WO2017030226A1 - Mems gyroscope having improved performance - Google Patents

Mems gyroscope having improved performance Download PDF

Info

Publication number
WO2017030226A1
WO2017030226A1 PCT/KR2015/008768 KR2015008768W WO2017030226A1 WO 2017030226 A1 WO2017030226 A1 WO 2017030226A1 KR 2015008768 W KR2015008768 W KR 2015008768W WO 2017030226 A1 WO2017030226 A1 WO 2017030226A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
elastic
disposed
frame
elastic coupling
Prior art date
Application number
PCT/KR2015/008768
Other languages
French (fr)
Korean (ko)
Inventor
문상희
서평보
이종성
Original Assignee
주식회사 스탠딩에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스탠딩에그 filed Critical 주식회사 스탠딩에그
Publication of WO2017030226A1 publication Critical patent/WO2017030226A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology

Definitions

  • the present invention relates to a MEMS gyroscope with improved performance, and more particularly, to measure a Coriolis force generated when a rotational angular velocity is applied to an object moving at a predetermined speed by using a driving mass vibrating on a substrate.
  • the present invention relates to a MEMS gyroscope with improved performance for accurately detecting rotation due to movement.
  • Three-dimensional microelectromechanical MEMS gyroscopes are known from TW 286201 BB.
  • the gyroscope has a drive mass placed in the central armature and causing movement in oscillating rotational motion.
  • the drive mass is disposed on the substrate and is inclined with respect to the y-axis or the x-axis when torque is applied about the x-axis or the y-axis by the forward force.
  • a signal line such as an oscillation electrode line is applied to the substrate to apply driving power for vibrating each driving mass, and since the signal line is disposed outside the operating range of the driving mass, the space is restricted. Due to this it is placed close to the elastic coupling connected between each driving mass or disposed upside down.
  • Figure 1 shows a configuration of a conventional MEMS gyroscope 10.
  • the conventional MEMS gyroscope 10 four driving masses 11 are spaced at a predetermined interval symmetrically with respect to the z axis, and elastic coupling is provided between two adjacent driving masses 11. (12) is disposed so as to guide the driving direction when each drive mass 11 moves in the x-axis or y-axis.
  • the conventional MEMS gyroscope 10 is formed in a rod shape having a narrow and long length of the elastic coupling 12 as shown in the driving direction when the driving mass 11 moves in the x-axis or y-axis. Tilt to this z-axis is not parallel to the x-axis and y-axis, there was a problem that can not accurately detect the rotation according to the movement.
  • Patent Document 1 Korean Patent Publication No. 10-0436367 (2004.06.07), MEMS gyroscope having a vertical vibration mass
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sensing noise by disposing an GND pad at the center of an elastic coupling part to absorb electrical components such as electromagnetic waves applied from adjacent or opposing signal lines.
  • the aim is to provide MEMS gyroscopes with improved performance to prevent them from occurring.
  • Another object of the present invention is to drive the driving mass in parallel with the x-axis and y-axis without driving the driving direction of the driving mass according to the unique shape of the elastic coupling portion for elastically supporting each drive mass, thereby precisely rotating the movement It is about providing MEMS gyroscopes with improved performance for detection.
  • MEMS gyroscope 100 for achieving the above object, arranged in parallel on the substrate 140, a plurality of pairs to vibrate in opposite directions to each other and a certain interval symmetrically about the z axis
  • a drive mass 110 spaced apart;
  • An elastic coupling part disposed parallel to each side of the two driving masses 110 and formed in an annular shape to connect both ends to two adjacent driving masses 110 to guide the driving direction of each driving mass 110. 130;
  • a GND line 150 extending along an edge of the substrate 140; And disposed in an empty space provided at the center of the elastic coupling part 130 and electrically connected to the GND line 150 to be applied from a signal line 141 disposed adjacent or opposite to the elastic coupling part 130.
  • a GND pad 151 which absorbs and blocks an electrical component so as not to be applied to the elastic coupling part 130.
  • the elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses ( It may include an elastic frame 132 disposed in parallel between the sides of the 110 and formed in a rectangular frame shape to provide elasticity while both ends of one edge are connected to two extension frames 131.
  • the elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses ( It may include an elastic frame 132 disposed in parallel between the sides of the 110 and formed in a circular frame shape to provide elasticity while both ends of one edge are connected to the two extension frames 131.
  • the elastic coupling portion 130 is connected to the inner edges of the two drive masses 110, respectively, two extension frames 131 extending between the sides of the two drive masses 110 and each extension frame ( Two first elastic frames 134, which are bent from the proximal end of 131 and extended in parallel to the longitudinal direction in which the extension frame 131 extends, and bent from the proximal ends of the respective first elastic frames 134, are extended. 131 and a second elastic frame 136 bent in a shape surrounding the outside of the first elastic frame 134.
  • the GND pad 151 is disposed at the center of the elastic coupling part 130 to provide electrical components such as electromagnetic waves applied from adjacent or opposite signal lines 141. By absorbing and blocking, generation of sensing noise can be prevented in advance.
  • the GND pad 151 is disposed at the center of the elastic coupling part 130, space preparation for installing the GND pad 151 separately on a MEMS gyroscope manufactured in a very small size is unnecessary, so the GND pad 151 ), The volume of the device can be prevented from increasing.
  • the driving direction of the driving mass 110 may be driven in parallel with the x-axis and the y-axis without tilting, depending on the unique shape of the elastic coupling part 130 that elastically supports the driving masses 110. It is possible to implement the effect that can accurately detect the rotation along.
  • 1 is a plan view showing the configuration of a conventional MEMS gyroscope
  • FIG. 2 is a plan view showing the configuration of a MEMS gyroscope according to a preferred embodiment of the present invention
  • FIG. 3 is an enlarged plan view showing the main configuration of a MEMS gyroscope according to a preferred embodiment of the present invention
  • FIG. 4 is a schematic view showing another configuration of a MEMS gyroscope according to a preferred embodiment of the present invention.
  • FIG. 5 is a plan view illustrating various embodiments of an elastic coupling part according to a preferred embodiment of the present invention.
  • Figure 6 is a data table showing the tilt angle measured for each shape between the elastic coupling portion according to the prior art and the preferred embodiment of the present invention
  • FIG. 7 is a graph illustrating a tilt angle measured for each shape of FIG. 6.
  • MEMS gyroscope 100 is an improved MEMS gyroscope to prevent the generation of sensing noise by absorbing electrical components such as electromagnetic waves applied from the signal line, Figure 2 4, the driving mass 110, the elastic coupling part 130, the GND line 150, and the GND pad 151 are provided.
  • the driving mass 110 is disposed in parallel to the substrate 140, but a plurality of pairs are paired and vibrating in opposite directions and spaced apart at regular intervals symmetrically about the z-axis has a symmetrical sensing structure.
  • the driving mass 110 is electrically connected to a signal line 141 such as an oscillation electrode line, which is a circuit pattern on the substrate 140, and x for each position according to the driving power applied in the standby mode. It vibrates along the axis or y axis.
  • a signal line 141 such as an oscillation electrode line, which is a circuit pattern on the substrate 140, and x for each position according to the driving power applied in the standby mode. It vibrates along the axis or y axis.
  • FIG. 2 illustrates that the driving mass 110 is formed in a substantially trapezoidal shape, but is not limited thereto, and the driving mass 110 may be formed in a substantially quadrangular shape as illustrated in FIG. 4, and an elastic coupling part 130 is disposed therein. May be
  • the driving masses 110 are arranged on the outer side of each driving mass 110 in a form surrounding the driving mass 110 in a frame work manner and are bent by the bending spring 121. As the sensor mass body 120 is connected to each other, the driving mass body 110 is positioned inside the sensor mass body 120.
  • the driving mass 110 is driven in a vibrating motion in a double arrow direction by a driving element (not shown) disposed on one side.
  • the drive element is composed of, for example, comb electrodes, part of which is attached to the substrate and part of which is attached to the drive elements, causing the drive elements to vibrate when an alternating voltage is applied.
  • the bending spring 121 is designed to bend flexibly in the driving direction of the driving mass 110 but not to bend in all other directions. This causes the drive element to vibrate very freely in the drive direction but to connect the drive element to the movement of the sensor mass 120 in the other direction.
  • the sensor mass 120 is formed in a direction corresponding to the deflection force generated during the rotational movement of the substrate 140 with respect to one or many of x, y and / or z axes. Rotated as the car moves.
  • the four driving masses 100 are arranged in the sensor mass 120 so that they are paired two by one and oscillate in opposite directions and are arranged point symmetrically with respect to the z axis. In this manner, the forces and torques that may be generated from the movement of the drive mass 110 cancel each other out, and the movement of the sensor mass 120 is not set because of the drive movement of the drive masses alone.
  • Both ends of the elastic coupling part 130 is connected between two adjacent driving masses 110 to support the driving direction according to the x-axis or y-axis movement of each of the driving masses 110. It is disposed in parallel between each side of the (110), formed in an annular shape is connected to the two driving masses 110 adjacent to both ends while supporting each driving mass 110 so as not to tilt in the z-axis direction while driving direction Guide.
  • the GND line 150 is electrically connected to a GND connection line (not shown) of the substrate 140 and extends along the circumference of the substrate 140 and extends long on the edge of the substrate 140 as shown in the drawing. Can be.
  • the GND pad 151 is disposed in an empty space provided at the center of the elastic coupling part 130, and is electrically connected to the GND line 150 so as to be adjacent to or opposite the elastic coupling part 130. Electrical components such as electromagnetic waves applied from 141 are absorbed and blocked so as not to be applied to the elastic coupling part 130.
  • a GND substrate 142 having a lower portion supported by a base structure is provided at the center of the elastic coupling part 130 to support the GND pad 151 mounted on the upper side so as to be structurally stable.
  • the GND pad 151 may be disposed on the elastic coupling part 130 to absorb electrical components such as electromagnetic waves, thereby preventing the gyro sensing noise from being generated by the electrical components. According to the construction of the GND pad 151 because it is not necessary to prepare a space for installing the GND pad 151 separately on the MEMS gyroscope 100 manufactured in a very small size as it is disposed in the center of the elastic coupling part 130. The bulkiness of the device can be prevented.
  • the elastic coupling portion 130 respectively connected to the inner edge of the two drive mass (110) of the two drive mass (110)
  • a plurality of extension frames 131 extending between the sides and the side of the two driving masses 110 are arranged in parallel and are formed in a circular frame shape so that both ends of one edge are connected to the two extension frames 131 to provide elasticity. It is provided including an elastic frame 132 to provide.
  • the periodic movements of the two drive masses 110 connected together by the elastic coupling portion 130 are directed toward or away from each other to produce a change in distance between the two drive masses 110.
  • the elastic coupling portion 130 is properly opened due to its shape in this process.
  • the elastic coupling part 130 exerts a force on the driving mass 110 and as a result the difference in speed is compensated for, so that the driving movement of the four driving masses 110 occurs simultaneously.
  • the elastic frame 132 is disposed in parallel between the sides of the two driving masses 110 and formed in a rectangular frame shape to extend the two extension frames 131. At both ends of the one edge is connected to) may provide elasticity.
  • the elastic coupling part 130 is connected to inner edges of the two driving masses 110 respectively and extends between two sides of the two driving masses 110.
  • the second elastic frame 136 may be provided to be bent from the proximal end of 134 and bent in a form surrounding the outer side of the extension frame 131 and the first elastic frame 134.
  • each frame forming the elastic coupling portion 130 is preferably formed to be equal to the thickness of the adjacent frame between the adjacent frame 1: 1 to facilitate the process of manufacturing the elastic coupling portion 130. Do.
  • U represents the x-axis direction and v represents the y-axis direction, respectively.
  • the driving mass 110 when the driving direction is not parallel to the vibrating axial direction, the Coriolis force responding to the input angle (x-axis and 90 degrees) is weakened, and thus, the performance (Sensivility) is reduced.
  • the tilt angle is 36.7 degrees and various shapes of the elastic coupling part 130 according to the preferred embodiment of the present invention (type 2).
  • the difference is approximately 10 times to 25 times.
  • the elastic coupling part (type 1) according to the prior art has a narrow width and a long rod shape, the tilt angle is greatly increased as the component of the v displacement is excessively large, so that the sensing performance is deteriorated.
  • the elastic coupling unit 130 according to the preferred embodiment of the present invention has a unique structure capable of effectively supporting the driving direction of the driving mass 110 in the x-axis or the y-axis by minimizing the component of the v displacement, thereby providing excellent sensing performance. Can be seen.
  • the signal line arranged close or opposite Electrical components such as electromagnetic waves applied from 141 may be absorbed to prevent generation of sensing noise.
  • the driving direction of the driving mass 110 may be driven parallel to the x-axis and the y-axis without tilting the driving direction of the driving mass 110 according to the unique shape of the elastic coupling part 130 that elastically supports the driving masses 110. It can detect the rotation by movement more precisely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gyroscopes (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

According to the present invention, disclosed is a MEMS gyroscope that comprises: a plurality of drive masses (110) disposed parallel to each other on a substrate (140), wherein the plurality of drive masses (110) are paired to oscillate in opposite directions and are spaced apart from each other with a predetermined interval therebetween to have point symmetry with respect to the Z-axis; resilient coupling parts (130), each of which is disposed between lateral sides of the two drive masses (110) so as to be parallel to the same and is formed in a hook shape to guide the driving direction of each drive mass (110) while being connected to the two adjacent drive masses (110) at opposite ends thereof; a GND line (150) extending along the outer periphery of the substrate (140); and a GND pad (151) disposed within an empty space in the middle of each resilient coupling part (130) and electrically connected with the GND line (150) to absorb an electrical component applied from a signal line (141) disposed close, or opposite, to the resilient coupling part 130 to shield the electrical component such that the electrical component is prevented from being applied to the resilient coupling part (130).

Description

성능이 개선된 멤스 자이로스코프MEMS gyroscope with improved performance
본 발명은 성능이 개선된 멤스 자이로스코프에 관한 것으로, 보다 상세하게는 기판상에서 진동하는 구동질량체를 이용하여 소정의 속도로 이동하는 물체에 회전각속도가 가해질 경우 발생하는 코리올리힘(Coriolis Force)을 측정하여 움직임에 따른 회전을 정밀하게 감지하기 위한 성능이 개선된 멤스 자이로스코프에 관한 것이다.The present invention relates to a MEMS gyroscope with improved performance, and more particularly, to measure a Coriolis force generated when a rotational angular velocity is applied to an object moving at a predetermined speed by using a driving mass vibrating on a substrate. The present invention relates to a MEMS gyroscope with improved performance for accurately detecting rotation due to movement.
3차원 마이크로 전자 기계 MEMS 자이로스코프는 TW 286201 BB로부터 알려져 있다. 이 자이로스코프는 중앙 전기자(Armature)에 배치되고 진동 회전 모션으로 움직임을 야기하는 구동질량체를 가지고 있다. 상기 구동질량체는 기판에 배치되며 전향력에 의해 토크가 x축 또는 y축에 대해 적용될 때 y축 또는 x축에 대해 기울어진다.Three-dimensional microelectromechanical MEMS gyroscopes are known from TW 286201 BB. The gyroscope has a drive mass placed in the central armature and causing movement in oscillating rotational motion. The drive mass is disposed on the substrate and is inclined with respect to the y-axis or the x-axis when torque is applied about the x-axis or the y-axis by the forward force.
여기서, 상기 기판에는 각 구동질량체를 진동시키기 위한 구동전원을 인가하는 발진전원선(Oscillation Electrode Line) 등의 신호라인이 구축되며 이 신호라인은 구동질량체의 동작범위 외에 배치되기 때문에, 공간적인 제약으로 인해 각 구동질량체 사이에 연결되는 탄성커플링에 근접배치되거나 상하로 대향 배치되었다.Here, a signal line such as an oscillation electrode line is applied to the substrate to apply driving power for vibrating each driving mass, and since the signal line is disposed outside the operating range of the driving mass, the space is restricted. Due to this it is placed close to the elastic coupling connected between each driving mass or disposed upside down.
그러나, 이 경우 신호라인으로부터 방출되는 전자기파의 영향이 탄성커플링에 영향을 미쳐 센싱 노이즈로 작용하는 문제점이 있었다.However, in this case, there is a problem in that the influence of electromagnetic waves emitted from the signal line affects the elastic coupling to act as sensing noise.
한편, 도 1에는 종래의 멤스 자이로스코프(10)의 구성이 도시되어 있다. 도 1을 참고하면 종래의 멤스 자이로스코프(10)는 4개 구동질량체(11)가 z축에 대하여 점 대칭적으로 일정간격 이격배치되며, 인접된 두 구동질량체(11)의 사이에는 탄성커플링(12)이 배치되어 각 구동질량체(11)가 x축 또는 y축으로 이동할때 드라이빙 방향을 가이드하는 구조로 구비되었다.On the other hand, Figure 1 shows a configuration of a conventional MEMS gyroscope 10. Referring to FIG. 1, in the conventional MEMS gyroscope 10, four driving masses 11 are spaced at a predetermined interval symmetrically with respect to the z axis, and elastic coupling is provided between two adjacent driving masses 11. (12) is disposed so as to guide the driving direction when each drive mass 11 moves in the x-axis or y-axis.
그러나, 종래의 멤스 자이로스코프(10)는 도면에서와 같이 상기 탄성커플링(12)의 폭이 좁고 길이가 긴 막대 형상으로 형성되어 구동질량체(11)가 x축 또는 y축으로 이동할때 드라이빙 방향이 z축으로 틸트되면서 x축 및 y축과 평행하지 않게 되어 움직임에 따른 회전을 정밀하게 감지하지 못하는 문제점이 있었다.However, the conventional MEMS gyroscope 10 is formed in a rod shape having a narrow and long length of the elastic coupling 12 as shown in the driving direction when the driving mass 11 moves in the x-axis or y-axis. Tilt to this z-axis is not parallel to the x-axis and y-axis, there was a problem that can not accurately detect the rotation according to the movement.
(선행기술문헌)(Prior art document)
(특허문헌)(Patent literature)
(특허문헌 1) 등록특허공보 제10-0436367호(2004.06.07), 수직 진동 질량체를 갖는 멤스 자이로스코프(Patent Document 1) Korean Patent Publication No. 10-0436367 (2004.06.07), MEMS gyroscope having a vertical vibration mass
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 탄성커플링부의 중앙부에 GND패드를 배치하여 근접 또는 대향 배치된 신호라인으로부터 인가되는 전자기파 등의 전기적 성분을 흡수함으로써 센싱 노이즈 발생을 미연에 방지할 수 있도록 성능이 개선된 멤스 자이로스코프를 제공하는 것에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sensing noise by disposing an GND pad at the center of an elastic coupling part to absorb electrical components such as electromagnetic waves applied from adjacent or opposing signal lines. The aim is to provide MEMS gyroscopes with improved performance to prevent them from occurring.
본 발명의 다른 목적은 각 구동질량체를 탄성지지하는 탄성커플링부의 독창적인 형상에 따라 구동질량체의 드라이빙 방향이 틸트되지 않고 x축, y축과 평행하게 드라이빙시킬 수 있어 움직임에 따른 회전을 정밀하게 감지할 수 있도록 성능이 개선된 멤스 자이로스코프를 제공하는 것에 있다.Another object of the present invention is to drive the driving mass in parallel with the x-axis and y-axis without driving the driving direction of the driving mass according to the unique shape of the elastic coupling portion for elastically supporting each drive mass, thereby precisely rotating the movement It is about providing MEMS gyroscopes with improved performance for detection.
상기의 목적을 달성하기 위한 본 발명에 따른 멤스 자이로스코프(100)는, 기판(140) 상에 평행하게 배치되되 복수 개가 짝을 이루어 서로 반대방향으로 진동하고 z축에 대하여 점 대칭적으로 일정간격 이격배치되는 구동질량체(110); 상기 두 구동질량체(110)의 각 측부 사이에 평행하게 배치되며, 고리 형상으로 형성되어 인접된 두 구동질량체(110)에 양단이 연결되면서 각 구동질량체(110)의 드라이빙 방향을 가이드하는 탄성커플링부(130); 상기 기판(140)의 테두리를 따라 연장 배치된 GND라인(150); 및 상기 탄성커플링부(130)의 중앙에 마련된 빈공간 내에 배치되며, 상기 GND라인(150)과 전기적으로 연결되어 상기 탄성커플링부(130)와 근접 또는 대향 배치된 신호라인(141)으로부터 인가되는 전기적 성분이 상기 탄성커플링부(130)에 인가되지 않도록 흡수하여 차단하는 GND패드(151);를 포함한다.MEMS gyroscope 100 according to the present invention for achieving the above object, arranged in parallel on the substrate 140, a plurality of pairs to vibrate in opposite directions to each other and a certain interval symmetrically about the z axis A drive mass 110 spaced apart; An elastic coupling part disposed parallel to each side of the two driving masses 110 and formed in an annular shape to connect both ends to two adjacent driving masses 110 to guide the driving direction of each driving mass 110. 130; A GND line 150 extending along an edge of the substrate 140; And disposed in an empty space provided at the center of the elastic coupling part 130 and electrically connected to the GND line 150 to be applied from a signal line 141 disposed adjacent or opposite to the elastic coupling part 130. And a GND pad 151 which absorbs and blocks an electrical component so as not to be applied to the elastic coupling part 130.
여기서, 상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 복수의 연장프레임(131) 및, 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 사각 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공하는 탄성프레임(132)을 포함할 수 있다.Here, the elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses ( It may include an elastic frame 132 disposed in parallel between the sides of the 110 and formed in a rectangular frame shape to provide elasticity while both ends of one edge are connected to two extension frames 131.
또한, 상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 복수의 연장프레임(131) 및, 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 원형 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공하는 탄성프레임(132)을 포함할 수 있다.In addition, the elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses ( It may include an elastic frame 132 disposed in parallel between the sides of the 110 and formed in a circular frame shape to provide elasticity while both ends of one edge are connected to the two extension frames 131.
*한편, 상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 두 개의 연장프레임(131)과, 각 연장프레임(131)의 기단부로부터 절곡되어 연장프레임(131)이 연장된 길이방향과 평행하게 연장배치된 두 개의 제1탄성프레임(134) 및, 각 제1탄성프레임(134)의 기단부로부터 절곡되어 상기 연장프레임(131) 및 제1탄성프레임(134)의 외측을 둘러싸는 형태로 절곡형성된 제2탄성프레임(136)을 포함할 수 있다.On the other hand, the elastic coupling portion 130 is connected to the inner edges of the two drive masses 110, respectively, two extension frames 131 extending between the sides of the two drive masses 110 and each extension frame ( Two first elastic frames 134, which are bent from the proximal end of 131 and extended in parallel to the longitudinal direction in which the extension frame 131 extends, and bent from the proximal ends of the respective first elastic frames 134, are extended. 131 and a second elastic frame 136 bent in a shape surrounding the outside of the first elastic frame 134.
본 발명에 따른 성능이 개선된 멤스 자이로스코프에 의하면, 탄성커플링부(130)의 중앙부에 GND패드(151)를 배치하여 근접 또는 대향 배치된 신호라인(141)으로부터 인가되는 전자기파 등의 전기적 성분을 흡수하여 차단함으로써 센싱 노이즈 발생을 미연에 방지할 수 있다.According to the MEMS gyroscope having improved performance according to the present invention, the GND pad 151 is disposed at the center of the elastic coupling part 130 to provide electrical components such as electromagnetic waves applied from adjacent or opposite signal lines 141. By absorbing and blocking, generation of sensing noise can be prevented in advance.
또한, 상기 GND패드(151)가 탄성커플링부(130)의 중앙에 배치됨에 따라 극소형으로 제조되는 멤스 자이로스코프 상에 별도로 GND패드(151)를 설치하기 위한 공간마련이 불필요하므로 GND패드(151)의 구축에 따라 장치의 부피가 커지는 것을 방지할 수 있다.In addition, since the GND pad 151 is disposed at the center of the elastic coupling part 130, space preparation for installing the GND pad 151 separately on a MEMS gyroscope manufactured in a very small size is unnecessary, so the GND pad 151 ), The volume of the device can be prevented from increasing.
더불어, 각 구동질량체(110)를 탄성지지하는 탄성커플링부(130)의 독창적인 형상에 따라 구동질량체(110)의 드라이빙 방향이 틸트되지 않고 x축, y축과 평행하게 드라이빙시킬 수 있어 움직임에 따른 회전을 정밀하게 감지할 수 있는 효과를 구현할 수 있다.In addition, the driving direction of the driving mass 110 may be driven in parallel with the x-axis and the y-axis without tilting, depending on the unique shape of the elastic coupling part 130 that elastically supports the driving masses 110. It is possible to implement the effect that can accurately detect the rotation along.
도 1은 종래의 멤스 자이로스코프의 구성을 나타낸 평면도,1 is a plan view showing the configuration of a conventional MEMS gyroscope,
도 2는 본 발명의 바람직한 실시예에 따른 멤스 자이로스코프의 구성을 나타낸 평면도,2 is a plan view showing the configuration of a MEMS gyroscope according to a preferred embodiment of the present invention;
도 3은 본 발명의 바람직한 실시예에 따른 멤스 자이로스코프의 주요 구성을 확대하여 나타낸 평면도,3 is an enlarged plan view showing the main configuration of a MEMS gyroscope according to a preferred embodiment of the present invention;
도 4는 본 발명의 바람직한 실시예에 따른 멤스 자이로스코프의 다른 구성을 나타낸 개략도,4 is a schematic view showing another configuration of a MEMS gyroscope according to a preferred embodiment of the present invention;
도 5는 본 발명의 바람직한 실시예에 따른 탄성커플링부의 다양한 실시예를 나타낸 평면도,5 is a plan view illustrating various embodiments of an elastic coupling part according to a preferred embodiment of the present invention;
도 6은 종래기술과 본 발명의 바람직한 실시예에 따른 탄성커플링부간의 각 형상별로 측정된 틸트각도를 나타낸 데이터표,Figure 6 is a data table showing the tilt angle measured for each shape between the elastic coupling portion according to the prior art and the preferred embodiment of the present invention,
도 7은 도 6의 각 형상별 측정된 틸트각도를 도식화하여 표시한 그래프이다.FIG. 7 is a graph illustrating a tilt angle measured for each shape of FIG. 6.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명의 바람직한 실시예에 따른 멤스 자이로스코프는(100)는 신호라인으로부터 인가되는 전자기파 등의 전기적 성분을 흡수하여 센싱 노이즈 발생을 미연에 방지할 수 있도록 성능이 개선된 멤스 자이로스코프로서, 도 2 내지 도 4에 도시된 바와 같이 구동질량체(110), 탄성커플링부(130), GND라인(150) 및 GND패드(151)을 포함하여 구비된다. MEMS gyroscope 100 according to a preferred embodiment of the present invention is an improved MEMS gyroscope to prevent the generation of sensing noise by absorbing electrical components such as electromagnetic waves applied from the signal line, Figure 2 4, the driving mass 110, the elastic coupling part 130, the GND line 150, and the GND pad 151 are provided.
먼저, 구동질량체(110)는 기판(140)에 평행하게 배치되되 복수 개가 짝을 이루며 서로 반대방향으로 진동하고 z축에 대하여 점 대칭적으로 일정간격 이격배치되면서 대칭적 센싱구조를 갖는다.First, the driving mass 110 is disposed in parallel to the substrate 140, but a plurality of pairs are paired and vibrating in opposite directions and spaced apart at regular intervals symmetrically about the z-axis has a symmetrical sensing structure.
여기서, 상기 구동질량체(110)는 기판(140)에 회로패턴된 발진전원선(Oscillation Electrode Line) 등의 신호라인(141)과 전기적으로 연결되어 대기모드시 인가되는 구동전원에 따라 각 위치별로 x축 또는 y축 상으로 진동운동하게 된다.In this case, the driving mass 110 is electrically connected to a signal line 141 such as an oscillation electrode line, which is a circuit pattern on the substrate 140, and x for each position according to the driving power applied in the standby mode. It vibrates along the axis or y axis.
또한, 도 2에는 상기 구동질량체(110)가 대략 사다리꼴 형상으로 형성된 것을 예시하였으나, 이에 한정되는 것은 아니며 도 4에 도시된 바와 같이 대략 사각형상으로 형성되고 그 내측에 탄성커플링부(130)가 배치될 수도 있다.In addition, FIG. 2 illustrates that the driving mass 110 is formed in a substantially trapezoidal shape, but is not limited thereto, and the driving mass 110 may be formed in a substantially quadrangular shape as illustrated in FIG. 4, and an elastic coupling part 130 is disposed therein. May be
더불어, 도 4를 참고하면 각 구동질량체(110)의 외측에는 테두리(Frame work)방식으로 구동질량체(110)를 둘러싸는 형태로 평행하게 배치되며 휨스프링(121)에 의해 각 구동질량체(110)와 연결되는 센서질량체(120)가 마련되면서 각 구동질량체(110)는 센서질량체(120)의 내부에 위치하게 된다.In addition, referring to FIG. 4, the driving masses 110 are arranged on the outer side of each driving mass 110 in a form surrounding the driving mass 110 in a frame work manner and are bent by the bending spring 121. As the sensor mass body 120 is connected to each other, the driving mass body 110 is positioned inside the sensor mass body 120.
상기 구동질량체(110)는 일측에 배치된 구동소자(미도시)에 의해 이중 화살표(Double arrow) 방향에서 진동 운동으로 구동된다. 상기 구동소자는 예를 들어 빗살 전극들(Comb electrodes)로 구성되고, 그 일부가 상기 기판에 부착되어 있고 다른 일부는 구동소자들에 부착되어 있어 교류전압이 적용될 때 구동 소자들을 진동 흔들림되게 한다.The driving mass 110 is driven in a vibrating motion in a double arrow direction by a driving element (not shown) disposed on one side. The drive element is composed of, for example, comb electrodes, part of which is attached to the substrate and part of which is attached to the drive elements, causing the drive elements to vibrate when an alternating voltage is applied.
상기 휨스프링(121)은 구동질량체(110)의 구동 방향에서 유연하게 휘어지지만 다른 모든 방향에서 휘어지지 않게 설계된다. 이는 구동소자가 구동 방향에서 매우 자유롭게 진동하지만 다른 방향에서 구동소자가 센서질량체(120)의 움직임에 연결되도록 한다. 따라서 상기 구동질량체(110)와 함께 상기 센서질량체(120)는, x, y 및/또는 z축 중 하나 또는 다수에 대한 상기 기판(140)의 회전 움직임 동안에 발생하는 전향력에 의해 대응하는 방향에서 2차 움직임으로서 회전된다.The bending spring 121 is designed to bend flexibly in the driving direction of the driving mass 110 but not to bend in all other directions. This causes the drive element to vibrate very freely in the drive direction but to connect the drive element to the movement of the sensor mass 120 in the other direction. Thus, together with the drive mass 110, the sensor mass 120 is formed in a direction corresponding to the deflection force generated during the rotational movement of the substrate 140 with respect to one or many of x, y and / or z axes. Rotated as the car moves.
4개의 구동질량체(100)는 둘씩 짝을 이뤄 서로 반대 방향으로 진동하고 z축과 관련하여 점 대칭적으로(Point symmetrically) 배치되도록 센서질량체(120) 내에 배치되어 있다. 이러한 방식에서, 구동질량체(110)의 움직임으로부터 발생될 수 있는 힘과 토크는 서로 상쇄되고, 구동 질량체들 단독의 구동 운동 때문에 상기 센서질량체(120)의 운동이 설정되지는 않는다.The four driving masses 100 are arranged in the sensor mass 120 so that they are paired two by one and oscillate in opposite directions and are arranged point symmetrically with respect to the z axis. In this manner, the forces and torques that may be generated from the movement of the drive mass 110 cancel each other out, and the movement of the sensor mass 120 is not set because of the drive movement of the drive masses alone.
상기 탄성커플링부(130)는, 인접된 두 구동질량체(110) 사이에 양단이 연결되어 각 구동질량체(110)의 x축 또는 y축 이동에 따라 드라이빙 방향을 지지하는 구성으로서, 상기 두 구동질량체(110)의 각 측부 사이에 평행하게 배치되며, 고리 형상으로 형성되어 인접된 두 구동질량체(110)에 양단이 연결되면서 각 구동질량체(110)가 z축 방향으로 틸트되지 않도록 지지하면서 드라이빙 방향을 가이드한다.Both ends of the elastic coupling part 130 is connected between two adjacent driving masses 110 to support the driving direction according to the x-axis or y-axis movement of each of the driving masses 110. It is disposed in parallel between each side of the (110), formed in an annular shape is connected to the two driving masses 110 adjacent to both ends while supporting each driving mass 110 so as not to tilt in the z-axis direction while driving direction Guide.
상기 GND라인(150)은 기판(140)의 GND 접속라인(미도시)과 전기적으로 연결되며 기판(140)의 둘레를 따라 연장배치되며 도면에서와 같이 기판(140)의 테두리상에 길게 연장배치될 수 있다. The GND line 150 is electrically connected to a GND connection line (not shown) of the substrate 140 and extends along the circumference of the substrate 140 and extends long on the edge of the substrate 140 as shown in the drawing. Can be.
상기 GND패드(151)는 상기 탄성커플링부(130)의 중앙에 마련된 빈공간 내에 배치되며, 상기 GND라인(150)과 전기적으로 연결되어 상기 탄성커플링부(130)와 근접 또는 대향 배치된 신호라인(141)으로부터 인가되는 전자기파 등의 전기적 성분이 상기 탄성커플링부(130)에 인가되지 않도록 흡수하여 차단한다.The GND pad 151 is disposed in an empty space provided at the center of the elastic coupling part 130, and is electrically connected to the GND line 150 so as to be adjacent to or opposite the elastic coupling part 130. Electrical components such as electromagnetic waves applied from 141 are absorbed and blocked so as not to be applied to the elastic coupling part 130.
또한, 상기 탄성커플링부(130)의 중앙에는 도시되지 않은 베이스구조물에 의해 하부가 지지되는 GND기판(142)이 마련되어 상부에 안착된 GND패드(151)가 구조적으로 안정되게 설치될 수 있도록 지지한다.In addition, a GND substrate 142 having a lower portion supported by a base structure (not shown) is provided at the center of the elastic coupling part 130 to support the GND pad 151 mounted on the upper side so as to be structurally stable. .
이와 같이, 상기 GND패드(151)가 탄성커플링부(130)에 배치되어 전자기파 등의 전기적 성분을 흡수할 수 있으므로 전기적 성분에 의해 자이로 센싱 노이즈가 발생될 수 있는 소지를 미연에 방지할 수 있으며, 상기 탄성커플링부(130)의 중앙에 배치됨에 따라 극소형으로 제조되는 멤스 자이로스코프(100) 상에 별도로 GND패드(151)를 설치하기 위한 공간마련이 불필요하므로 GND패드(151)의 구축에 따라 장치의 부피가 커지는 것을 방지할 수 있다.As such, the GND pad 151 may be disposed on the elastic coupling part 130 to absorb electrical components such as electromagnetic waves, thereby preventing the gyro sensing noise from being generated by the electrical components. According to the construction of the GND pad 151 because it is not necessary to prepare a space for installing the GND pad 151 separately on the MEMS gyroscope 100 manufactured in a very small size as it is disposed in the center of the elastic coupling part 130. The bulkiness of the device can be prevented.
한편, 도 2, 도 3 및 도 5의 (a)에 도시된 바와 같이, 상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 복수의 연장프레임(131) 및, 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 원형 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공하는 탄성프레임(132)을 포함하여 구비된다.On the other hand, as shown in Figure 2, 3 and 5 (a), the elastic coupling portion 130, respectively connected to the inner edge of the two drive mass (110) of the two drive mass (110) A plurality of extension frames 131 extending between the sides and the side of the two driving masses 110 are arranged in parallel and are formed in a circular frame shape so that both ends of one edge are connected to the two extension frames 131 to provide elasticity. It is provided including an elastic frame 132 to provide.
상기 탄성커플링부(130)에 의해 함께 연결된 두 구동질량체(110)의 주기적인 움직임은 서로를 향하거나 서로로부터 멀어져 두 구동질량체(110) 사이의 거리 변화를 만들어낸다. 상기 탄성커플링부(130)는 이 과정에서 그 모양 때문에 적절히 벌어진다. 상기 탄성커플링부(130)은 상기 구동질량체(110)에 힘을 가하고 그 결과로 속도의 차이가 보상되고 따라서 상기 4개의 구동질량체(110)의 구동 움직임이 동시에 발생한다.The periodic movements of the two drive masses 110 connected together by the elastic coupling portion 130 are directed toward or away from each other to produce a change in distance between the two drive masses 110. The elastic coupling portion 130 is properly opened due to its shape in this process. The elastic coupling part 130 exerts a force on the driving mass 110 and as a result the difference in speed is compensated for, so that the driving movement of the four driving masses 110 occurs simultaneously.
또한, 도 4, 도 5의 (b)에 도시된 바와 같이, 상기 탄성프레임(132)은 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 사각 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공할 수도 있다.4 and 5 (b), the elastic frame 132 is disposed in parallel between the sides of the two driving masses 110 and formed in a rectangular frame shape to extend the two extension frames 131. At both ends of the one edge is connected to) may provide elasticity.
더불어, 도 5의 (c)에 도시된 바와 같이, 상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 두 개의 연장프레임(131)과, 각 연장프레임(131)의 기단부로부터 절곡되어 연장프레임(131)이 연장된 길이방향과 평행하게 연장배치된 두 개의 제1탄성프레임(134) 및, 각 제1탄성프레임(134)의 기단부로부터 절곡되어 상기 연장프레임(131) 및 제1탄성프레임(134)의 외측을 둘러싸는 형태로 절곡형성된 제2탄성프레임(136)을 포함하여 구비될 수도 있다.In addition, as shown in (c) of FIG. 5, the elastic coupling part 130 is connected to inner edges of the two driving masses 110 respectively and extends between two sides of the two driving masses 110. An extension frame 131, two first elastic frames 134, which are bent from the proximal end of each extension frame 131 and arranged to extend in parallel to the longitudinal direction in which the extension frames 131 extend, and each first elastic frame The second elastic frame 136 may be provided to be bent from the proximal end of 134 and bent in a form surrounding the outer side of the extension frame 131 and the first elastic frame 134.
여기서, 상기 탄성커플링부(130)를 형성하는 각 프레임들은 그 두께가 인접된 프레임간의 간격과 1:1로 동일하게 형성함으로써 탄성커플링부(130)을 제조하는 공정이 보다 용이해지도록 하는 것이 바람직하다.Here, each frame forming the elastic coupling portion 130 is preferably formed to be equal to the thickness of the adjacent frame between the adjacent frame 1: 1 to facilitate the process of manufacturing the elastic coupling portion 130. Do.
또한, 도 6 및 도 7에는 종래기술과 본 발명의 바람직한 실시예에 따른 탄성커플링부간의 각 형상별 측정된 틸트각도를 나타낸 데이터표 및 그래프가 도시되어 있다. 도면 상에서 u는 x축 방향, v는 y축 방향을 각각 나타낸다.6 and 7 show data tables and graphs showing tilt angles measured for respective shapes between the prior art and the elastic coupling part according to the preferred embodiment of the present invention. U represents the x-axis direction and v represents the y-axis direction, respectively.
일반적으로 구동질량체(110)의 경우 드라이빙 방향이 진동하는 축방향과 평행하지 않을 경우, input각도(x축과 90도)에 반응하는 코리올리힘이 약해져 결국 성능(Sensivility)가 저하되는 특성을 보인다.In general, in the case of the driving mass 110, when the driving direction is not parallel to the vibrating axial direction, the Coriolis force responding to the input angle (x-axis and 90 degrees) is weakened, and thus, the performance (Sensivility) is reduced.
또한, 실제로 x축 방향으로만 드라이빙시키려면 v변위 성분을 최소화할 필요가 있다. 그러나, 도 6 및 도 7을 참고하면 종래기술에 따른 탄성커플링부의 경우(type 1)의 경우 틸트각이 36.7도로 본 발명의 바람직한 실시예에 따른 탄성커플링부(130)의 다양한 형상(type 2 내지 type 2)들의 틸트각인 1.4도 내지 3.7도와 비교하여 보면 대략 10배 내지 25배 가량 차이가 나는 것을 확인할 수 있다.In addition, to actually drive only in the x-axis direction, it is necessary to minimize the v-displacement component. However, referring to FIGS. 6 and 7, in the case of the elastic coupling part (type 1) according to the related art, the tilt angle is 36.7 degrees and various shapes of the elastic coupling part 130 according to the preferred embodiment of the present invention (type 2). When compared to the tilt angle of 1.4 to 3.7 degrees of type 2) it can be seen that the difference is approximately 10 times to 25 times.
즉, 종래기술에 따른 탄성커플링부(type 1)는 폭이 좁고 길이가 긴 막대 형상으로 인해 v변위의 성분이 지나치게 크게 발생함에 따라 틸트각이 대폭 증가하게 되어 센싱성능이 저하되는데 반하여, 본 발명의 바람직한 실시예에 따른 탄성커플링부(130)는 v변위의 성분을 최소화하여 구동질량체(110)의 드라이빙 방향이 x축 또는 y축을 지향하도록 효과적으로 지지할 수 있는 독창적인 구조로 구비되어 우수한 센싱성능을 보일 수 있는 것이다.That is, the elastic coupling part (type 1) according to the prior art has a narrow width and a long rod shape, the tilt angle is greatly increased as the component of the v displacement is excessively large, so that the sensing performance is deteriorated. The elastic coupling unit 130 according to the preferred embodiment of the present invention has a unique structure capable of effectively supporting the driving direction of the driving mass 110 in the x-axis or the y-axis by minimizing the component of the v displacement, thereby providing excellent sensing performance. Can be seen.
상술한 바와 같은 본 발명의 바람직한 실시예에 따른 멤스 자이로스코프(100)의 각 구성 및 기능에 의해, 탄성커플링부(130)의 중앙부에 GND패드(151)를 배치시킴으로써 근접 또는 대향 배치된 신호라인(141)으로부터 인가되는 전자기파 등의 전기적 성분을 흡수하여 센싱 노이즈 발생을 미연에 방지할 수 있다.By each configuration and function of the MEMS gyroscope 100 according to the preferred embodiment of the present invention as described above, by placing the GND pad 151 in the central portion of the elastic coupling portion 130, the signal line arranged close or opposite Electrical components such as electromagnetic waves applied from 141 may be absorbed to prevent generation of sensing noise.
또한, 각 구동질량체(110)를 탄성지지하는 탄성커플링부(130)의 독창적인 형상에 따라 구동질량체(110)의 드라이빙 방향이 z축으로 틸트되지 않고 x축, y축과 평행하게 드라이빙시킬 수 있어 움직임에 따른 회전을 보다 정밀하게 감지할 수 있다.In addition, the driving direction of the driving mass 110 may be driven parallel to the x-axis and the y-axis without tilting the driving direction of the driving mass 110 according to the unique shape of the elastic coupling part 130 that elastically supports the driving masses 110. It can detect the rotation by movement more precisely.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (4)

  1. 기판(140) 상에 평행하게 배치되되 복수 개가 짝을 이루어 서로 반대방향으로 진동하고 z축에 대하여 점 대칭적으로 일정간격 이격배치되는 구동질량체(110);A driving mass (110) disposed on the substrate (140) in parallel and plural in pairs to vibrate in opposite directions and spaced at regular intervals with respect to the z-axis;
    상기 두 구동질량체(110)의 각 측부 사이에 평행하게 배치되며, 고리 형상으로 형성되어 인접된 두 구동질량체(110)에 양단이 연결되면서 각 구동질량체(110)의 드라이빙 방향을 가이드하는 탄성커플링부(130);An elastic coupling part disposed parallel to each side of the two driving masses 110 and formed in an annular shape to connect both ends to two adjacent driving masses 110 to guide the driving direction of each driving mass 110. 130;
    상기 기판(140)의 테두리를 따라 연장 배치된 GND라인(150); 및A GND line 150 extending along an edge of the substrate 140; And
    상기 탄성커플링부(130)의 중앙에 마련된 빈공간 내에 배치되며, 상기 GND라인(150)과 전기적으로 연결되어 상기 탄성커플링부(130)와 근접 또는 대향 배치된 신호라인(141)으로부터 인가되는 전기적 성분이 상기 탄성커플링부(130)에 인가되지 않도록 흡수하여 차단하는 GND패드(151);를 포함하는 멤스 자이로스코프.It is disposed in the empty space provided in the center of the elastic coupling portion 130, and electrically connected to the GND line 150, the electrical applied from the signal line 141 disposed adjacent or opposite to the elastic coupling portion 130 MEMS gyroscope including; GND pad 151 for absorbing and blocking the component is not applied to the elastic coupling portion 130.
  2. 제 1항에 있어서,The method of claim 1,
    상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 복수의 연장프레임(131) 및, 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 사각 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공하는 탄성프레임(132)을 포함하는 멤스 자이로스코프.The elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses 110. It is disposed between the sides of the parallel and formed in a rectangular frame shape is connected to both ends of one edge to two extension frame 131, the elastic frame 132 including an elastic frame 132 to provide elasticity.
  3. 제 1항에 있어서,The method of claim 1,
    상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 복수의 연장프레임(131) 및, 상기 두 구동질량체(110)의 측부 사이에 평행하게 배치되고 원형 프레임 형상으로 형성되어 두 연장프레임(131)에 일측 모서리의 양단이 연결되면서 탄성을 제공하는 탄성프레임(132)을 포함하는 멤스 자이로스코프.The elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, a plurality of extension frames 131 extending between the sides of the two driving masses 110, and the two driving masses 110. MMS gyroscope including an elastic frame 132 is disposed in parallel between the sides of the and formed in a circular frame shape to provide elasticity while both ends of one edge is connected to the two extension frame (131).
  4. 제 1항에 있어서,The method of claim 1,
    상기 탄성커플링부(130)는, 상기 두 구동질량체(110)의 내측 모서리에 각각 연결되어 두 구동질량체(110)의 측부 사이로 연장형성된 두 개의 연장프레임(131)과, 각 연장프레임(131)의 기단부로부터 절곡되어 연장프레임(131)이 연장된 길이방향과 평행하게 연장배치된 두 개의 제1탄성프레임(134) 및, 각 제1탄성프레임(134)의 기단부로부터 절곡되어 상기 연장프레임(131) 및 제1탄성프레임(134)의 외측을 둘러싸는 형태로 절곡형성된 제2탄성프레임(136)을 포함하는 멤스 자이로스코프.The elastic coupling part 130 is connected to the inner edges of the two driving masses 110, respectively, and extends between two extension frames 131 formed between the sides of the two driving masses 110, and each of the extension frames 131. Two first elastic frames 134, which are bent from the proximal end and extended in parallel to the longitudinal direction in which the extension frame 131 extends, are bent from the proximal ends of the respective first elastic frames 134, and the extension frame 131 And a second elastic frame 136 bent in a form surrounding the outside of the first elastic frame 134.
PCT/KR2015/008768 2015-08-14 2015-08-21 Mems gyroscope having improved performance WO2017030226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0114994 2015-08-14
KR1020150114994A KR101733872B1 (en) 2015-08-14 2015-08-14 Mems gyroscope with enhanced performance

Publications (1)

Publication Number Publication Date
WO2017030226A1 true WO2017030226A1 (en) 2017-02-23

Family

ID=58051796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008768 WO2017030226A1 (en) 2015-08-14 2015-08-21 Mems gyroscope having improved performance

Country Status (2)

Country Link
KR (1) KR101733872B1 (en)
WO (1) WO2017030226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781726A (en) * 2019-11-07 2021-05-11 躍旺创新股份有限公司 Method of manufacturing a light sensing device and a device having in-plane and out-of-plane motion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436367B1 (en) * 2001-12-14 2004-06-19 삼성전자주식회사 MEMS gyroscpoe having inertial masses vibrating vertically on a substrate
JP2004191094A (en) * 2002-12-09 2004-07-08 Ngk Insulators Ltd Vibration type gyroscope
JP2010117293A (en) * 2008-11-14 2010-05-27 Alps Electric Co Ltd Angular velocity sensor
US20110154898A1 (en) * 2009-12-24 2011-06-30 Stmicroelectronics S.R.L. Integrated microelectromechanical gyroscope with improved driving structure
US20150059473A1 (en) * 2013-09-05 2015-03-05 Freescale Semiconductor, Inc. Multiple sense axis mems gyroscope having a single drive mode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639277B2 (en) 2001-06-21 2011-02-23 多摩川精機株式会社 Optical fiber gyro drive circuit board shield method and shield structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436367B1 (en) * 2001-12-14 2004-06-19 삼성전자주식회사 MEMS gyroscpoe having inertial masses vibrating vertically on a substrate
JP2004191094A (en) * 2002-12-09 2004-07-08 Ngk Insulators Ltd Vibration type gyroscope
JP2010117293A (en) * 2008-11-14 2010-05-27 Alps Electric Co Ltd Angular velocity sensor
US20110154898A1 (en) * 2009-12-24 2011-06-30 Stmicroelectronics S.R.L. Integrated microelectromechanical gyroscope with improved driving structure
US20150059473A1 (en) * 2013-09-05 2015-03-05 Freescale Semiconductor, Inc. Multiple sense axis mems gyroscope having a single drive mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112781726A (en) * 2019-11-07 2021-05-11 躍旺创新股份有限公司 Method of manufacturing a light sensing device and a device having in-plane and out-of-plane motion

Also Published As

Publication number Publication date
KR20170020157A (en) 2017-02-22
KR101733872B1 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
KR101812971B1 (en) Micro-gyroscope for detecting motions
EP3044542B1 (en) Improved gyroscope structure and gyroscope
KR101823325B1 (en) Improved gyroscope structure and gyroscope
EP2610588B1 (en) MEMS rate of rotation sensor and method for operating a MEMS rate of rotation sensor
EP3428576B1 (en) Angular rate sensor with in-phase motion suppression structure
FI125696B (en) Gyroscope construction and gyroscope with improved quadrature compensation
KR101694586B1 (en) Micromachined gyroscope including a guided mass system
TWI699514B (en) A MEMS three-axis gyroscope
JP2013092525A (en) Inertial sensor with off-axis spring system
WO2017003148A1 (en) Mems link mechanism used for mems gyroscope
JP2014112085A (en) Spring for micro electro-mechanical systems (mems) device
EP3100003B1 (en) Improved ring gyroscope structure and gyroscope
CN109798886A (en) A kind of gyroscope arrangement
JP2005241500A (en) Angular velocity sensor
CN107782299B (en) Two-axis MEMS gyroscope
WO2017030226A1 (en) Mems gyroscope having improved performance
RU2597953C1 (en) Integral micromechanical gyroscope-accelerometer
US6807858B2 (en) Vibrating structure comprising two coupled oscillators, in particular for a gyro
JP6304402B2 (en) Improved gyroscope structure and gyroscope device
CN110998232B (en) Single-axis and double-axis rotation speed sensor
US11193770B2 (en) Microelectromechanical systems gyroscope
US11156458B2 (en) MEMS gyroscope and electronic device including the same
CN212320730U (en) Three-axis MEMS gyroscope
RU2490593C1 (en) Integral micromechanical gyro
WO2016182306A1 (en) Symmetrical z-axis mems gyroscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24.04.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15901766

Country of ref document: EP

Kind code of ref document: A1