WO2017003192A1 - Tini-based medical alloy and method for producing same - Google Patents

Tini-based medical alloy and method for producing same Download PDF

Info

Publication number
WO2017003192A1
WO2017003192A1 PCT/KR2016/006987 KR2016006987W WO2017003192A1 WO 2017003192 A1 WO2017003192 A1 WO 2017003192A1 KR 2016006987 W KR2016006987 W KR 2016006987W WO 2017003192 A1 WO2017003192 A1 WO 2017003192A1
Authority
WO
WIPO (PCT)
Prior art keywords
tini
alloy
based medical
medical alloy
present
Prior art date
Application number
PCT/KR2016/006987
Other languages
French (fr)
Korean (ko)
Inventor
강지훈
Original Assignee
(주)강앤박메디컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)강앤박메디컬 filed Critical (주)강앤박메디컬
Priority claimed from KR1020160081466A external-priority patent/KR101832705B1/en
Publication of WO2017003192A1 publication Critical patent/WO2017003192A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a TiNi-based medical alloy, including Ti, Ni, Mo, Fe, and Al, which can provide various properties suitable for medical use while having high physical and mechanical properties, and a method for manufacturing the same.
  • TiNi-based alloys are widely used in the clinic, which exhibit unique characteristics such as shape memory effects, superelasticity, high corrosion resistance, strength, etc., and are able to withstand large loads under constant stress without permanent plastic deformation. Its use is increasing for medical use.
  • alloys of highly reactive metals are generally produced by arc melting, for example TiNi-based alloys are produced by consumable and non-consumable arc melting, firstly, complete control over the melting process and alloy composition is difficult, and secondly However, there is a problem that an expensive multi-arc melting process is required to achieve chemical homogeneity.
  • TiNi-based medical alloys with superelastic properties are widely used for medical purposes because of their high kinematic properties, suitability, and safety for human tissues, but they are difficult to work on cutting, pressing, and punching due to their rigidity and adhesion.
  • Silver can be prepared using a vacuum induction (VIM) process.
  • VIP vacuum induction
  • TiNi-based implants with stress-strain characteristics similar to human tissues (bones, cartilage, tendons) are known to be inherently difficult to regenerate if damaged after internal implantation, but are actually difficult to regenerate Or because the rupture of the implanted product (sealing material, etc.) is an important problem to be solved in order to be used for medical purposes, it is very important to improve the properties of TiNi-based alloys including tensile strength and the like.
  • the present invention is to provide a TiNi-based medical alloy containing Ti, Ni, Mo, Fe and Al, and can provide a variety of properties suitable for medical use while having high physical and mechanical properties and a method of manufacturing the same.
  • the present invention is charged with the structural strength, elastic properties, tissue compatibility, wear resistance, through vacuum induction after charging Ti, Ni, Mo, Fe and Al in the graphite crucible in a vacuum induction method (VIM) in an argon atmosphere
  • VIM vacuum induction method
  • An object of the present invention is to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications such as life cycle and strain life.
  • a TiNi-based medical alloy may be provided, which is composed of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt%, and balance Ni.
  • alloy components consisting of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt% and balance Ni are dissolved using high frequency vacuum induction. And hot forging and hot extruding the alloy ingot obtained through the dissolving step, repeating the cold drawing and annealing at an intermediate temperature after the hot forging and hot extrusion, and the annealing. After the step of repeating, after the solution treatment for 0.5-1.5 hours at a temperature of 973K-1173K quenched to prepare a TiNi-based medical alloy comprising the step of producing a TiNi-based medical alloy.
  • the present invention includes Ti, Ni, Mo, Fe and Al, and can provide a TiNi-based medical alloy having high physical and mechanical properties and can provide a variety of properties suitable for medical use.
  • the present invention is charged with the structural strength, elastic properties, tissue compatibility, wear resistance, through vacuum induction after charging Ti, Ni, Mo, Fe and Al in the graphite crucible in a vacuum induction method (VIM) in an argon atmosphere It is possible to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications, such as life cycle, strain life.
  • VIM vacuum induction method
  • 1A to 1E are diagrams for explaining the distribution of grain sizes in an Al-added TiNi-based alloy according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a stress strain of a conventional TiNi-based alloy containing no Al,
  • FIG. 3 is a view showing the maximum tensile strength and total elongation of the TiNi-based medical alloy according to an embodiment of the present invention
  • FIG. 4 is a view showing the temperature dependence of the martensite transformation of the TiNi-based medical alloy according to an embodiment of the present invention.
  • the TiNi-based medical alloy according to the embodiment of the present invention may be composed of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt% and the balance Ni.
  • Ti is less than 44 wt% or more than 48 wt%, the restoring force and the damping effect below the transition temperature are remarkably inferior, and therefore, Ti is preferably added at a ratio of 44-48 wt%.
  • Mo may increase the strength and hardenability when added to the alloy, but the amount of addition may vary depending on the use of the alloy because the weldability is deteriorated, and when it is less than 0.2% by weight, the strength and the hardenability are increased. Since it is impossible to obtain and weldability falls when it exceeds 3.0 weight%, it is preferable to add in the ratio of 0.2-3.0 weight%.
  • Fe plays a role of stabilizing the ⁇ phase when added to the alloy, if the addition amount is less than 0.1% by weight there is a problem that can not sufficiently stabilize the ⁇ phase at room temperature, when the strength exceeds 2.0% by weight Since creep strength decreases while increasing, it is preferably added at a ratio of 0.1-2.0% by weight.
  • the ⁇ phase is strengthened, and as its content is increased, the strength may be increased by solid solution to titanium (Ti) base, and the specific density of the alloy may be reduced by decreasing the density of the alloy. strength), but if the amount is less than 0.2% by weight, there is a problem in that the density reduction effect is not large and the strength is lowered.
  • Ti 3 Al is formed so that the ductility of titanium Since it is sharply lowered, it is preferable to add it in the ratio of 0.2-1.0 weight%.
  • the manufacturing method of the TiNi-based medical alloy according to the present invention alloy components consisting of Ti 44-48% by weight, Mo 0.2-3.0% by weight, Fe 0.1-2.0% by weight, Al 0.2-1.0% by weight and the balance Ni
  • the step of melting using high frequency vacuum induction hot forging and hot extrusion of the alloy ingot obtained through the step of melting, and the step of hot forging and hot extrusion, cold drawing and annealing at an intermediate temperature are performed.
  • the step of repeating, and repeating the annealing comprising the step of quenching after solution treatment for 0.5-1.5 hours at a temperature of 973K-1173K, to prepare a TiNi-based medical alloy according to an embodiment of the present invention can do.
  • each of the alloying components can be loaded into granules having a size of 1-3 mm, the resulting TiNi-based medical alloy, the maximum tensile strength can have a range of 1420-1620 Mpa, superelastic section It may have a temperature range of 10-80 °C.
  • granular Ti sponge, Ni sheet and mixed alloy additives including Mo, Fe and Al
  • Ti sponge, Ni sheet and mixed alloy additives including Mo, Fe and Al
  • VIM vacuum induction melting
  • the alloy additives (including Mo, Fe and Al) to be mixed can be dissolved, and the TiNi-based medical alloy is maintained by maintaining the temperature of about 1350-1450 ° C. and a time of about 2-5 minutes while stirring the induction-melted alloy molten metal. It can be prepared.
  • the vacuum induction (VIM) process has a good mixing effect that provides chemical homogeneity of the liquid melt
  • the TiNi-based alloy can be melted in a low frequency vacuum induction furnace (VIM) furnace, and this low frequency vacuum induction ( The VIM) technique has been described as being used to melt a TiNi-based alloy because it can produce an excellent TiNi-based alloy at low cost, but other dissolution techniques performed in an inert atmosphere can of course be used.
  • the TiNi-based medical alloy dissolved through the vacuum induction melting (VIM) process as described above is injected into a preheating mold to solidify, and the alloy may be manufactured to have a fine casting surface through a casting process using the preheating mold. It is possible to optimize casting boundaries in thin sections and to minimize porosity in casting sections.
  • VIM vacuum induction melting
  • TiNi-based (including Mo, Fe, and Al) medical alloys have improved properties over conventional nitinol alloys (alloys of nickel and titanium).
  • nitinol alloys alloys of nickel and titanium.
  • the physical and mechanical properties of ingots, semi-finished or finished products It can be changed very finely and its casting cost can be reduced as a whole because process steps such as forging, milling and drawing are eliminated or greatly reduced.
  • the TiNi-based medical alloy sample according to the embodiment of the present invention to prepare and look at the characteristics, the electrolyte Ni plate (99.93% pure), the shape of the sponge Ti (99.74% pure), the alloy components in the form of additives layered
  • the furnace is placed inside a graphite crucible (99.9% pure), the crucible is placed inside an VIM furnace with an argon atmosphere, the VIM furnace is operated at an induction input of approximately 3000 cycles, and the alloying components charged into the crucible are thoroughly mixed.
  • the TiNi-based medical alloy shows good superelasticity, maximum tensile strength is approximately 1420MPa, yield point is approximately 510MPa, total elongation is approximately 64%, superelastic section is 5% elongation, 300MPa It appears in strength, and after 6% deformation, permanent deformation exhibits an improved characteristic of approximately 0.2, indicating that the stress-strain behavior is almost the same as human body tissue, making it suitable for medical use.
  • TiNi-based medical alloy having a superelastic properties in Ti% 44-46, Fe 1.5 or less by weight to increase the tensile strength , Mo 2 or less and residual Ni, and may further be prepared through a casting process, including Al 0.2-1.0.
  • Such TiNi-based medical alloys are suitable for use in the medical temperature range and strength characteristics of the alloy depending on Fe and Mo, tensile strength is mainly determined by iron (Fe), the alloy is granule (granule, granule) It can be prepared via a vacuum induction (VIM) process using a mixture of raw materials in the form (average granule size 1-3 mm).
  • VIM vacuum induction
  • the granule size mainly affects the contact surface of alloying elements such as nickel (Ni) and titanium (Ti), and during induction heating the granules interact with other components (interpenetration) and provide additional heat.
  • Process liquid structure which requires additional heat if the granule (granular) size exceeds approximately 3 mm, and the VIM process is not effective because of the increased technical complexity for dissolution of the alloying components.
  • VIM vacuum induction
  • the strength of the alloy is determined by the grain structure and the microstructure including the defects, it is known that the strength characteristics of the grains themselves, not the distribution of grain size is very important.
  • the maximum strength characteristic is represented by a fine grain size distribution.
  • the external load is evenly distributed, and when the grain size distribution is wide, the applied load is unevenly distributed, and as a result, the position where the crack nucleus (path) becomes. It can be localized.
  • one of the main prerequisites for strengthening the alloy is to obtain the most uniform (homogenous) microstructure, which can be achieved by adding Al to the TiNi-based medical alloy, such as the process described later, due to the high reactivity of Al
  • VIM vacuum induction
  • Al and Ni generate a self-combustion property (SHS), which may promote liquation phase separation, that is, movement of liquid components.
  • the newly formed grains of the polycrystalline structure were found to have a smaller average size compared to the alloy containing no Al, and the distribution of the grain size in the Al-added alloy was more uniform. I can see that.
  • FIGS. 1A to 1C are optical microstructure images of an Al-added TiNi-based alloy
  • FIGS. 1D and 1E are SEM images of an Al-added TiNi-based alloy, where 1 is a matrix phase.
  • 2 represents fine dispersed precipitates
  • 3 represents grain boundary dendritic precipitates, and it can be seen that the grain size is uniformly distributed in the Al-added alloy.
  • UTS User Tensile Strength: maximum tensile strength
  • the Al addition is 0.2-% by weight. Must be in the range 1.0.
  • Figure 2 is a diagram showing the stress strain of the conventional TiNi alloy containing no Al, the TiNi-based alloy conventionally does not contain Al 46 wt% Ti, 1.5 wt% Fe, 2 wt% Mo and the balance It can be made of Ni, which is the slope between A and B points in the typical stress-strain curves (strength-elongation curves, Y-axis: strength (MPa), X-axis: strain (%)) of this TiNi-based alloy.
  • the part corresponds to the region where the hyperelasticity appears, and its pressure-strain behavior is due to the reversible martensitic transformation, and further deformation can increase beyond the martensitic transformation range with pressure, corresponding to the C point. It can be seen that the maximum tensile strength (UTS) does not exceed 1400 MPa.
  • FIG. 3 is a view showing the maximum tensile strength and total elongation of the TiNi-based medical alloy according to an embodiment of the present invention
  • Al-added TiNi-based alloy was dissolved using high frequency vacuum induction, the dissolved ingot (ingot) After hot forging and hot extrusion, cold drawing and intermediate annealing were repeated to make a wire rod with a diameter of 1 mm, and a sample cut to the required length (for example, 40 mm, 100 mm, etc.) was approximately 973K-1173K. Samples were prepared by quenching and then quenching for 1 h at.
  • the maximum tensile strength (UTS) and concentration dependence (left axis: maximum tensile strength (UTS, MPa), right axis: total elongation (TEL,%), X axis: In addition, the maximum tensile strength (UTS) increases with increasing Al content within 30% -27% and shows a range of approximately 1420-16200 MPa. It can be seen that.
  • FIG. 4 is a diagram showing the temperature dependence of the martensite transformation of the TiNi-based medical alloy according to an embodiment of the present invention, the maximum tensile strength (UTS) after performing a strain-stress test for each temperature for the TiNi-based medical alloy samples The maximum tensile strength (UTS) over temperature was plotted.
  • the temperature dependence of the martensitic shear stress of the TiNi-based medical alloy according to the embodiment of the present invention (Y-axis: strength (MPa), X-axis: temperature (°C)), A (approximately) It can be seen that co-existing phases (maternal and martensitic) coexist with each other resulting in a hyperelastic effect, such as the similar dependence mentioned in the former located between points 10 ° C.) and B (approx. 80 ° C.).
  • the addition amount of Al within 1% by weight corresponds to the temperature range when the superelasticity appears near the human body temperature, and the TiNi-based medical alloy of the present invention to which Al is added within 1% by weight of the human body temperature range It can be seen that superelasticity appears at.
  • a superelastic section is a section in which a high temperature phase (austenite) and a low temperature phase (martensite) exist together, and the austenite completion temperature (A r ) and the martensite deformation temperature (M d or M s ) Within the zone (ie A r to M d ), which may undergo a reaction-organic transformation from the austenite phase to the martensite phase, so that when stress is applied to the alloy, the austenite in response to the applied stress From the transformation from martensite to the undeformed state once the strain is removed.
  • the TiNi-based alloy is not added to the conventional Al
  • the TiNi-based medical alloy according to the embodiment of the present invention has a specific temperature range (for example, due to Al addition) , 10-80 °C) shows a tendency to increase the tensile strength, so that when used for medical use can not only prevent damage more effectively, but also for medical use within the body (bio) temperature range (about 37 °C)
  • suitable superelastic properties are shown below.
  • the TiNi-based medical alloy according to the embodiment of the present invention comprises Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt%, and the balance Ni.
  • the maximum tensile strength may have a range of 1420-1620 Mpa
  • the hyperelastic section may have a temperature range of 10-80 °C.
  • the present invention can provide a TiNi-based medical alloy containing Ti, Ni, Mo, Fe and Al, and can provide a variety of properties suitable for medical use while having high physical and mechanical properties.
  • the present invention after charging Ti, Ni, Mo, Fe and Al into the graphite crucible inside the VIM in an argon atmosphere, and vacuum casting induction, alloy casting property, its elasticity and ancillary body dynamic compatibility, strength, corrosion resistance It is possible to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications, such as weakened deformation life, increased durability.
  • the TiNi-based medical alloy of the present invention is free from foreign body reactions with biological tissues, and may be present in the human body for a longer period of time. Physical and chemical properties can provide alloys suitable for medical use.
  • the TiNi-based medical alloy of the present invention has almost no change in physical properties and thus has high transformation temperature stability, and has a low product cost of less than 5% and a relatively low production cost, compared to the existing product defect of 20-30%. Low profitability improves and is very useful not only for medical use but also for industrial use.

Abstract

The present invention relates to a TiNi-based medical alloy and a method for producing same. The TiNi-based medical alloy consisting of 44-48 wt% of Ti, 0.2-3.0 wt% of Mo, 0.1-2.0 wt% of Fe, 0.2-1.0 wt% of Al and the remainder of Ni has a high level of physical and mechanical properties and provides various features suitable for medical use.

Description

TiNi계 의료용 합금 및 그 제조 방법TiNi-based medical alloy and its manufacturing method
본 발명은 Ti, Ni, Mo, Fe 및 Al을 포함하며, 높은 물리적 및 기계적 특성을 가지면서 의료용으로 사용하기에 적합한 다양한 특성을 제공할 수 있는 TiNi계 의료용 합금 및 그 제조 방법에 관한 것이다.The present invention relates to a TiNi-based medical alloy, including Ti, Ni, Mo, Fe, and Al, which can provide various properties suitable for medical use while having high physical and mechanical properties, and a method for manufacturing the same.
잘 알려진 바와 같이, TiNi계 합금은 임상에서 널리 사용되는데, 이러한 합금은 형상 기억 효과, 초탄성, 높은 내식성, 강도 등과 같은 독특한 특성을 나타내고, 영구적인 소성 변형 없이 일정한 스트레스에 큰 부하를 견딜 수 있는 능력 때문에 의료용으로 사용이 증가되고 있다.As is well known, TiNi-based alloys are widely used in the clinic, which exhibit unique characteristics such as shape memory effects, superelasticity, high corrosion resistance, strength, etc., and are able to withstand large loads under constant stress without permanent plastic deformation. Its use is increasing for medical use.
한편, 의료 기기 설계 엔지니어는 수술 테크닉과 같은 새로운 의료 목적으로 사용하기 위한 TiNi계 합금의 다양한 형태에 대해 주목하고 있는데, 이러한 엔지니어에게는 모든 재료의 특성을 이해하는 것뿐만 아니라, 응력-변형률 의존성과 동적 거동을 예측하는 것이 매우 중요하다.Medical device design engineers, meanwhile, are paying attention to various forms of TiNi-based alloys for use in new medical purposes such as surgical techniques, which not only understand the properties of all materials, but also stress-strain dependence and dynamics. Predicting behavior is very important.
잘 알려진 TiNi계 합금의 장점에도 불구하고, 제조비용이 많이 소요되는데, 합금은 일반적으로 잉곳을 얻기 위해 진공유도용해(VIM : vacuum induction melting), 아크 용해(arc melting) 등과 같은 기술에 의해 제조될 수 있다. 이러한 합금은 충분한 기계적 처리 단계와 반복되는 열처리(가공열처리)를 필요로 하기 때문에 합금 제조비용이 상승될 수 있다.Despite the well-known advantages of TiNi-based alloys, they are expensive to manufacture, and alloys are generally manufactured by techniques such as vacuum induction melting (VIM), arc melting, etc. to obtain ingots. Can be. Since such alloys require a sufficient mechanical treatment step and repeated heat treatment (process heat treatment), the alloy manufacturing cost can be increased.
한편, 반응성이 높은 금속을 함유하는 합금을 제조하기 위한 효과적인 용융/용해 방법을 찾기 위한 시도가 이어져 왔으나, 용융 방법으로 반응성이 높은 티타늄 합금을 제조하기 위한 시도는 산소, 수소 등의 침입형 원소와 용융 티타늄의 높은 반응성으로 인해 많은 시행착오를 거치고 있는 실정이다.On the other hand, attempts have been made to find effective melting / dissolving methods for producing alloys containing highly reactive metals. However, attempts to produce highly reactive titanium alloys by melting methods have been performed with invasive elements such as oxygen and hydrogen. Due to the high reactivity of the molten titanium is undergoing a lot of trial and error.
이러한 예로, 반응성이 높은 금속의 합금은 일반적으로 아크 용해법으로 제조되며, 예를 들어 TiNi계 합금은 소모성 및 비소모성 아크 용해법으로 제조되는데, 첫째, 용해 공정과 합금 조성에 대한 완전한 제어가 어렵고, 둘째, 화학적 균질성을 달성하기 위해 비싼 다중 아크 용해 공정이 필요하다는 문제점이 있다.In this example, alloys of highly reactive metals are generally produced by arc melting, for example TiNi-based alloys are produced by consumable and non-consumable arc melting, firstly, complete control over the melting process and alloy composition is difficult, and secondly However, there is a problem that an expensive multi-arc melting process is required to achieve chemical homogeneity.
한편, 초탄성 특성을 갖는 TiNi계 의료용 합금은 높은 신체역학적 특성, 적합성, 인체조직에 대한 안전성 때문에 의료용으로 넓게 사용되고 있는데, 단단함과 점착성으로 인해 커팅, 프레싱, 펀칭 등의 작업이 어렵지만, 물리기계적 특성은 기계적 처리 및 열처리에 의해 심하게 변경될 수 있고, 응력-변형률(강도-연신율) 거동의 관점에서 살아있는 조직의 유사성에 의해 의료용 임플란트(예를 들면, 걸쇠 의치용 등)로 주조되는 TiNi계 의료용 합금은 진공유도용해(VIM) 공정을 이용하여 제조될 수 있다.On the other hand, TiNi-based medical alloys with superelastic properties are widely used for medical purposes because of their high kinematic properties, suitability, and safety for human tissues, but they are difficult to work on cutting, pressing, and punching due to their rigidity and adhesion. Is a TiNi-based medical alloy that can be severely altered by mechanical treatment and heat treatment and cast into medical implants (eg, for clasp dentures, etc.) by the similarity of living tissue in terms of stress-strain (strength-elongation) behavior. Silver can be prepared using a vacuum induction (VIM) process.
그러나, 인체 조직(뼈, 연골, 힘줄)과 유사한 응력-변형률 특성을 갖는 초탄성 TiNi계 임플란트는 내부 이식 후에 손상될 경우에 본질적으로 재생이 불가능하지는 않지만 실제적으로는 재생이 어렵다고 알려져 있으며, 틈새 파손 또는 임플란트된 제품(봉합 물질 등)의 파열은 의료용으로 사용되기 위해서 해결되어야 하는 중요한 문제이기 때문에, 인장강도 등을 포함하는 TiNi계 합금의 특성을 향상시키는 것이 매우 중요하게 대두되고 있다.However, superelastic TiNi-based implants with stress-strain characteristics similar to human tissues (bones, cartilage, tendons) are known to be inherently difficult to regenerate if damaged after internal implantation, but are actually difficult to regenerate Or because the rupture of the implanted product (sealing material, etc.) is an important problem to be solved in order to be used for medical purposes, it is very important to improve the properties of TiNi-based alloys including tensile strength and the like.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
1. 등록특허 제10-0490644호(2005.05.11.등록) : TiN 코팅층이 형성된 의료 용구용 Ni-Ti 형상기억합금 및 그 제조방법1. Registered Patent No. 10-0490644 (registered on May 11, 2005): Ni-Ti shape memory alloy for medical devices having a TiN coating layer and a manufacturing method thereof
본 발명은 Ti, Ni, Mo, Fe 및 Al을 포함하며, 높은 물리적 및 기계적 특성을 가지면서 의료용으로 사용하기에 적합한 다양한 특성을 제공할 수 있는 TiNi계 의료용 합금 및 그 제조 방법을 제공하고자 한다.The present invention is to provide a TiNi-based medical alloy containing Ti, Ni, Mo, Fe and Al, and can provide a variety of properties suitable for medical use while having high physical and mechanical properties and a method of manufacturing the same.
또한, 본 발명은 아르곤 분위기에서 진공유도용해법(VIM)으로 내부의 흑연 도가니에 Ti, Ni, Mo, Fe 및 Al을 장입한 후 진공유도용해를 통해 구조적 강도, 탄성 특성, 조직 적합성, 착용 저항, 수명주기, 변형수명 등의 의료용으로 사용되기에 적합한 향상된 특성을 갖는 TiNi계 의료용 합금을 제공하고자 한다.In addition, the present invention is charged with the structural strength, elastic properties, tissue compatibility, wear resistance, through vacuum induction after charging Ti, Ni, Mo, Fe and Al in the graphite crucible in a vacuum induction method (VIM) in an argon atmosphere An object of the present invention is to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications such as life cycle and strain life.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The objects of the embodiments of the present invention are not limited to the above-mentioned objects, and other objects, which are not mentioned above, will be clearly understood by those skilled in the art from the following description. .
본 발명의 일 측면에 따르면, Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는 TiNi계 의료용 합금이 제공될 수 있다.According to one aspect of the present invention, a TiNi-based medical alloy may be provided, which is composed of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt%, and balance Ni.
본 발명의 다른 측면에 따르면, Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는 합금 성분들을 고주파 진공유도를 이용하여 용해하는 단계와, 상기 용해하는 단계를 통해 수득되는 합금 잉곳을 열간 단조 및 열간 압출하는 단계와, 상기 열간 단조 및 열간 압출하는 단계 이후에, 냉간 인발과 중간온도의 어닐링을 반복하는 단계와, 상기 어닐링을 반복하는 단계 이후에, 973K-1173K의 온도에서 0.5-1.5 시간동안 용체화 처리한 후 급냉하여 TiNi계 의료용 합금을 제조하는 단계를 포함하는 TiNi계 의료용 합금의 제조 방법이 제공될 수 있다.According to another aspect of the present invention, alloy components consisting of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt% and balance Ni are dissolved using high frequency vacuum induction. And hot forging and hot extruding the alloy ingot obtained through the dissolving step, repeating the cold drawing and annealing at an intermediate temperature after the hot forging and hot extrusion, and the annealing. After the step of repeating, after the solution treatment for 0.5-1.5 hours at a temperature of 973K-1173K quenched to prepare a TiNi-based medical alloy comprising the step of producing a TiNi-based medical alloy.
본 발명은 Ti, Ni, Mo, Fe 및 Al을 포함하며, 높은 물리적 및 기계적 특성을 가지면서 의료용으로 사용하기에 적합한 다양한 특성을 제공할 수 있는 TiNi계 의료용 합금을 제공할 수 있다.The present invention includes Ti, Ni, Mo, Fe and Al, and can provide a TiNi-based medical alloy having high physical and mechanical properties and can provide a variety of properties suitable for medical use.
또한, 본 발명은 아르곤 분위기에서 진공유도용해법(VIM)으로 내부의 흑연 도가니에 Ti, Ni, Mo, Fe 및 Al을 장입한 후 진공유도용해를 통해 구조적 강도, 탄성 특성, 조직 적합성, 착용 저항, 수명주기, 변형수명 등의 의료용으로 사용되기에 적합한 향상된 특성을 갖는 TiNi계 의료용 합금을 제공할 수 있다.In addition, the present invention is charged with the structural strength, elastic properties, tissue compatibility, wear resistance, through vacuum induction after charging Ti, Ni, Mo, Fe and Al in the graphite crucible in a vacuum induction method (VIM) in an argon atmosphere It is possible to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications, such as life cycle, strain life.
도 1a 내지 도 1e는 본 발명의 실시예에 따른 Al이 첨가된 TiNi계 합금에서 결정립 크기의 분포를 설명하기 위한 도면이며,1A to 1E are diagrams for explaining the distribution of grain sizes in an Al-added TiNi-based alloy according to an embodiment of the present invention.
도 2는 Al을 함유하지 않은 종래의 TiNi계 합금의 응력 변형률을 나타내는 도면이고,2 is a diagram showing a stress strain of a conventional TiNi-based alloy containing no Al,
도 3은 본 발명의 실시예에 따른 TiNi계 의료용 합금의 최대인장강도와 총연신율을 나타내는 도면이며,3 is a view showing the maximum tensile strength and total elongation of the TiNi-based medical alloy according to an embodiment of the present invention,
도 4는 본 발명의 실시예에 따른 TiNi계 의료용 합금의 마르텐사이트 변태의 온도 의존성을 나타내는 도면이다.4 is a view showing the temperature dependence of the martensite transformation of the TiNi-based medical alloy according to an embodiment of the present invention.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the embodiments of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing the embodiments of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the embodiments of the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the contents throughout the specification.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명의 실시예에 따른 TiNi계 의료용 합금은 Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어질 수 있다.First, the TiNi-based medical alloy according to the embodiment of the present invention may be composed of Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt% and the balance Ni.
여기에서, Ti는 44 중량% 미만이되거나 48 중량%를 초과하게 되면 복원력, 전이온도 이하에서의 댐핑 효과가 현저하게 떨어지게 되기 때문에, 44-48 중량%의 비율로 첨가되는 것이 바람직하다.Here, since Ti is less than 44 wt% or more than 48 wt%, the restoring force and the damping effect below the transition temperature are remarkably inferior, and therefore, Ti is preferably added at a ratio of 44-48 wt%.
그리고, Mo는 합금에 첨가될 경우 강도와 경화능을 증가시킬 수 있지만, 용접성을 나쁘게 하기 때문에 그 첨가량은 합금의 용도에 따라 달라질 수 있으며, 0.2 중량% 미만의 경우 강도와 경화능이 증가되는 효과를 얻을 수 없고, 3.0 중량%를 초과하는 경우 용접성이 저하되기 때문에, 0.2-3.0 중량%의 비율로 첨가되는 것이 바람직하다.In addition, Mo may increase the strength and hardenability when added to the alloy, but the amount of addition may vary depending on the use of the alloy because the weldability is deteriorated, and when it is less than 0.2% by weight, the strength and the hardenability are increased. Since it is impossible to obtain and weldability falls when it exceeds 3.0 weight%, it is preferable to add in the ratio of 0.2-3.0 weight%.
또한, Fe는 합금에 첨가될 경우 β상을 안정화시키는 역할을 하는데, 그 첨가량이 0.1 중량% 미만의 경우 상온에서 β상을 충분히 안정화시킬 수 없다는 문제점이 있고, 2.0 중량%를 초과하는 경우 강도는 증가하는 반면에 크립강도가 저하되기 때문에, 0.1-2.0 중량%의 비율로 첨가되는 것이 바람직하다.In addition, Fe plays a role of stabilizing the β phase when added to the alloy, if the addition amount is less than 0.1% by weight there is a problem that can not sufficiently stabilize the β phase at room temperature, when the strength exceeds 2.0% by weight Since creep strength decreases while increasing, it is preferably added at a ratio of 0.1-2.0% by weight.
한편, Al은 합금에 첨가될 경우 α상을 고용강화하는데, 그 함량이 증가됨에 따라 티타늄(Ti) 기지로의 고용에 의해 강도가 증가될 수 있고, 합금의 밀도를 감소시켜 높은 비강도(specific strength)를 달성하도록 하는 역할을 하는데, 그 첨가량이 0.2 중량% 미만의 경우 밀도 감소 효과가 크지 않으며 강도가 저하되는 문제점이 있고, 1.0 중량%를 초과하는 경우 Ti3Al이 생성되어 티타늄의 연성이 급격히 저하되기 때문에, 0.2-1.0 중량%의 비율로 첨가되는 것이 바람직하다.On the other hand, when Al is added to the alloy, the α phase is strengthened, and as its content is increased, the strength may be increased by solid solution to titanium (Ti) base, and the specific density of the alloy may be reduced by decreasing the density of the alloy. strength), but if the amount is less than 0.2% by weight, there is a problem in that the density reduction effect is not large and the strength is lowered.In the case of more than 1.0% by weight, Ti 3 Al is formed so that the ductility of titanium Since it is sharply lowered, it is preferable to add it in the ratio of 0.2-1.0 weight%.
한편, 본 발명에 따른 TiNi계 의료용 합금의 제조 방법은, Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는 합금 성분들을 고주파 진공유도를 이용하여 용해하는 단계와, 상기 용해하는 단계를 통해 수득되는 합금 잉곳을 열간 단조 및 열간 압출하는 단계와, 상기 열간 단조 및 열간 압출하는 단계 이후에, 냉간 인발과 중간온도의 어닐링을 반복하는 단계와, 상기 어닐링을 반복하는 단계 이후에, 973K-1173K의 온도에서 0.5-1.5 시간동안 용체화 처리한 후 급냉하는 단계를 포함함으로써, 본 발명의 실시예에 따른 TiNi계 의료용 합금을 제조할 수 있다.On the other hand, the manufacturing method of the TiNi-based medical alloy according to the present invention, alloy components consisting of Ti 44-48% by weight, Mo 0.2-3.0% by weight, Fe 0.1-2.0% by weight, Al 0.2-1.0% by weight and the balance Ni After the step of melting using high frequency vacuum induction, hot forging and hot extrusion of the alloy ingot obtained through the step of melting, and the step of hot forging and hot extrusion, cold drawing and annealing at an intermediate temperature are performed. After the step of repeating, and repeating the annealing, comprising the step of quenching after solution treatment for 0.5-1.5 hours at a temperature of 973K-1173K, to prepare a TiNi-based medical alloy according to an embodiment of the present invention can do.
여기에서, 각 합금 성분들이 1-3 mm의 크기를 갖는 과립으로 장입될 수 있고, 그 결과물인 TiNi계 의료용 합금은, 최대인장강도가 1420-1620 Mpa의 범위를 가질 수 있으며, 초탄성 구간이 10-80℃의 온도 범위를 가질 수 있다.Here, each of the alloying components can be loaded into granules having a size of 1-3 mm, the resulting TiNi-based medical alloy, the maximum tensile strength can have a range of 1420-1620 Mpa, superelastic section It may have a temperature range of 10-80 ℃.
예를 들면, 입상의 Ti 스폰지, Ni 박판 및 혼합되는 합금첨가물(Mo, Fe 및 Al을 포함함)은 상술한 바와 같은 비율 내에서 선택된 비율로 흑연도가니에 장입하되, Ti 스폰지, Ni 박판 및 혼합되는 합금첨가물(Mo, Fe 및 Al을 포함함)이 순차적으로 적층되는 형태로 층상으로 적재할 수 있고, 이러한 흑연도가니를 진공유도용해(VIM) 로 내부에 넣은 후, 흑연도가니 내의 티타늄(Ti)이 산화되는 것을 방지하기 위해 대략 3×10-2 torr 이하로 유지되는 진공 상태 또는 아르곤 분위기에서 대략 1668℃(티타늄의 융점으로 니켈의 융점보다 높음) 이상으로 유도 용해함으로써, Ti 스폰지, Ni 박판 및 혼합되는 합금첨가물(Mo, Fe 및 Al을 포함함)을 용해시킬 수 있으며, 유도 용해된 합금 용탕을 교반하면서 대략 1350-1450℃의 온도 및 대략 2-5분의 시간동안 유지시켜 TiNi계 의료용 합금을 제조할 수 있다.For example, granular Ti sponge, Ni sheet and mixed alloy additives (including Mo, Fe and Al) are charged into the graphite crucible at a rate selected within the ratios described above, while Ti sponge, Ni sheet and mix The alloy additives (including Mo, Fe and Al) to be stacked in the form of sequentially stacked, and the graphite crucible is put in a vacuum induction melting (VIM) inside, and then the titanium (Ti) in the graphite crucible Ti sponge, Ni sheet, and by induction melting at about 1668 ° C. (titanium melting point higher than nickel melting point) in a vacuum or argon atmosphere maintained at about 3 × 10 −2 torr or less to prevent oxidation The alloy additives (including Mo, Fe and Al) to be mixed can be dissolved, and the TiNi-based medical alloy is maintained by maintaining the temperature of about 1350-1450 ° C. and a time of about 2-5 minutes while stirring the induction-melted alloy molten metal. It can be prepared.
여기에서, 진공유도용해(VIM) 공정은 액체 용융물의 화학적 균질성을 제공하는 좋은 혼합 효과를 갖기 때문에, TiNi계 합금은 저주파수 진공유도용해(VIM) 로에서 용융될 수 있으며, 이러한 저주파수 진공유도용해(VIM) 기술은 낮은 비용으로 우수한 TiNi계 합금을 제조할 수 있기 때문에 TiNi계 합금을 용융시키는데 사용하는 것으로 하여 설명하였지만, 불활성 분위기에서 수행되는 다른 용해 기술도 사용될 수 있음은 물론이다.Here, since the vacuum induction (VIM) process has a good mixing effect that provides chemical homogeneity of the liquid melt, the TiNi-based alloy can be melted in a low frequency vacuum induction furnace (VIM) furnace, and this low frequency vacuum induction ( The VIM) technique has been described as being used to melt a TiNi-based alloy because it can produce an excellent TiNi-based alloy at low cost, but other dissolution techniques performed in an inert atmosphere can of course be used.
상술한 바와 같은 진공유도용해(VIM) 공정을 통해 용해된 TiNi계 의료용 합금은 응고시키기 위해 예열 몰드에 주입되고, 이러한 예열 몰드를 이용한 주조 공정을 통해 합금이 미세한 주조 표면을 갖도록 제조할 수 있고, 얇은 단면에서 주조 경계를 최적화시킬 수 있으며, 주조 단면 내에서 기공률을 최소화시킬 수 있다.The TiNi-based medical alloy dissolved through the vacuum induction melting (VIM) process as described above is injected into a preheating mold to solidify, and the alloy may be manufactured to have a fine casting surface through a casting process using the preheating mold. It is possible to optimize casting boundaries in thin sections and to minimize porosity in casting sections.
그 결과물인 TiNi계(Mo, Fe 및 Al을 포함함) 의료용 합금은 통상적인 니티놀 합금(니켈과 티타늄의 합금)에 비해 향상된 특성을 갖는데, 잉곳과 반제품 또는 완제품의 물리적 특성 및 기계적 특성이 작업 후에 매우 미세하게 변화될 수 있고, 그 주조 비용은 단조(forging), 밀링(milling) 및 드로잉(drawing)과 같은 공정 단계가 제거되거나 매우 감소되기 때문에, 전체적으로 감소될 수 있다.The resulting TiNi-based (including Mo, Fe, and Al) medical alloys have improved properties over conventional nitinol alloys (alloys of nickel and titanium). The physical and mechanical properties of ingots, semi-finished or finished products It can be changed very finely and its casting cost can be reduced as a whole because process steps such as forging, milling and drawing are eliminated or greatly reduced.
한편, 본 발명의 실시예에 따른 TiNi계 의료용 합금 샘플을 제조하여 그 특성에 대해 살펴보면, 전해질 Ni 플레이트(99.93% 순수), 엉성한 스폰지 형태의 Ti(99.74% 순수), 첨가물 형태로 합금 성분들은 층상으로 흑연 도가니(99.9% 순수) 내부에 놓여지고, 도가니는 아르곤 분위기를 갖는 VIM 로의 내부에 배치되며, VIM 로는 대략 3000 주기(cycle)의 유도 입력에서 동작되고, 도가니에 장입된 합금 성분들이 완전히 혼합될 때(대략 3.5분 소요됨)까지 효과적인 용융을 위해 대략 1690-1720℃의 온도에서 가열될 수 있으며, 그 합금 용탕은 응고를 위해 예열 몰드에 주입될 수 있다.On the other hand, the TiNi-based medical alloy sample according to the embodiment of the present invention to prepare and look at the characteristics, the electrolyte Ni plate (99.93% pure), the shape of the sponge Ti (99.74% pure), the alloy components in the form of additives layered The furnace is placed inside a graphite crucible (99.9% pure), the crucible is placed inside an VIM furnace with an argon atmosphere, the VIM furnace is operated at an induction input of approximately 3000 cycles, and the alloying components charged into the crucible are thoroughly mixed. Can be heated at a temperature of approximately 1690-1720 ° C. for effective melting up to (approximately 3.5 minutes) and the alloy melt can be injected into a preheating mold for solidification.
그 예열 몰드를 이용한 주조 결과물인 TiNi계 의료용 합금은 좋은 초탄성을 나타내며, 최대인장강도는 대략 1420MPa이고, 항복점은 대략 510MPa이며, 총 연신률은 대략 64%이고, 초탄성구간은 5% 연신율, 300MPa 강도에서 나타나며, 6% 변형 후 영구변형은 대략 0.2의 향상된 특성을 나타냄으로써, 응력-변형률 거동이 인간의 신체 조직과 거의 동일하기 때문에 의료용으로 사용하기에 적합한 것을 알 수 있다.The TiNi-based medical alloy, the result of the casting using the preheating mold, shows good superelasticity, maximum tensile strength is approximately 1420MPa, yield point is approximately 510MPa, total elongation is approximately 64%, superelastic section is 5% elongation, 300MPa It appears in strength, and after 6% deformation, permanent deformation exhibits an improved characteristic of approximately 0.2, indicating that the stress-strain behavior is almost the same as human body tissue, making it suitable for medical use.
한편, 본 발명의 실시예에 따라 Al을 첨가한 TiNi계 의료용 합금에 대해 상세히 설명하면, 초탄성 특성을 갖는 TiNi계 의료용 합금은 인장 강도를 증가시키기 위해 중량%로 Ti 44-46, Fe 1.5 이하, Mo 2 이하 및 잔여 Ni를 포함하며, 추가로 Al 0.2-1.0을 포함하여 주조 공정을 통해 제조될 수 있다.On the other hand, in detail with respect to the TiNi-based medical alloy to which Al is added according to an embodiment of the present invention, TiNi-based medical alloy having a superelastic properties in Ti% 44-46, Fe 1.5 or less by weight to increase the tensile strength , Mo 2 or less and residual Ni, and may further be prepared through a casting process, including Al 0.2-1.0.
이러한 TiNi계 의료용 합금은 Fe와 Mo에 의존하여 합금의 온도 범위와 강도 특성이 의료용으로 사용되기에 적합하며, 인장강도는 주로 철(Fe)에 의해 결정되는데, 그 합금은 입상(granule, 과립) 형태의 원료(평균 과립 사이즈 1-3 mm)의 혼합을 이용하는 진공유도용해(VIM) 공정을 통해 제조될 수 있다.Such TiNi-based medical alloys are suitable for use in the medical temperature range and strength characteristics of the alloy depending on Fe and Mo, tensile strength is mainly determined by iron (Fe), the alloy is granule (granule, granule) It can be prepared via a vacuum induction (VIM) process using a mixture of raw materials in the form (average granule size 1-3 mm).
여기에서, 과립 사이즈는 주로 니켈(Ni)과 티타늄(Ti)과 같은 합금 성분의 접촉 표면에 영향을 주며, 유도 가열 시 표면 접촉 중에 과립들은 다른 성분과의 상호작용(상호침투)및 추가적인 열 제공으로 공정 액상 구조를 형성할 수 있는데, 과립(입상) 크기가 대략 3mm를 초과할 경우 추가적인 열이 요구되며, 합금 성분들의 용해를 위한 기술적 복잡성이 증가되기 때문에 진공유도용해(VIM) 공정은 효과적이지 않고, 과립(입상) 크기가 대략 1mm 미만인 경우 분말의 자전연소합성(SHS : self-propagating hihg temperature synthesis method)과 유사하게 엄청난 열이 제공되기 때문에 제어되지 않은 진공유도용해(VIM) 반응이 발생하는 문제점이 있다.Here, the granule size mainly affects the contact surface of alloying elements such as nickel (Ni) and titanium (Ti), and during induction heating the granules interact with other components (interpenetration) and provide additional heat. Process liquid structure, which requires additional heat if the granule (granular) size exceeds approximately 3 mm, and the VIM process is not effective because of the increased technical complexity for dissolution of the alloying components. And when the granule (granular) size is less than approximately 1 mm, an uncontrolled vacuum induction (VIM) reaction occurs because tremendous heat is provided, similar to the self-propagating hihg temperature synthesis method (SHS). There is a problem.
한편, 합금의 강도는 결정립 계면 및 그 결함을 포함하는 미세구조에 의해 결정되는데, 결정립 자체의 강도 특성이 중요한 것이 아니라 결정립 크기의 분포가 매우 중요한 것으로 알려져 있다.On the other hand, the strength of the alloy is determined by the grain structure and the microstructure including the defects, it is known that the strength characteristics of the grains themselves, not the distribution of grain size is very important.
또한, 최대 강도 특성은 미세한 결정립 크기 분포에 따라 나타나는데, 이 경우에 외부 하중이 고르게 분산되며, 결정립 크기의 분포가 넓으면 인가 하중이 불균일하게 분포되어 그 결과로서 균열 핵(경로)이 되는 위치에 국부적으로 집중될 수 있다.In addition, the maximum strength characteristic is represented by a fine grain size distribution. In this case, the external load is evenly distributed, and when the grain size distribution is wide, the applied load is unevenly distributed, and as a result, the position where the crack nucleus (path) becomes. It can be localized.
한편, 합금을 강화시키기 위한 주요 전제조건 중 하나는 가장 균일(균질)한 미세구조를 얻는 것으로, 후술하는 과정과 같은 TiNi계 의료용 합금에 Al를 첨가함으로써 달성될 수 있는데, Al의 높은 반응성으로 인하여 진공유도용해(VIM) 과정 중에 Al과 Ni은 자전연소합성(SHS)이 발생하며, 용융 분리(liquation phase separation), 즉, 액상 성분의 이동이 촉진될 수 있다.On the other hand, one of the main prerequisites for strengthening the alloy is to obtain the most uniform (homogenous) microstructure, which can be achieved by adding Al to the TiNi-based medical alloy, such as the process described later, due to the high reactivity of Al During the vacuum induction (VIM) process, Al and Ni generate a self-combustion property (SHS), which may promote liquation phase separation, that is, movement of liquid components.
또한, 합금의 냉각 및 응고에 있어서, 새로 형성된 다결정질 구조의 결정립들은 Al이 포함되지 않은 합금과 비교하여 더 작은 평균 크기를 갖는 것으로 밝혀졌으며, Al이 첨가된 합금에서 결정립 크기의 분포는 더 균일한 것을 알 수 있다.In addition, in the cooling and solidification of the alloy, the newly formed grains of the polycrystalline structure were found to have a smaller average size compared to the alloy containing no Al, and the distribution of the grain size in the Al-added alloy was more uniform. I can see that.
예를 들면, 도 1a 내지 도 1c는 Al이 첨가된 TiNi계 합금에 대한 광학 미세구조 이미지이고, 도 1d 및 도 1e는 Al이 첨가된 TiNi계 합금에 대한 SEM 이미지인데, 1은 기지상(matrix phase), 2는 미세 분산된 석출상(fine dispersed precipitates), 3은 과립 경계 수지상 석출상(grain boundary dendritic precipitates)을 나타내며, Al이 첨가된 합금에서 결정립 크기가 균일하게 분포하는 것을 알 수 있다.For example, FIGS. 1A to 1C are optical microstructure images of an Al-added TiNi-based alloy, and FIGS. 1D and 1E are SEM images of an Al-added TiNi-based alloy, where 1 is a matrix phase. ), 2 represents fine dispersed precipitates, 3 represents grain boundary dendritic precipitates, and it can be seen that the grain size is uniformly distributed in the Al-added alloy.
이것은 Al이 첨가된 합금에서 결정화되는 동안 입자 성장이 예측된 수준에서 억제되는 것을 입증하는데, Al 첨가는 첫째, 용융물의 활성 액상 혼합, 둘째, 응고하는 동안 제한된 입자 성장과 같은 효과를 발생시킬 수 있음을 알 수 있다.This demonstrates that grain growth is inhibited at predicted levels during crystallization in Al-added alloys, which can lead to effects such as: first, active liquid phase mixing of the melt, and second, limited grain growth during solidification. It can be seen.
한편, 0.2 중량% 이상의 Al 첨가 시 미첨가 TiNi계 합금보다 UTS(Ultimate Tensile Strength : 최대 인장강도)가 10-15% 정도 증가되며, 더 높은 UTS가 요구되는 의료 분야에서 사용될 수 있다.Meanwhile, when 0.2 wt% or more of Al is added, UTS (Ultimate Tensile Strength: maximum tensile strength) is increased by about 10-15% compared to an unadded TiNi-based alloy, and may be used in medical fields requiring higher UTS.
여기에서, 1 중량% 을 초과한 Al 첨가는 마르텐사이트 변형온도가 지나치게 낮은 온도로 이동하게 되어, 낮은 온도에서 온도 범위에 따른 변화가 심하게 발생하는 문제점이 있기 때문에, Al 첨가는 중량%로 0.2-1.0의 범위로 이루어져야만 한다.Here, since the addition of Al exceeding 1% by weight causes the martensite deformation temperature to move to an excessively low temperature, and there is a problem in that a change in the temperature range is severe at low temperatures, the Al addition is 0.2-% by weight. Must be in the range 1.0.
한편, 도 2는 Al을 함유하지 않은 종래의 TiNi계 합금의 응력 변형률을 나타내는 도면으로, 종래에 Al을 함유하지 않은 TiNi계 합금은 Ti 46 중량%, Fe 1.5 중량%, Mo 2 중량% 및 잔부 Ni로 이루어질 수 있는데, 이 TiNi계 합금의 전형적인 응력-변형률 곡선(강도-연신율 곡선, Y축 : 강도(stress, MPa), X축 : 연신율(strain, %))에서는 A와 B 포인트 사이의 경사 부분은 초탄성이 나타나는 영역과 부합되고, 그 압력-변형률 거동은 가역적인 마르텐사이트계 변태에 기인하며, 추가적인 변형은 압력에 따라 마르텐사이트계 변태 범위를 벗어나서 증가할 수 있고, C 포인트에 대응하는 최대인장강도(UTS)는 1400 MPa를 초과하지 않음을 알 수 있다.On the other hand, Figure 2 is a diagram showing the stress strain of the conventional TiNi alloy containing no Al, the TiNi-based alloy conventionally does not contain Al 46 wt% Ti, 1.5 wt% Fe, 2 wt% Mo and the balance It can be made of Ni, which is the slope between A and B points in the typical stress-strain curves (strength-elongation curves, Y-axis: strength (MPa), X-axis: strain (%)) of this TiNi-based alloy. The part corresponds to the region where the hyperelasticity appears, and its pressure-strain behavior is due to the reversible martensitic transformation, and further deformation can increase beyond the martensitic transformation range with pressure, corresponding to the C point. It can be seen that the maximum tensile strength (UTS) does not exceed 1400 MPa.
도 3은 본 발명의 실시예에 따른 TiNi계 의료용 합금의 최대인장강도와 총연신율을 나타내는 도면으로, Al이 첨가된 TiNi계 합금은 고주파 진공유도를 이용하여 용해하였으며, 용해된 잉곳(ingot)은 열간 단조 및 열간 압출한 후 냉간 인발과 중간온도의 어닐링을 반복하면서 직경 1 mm의 선재로 제조하였고, 필요한 길이(예를 들면, 40mm, 100 mm 등)로 절단된 샘플은 대략 973K-1173K의 온도에서 1 시간동안 용체화 처리한 후 급냉하는 방식으로 샘플들을 제조하였다.3 is a view showing the maximum tensile strength and total elongation of the TiNi-based medical alloy according to an embodiment of the present invention, Al-added TiNi-based alloy was dissolved using high frequency vacuum induction, the dissolved ingot (ingot) After hot forging and hot extrusion, cold drawing and intermediate annealing were repeated to make a wire rod with a diameter of 1 mm, and a sample cut to the required length (for example, 40 mm, 100 mm, etc.) was approximately 973K-1173K. Samples were prepared by quenching and then quenching for 1 h at.
이러한 샘플들에 대응하는 Al이 첨가된 TiNi계 합금의 최대인장강도(UTS)와 농도 의존성(왼쪽축 : 최대인장강도(UTS, MPa), 오른쪽축 : 총연신율(TEL, %), X축 : Al 첨가량(중량%))을 살펴보면, 최대인장강도(UTS)는 총연신율(TEL : total elongation)이 30%-27% 내에서 Al 함량의 증가에 따라 증가하고, 대략 1420-16200MPa의 범위로 나타나는 것을 알 수 있다.The maximum tensile strength (UTS) and concentration dependence (left axis: maximum tensile strength (UTS, MPa), right axis: total elongation (TEL,%), X axis: In addition, the maximum tensile strength (UTS) increases with increasing Al content within 30% -27% and shows a range of approximately 1420-16200 MPa. It can be seen that.
도 4는 본 발명의 실시예에 따른 TiNi계 의료용 합금의 마르텐사이트 변태의 온도 의존성을 나타내는 도면으로, TiNi계 의료용 합금 샘플들에 대해 온도별로 변형력-응력 실험을 실시한 후 최대인장강도(UTS)를 검출하고, 온도에 따른 최대인장강도(UTS)를 그래프화하였다.4 is a diagram showing the temperature dependence of the martensite transformation of the TiNi-based medical alloy according to an embodiment of the present invention, the maximum tensile strength (UTS) after performing a strain-stress test for each temperature for the TiNi-based medical alloy samples The maximum tensile strength (UTS) over temperature was plotted.
여기에서, 본 발명의 실시예에 따른 TiNi계 의료용 합금의 마르텐사이트계 전단 응력의 온도 의존성(Y축 : 강도(stress, MPa), X축 : 온도(temperature, ℃))을 살펴보면, A(대략 10℃를 나타냄)와 B(대략 80℃를 나타냄) 포인트 사이에 위치하는 전자에 언급된 유사한 의존성과 같이 초탄성 효과를 초래하는 서로 변형되는 상들(모상과 마르텐사이트계)의 공존하는 것을 알 수 있고, 1 중량% 내에서 Al 첨가량 범위는 초탄성이 인체 온도 근처에서 나타날 때 온도 범위에 대응되는 것을 알 수 있으며, 1 중량% 내에서 Al을 첨가한 본 발명의 TiNi계 의료용 합금은 인체 온도 범위에서 초탄성이 나타나는 것을 확인할 수 있다.Here, the temperature dependence of the martensitic shear stress of the TiNi-based medical alloy according to the embodiment of the present invention (Y-axis: strength (MPa), X-axis: temperature (℃)), A (approximately) It can be seen that co-existing phases (maternal and martensitic) coexist with each other resulting in a hyperelastic effect, such as the similar dependence mentioned in the former located between points 10 ° C.) and B (approx. 80 ° C.). In addition, it can be seen that the addition amount of Al within 1% by weight corresponds to the temperature range when the superelasticity appears near the human body temperature, and the TiNi-based medical alloy of the present invention to which Al is added within 1% by weight of the human body temperature range It can be seen that superelasticity appears at.
즉, 초탄성(superelastic) 구간은 고온상(오스테나이트)과 저온상(마르텐사이트)이 함께 존재하는 구간으로, 오스테나이트 완료 온도(Ar)와 마르텐사이트 변형 온도(Md 또는 Ms)의 구간을 의미하는데, 이 구간 내(즉, Ar 내지 Md)에서는 오스테나이트 상으로부터 마르텐사이트 상으로의 응역-유기 변태를 겪을 수 있어서, 응력이 합금에 가해지면, 가해진 응력에 대응하여 오스테나이트로부터 마르텐사이트로의 변태를 통하여 변형되었다가, 변형이 제거되면 비변형된 상태로 되돌아간다.That is, a superelastic section is a section in which a high temperature phase (austenite) and a low temperature phase (martensite) exist together, and the austenite completion temperature (A r ) and the martensite deformation temperature (M d or M s ) Within the zone (ie A r to M d ), which may undergo a reaction-organic transformation from the austenite phase to the martensite phase, so that when stress is applied to the alloy, the austenite in response to the applied stress From the transformation from martensite to the undeformed state once the strain is removed.
그런데, 종래의 Al이 첨가되지 않은 TiNi계 합금의 경우 온도가 증가함에 따라 인장강도가 감소하는 반면에, 본 발명의 실시예에 따른 TiNi계 의료용 합금은 Al 첨가로 인해 특정 온도 구간(예를 들면, 10-80℃) 내에서 인장강도가 증가하는 경향을 나타내고 있으며, 이에 따라 의료용으로 사용할 경우 손상을 더 효과적으로 방지할 수 있을 뿐만 아니라 인체(생체) 온도 범위(대략 37℃) 내에서 의료용으로 사용하기에 적합한 초탄성 특성을 나타내고 있음을 알 수 있다.By the way, in the case of the TiNi-based alloy is not added to the conventional Al, the tensile strength decreases with increasing temperature, while the TiNi-based medical alloy according to the embodiment of the present invention has a specific temperature range (for example, due to Al addition) , 10-80 ℃) shows a tendency to increase the tensile strength, so that when used for medical use can not only prevent damage more effectively, but also for medical use within the body (bio) temperature range (about 37 ℃) It can be seen that suitable superelastic properties are shown below.
상술한 바와 같이 본 발명의 실시예에 따른 TiNi계 의료용 합금은 Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는데, 최대인장강도가 1420-1620 Mpa의 범위를 가질 수 있으며, 초탄성 구간이 10-80℃의 온도 범위를 가질 수 있다.As described above, the TiNi-based medical alloy according to the embodiment of the present invention comprises Ti 44-48 wt%, Mo 0.2-3.0 wt%, Fe 0.1-2.0 wt%, Al 0.2-1.0 wt%, and the balance Ni. The maximum tensile strength may have a range of 1420-1620 Mpa, the hyperelastic section may have a temperature range of 10-80 ℃.
따라서, 본 발명은 Ti, Ni, Mo, Fe 및 Al을 포함하며, 높은 물리적 및 기계적 특성을 가지면서 의료용으로 사용하기에 적합한 다양한 특성을 제공할 수 있는 TiNi계 의료용 합금을 제공할 수 있다.Accordingly, the present invention can provide a TiNi-based medical alloy containing Ti, Ni, Mo, Fe and Al, and can provide a variety of properties suitable for medical use while having high physical and mechanical properties.
또한, 본 발명은 아르곤 분위기에서 VIM 로 내부의 흑연 도가니에 Ti, Ni, Mo, Fe 및 Al을 장입한 후 진공유도용해를 통해 합금 주조성, 그 신축성과 부수적인 신체역학적 적합성, 강도, 부식저항성, 변형수명 약화, 내구성의 증가 등의 의료용으로 사용되기 적합한 향상된 특성을 갖는 TiNi계 의료용 합금을 제공할 수 있다.In addition, the present invention, after charging Ti, Ni, Mo, Fe and Al into the graphite crucible inside the VIM in an argon atmosphere, and vacuum casting induction, alloy casting property, its elasticity and ancillary body dynamic compatibility, strength, corrosion resistance It is possible to provide a TiNi-based medical alloy having improved properties suitable for use in medical applications, such as weakened deformation life, increased durability.
아울러, 본 발명의 TiNi계 의료용 합금은 생체조직과의 이물 반응이 없고, 인체 내에서 더 오랫동안 견고하게 존재할 수 있으며, 피로 특성, 부식 특성, 초탄성과 같은 형상기억 특성 등이 매우 향상됨으로써, 기계적, 물리적, 화학적 특성이 의료용으로 사용하기에 적합한 합금을 제공할 수 있다.In addition, the TiNi-based medical alloy of the present invention is free from foreign body reactions with biological tissues, and may be present in the human body for a longer period of time. Physical and chemical properties can provide alloys suitable for medical use.
한편, 본 발명의 TiNi계 의료용 합금은 물성의 변화가 거의 없어 변태온도 안정성이 높고, 기존에 20-30%의 제품 불량이 발생하는데 비해 5%이하로 매우 낮고, 생산단가가 낮아 제조비용이 상대적으로 낮기 때문에 수익성이 향상되고, 의료용뿐만 아니라 산업용으로도 활용성이 매우 좋다.Meanwhile, the TiNi-based medical alloy of the present invention has almost no change in physical properties and thus has high transformation temperature stability, and has a low product cost of less than 5% and a relatively low production cost, compared to the existing product defect of 20-30%. Low profitability improves and is very useful not only for medical use but also for industrial use.
이상의 설명에서는 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.In the foregoing description, various embodiments of the present invention have been described and described, but the present invention is not necessarily limited thereto, and a person having ordinary skill in the art to which the present invention pertains may have various modifications without departing from the technical spirit of the present invention. It will be readily appreciated that branch substitutions, modifications and variations are possible.

Claims (6)

  1. Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는 TiNi계 의료용 합금.A TiNi-based medical alloy consisting of 44-48 wt% Ti, 0.2-3.0 wt% Mo, 0.1-2.0 wt% Fe, 0.2-1.0 wt% Al and the balance Ni.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 TiNi계 의료용 합금은, 최대인장강도가 1420-1620 Mpa의 범위를 갖는 TiNi계 의료용 합금.The TiNi-based medical alloy has a maximum tensile strength of 1420-1620 Mpa TiNi-based medical alloy.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 TiNi계 의료용 합금은, 초탄성 구간이 10-80℃의 온도 범위를 갖는 TiNi계 의료용 합금.The TiNi-based medical alloy, the super-elastic section has a temperature range of 10-80 ℃ TiNi-based medical alloy.
  4. Ti 44-48 중량%, Mo 0.2-3.0 중량%, Fe 0.1-2.0 중량%, Al 0.2-1.0 중량% 및 잔부 Ni로 이루어지는 합금 성분들을 고주파 진공유도를 이용하여 용해하는 단계와,Dissolving the alloying components consisting of Ti 44-48 wt%, 0.2-3.0 wt% Mo, 0.1-2.0 wt% Fe, 0.2-1.0 wt% Al and the balance Ni using high frequency vacuum induction,
    상기 용해하는 단계를 통해 수득되는 합금 잉곳을 열간 단조 및 열간 압출하는 단계와,Hot forging and hot extrusion of the alloy ingot obtained through the dissolving step;
    상기 열간 단조 및 열간 압출하는 단계 이후에, 냉간 인발과 중간온도의 어닐링을 반복하는 단계와,After the hot forging and hot extruding, repeating cold drawing and annealing at an intermediate temperature;
    상기 어닐링을 반복하는 단계 이후에, 973K-1173K의 온도에서 0.5-1.5 시간동안 용체화 처리한 후 급냉하여 TiNi계 의료용 합금을 제조하는 단계After the step of repeating the annealing, the solution treatment for 0.5-1.5 hours at a temperature of 973K-1173K and then quenched to prepare a TiNi-based medical alloy
    를 포함하는 TiNi계 의료용 합금의 제조 방법.Method for producing a TiNi-based medical alloy comprising a.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 용해하는 단계는, 각 합금 성분들이 1-3 mm의 크기를 갖는 과립으로 장입되는 TiNi계 의료용 합금의 제조 방법.The dissolving step is a method for producing a TiNi-based medical alloy in which each alloy component is charged into granules having a size of 1-3 mm.
  6. 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5,
    상기 TiNi계 의료용 합금은, 최대인장강도가 1420-1620 Mpa의 범위를 가지며, 초탄성 구간이 10-80℃의 온도 범위를 갖는 TiNi계 의료용 합금의 제조 방법.The TiNi-based medical alloy, the maximum tensile strength has a range of 1420-1620 Mpa, the superelastic section has a temperature range of 10-80 ℃ a TiNi-based medical alloy manufacturing method.
PCT/KR2016/006987 2015-06-30 2016-06-29 Tini-based medical alloy and method for producing same WO2017003192A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0093252 2015-06-30
KR20150093252 2015-06-30
KR10-2016-0081466 2016-06-29
KR1020160081466A KR101832705B1 (en) 2015-06-30 2016-06-29 Ti-Ni BASED ALLOY FOR MEDICAL AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
WO2017003192A1 true WO2017003192A1 (en) 2017-01-05

Family

ID=57608699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006987 WO2017003192A1 (en) 2015-06-30 2016-06-29 Tini-based medical alloy and method for producing same

Country Status (1)

Country Link
WO (1) WO2017003192A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299428A (en) * 1994-10-14 1996-11-19 Osteonics Corp Medical apparatus consisting of titanium based alloys with biological adaptability
JPH09302450A (en) * 1996-02-07 1997-11-25 General Electric Co <Ge> Control of grain size of nickel-base superalloy
US6187045B1 (en) * 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
KR20020071451A (en) * 2001-03-05 2002-09-12 주식회사 바이오스마트 Composition of Porous Element for Biomaterial
JP2012514524A (en) * 2009-01-08 2012-06-28 バイオ ディージー インコーポレイテッド Implantable medical device containing biodegradable alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299428A (en) * 1994-10-14 1996-11-19 Osteonics Corp Medical apparatus consisting of titanium based alloys with biological adaptability
JPH09302450A (en) * 1996-02-07 1997-11-25 General Electric Co <Ge> Control of grain size of nickel-base superalloy
US6187045B1 (en) * 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
KR20020071451A (en) * 2001-03-05 2002-09-12 주식회사 바이오스마트 Composition of Porous Element for Biomaterial
JP2012514524A (en) * 2009-01-08 2012-06-28 バイオ ディージー インコーポレイテッド Implantable medical device containing biodegradable alloy

Similar Documents

Publication Publication Date Title
Liu et al. Evolution of Mg–Zn second phases during ECAP at different processing temperatures and its impact on mechanical properties of Zn-1.6 Mg (wt.%) alloys
CN101550510B (en) High intensity degradable biological medical magnesium alloy and preparation method thereof
WO2011071304A2 (en) Magnesium alloy
CN108998714A (en) A kind of design and preparation method of two-phase medium entropy alloy
CN101121979B (en) Method for preparing Mg-Zn-Zr deformation magnesium alloy
CN107460386B (en) Preparation method of high-strength and high-toughness magnesium alloy containing LPSO structure through magnetic field casting regulation
Farahani et al. Effect of grain refinement on mechanical properties and sliding wear resistance of extruded Sc-free 7042 aluminum alloy
CN104120320A (en) Degradable rare earth magnesium alloy medical biomaterial and preparation method thereof
CN108411158B (en) A kind of biodegradable Zn-Mg-Zr alloy material, preparation method and application
Lu et al. Optimizing the tensile properties of Al–11Si–0.3 Mg alloys: Role of Cu addition
Wang et al. Evaluation of an experimental Ti‐Co alloy for dental restorations
CN104862450B (en) Nano-hot metal purifies the method that alterant is used for austenic globe body wear resistance castings
Ma et al. Microstructure, mechanical and corrosion properties of novel quaternary biodegradable extruded Mg–1Zn–0.2 Ca-xAg alloys
WO2014073754A1 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
Hoseini et al. Tensile properties of in-situ aluminium–alumina composites
CN113106312B (en) Degradable medical alloy and preparation method and application thereof
CN112494725B (en) Biodegradable composite material and preparation method and application thereof
CN116983484B (en) Degradable copper-based shape memory alloy vascular stent and preparation method thereof
Asadi et al. Precipitation kinetics and mechanical properties of Mg–Y–Zn and Mg–Y–Ni alloys containing long-period stacking ordered (LPSO) structures
CN106978557A (en) A kind of magnesium lithium alloy and preparation method thereof
CN103757511A (en) Dispersion strengthened medical Mg-Zn-Ce-Ca-Mn alloy and preparation method thereof
CN102965556A (en) Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof
WO2017003192A1 (en) Tini-based medical alloy and method for producing same
CN110343924B (en) High-conductivity Mg-Zn-Sn-Sc-xCa magnesium alloy and preparation method thereof
KR101832705B1 (en) Ti-Ni BASED ALLOY FOR MEDICAL AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16818225

Country of ref document: EP

Kind code of ref document: A1