Environ Sci Pollut Res 23(15):15593–15604. https://doi.org/10.1007/s11356-016-6634-0

    Article  CAS  Google Scholar 

  • Coello WF, Khan MAQ (1996) Protection against heavy metal toxicity by mucus and scales in fish. Arch Environ Contam Toxicol 30(3):319–326. https://doi.org/10.1007/BF00212289

    Article  CAS  Google Scholar 

  • Core Team R (2020) R: a language and environment for statistical computing. R Found. Stat. Comput, Vienna, Austria

  • Costa PM, Diniz MS, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TÁ, Costa MH (2009) Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol 92(3):202–212. https://doi.org/10.1016/j.aquatox.2008.12.009

    Article  CAS  Google Scholar 

  • Daglish RW, Nowak BF (2002) Rainbow trout gills are a sensitive biomarker of short-term exposure to waterborne copper. Arch Environ Contam Toxicol 43(1):98–102. https://doi.org/10.1007/s00244-002-1184-5

    Article  CAS  Google Scholar 

  • Dang M, Nørregaard R, Bach L, Sonne C, Søndergaard J, Gustavson K, Aastrup P, Nowak B (2017) Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environ Res 153:171–180. https://doi.org/10.1016/j.envres.2016.12.007

    Article  CAS  Google Scholar 

  • Dang M, Pittman K, Bach L, Sonne C, Hansson SV, Søndergaard J, Stride M, Nowak B (2019) Mucous cell responses to contaminants and parasites in shorthorn sculpins (Myoxocephalus scorpius) from a former lead-zinc mine in West Greenland. Sci Total Environ 678:207–216. https://doi.org/10.1016/j.scitotenv.2019.04.412

    Article  CAS  Google Scholar 

  • Dick T, Chambers C, Gallagher CP (2009) Parasites, diet and stable isotopes of shorthorn sculpin (Myoxocephalus scorpius) from Frobisher bay, Canada. Parasite 16(4):297–304. https://doi.org/10.1051/parasite/2009164297

    Article  CAS  Google Scholar 

  • Dietz R, Pacyna J, Thomas DJ, Asmund G, Gordeev VV, Johansen P, Kimstach V, Lockhart L, Pfirman S, Riget F, Shaw G, Wagemann R, White M (1998) Chapter 7: Heavy metals. In: Dietz R, Pacyna J, Thomas DJ (eds) AMAP assessment report: arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, pp 373–524

  • Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, Scheuhammer T, Andersen M, Andreasen C, Andriashek D, Asmund G, Aubail A, Baagøe H, Born EW, Chan HM, Derocher AE, Grandjean P, Knott K, Kirkegaard M, Krey A, Lunn N, Messier F, Obbard M, Olsen MT, Ostertag S, Peacock E, Renzoni A, Rigét FF, Skaare JU, Stern G, Stirling I, Taylor M, Wiig Ø, Wilson S, Aars J (2013) What are the toxicological effects of mercury in Arctic biota? Sci Total Environ 443:775–790. https://doi.org/10.1016/j.scitotenv.2012.11.046

    Article  CAS  Google Scholar 

  • Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Department of the Interior, Fish and Wildlife Service, Laurel

  • El-Moselhy KM, Othman AI, Abd El-Azem H, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1(2):97–105. https://doi.org/10.1016/j.ejbas.2014.06.001

    Article  Google Scholar 

  • Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58. https://doi.org/10.1289/ehp.877147

    Article  CAS  Google Scholar 

  • Fernandes D, Bebianno MJ, Porte C (2008) Hepatic levels of metal and metallothioneins in two commercial fish species of the Northern Iberian shelf. Sci Total Environ 391(1):159–167. https://doi.org/10.1016/j.scitotenv.2007.10.057

    Article  CAS  Google Scholar 

  • Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 22(4):241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

    Article  Google Scholar 

  • Gibson-Corley KN, Olivier AK, Meyerholz DK (2013) Principles for valid histopathologic scoring in research. Vet Pathol 50(6):1007–1015. https://doi.org/10.1177/0300985813485099

    Article  CAS  Google Scholar 

  • Grosell M, Gerdes R, Brix KV (2006) Influence of Ca, humic acid and pH on lead accumulation and toxicity in the fathead minnow during prolonged water-borne lead exposure. Comp Biochem Physiol - C Toxicol Pharmacol 143(4):473–483. https://doi.org/10.1016/j.cbpc.2006.04.014

    Article  CAS  Google Scholar 

  • Hansson SV, Desforges JP, van Beest FM, Bach L, Halden NM, Sonne C, Mosbech A, Søndergaard J (2020) Bioaccumulation of mining derived metals in blood, liver, muscle and otoliths of two Arctic predatory fish species (Gadus ogac and Myoxocephalus scorpius). Environ Res 183:109194. https://doi.org/10.1016/j.envres.2020.109194

    Article  CAS  Google Scholar 

  • Has-Schön E, Bogut I, Strelec I (2006) Heavy metal profile in five fish species included in human diet, domiciled in the end flow of river Neretva (Croatia). Arch Environ Contam Toxicol 50(4):545–551. https://doi.org/10.1007/s00244-005-0047-2

    Article  CAS  Google Scholar 

  • Helcom (2018) Metals (lead, cadmium and mercury). HELCOM core indicator report July 2018

  • Hodson PV (1988) The effect of metal metabolism on uptake, disposition and toxicity in fish. Aquat Toxicol 11(1–2):3–18. https://doi.org/10.1016/0166-445X(88)90003-3

    Article  CAS  Google Scholar 

  • Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011a) Bioaccumulation of metals in tissues of marine animals, Part II: Metal concentrations in animal tissues. Pol J Environ Stud 20(5):1127–1146

    CAS  Google Scholar 

  • Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011b) Bioaccumulation of metals in tissues of marine animals, Part I: The role and impact of heavy metals on organisms. Pol J Environ Stud 20(5):1117–1125

    CAS  Google Scholar 

  • Jarić I, Višnjić-Jeftić Ž, Cvijanović G, Gačić Z, Jovanović L, Skorić S, Lenhardt M (2011) Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchem J 98(1):77–81. https://doi.org/10.1016/j.microc.2010.11.008

    Article  CAS  Google Scholar 

  • Jezierska B, Witeska M (2006) The metal uptake and accumulation in fish living in polluted waters. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation. Springer Netherlands, Dordrecht, pp 107–114

  • Johansen P, Asmund G, Aastrup P, Tamstorf M (2008) Environmental impact of the lead-zinc mine at Mestervig, East Greenland. Aarhus University, National Environmental Research Institute

  • Johansen P, Asmund G, Riget F, Schledermann H (2010) Environmental monitoring at the cryolite mine in Ivittuut, South Greenland, in 2010. Aarhus University, National Environmental Research Institute

  • Kaarsholm HM, Verland N, Nørregaard RD, Bach L, Søndergaard J, Rigét FF, Dietz R, Hansen M, Eulaers I, Desforges JP, Leifsson PS, Dang M, Nowak B, Sonne C (2018) Histology of sculpin spp. in East Greenland. II. Histopathology and trace element concentrations. Toxicol Environ Chem 100(8–10):769–784. https://doi.org/10.1080/02772248.2019.1579992

    Article  CAS  Google Scholar 

  • Khan RA (2011) Chronic exposure and decontamination of a marine sculpin (Myoxocephalus scorpius) to polychlorinated biphenyls using selected body indices, blood values, histopathology, and parasites as bioindicators. Arch Environ Contam Toxicol 60(3):479–485. https://doi.org/10.1007/s00244-010-9547-9

    Article  CAS  Google Scholar 

  • Kim JH, Kang JC (2017) Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid. Chemosphere 176:131–140. https://doi.org/10.1016/j.chemosphere.2017.02.097

    Article  CAS  Google Scholar 

  • Landry JJ, Kessel ST, McLean MF, Ivanova SV, Hussey NE, O’neill C, Vagle S, Dick TA, Fisk AT (2019) Movement types of an arctic benthic fish, shorthorn sculpin (Myoxocephalus scorpius), during open-water periods in response to biotic and abiotic factors1. Can J Fish Aquat Sci 76(4):626–635. https://doi.org/10.1139/cjfas-2017-0389

    Article  Google Scholar 

  • Larsson Å, Haux C, Sjöbeck ML (1985) Fish physiology and metal pollution: results and experiences from laboratory and field studies. Ecotoxicol Environ Saf 9(3):250–281. https://doi.org/10.1016/0147-6513(85)90045-4

    Article  CAS  Google Scholar 

  • Lee JW, Choi H, Hwang UK, Kang JC, Kang YJ, Il KK, Kim JH (2019) Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ Toxicol Pharmacol 68:101–108. https://doi.org/10.1016/j.etap.2019.03.010

    Article  CAS  Google Scholar 

  • Levesque HM, Moon TW, Campbell PGC, Hontela A (2002) Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquat Toxicol 60(3–4):257–267. https://doi.org/10.1016/S0166-445X(02)00012-7

    Article  CAS  Google Scholar 

  • Liu JL, Xu XR, Ding ZH, Peng JX, Jin MH, Wang YS, Hong YG, Yue WZ (2015) Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans. Ecotoxicology 24(7–8):1583–1592. https://doi.org/10.1007/s10646-015-1451-7

    Article  CAS  Google Scholar 

  • Luksenburg JA, Pedersen T (2002) Sexual and geographical variation in life history parameters of the shorthorn sculpin. J Fish Biol 61(6):1453–1464. https://doi.org/10.1111/j.1095-8649.2002.tb02489.x

    Article  Google Scholar 

  • Macirella R, Sesti S, Bernabò I, Tripepi M, Godbert N, Brunelli E (2019) Lead toxicity in seawater teleosts: a morphofunctional and ultrastructural study on the gills of the Ornate wrasse (Thalassoma pavo L.). Aquat Toxicol 211:193–201. https://doi.org/10.1016/j.aquatox.2019.04.009

    Article  CAS  Google Scholar 

  • Mager EM (2011) Lead. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology: homeostasis and toxicology of non-essential metals. Elsevier, Amsterdam, pp 185–236

  • Martinez CB, Nagae MY, Zaia CT, Zaia DA (2004) Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Braz J Biol 64(4):797–807. https://doi.org/10.1590/s1519-69842004000500009

    Article  CAS  Google Scholar 

  • Matasin Z, Ivanusic M, Orescanin V, Nejedli S, Gajger IT (2011) Heavy metal concentrations in predator fish. J Anim Vet Adv 10(9):1214–1218. https://doi.org/10.3923/javaa.2011.1214.1218

    Article  CAS  Google Scholar 

  • Moon TW, Walsh PJ, Mommsen TP (1985) Fish hepatocytes: a model metabolic system. Can J Fish Aquat Sci 42(11):1772–1782. https://doi.org/10.1139/f85-222

    Article  CAS  Google Scholar 

  • Nørregaard RD, Dang M, Bach L, Geertz-Hansen O, Gustavson K, Aastrup P, Leifsson PS, Søndergaard J, Nowak B, Sonne C (2018) Comparison of heavy metals, parasites and histopathology in sculpins (Myoxocephalus spp.) from two sites at a lead-zinc mine in North East Greenland. Environ Res 165:306–316. https://doi.org/10.1016/j.envres.2018.04.016

    Article  CAS  Google Scholar 

  • Oliveira Ribeiro CA, Filipak Neto F, Mela M, Silva PH, Randi MAF, Rabitto IS, Alves Costa JRM, Pelletier E (2006) Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environ Res 101(1):74–80. https://doi.org/10.1016/j.envres.2005.11.005

    Article  CAS  Google Scholar 

  • Olson AJ, Cyphers T, Gerrish G, Belby C, King-Heiden TC (2018) Using morphological, behavioral, and molecular biomarkers in Zebrafish to assess the toxicity of lead-contaminated sediments from a retired trapshooting range within an urban wetland. J Toxicol Environ Heal Part A 81(18):924–938. https://doi.org/10.1080/15287394.2018.1506958

    Article  CAS  Google Scholar 

  • Paulino MG, Benze TP, Sadauskas-Henrique H, Sakuragui MM, Fernandes JB, Fernandes MN (2014) The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: bioaccumulation and histopathological biomarkers. Sci Total Environ 497–498:293–306. https://doi.org/10.1016/j.scitotenv.2014.07.122

    Article  CAS  Google Scholar 

  • Perner K, Leipe T, Dellwig O, Kuijpers A, Mikkelsen N, Andersen TJ, Harff J (2010) Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland. Mar Pollut Bull 60(7):1065–1073. https://doi.org/10.1016/j.marpolbul.2010.01.019

    Article  CAS  Google Scholar 

  • Poleksic V, Lenhardt M, Jaric I, Djordjevic D, Gacic Z, Cvijanovic G, Raskovic B (2010) Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet ( Acipenser ruthenus Linnaeus, 1758). Environ Toxicol Chem 29(3):515–521. https://doi.org/10.1002/etc.82

    Article  CAS  Google Scholar 

  • Pyle GG, Rajotte JW, Couture P (2005) Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicol Environ Saf 61(3):287–312. https://doi.org/10.1016/j.ecoenv.2004.09.003

    Article  CAS  Google Scholar 

  • Roberts AP, Oris JT (2004) Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol - C Toxicol Pharmacol 138(2):221–228. https://doi.org/10.1016/j.cca.2004.08.006

    Article  CAS  Google Scholar 

  • Roberts SD, Powell MD (2003) Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol - A Mol Integr Physiol 134(3):525–537. https://doi.org/10.1016/S1095-6433(02)00327-6

    Article  Google Scholar 

  • Rogers JT, Wood CM (2004) Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss. J Exp Biol 207(5):813–825. https://doi.org/10.1242/jeb.00826

    Article  CAS  Google Scholar 

  • Rogers JT, Patel M, Gilmour KM, Wood CM (2005) Mechanisms behind Pb-induced disruption of Na+ and Cl- balance in rainbow trout (Oncorhynchus mykiss). Am J Phys Regul Integr Comp Phys 289(2 58-2):R463–R472. https://doi.org/10.1152/ajpregu.00362.2004

    Article  CAS  Google Scholar 

  • Sauliute G, Svecevičius G (2015) Heavy metal interactions during accumulation via direct route in fish: a review. Zool Ecol 25(1):77–86. https://doi.org/10.1080/21658005.2015.1009734

    Article  Google Scholar 

  • Scheuhammer AM, Beyer WN, Schmitt CJ (2008) Lead. In: Encyclopedia of ecology. Elsevier, Amsterdam, pp 2133–2139

  • Schiedek D, Asmund G, Johansen P, Riget FF, Johansen KL, Strand J, Mølvig S (2009) Environmental monitoring at the former lead-zinc mine in Maarmorilik, Northwest Greenland, in 2008. NERI Technical Report, no. 737, National Environmental Research Institute, Aarhus University

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4(4):401–429. https://doi.org/10.1007/BF00042888

    Article  Google Scholar 

  • Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol Environ Saf 72(7):1957–1965. https://doi.org/10.1016/j.ecoenv.2009.06.007

    Article  CAS  Google Scholar 

  • Skinner L, De Peyster A, Schiff K (1999) Developmental effects of urban storm water in medaka (Oryzias latipes) and inland silverside (Menidia beryllina). Arch Environ Contam Toxicol 37(2):227–235. https://doi.org/10.1007/s002449900509

    Article  CAS  Google Scholar 

  • Somero GN, Chow TJ, Yancey PH, Snyder CB (1977) Lead accumulation rates in tissues of the estuarine teleost fish, Gillichthys mirabilis: salinity and temperature effects. Arch Environ Contam Toxicol 6(1):337–348. https://doi.org/10.1007/BF02097774

    Article  CAS  Google Scholar 

  • Søndergaard J, Asmund G, Johansen P, Rigét F (2011) Long-term response of an arctic fiord system to lead-zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland). Mar Environ Res 71(5):331–341. https://doi.org/10.1016/j.marenvres.2011.03.001

    Article  CAS  Google Scholar 

  • Søndergaard J, Halden N, Bach L, Gustavson K, Sonne C, Mosbech A (2015) Otolith chemistry of common sculpins (Myoxocephalus scorpius) in a mining polluted greenlandic fiord (Black Angel Lead-Zinc Mine, West Greenland). Water Air Soil Pollut 226(10):1–12. https://doi.org/10.1007/s11270-015-2605-1

    Article  CAS  Google Scholar 

  • Sonne C, Bach L, Søndergaard J, Rigét FF, Dietz R, Mosbech A, Leifsson PS, Gustavson K (2014) Evaluation of the use of common sculpin (Myoxocephalus scorpius) organ histology as bioindicator for element exposure in the fjord of the mining area Maarmorilik, West Greenland. Environ Res 133:304–311. https://doi.org/10.1016/j.envres.2014.05.031

    Article  CAS  Google Scholar 

  • Sorensen EMB (1991) Metal poisoning in fish. CRC Press, Boca Raton

  • Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T, Jenssen BM (2011) Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 45(15):6561–6566. https://doi.org/10.1021/es200478b

    Article  CAS  Google Scholar 

  • Spokas EG, Spur BW, Smith H, Kemp FW, Bogden JD (2006) Tissue lead concentration during chronic exposure of Pimephales promelas (fathead minnow) to lead nitrate in aquarium water. Environ Sci Technol 40(21):6852–6858. https://doi.org/10.1021/es060811o

    Article  CAS  Google Scholar 

  • Stephensen E, Svavarsson J, Sturve J, Ericson G, Adolfsson-Erici M, Förlin L (2000) Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquat Toxicol 48(4):431–442. https://doi.org/10.1016/S0166-445X(99)00062-4

    Article  CAS  Google Scholar 

  • Tao S, Liu C, Dawson R, Cao J, Li B (1999) Uptake of particulate lead via the gills of fish (Carassius auratus). Arch Environ Contam Toxicol 37(3):352–357. https://doi.org/10.1007/s002449900524

    Article  CAS  Google Scholar 

  • Tapia J, Vargas-Chacoff L, Bertrán C, Peña-Cortés F, Hauenstein E, Schlatter R, Jiménez C, Tapia C (2012) Heavy metals in the liver and muscle of Micropogonias manni fish from Budi Lake, Araucania Region, Chile: potential risk for humans. Environ Monit Assess 184(5):3141–3151. https://doi.org/10.1007/s10661-011-2178-4

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment BT—molecular, clinical and environmental toxicology. In: Luch A (ed) Volume 3: Environmental toxicology. Springer, Basel, pp 133–164

  • Thorsteinson LK, Love MS (2016) Alaska Arctic marine fish ecology catalog: U.S. Geological Survey Scientific Investigations Report 2016-5038 (OCS Study, BOEM 2016-048)

  • Triebskorn R, Köhler HR, Honnen W, Schramm M, Adams SM, Müller EF (1997) Induction of heat shock proteins, changes in liver ultrastructure, and alterations of fish behavior: are these biomarkers related and are they useful to reflect the state of pollution in the field? J Aquat Ecosyst Stress Recover 6(1):57–73. https://doi.org/10.1023/A:1008224301117

    Article  CAS  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • van Dyk JC, Marchand MJ, Smit NJ, Pieterse GM (2009) A histology-based fish health assessment of four commercially and ecologically important species from the Okavango Delta panhandle, Botswana. Afr J Aquat Sci 34(3):273–282. https://doi.org/10.2989/AJAS.2009.34.3.9.985

    Article  Google Scholar 

  • Verland N, Kaarsholm HM, Nørregaard RD, Bach L, Dietz R, Leifsson PS, Dang M, Nowak B, Sonne C (2018) Histology of sculpin spp. in East Greenland. I. Histological measures. Toxicol Environ Chem 100(5–7):607–628. https://doi.org/10.1080/02772248.2019.1572162

    Article  CAS  Google Scholar 

  • Wood CM (2011) An introduction to metals in fish physiology and toxicology: basic principles. In: Farrell AP, Brauner CJ (eds) Wood CM. Academic Press, Fish physiology, pp 1–51

  • Yoo JL, Janz DM (2003) Tissue-specific HSP70 levels and reproductive physiological responses in fishes inhabiting a metal-contaminated creek. Arch Environ Contam Toxicol 45(1):110–120. https://doi.org/10.1007/s00244-002-0109-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Development and Promotion of Science and Technology Talents Project (DPST), Royal Government of Thailand scholarship, for providing a grant for Khattapan Jantawongsri PhD study. We would like to thank Dr. Brian Jones and Dr. Judy Handlinger for valuable suggestions for interpretation of histopathology and Dr. Sabrina Sonda for her comments and suggestions on the manuscript. We acknowledge the Blue Planet including Chief Curator and Technical manager Lars Olsen for providing their expertise, time, and facilities for the present experiment.

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K.J.: data curation, formal analysis, funding acquisition, investigation, writing—original draft, formal analysis, investigation, methodology; R.D.N.: conceptualization, data curation, funding acquisition, investigation, resources; L.B.: conceptualization, supervision, writing—review & editing; R.D.: conceptualization, writing—review & editing; C.S.: conceptualization, funding acquisition, project administration, resources, supervision, writing—review & editing; K.J.: investigation, resources, methodology; S.L.: investigation, resources, methodology; T.M.C.: conceptualization, funding acquisition, investigation, methodology, writing—review & editing; B.M.J.: conceptualization, funding acquisition, investigation, methodology, writing—review & editing; J.H.: methodology, writing—review & editing; R.E.: conceptualization, investigation, supervision, writing—review & editing; B.N.: conceptualization, funding acquisition, investigation, project administration, supervision, writing—review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Barbara Nowak.

Ethics declarations

Ethics approval and consent to participate

The Pb exposure experiment was conducted at the Blue Planet, National Aquarium, Copenhagen Denmark, using shorthorn sculpin caught in the southern Kattegat, Denmark (License numbers for the experiment: 2015-15-0201-00692 (Dyreforsøgstilsynet), Ministry of Environment and Food of Denmark approved 28 September 2015).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Main findings

After 28 days of Pb exposure of shorthorn sculpins (Myoxocephalus scorpius) to environmentally relevant concentration of aqueous Pb (4.01 ± 3.77 μg/L dissolved Pb), Pb residues were highest in the gills followed by muscle and liver. The Pb residues in gills and liver and Pb concentrations in blood were significantly higher in the sculpin exposed to aqueous Pb than control fish. The number of gill mucous cells/interlamellar unit (ILU) was significantly greater in the exposed fish, and there was a positive correlation between Pb residues in organs (gills, liver, and muscle) and the number of mucous cells/ILU in the gills. The severity score of liver necrosis and telangiectasia in gills was significantly greater in the exposed fish. The severity score of necrosis was positively correlated with Pb levels in liver, and the severity score of telangiectasia in gills was positively correlated with Pb levels in blood.

Supplementary Information

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jantawongsri, K., Nørregaard, R.D., Bach, L. et al. Histopathological effects of short-term aqueous exposure to environmentally relevant concentration of lead (Pb) in shorthorn sculpin (Myoxocephalus scorpius) under laboratory conditions. Environ Sci Pollut Res 28, 61423–61440 (2021). https://doi.org/10.1007/s11356-021-14972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14972-6

Keywords

Navigation