WO2016146904A1 - Head-up display device, particularly for a motor vehicle - Google Patents

Head-up display device, particularly for a motor vehicle Download PDF

Info

Publication number
WO2016146904A1
WO2016146904A1 PCT/FR2016/000050 FR2016000050W WO2016146904A1 WO 2016146904 A1 WO2016146904 A1 WO 2016146904A1 FR 2016000050 W FR2016000050 W FR 2016000050W WO 2016146904 A1 WO2016146904 A1 WO 2016146904A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
display device
order
diffraction
diffusion
Prior art date
Application number
PCT/FR2016/000050
Other languages
French (fr)
Inventor
Pierre Mermillod
Original Assignee
Valeo Comfort And Driving Assistance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Comfort And Driving Assistance filed Critical Valeo Comfort And Driving Assistance
Publication of WO2016146904A1 publication Critical patent/WO2016146904A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4227Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant in image scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0105Holograms with particular structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means

Definitions

  • Head-up display device in particular for a motor vehicle
  • the present invention relates to a head-up display device and in particular to the image-forming means.
  • the invention will find applications, for example, in motor vehicles to inform users of the vehicle, especially its driver.
  • Head-up display systems are known in vehicles. These systems make it possible to inform the driver, by displaying in his field of vision, information related to the state of the vehicle such as speed, information related to the route. This system allows the driver to visualize a form of augmented reality in his field of vision.
  • Such systems are provided with a light source, for example comprising one or more laser sources, which are combined to form a collimated beam.
  • a light source for example comprising one or more laser sources, which are combined to form a collimated beam.
  • the light beam is imaged on a diffuser screen.
  • This screen makes it possible to broadcast the collimated beam.
  • a semi-reflective device then makes it possible to create a virtual image of the screen in the driver's field of vision comprising the information to be displayed.
  • a coherent source such as a laser
  • random spots will appear on the virtual image, these tasks coming from constructive interference (high intensity tasks) and destructive (tasks darker) between different components of the scattered light.
  • These random tasks are called scabs or "speckle" in English.
  • the driver may be dazzled by the lighter tasks, and when he changes his position, these tasks will appear darker, causing a gene to the driver when changing position.
  • the invention proposes a head-up display device comprising at least one laser source producing a light beam, means for forming an image in an intermediate image plane, a semi-reflective element forming a virtual image of said image in the image. intermediate plane, characterized in that the head-up display device further comprises: diffraction means placed in the intermediate image plane and diffracting the beam into a plurality of zero order and higher order diffraction beams.
  • the intermediate image plane By introducing diffraction means into the intermediate image plane, the latter make it possible to control the interference occurring within the light beam. These interferences, which are at the origin of scab, can thus be reduced or even eliminated and thus avoid the appearance of scab, or "speckle" in the virtual image viewed by the user.
  • means for masking the zero order of the diffracted beam are arranged between the intermediate image plane and the semi-reflective element.
  • the masking means are configured to selectively transmit to the semi-reflecting element at least one of the higher orders of diffraction.
  • the masking means includes an appropriate optical alignment between the diffractive means and the semi-reflecting element so that the zero order is not transmitted to the semi-reflective element.
  • the higher order of diffraction transmitted to the semi-reflecting element is the first order.
  • the device further comprises a light trap configured to capture the zero-order beam.
  • the diffraction means further comprise diffusion means.
  • the diffusion means are configured so that the diffusion of one of the higher orders of the diffracted beam is optimized.
  • the diffusion means are configured so that the diffusion of the order 1 of the diffracted beam is optimized.
  • the diffraction means comprise a diffractive optical element traversed by the beam and having at least two different levels of thickness in the direction of propagation of the beam.
  • the diffractive optical element is used in transmission.
  • the diffractive optical element is binary, and the optical path difference between the two thickness levels is substantially equal to half of the average wavelength, the average wavelength being the average of the wavelengths. wave of at least one laser source.
  • FIG. 1 is a schematic view of an embodiment of a head-up display device according to the invention
  • FIG. 2 is a schematic view of an embodiment of an image generator used in the device according to the invention
  • FIG. 3 is a schematic view of an embodiment of a transmission device used. in the device according to the invention
  • FIG. 4 is a schematic view of an embodiment of the
  • FIG. 5 is a schematic view of another embodiment of the image forming means used in the device according to the invention.
  • FIG. 6 is a schematic view of the diffusion generated by diffusion means
  • FIG. 7a is a schematic view of the diffraction generated by transmission diffraction means
  • FIG. 7b is a schematic view of the diffraction generated by reflection diffraction means
  • FIG. 8 illustrates the diffraction and diffusion around the zero order of a light beam by a diffractive optical element, in which the diffusion is centered around the order 1, the order 1 and the order zero being well separated,
  • FIG. 9 is a figure similar to FIG. 8, in which the order 1 and the zero order are partially superimposed.
  • FIG. 1 is a schematic view of a head-up display device according to the invention.
  • the device comprises an image generator 100, followed by diffraction means 140 placed in an intermediate image plane 111.
  • the image generator 100 produces a beam 30 which, according to one embodiment, is then reflected on a first folding mirror 125.
  • the light beam 30 then passes through a semi-reflective optical element 126, which may be constituted by the windshield of the vehicle or a semi-reflective blade.
  • the combination of the mirror 125 and the semi-reflective plate 126 allows the user to see a virtual image 130 of the image generated by the image generator 100 in the intermediate image plane 111, as if the image were at a distance of about two meters from his eyes and superimposed the road.
  • This image is perceived by the user in an area of the vehicle that is called the eye box 170.
  • the eye box has a dimension of about 5X15 cm 2 , and is around the eyes of the driver when driving.
  • the semi-reflecting blade 126 has a reflectivity of at least 20%, which allows the user to see through the blade the road taken by the vehicle, while enjoying a high contrast to see the virtual image 130.
  • FIG. 2 illustrates the image generator 100.
  • the latter comprises a transmission device 101 of a light beam 10 and means 102 for forming an image in the plane 111, from said light beam 10.
  • FIG. 3 is a schematic view of the transmission device 101.
  • Said device comprises one or more sources 4, 5, 6, each emitting a beam 7, 8, 9 of the laser type.
  • sources 4, 5, 6, each emitting a beam 7, 8, 9 of the laser type are, for example, laser sources, typically laser diodes, each laser source emitting a monochromatic beam, of wavelength ⁇ , ⁇ 2 , ⁇ 3 .
  • Said device here comprises three sources 4, 5, 6, the device being configured to form the light beam 10 by means of pooling by combining the beams 7, 8, 9 individually emitted by each of the sources 4, 5 , 6. More precisely, it may be sources emitting a beam of a different color from one source to another. Colors are, for example, red, green, or blue (RGB).
  • the beams 7, 8, 9 emitted by each of the sources are oriented, for example, parallel to each other and reflected in the same direction to form by combination the common light beam 10.
  • the device 101 here comprises semi-transparent optical elements , over a wavelength range, such as dichroic mirrors or combination blades 11, intercepting the beams 7, 8, 9 emitted by each of the sources and combining them according to the direction of the beam 10.
  • the device 101 is configured to form the light beam 10 from the laser beam or beams 7, 8, 9, whatever the number of sources 4, 5, 6 involved.
  • the light beam 10 is composed of the laser beam emitted by the only source used and the resulting image will then be monochrome.
  • the common beam 10 which then forms the light beam will allow the establishment of an image according to a color spectrum whose resolution will correspond to the fineness controlling the supply of sources 4, 5, 6.
  • the image-forming means 102 comprise, for example, a scanning generator 110 whose function is to move the light beam 10 horizontally and vertically in order to carry out a scanning according to a frequency, for example equal to 60 Hz.
  • the scanning generator 110 comprises, for example, a scanning mirror 115 with a microelectromechanical system (hereinafter referred to as the MEMS mirror) on which the light beam 10 is reflected in a scanning beam 103.
  • a mirror 115 MEMS for example has a diameter of 1 mm 2 .
  • the mirror 115 MEMS is able to rotate about two axes of rotation, for example orthogonal, to perform a scan, for example at the refresh rate of 60 Hz, in the intermediate image plane 111 according to a figure composed of successive lines, in the aim of making an image, for example rectangular, alternatively, the mirror 115 MEMS can be replaced by two plane and movable mirrors, whose movements are associated.
  • One of these mirrors can be dedicated to a scan along a horizontal axis while the other mirror can be dedicated to a scan along a vertical axis.
  • the image generator 102 may further comprise different mirrors 104, 106, planar or otherwise, arranged on the path of the scanning beam 103.
  • diffractive means are arranged in the intermediate image plane 111, in order to suppress the scabs generated by the diffusion of a coherent laser source on the rough face of the diffuser 140 mentioned above.
  • the diffusion means must not be replaced by the diffraction means, but the combination of the two is necessary to generate an image whose pupil is sufficiently large (diffusion means), and without scab (diffraction means), to the user.
  • the emission indicator surface does not exist because the incident beams in the intermediate image plane 111 are collimated. The image can only be seen in one direction corresponding to the direction of the incident laser beam.
  • the addition of diffusion means is used to generate an emission indicator surface, thus making it possible to increase the size of the pupil and consequently to improve the comfort of the user.
  • the introduction of diffusion means 150 in the intermediate image plane 111 is illustrated in FIG. 6.
  • the diffusion means 150 may be in one embodiment constituted by a diffusing screen. However, we will see that the diffusion means 150 and the diffraction means can be combined in the same optical element.
  • the diffusion means 150 receive the scanning beam 103 and are arranged to cause a dispersion of this scanning beam 103 according to an angular sector, for example, equal to 30 ° around the direction of propagation of the scanning beam 103.
  • the diffusion means are of the type with enlarged exit pupil, in English "Exit Pupil Expander”.
  • the dispersion of the light beam 103 can be illustrated by means of a cone 155.
  • the diffusion means comprise a diffuser screen
  • the latter may be a transparent projection screen for a projection by transparency.
  • This screen comprises in particular on one of its faces, periodic microstructures, whose geometry is complex. He will be able to alternatively be translucent. It is made, for example, of glass, especially frosted, or polycarbonate.
  • One face of the diffuser screen is rough, in that it has asperities which cause the dispersion of the scanning beam 103. The rough face corresponds to that through which the beam leaves, that is to say the face located in the intermediate image plane 111 on which the image is formed.
  • said image forming means do not comprise a scanning generator as described above, but a matrix of micro mirrors (also called Digital micro mirrors system).
  • the image is formed at the level of the mirror array and then projected onto the intermediate image plane 111.
  • a projection optics is placed between the matrix and the intermediate image plane.
  • Each micro mirror corresponds to a pixel of the image.
  • the image is not formed in the intermediate image plane for the first time, but receives an image previously formed on the mirror array.
  • the light beam is a fixed beam.
  • micro-lens type diffuser in English, or MLA
  • the image is parasitized by a repetitive structured pattern, called moiré effect.
  • moiré effect For reasons of manufacturing tolerance, alignment of lasers, etc., the moiré effect and the appearance of scab may also appear simultaneously.
  • diffraction means 140 are used.
  • the same optical component is used for the diffraction means 140 and the diffusion means 150.
  • the diffraction means 140 and the diffusion means 150 may be provided by two distinct optical elements.
  • the diffraction means 140 comprise a diffractive optical element. The function of this optical element is to decompose the incoming beam into a plurality of output beams propagating in different directions, these different output beams corresponding to different diffraction orders, whose zero order and higher orders ( ⁇ 1, ⁇ 2, ⁇ 3, etc.).
  • the direction of the outgoing beams depends on the structure responsible for the diffraction that is present on the face of the diffractive optical element 140, and the wavelength of the incident light.
  • the face of the diffractive optical element comprises a periodic structure, micro-structured, the pitch of which is of the order of the wavelength of the light. For a single dimension, it is a diffraction grating, the pitch of which depends on the wavelength of the light.
  • these structures may comprise two thickness levels, in the propagation direction of the light beam: in this case it is a binary diffractive optical element, also called phase shift mask in the literature.
  • the difference in optical path between two regions is ⁇ / 2, where ⁇ corresponds to the wavelength of the incident light.
  • the diffractive optical element is therefore generally optimized for a single wavelength. If the device comprises three laser sources, the diffractive optical element will be optimal for one of the three sources.
  • the phase mask is designed for the average wavelength of the different laser sources, the average wavelength being the average of the wavelengths of the laser sources.
  • the diffractive optical element 140 may comprise a plurality of different thicknesses in the propagation direction of the beam.
  • the multi-level diffracting optical elements are generally designed to make the diffracted beam asymmetrical, for example, to make the order -1 coincide with the order 1.
  • the multi-level diffractive optical element is designed for the length of d average wave of different laser sources.
  • the distribution of the light beam emerging from the diffractive optical element 140 depends on the structure of the face of the diffractive optical element. This structure can be computed analytically, by the theory of diffraction gratings or can also be simulated, etc.
  • a diffractive optical element 140 also generates scattering.
  • a diffractive optical element 140 also generates scattering.
  • discontinuities in thickness variations generate scattering.
  • the intensity of diffusion also depends on the structure of the diffractive optical element face and can be determined in advance by means of simulations, calculations, etc.
  • FIGS. 7a and 7b illustrate the diffraction of a monochromatic light beam 70, such as a laser light source, on a diffractive optical element 140.
  • the diffractive optical element 140 transmits the light beam 70.
  • the diffractive optical element reflects the light beam 140.
  • the diffractive optical element 140 breaks down the light beam 70 into a plurality of beams corresponding to different diffraction orders in which the orders zero, 1, 2, -1, -2 are represented by the axes of the beams 700, 701, 702, 711, 712 respectively. Diffraction orders are discretely distributed and the angular separation between orders depends on the physical characteristics of the diffractive optical element.
  • the zero order 700 is undeviated by the network and in reflection it is reflected according to the laws of geometrical optics.
  • Higher orders for example orders 1 [701), 2 (702), 3 (not shown), etc. are diffracted according to structure-dependent diffraction angles on the face of the diffractive optical element.
  • the commands -1 (711), -2 (712), -3 (not shown), etc. are the symmetries of orders 1, 2, 3, etc. compared to the zero order 700, as shown in the diagram of FIG. 7.
  • the zero order which is the order whose intensity is dominant relative to the higher orders, is chosen to generate the virtual image 130.
  • the use of the zero order to generate the final virtual image 130 of the device according to the invention poses two major problems.
  • the distribution of light intensity in zero order is not homogeneous: it is concentrated at the center of the image and reduced at the edges. This inhomogeneity of illumination in the field is uncomfortable for the user and causes an image that appears brighter along the direction of the main optical ray and less luminous along the other directions.
  • the luminous intensity of the zero order is strong. This high light intensity can also dazzle the user, even generate damage to the eyes of the user, especially when the light source comprises a laser.
  • the system comprises three laser sources, this is not a solution.
  • means are available for masking the zero order of the diffracted beam disposed between the intermediate image plane 111 and the semi-reflective element 126.
  • the masking means are made by adapting the optical alignment between the diffraction means and the semi-reflective element, for example by transmitting to the semi-reflecting element 126 at least one diffracted beam of higher order of the scanned beam 103.
  • the optical elements placed between the diffractive optical element and the semi-reflective element 126 are oriented such that only one or more higher order beams are transmitted to the element semi-reflective 126, the zero order not being transmitted.
  • FIG. 1 which illustrates the propagation of the light beam 30 after diffraction by the diffraction means 140, or more particularly by the diffractive optical element 140.
  • the light beam 30 corresponds to the order 1 of diffraction of the light beam and the light beam 40 corresponds to the order 0 of the diffraction beam.
  • the folding mirror 125 is positioned such that it receives the order 1 of the diffracted beam.
  • the order 1 is chosen to be transmitted to the following optical elements and form the image 130 of the device according to the invention.
  • the diffusion is maximum for the zero order, and is along the main axis of the diffractive optical element, the main axis being generally an axis perpendicular to the diffractive optical element. It is possible to optimize the diffusion on one of the higher diffraction orders, that is to say along an axis distinct from the main axis, by using an element diffracting optics for example.
  • the multi-level diffracting optical elements comprise at least two different thicknesses, inducing a plurality of phase shifts of the wave between 0 and 2 ⁇ , or even 0 and 4 ⁇ (or any other multiple of 2 ⁇ ).
  • optimization initially concerns a spatial optimization of the diffusion.
  • the diffusion function inscribed on the diffractive optical element is designed to generate a pupil of a certain predetermined size. It is the diffusion cone that will determine this pupil dimension.
  • optimization also covers optimization in light intensity.
  • the luminous intensity depends partly on the size of the pupil (or the diffusion cone) but it is also possible to superpose higher orders to increase the luminous intensity.
  • the light intensity will be determined by the light intensity of the virtual image.
  • the diagram of FIG. 8 illustrates the effect generated by an optimization of the diffusion around the order 1.
  • the incident light 70 and the direction of the zero order 700 coincide.
  • the diffractive optical element 140 is placed in the intermediate image plane 111.
  • the size of the pupil in the plane 111 is identical for the zero order 700 and the order 701.
  • the size of the The exit pupil is greater for the order 1 801 than for the zero order 800 thanks to the diffusion 811 generated by the diffractive optical element 140 around the order 1.
  • the optical alignment of the system is adapted, the Optics will be placed downstream of the exit pupil along the axis 630, perpendicular to the diffractive optical element 140.
  • the zero order 700 is thus masked from the final image, and this for each wavelength.
  • Different parameters can influence the system: the angle between the zero order and the order 1, the angle of the diffusion cone, etc.
  • a light trap 650 is inserted into the device to absorb the zero order light.
  • the light trap can also absorb light from certain higher orders to limit the existence of stray light.
  • the light beam corresponding to the zero order 700 may be superimposed at least partially on the light beam corresponding to the scattered order 1701, or the diffusion cone 911 may comprise at least a portion of the light beam corresponding to the zero order 700.
  • the exit pupils of the order 1 901 and the zero order 900 are superimposed on the surface 902.
  • the portion 902 of the exit pupil of the order 1 is deleted. Only the light passing through the exit pupil 901 ("Exit Pupil" in English) is exploited by the optical system placed downstream of the plane 620 to form the virtual image 130.
  • the light coming from the zero order 900 and of the order 1 902, confused with the order 0, are not exploited (cut or exploited for other needs).
  • a light trap 650 is inserted into the device to absorb the zero order light.
  • the zero order energy can be monitored by a detector. Any alteration of the diffraction means will result in a zero order power change and this change may therefore be used as a verification of the integrity of the system with respect to the safety associated with the use of a laser.
  • the diffusion effect makes it possible to uniformly illuminate the entire pupil of the optical system and to enlarge the size of the pupil where it will be perceived by the user, that is to say in the box to eye. As shown in Figure 1, the zero order is ignored by the system.

Abstract

The invention relates to a head-up display device, particularly for a motor vehicle, comprising at least one laser source (4, 5, 6) producing a light beam (10), means for forming an image in an intermediate image plane (111), and a semi-reflective element (126) forming a virtual image (130) of said image in the intermediate plane (111), characterised in that the head-up display device also comprises diffraction means (140) which are arranged in the intermediate image plane (111) and diffract the beam (10) into a plurality of zero-order (40) and higher-order (30) diffraction beams.

Description

Dispositif d'affichage tête haute, notamment pour véhicule automobile  Head-up display device, in particular for a motor vehicle
La présente invention concerne un dispositif d'affichage tête haute et en particulier les moyens de formation d'image. The present invention relates to a head-up display device and in particular to the image-forming means.
L'invention trouvera ses applications, par exemple, dans les véhicules automobiles pour informer les utilisateurs du véhicule, en particulier son conducteur. Les systèmes d'affichage tête haute sont connus dans les véhicules. Ces systèmes permettent d'informer le conducteur, en affichant dans son champ de vision, des informations liées à l'état du véhicule tel que la vitesse, des informations liées à l'itinéraire. Ce système permet au conducteur de visualiser une forme de réalité augmentée dans son champ de vision. The invention will find applications, for example, in motor vehicles to inform users of the vehicle, especially its driver. Head-up display systems are known in vehicles. These systems make it possible to inform the driver, by displaying in his field of vision, information related to the state of the vehicle such as speed, information related to the route. This system allows the driver to visualize a form of augmented reality in his field of vision.
De tels systèmes sont pourvus d'une source lumineuse, par exemple comprenant une ou plusieurs sources lasers, qui sont combinées pour ensuite former un faisceau collimaté. Après passage dans des moyens de balayage, le faisceau lumineux est imagé sur un écran diffuseur. Cet écran permet de diffuser le faisceau collimaté. Un tel diffuseur comprend généralement une face rugueuse, provoquant la dispersion du faisceau lumineux. Un dispositif semi-réfléchissant permet ensuite de créer une image virtuelle de l'écran dans le champ de vision du conducteur comprenant les informations à afficher. Cependant, lorsqu'une source cohérente, tel qu'un laser, est projetée sur l'écran diffuseur, des taches aléatoires vont apparaître sur l'image virtuelle, ces tâches provenant d'interférences constructives (tâches de haute intensité) et destructives (tâches plus sombres) entre différentes composantes de la lumière diffusée. Ces tâches aléatoires sont nommées tavelures ou « speckle » en anglais. Le conducteur pourra être ébloui par les tâches plus claires, et lorsqu'il change de position, ces tâches lui apparaîtront plus sombres, provoquant ainsi une gène au conducteur lorsqu'il change de position. Such systems are provided with a light source, for example comprising one or more laser sources, which are combined to form a collimated beam. After passing through scanning means, the light beam is imaged on a diffuser screen. This screen makes it possible to broadcast the collimated beam. Such a diffuser generally comprises a rough face, causing the dispersion of the light beam. A semi-reflective device then makes it possible to create a virtual image of the screen in the driver's field of vision comprising the information to be displayed. However, when a coherent source, such as a laser, is projected on the diffuser screen, random spots will appear on the virtual image, these tasks coming from constructive interference (high intensity tasks) and destructive (tasks darker) between different components of the scattered light. These random tasks are called scabs or "speckle" in English. The driver may be dazzled by the lighter tasks, and when he changes his position, these tasks will appear darker, causing a gene to the driver when changing position.
L'invention propose un dispositif d'affichage tête haute comprenant au moins une source laser produisant un faisceau lumineux, des moyens de formation d'une image dans un plan image intermédiaire, un élément semi- réfléchissant formant une image virtuelle de ladite image dans le plan intermédiaire, caractérisé en ce que le dispositif d'affichage tête haute comporte en outre : des moyens de diffraction placés dans le plan image intermédiaire et diffractant le faisceau en une pluralité de faisceaux de diffraction d'ordre zéro et d'ordre supérieur. The invention proposes a head-up display device comprising at least one laser source producing a light beam, means for forming an image in an intermediate image plane, a semi-reflective element forming a virtual image of said image in the image. intermediate plane, characterized in that the head-up display device further comprises: diffraction means placed in the intermediate image plane and diffracting the beam into a plurality of zero order and higher order diffraction beams.
En introduisant des moyens de diffraction dans le plan image intermédiaire, ces derniers permettent de maîtriser les interférences se produisant au sein du faisceau lumineux. Ces interférences, qui sont à l'origine des tavelures, peuvent ainsi être réduites, voire éliminées et ainsi éviter l'apparition de tavelures, ou « speckle » dans l'image virtuelle visualisée par l'utilisateur. Préférentiellement, des moyens de masquage de l'ordre zéro du faisceau diffracté sont disposés entre le plan image intermédiaire et l'élément semi- réfléchissant. By introducing diffraction means into the intermediate image plane, the latter make it possible to control the interference occurring within the light beam. These interferences, which are at the origin of scab, can thus be reduced or even eliminated and thus avoid the appearance of scab, or "speckle" in the virtual image viewed by the user. Preferably, means for masking the zero order of the diffracted beam are arranged between the intermediate image plane and the semi-reflective element.
L'image virtuelle générée avec l'ordre zéro n'étant pas homogène, il est préférable de masquer l'ordre zéro et d'utiliser au moins un ordre supérieur pour générer l'image virtuelle. D'autre part, l'intensité lumineuse de l'ordre zéro peut être trop forte pour l'utilisateur, et peut même l'éblouir, voir générer des dommages pour les yeux de l'utilisateur. Avantageusement, les moyens de masquage sont configurés pour transmettre sélectivement à l'élément semi-réfléchissant au moins un des ordres supérieurs de diffraction. De manière avantageuse, les moyens de masquage incluent un alignement optique approprié entre les moyens de diffraction et l'élément semi-réfléchissant de sorte que l'ordre zéro n'est pas transmis à l'élément semi-réfléchissant. Since the virtual image generated with the zero order is not homogeneous, it is preferable to hide the zero order and to use at least one higher order to generate the virtual image. On the other hand, the luminous intensity of the zero order may be too strong for the user, and may even dazzle him, see generate damage to the eyes of the user. Advantageously, the masking means are configured to selectively transmit to the semi-reflecting element at least one of the higher orders of diffraction. Advantageously, the masking means includes an appropriate optical alignment between the diffractive means and the semi-reflecting element so that the zero order is not transmitted to the semi-reflective element.
Préférentiellement, l'ordre supérieur de diffraction transmis à l'élément semi-réfléchissant est l'ordre premier. Preferably, the higher order of diffraction transmitted to the semi-reflecting element is the first order.
Avantageusement, le dispositif comporte en outre un piège à lumière configuré pour capter le faisceau d'ordre zéro. De façon avantageuse, les moyens de diffraction comprennent en outre des moyens de diffusion. Advantageously, the device further comprises a light trap configured to capture the zero-order beam. Advantageously, the diffraction means further comprise diffusion means.
De façon préférentielle, les moyens de diffusion sont configurés pour que la diffusion d'un des ordres supérieurs du faisceau diffracté soit optimisée. Preferably, the diffusion means are configured so that the diffusion of one of the higher orders of the diffracted beam is optimized.
Préférentiellement, les moyens de diffusion sont configurés pour que la diffusion de l'ordre 1 du faisceau diffracté soit optimisée. Preferably, the diffusion means are configured so that the diffusion of the order 1 of the diffracted beam is optimized.
De façon avantageuse, les moyens de diffraction comportent un élément optique diffractant, traversé par le faisceau et présentant au moins deux niveaux d'épaisseurs différentes dans la direction de propagation du faisceau. Advantageously, the diffraction means comprise a diffractive optical element traversed by the beam and having at least two different levels of thickness in the direction of propagation of the beam.
Avantageusement, l'élément optique diffractant est utilisé en transmission. Préférentiellement, l'élément optique diffractant est binaire, et la différence de chemin optique entre les deux niveaux d'épaisseurs est sensiblement égale à la moitié de la longueur d'onde moyenne, la longueur d'onde moyenne étant la moyenne des longueurs d'onde des au moins une source laser. Advantageously, the diffractive optical element is used in transmission. Preferably, the diffractive optical element is binary, and the optical path difference between the two thickness levels is substantially equal to half of the average wavelength, the average wavelength being the average of the wavelengths. wave of at least one laser source.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels : Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below as an indication in relation to drawings in which:
la figure 1 est une vue schématique d'un mode de réalisation d'un dispositif d'affichage tête haute selon l'invention,  FIG. 1 is a schematic view of an embodiment of a head-up display device according to the invention,
la figure 2 est une vue schématique d'un mode de réalisation d'un générateur d'image utilisé dans le dispositif selon l'invention, la figure 3 est une vue schématique d'un mode de réalisation d'un dispositif d'émission utilisé dans le dispositif selon l'invention,  FIG. 2 is a schematic view of an embodiment of an image generator used in the device according to the invention, FIG. 3 is a schematic view of an embodiment of a transmission device used. in the device according to the invention,
- la figure 4 est une vue schématique d'un mode de réalisation des  FIG. 4 is a schematic view of an embodiment of the
moyens de formation d'une image utilisés dans le dispositif selon l'invention,  image forming means used in the device according to the invention,
la figure 5 est une vue schématique d'un autre mode de réalisation des moyens de formation d'une image utilisés dans le dispositif selon l'invention,  FIG. 5 is a schematic view of another embodiment of the image forming means used in the device according to the invention,
la figure 6 est une vue schématique de la diffusion générée par des moyens de diffusion,  FIG. 6 is a schematic view of the diffusion generated by diffusion means,
- la figure 7a est une vue schématique de la diffraction générée par des moyens de diffraction en transmission,  FIG. 7a is a schematic view of the diffraction generated by transmission diffraction means,
la figure 7b est une vue schématique de la diffraction générée par des moyens de diffraction en réflexion,  FIG. 7b is a schematic view of the diffraction generated by reflection diffraction means,
la figure 8 illustre la diffraction et la diffusion autour de l'ordre zéro d'un faisceau lumineux par un élément optique diffractant, dans lequel la diffusion est centrée autour de l'ordre 1, l'ordre 1 et l'ordre zéro étant bien séparés, FIG. 8 illustrates the diffraction and diffusion around the zero order of a light beam by a diffractive optical element, in which the diffusion is centered around the order 1, the order 1 and the order zero being well separated,
- la figure 9 est une figure analogue à la figure 8, dans laquelle l'ordre 1 et l'ordre zéro sont partiellement superposés.  FIG. 9 is a figure similar to FIG. 8, in which the order 1 and the zero order are partially superimposed.
Sur ces différentes figures, les mêmes références se rapportent aux mêmes éléments. In these different figures, the same references refer to the same elements.
En outre, il faut noter que les figures exposent l'invention de manière détaillée pour mettre en œuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.  In addition, it should be noted that the figures disclose the invention in detail to implement the invention, said figures can of course be used to better define the invention where appropriate.
La figure 1 est une vue schématique d'un dispositif d'affichage tête haute selon l'invention. Comme illustré à la figure 1, le dispositif comprend un générateur 100 d'images, suivi par des moyens de diffraction 140 placés dans un plan image intermédiaire 111. Le générateur 100 d'images produit un faisceau 30 qui, selon un mode de réalisation, se réfléchit ensuite sur un premier miroir de repliement 125. Le faisceau lumineux 30 passe ensuite au travers d'un élément optique semi-réfléchissant 126, qui peut être constituée par le pare- brise du véhicule ou par une lame semi-réfléchissante. La combinaison du miroir 125 et de la lame semi-réfléchissante 126 permet à l'utilisateur de voir une image virtuelle 130 de l'image générée par le générateur d'image 100 dans le plan image intermédiaire 111, comme si l'image se trouvait à une distance d'environ deux mètres de ses yeux et en superposition de la route. Cette image est perçue par l'utilisateur dans une zone du véhicule qui se nomme la boîte à œil 170. La boîte à œil a une dimension d'environ 5X15 cm2, et se trouve autour des yeux du conducteur lorsqu'il conduit. Figure 1 is a schematic view of a head-up display device according to the invention. As illustrated in FIG. 1, the device comprises an image generator 100, followed by diffraction means 140 placed in an intermediate image plane 111. The image generator 100 produces a beam 30 which, according to one embodiment, is then reflected on a first folding mirror 125. The light beam 30 then passes through a semi-reflective optical element 126, which may be constituted by the windshield of the vehicle or a semi-reflective blade. The combination of the mirror 125 and the semi-reflective plate 126 allows the user to see a virtual image 130 of the image generated by the image generator 100 in the intermediate image plane 111, as if the image were at a distance of about two meters from his eyes and superimposed the road. This image is perceived by the user in an area of the vehicle that is called the eye box 170. The eye box has a dimension of about 5X15 cm 2 , and is around the eyes of the driver when driving.
La lame semi-réfléchissante 126 présente un pouvoir de réflexion au moins égal à 20%, ce qui permet à l'utilisateur de voir au travers de la lame la route empruntée par le véhicule, tout en bénéficiant d'un contraste élevé permettant de voir l'image virtuelle 130. The semi-reflecting blade 126 has a reflectivity of at least 20%, which allows the user to see through the blade the road taken by the vehicle, while enjoying a high contrast to see the virtual image 130.
La figure 2 illustre le générateur d'image 100. Ce dernier comprend un dispositif d'émission 101 d'un faisceau lumineux 10 et des moyens 102 de formation d'une image dans le plan 111, à partir dudit faisceau lumineux 10. FIG. 2 illustrates the image generator 100. The latter comprises a transmission device 101 of a light beam 10 and means 102 for forming an image in the plane 111, from said light beam 10.
La figure 3 est une vue schématique du dispositif d'émission 101. Ledit dispositif comprend une ou plusieurs sources 4, 5, 6, émettant chacune un faisceau 7, 8, 9 du type laser. Il s'agit, par exemple, de sources laser, typiquement des diodes laser, chaque source laser émettant un faisceau monochromatique, de longueur d'onde λι, λ2, λ3. FIG. 3 is a schematic view of the transmission device 101. Said device comprises one or more sources 4, 5, 6, each emitting a beam 7, 8, 9 of the laser type. These are, for example, laser sources, typically laser diodes, each laser source emitting a monochromatic beam, of wavelength λι, λ 2 , λ 3 .
Ledit dispositif comprend ici trois sources 4, 5, 6 , le dispositif étant configuré pour former le faisceau lumineux 10 à l'aide d'une mise en commun par combinaison des faisceaux 7, 8, 9 individuellement émis par chacune des sources 4, 5, 6. Plus précisément, il pourra s'agir de sources émettant un faisceau d'une couleur différente d'une source à l'autre. Les couleurs sont, par exemple, un rouge, un vert ou un bleu (RVB). Said device here comprises three sources 4, 5, 6, the device being configured to form the light beam 10 by means of pooling by combining the beams 7, 8, 9 individually emitted by each of the sources 4, 5 , 6. More precisely, it may be sources emitting a beam of a different color from one source to another. Colors are, for example, red, green, or blue (RGB).
Les faisceaux 7, 8, 9 émis par chacune des sources sont orientés, par exemple, parallèlement les uns aux autres et réfléchis dans une même direction pour former par combinaison le faisceau lumineux commun 10. Le dispositif 101 comprend ici des éléments optiques semi-transparents, sur une plage de longueur d'onde, tels que des miroirs dichroïques ou lames de combinaison 11, interceptant les faisceaux 7, 8, 9 émis par chacune des sources et les combinant selon la direction du faisceau 10. The beams 7, 8, 9 emitted by each of the sources are oriented, for example, parallel to each other and reflected in the same direction to form by combination the common light beam 10. The device 101 here comprises semi-transparent optical elements , over a wavelength range, such as dichroic mirrors or combination blades 11, intercepting the beams 7, 8, 9 emitted by each of the sources and combining them according to the direction of the beam 10.
De façon plus générale, le dispositif 101 est configuré pour former le faisceau lumineux 10 à partir du ou des faisceaux laser 7, 8, 9, quel que soit le nombre de sources 4, 5, 6 en jeu. En cas de source unique, le faisceau lumineux 10 est composé du faisceau laser émis par la seule source employée et l'image obtenue sera alors monochrome. En cas de pluralité de sources, typiquement les trois sources 4, 5, 6 évoquées plus haut, le faisceau commun 10 qui forme alors le faisceau lumineux permettra l'établissement d'une image selon un spectre de couleur dont la résolution correspondra à la finesse de pilotage de l'alimentation des sources 4, 5, 6. More generally, the device 101 is configured to form the light beam 10 from the laser beam or beams 7, 8, 9, whatever the number of sources 4, 5, 6 involved. In case of a single source, the light beam 10 is composed of the laser beam emitted by the only source used and the resulting image will then be monochrome. In the case of a plurality of sources, typically the three sources 4, 5, 6 mentioned above, the common beam 10 which then forms the light beam will allow the establishment of an image according to a color spectrum whose resolution will correspond to the fineness controlling the supply of sources 4, 5, 6.
Comme illustré à la figure 4, les moyens 102 de formation d'image comprennent, par exemple, un générateur de balayage 110 dont la fonction est de déplacer horizontalement et verticalement le faisceau lumineux 10 en vue de réaliser un balayage selon une fréquence, par exemple égale à 60 Hz. As illustrated in FIG. 4, the image-forming means 102 comprise, for example, a scanning generator 110 whose function is to move the light beam 10 horizontally and vertically in order to carry out a scanning according to a frequency, for example equal to 60 Hz.
Comme représenté sur la figure 5, le générateur de balayage 110 comprend, par exemple, un miroir à balayage 115 à système micro-électromécanique (ci-après appelé miroir MEMS) sur lequel le faisceau lumineux 10 se réfléchit en un faisceau de balayage 103. Un tel miroir 115 MEMS présente par exemple un diamètre de 1 mm2. Le miroir 115 MEMS est apte à tourner autour de deux axes de rotation, par exemple orthogonaux, pour réaliser un balayage, par exemple à la fréquence de rafraîchissement de 60 Hz, dans le plan image intermédiaire 111 selon une figure composée de lignes successives, dans le but de réaliser une image par exemple rectangulaire Alternativement, le miroir 115 MEMS peut être remplacé par deux miroirs plans et déplaçables, dont les mouvements sont associés. L'un de ces miroirs peut être dédié à un balayage selon un axe horizontal alors que l'autre miroir peut être dédié à un balayage selon un axe vertical. As shown in FIG. 5, the scanning generator 110 comprises, for example, a scanning mirror 115 with a microelectromechanical system (hereinafter referred to as the MEMS mirror) on which the light beam 10 is reflected in a scanning beam 103. Such a mirror 115 MEMS for example has a diameter of 1 mm 2 . The mirror 115 MEMS is able to rotate about two axes of rotation, for example orthogonal, to perform a scan, for example at the refresh rate of 60 Hz, in the intermediate image plane 111 according to a figure composed of successive lines, in the aim of making an image, for example rectangular, alternatively, the mirror 115 MEMS can be replaced by two plane and movable mirrors, whose movements are associated. One of these mirrors can be dedicated to a scan along a horizontal axis while the other mirror can be dedicated to a scan along a vertical axis.
Le générateur d'image 102 pourra comprendre en outre différents miroirs 104, 106, plans ou non, disposés sur la trajectoire du faisceau de balayage 103. Selon la présente invention des moyens de diffraction sont disposés dans le plan image intermédiaire 111, afin de supprimer les tavelures générées par la diffusion d'une source laser cohérente sur la face rugueuse du diffuseur 140 mentionné ci-dessus. Cependant, les moyens de diffusion ne doivent pas être remplacés par les moyens de diffraction, mais la combinaison des deux est nécessaire pour générer une image dont la pupille est suffisamment grande (moyens de diffusion), et sans tavelures (moyens de diffraction), à l'utilisateur. The image generator 102 may further comprise different mirrors 104, 106, planar or otherwise, arranged on the path of the scanning beam 103. According to the present invention diffractive means are arranged in the intermediate image plane 111, in order to suppress the scabs generated by the diffusion of a coherent laser source on the rough face of the diffuser 140 mentioned above. However, the diffusion means must not be replaced by the diffraction means, but the combination of the two is necessary to generate an image whose pupil is sufficiently large (diffusion means), and without scab (diffraction means), to the user.
En effet, sans les moyens de diffusion, la surface indicatrice d'émission n'existe pas car les faisceaux incidents dans le plan image intermédiaire 111 sont collimatés. L'image ne peut être vue que dans une seule direction correspondant à la direction du faisceau laser incident. L'ajout de moyens de diffusion sert à générer une surface indicatrice d'émission, permettant ainsi d'augmenter la taille de la pupille et en conséquence à améliorer le confort de l'utilisateur. L'introduction de moyens de diffusion 150 dans le plan image intermédiaire 111 est illustrée sur la figure 6. Les moyens de diffusion 150 peuvent être dans un mode de réalisation constitués par un écran diffuseur. Cependant, nous verrons que les moyens de diffusion 150 et les moyens de diffraction peuvent être combinés dans un même élément optique. Avantageusement, les moyens de diffusion 150 reçoivent le faisceau de balayage 103 et sont agencés pour provoquer une dispersion de ce faisceau de balayage 103 selon un secteur angulaire, par exemple, égal à 30° autour de la direction de propagation du faisceau de balayage 103. Les moyens de diffusion sont du type à pupille de sortie élargie, en anglais « Exit Pupil Expander ». La dispersion du faisceau lumineux 103 peut être illustrée au moyen d'un cône 155. Indeed, without the diffusion means, the emission indicator surface does not exist because the incident beams in the intermediate image plane 111 are collimated. The image can only be seen in one direction corresponding to the direction of the incident laser beam. The addition of diffusion means is used to generate an emission indicator surface, thus making it possible to increase the size of the pupil and consequently to improve the comfort of the user. The introduction of diffusion means 150 in the intermediate image plane 111 is illustrated in FIG. 6. The diffusion means 150 may be in one embodiment constituted by a diffusing screen. However, we will see that the diffusion means 150 and the diffraction means can be combined in the same optical element. Advantageously, the diffusion means 150 receive the scanning beam 103 and are arranged to cause a dispersion of this scanning beam 103 according to an angular sector, for example, equal to 30 ° around the direction of propagation of the scanning beam 103. The diffusion means are of the type with enlarged exit pupil, in English "Exit Pupil Expander". The dispersion of the light beam 103 can be illustrated by means of a cone 155.
Dans le mode de réalisation où les moyens de diffusion comprennent un écran diffuseur, ce dernier peut être un écran de projection transparent pour une projection par transparence. Cet écran comprend en particulier sur une de ses faces, des microstructures périodiques, dont la géométrie est complexe. Il pourra alternativement être translucide. Il est réalisé, par exemple, en verre, notamment dépoli, ou en polycarbonate. Une face de l'écran diffuseur est rugueuse, en ce sens qu'elle comporte des aspérités qui provoquent la dispersion du faisceau de balayage 103. La face rugueuse correspond à celle par laquelle le faisceau sort, c'est-à-dire la face située dans le plan image intermédiaire 111 sur laquelle l'image se forme. In the embodiment where the diffusion means comprise a diffuser screen, the latter may be a transparent projection screen for a projection by transparency. This screen comprises in particular on one of its faces, periodic microstructures, whose geometry is complex. He will be able to alternatively be translucent. It is made, for example, of glass, especially frosted, or polycarbonate. One face of the diffuser screen is rough, in that it has asperities which cause the dispersion of the scanning beam 103. The rough face corresponds to that through which the beam leaves, that is to say the face located in the intermediate image plane 111 on which the image is formed.
Selon une autre variante non illustrée, lesdits moyens de formation d'image ne comportent pas de générateur de balayage tel que précédemment décrit, mais une matrice de micro miroirs (aussi appelée Digital micro mirrors system). Dans cette configuration l'image est formée au niveau de la matrice à micro miroirs puis projetée sur dans le plan image intermédiaire 111. De manière générale, on place une optique de projection entre la matrice et le plan image intermédiaire. Chaque micro miroir correspond à un pixel de l'image. Dans ce mode de réalisation, l'image n'est pas formée dans le plan image intermédiaire pour la première fois, mais reçoit une image préalablement formée sur la matrice à micro miroirs. Le faisceau lumineux est dans ce mode de réalisation un faisceau fixe. Dans une variante de réalisation, on peut utiliser un diffuseur de type micro-lentille (« micro-lens array » en anglais, ou MLA) est utilisé, l'image est parasitée par un motif structuré répétitif, nommé effet moiré. Pour des raisons de tolérance de fabrication, d'alignement des lasers, etc., l'effet moiré et l'apparition de tavelures peuvent également apparaître simultanément. According to another variant not illustrated, said image forming means do not comprise a scanning generator as described above, but a matrix of micro mirrors (also called Digital micro mirrors system). In this configuration, the image is formed at the level of the mirror array and then projected onto the intermediate image plane 111. In general, a projection optics is placed between the matrix and the intermediate image plane. Each micro mirror corresponds to a pixel of the image. In this embodiment, the image is not formed in the intermediate image plane for the first time, but receives an image previously formed on the mirror array. In this embodiment, the light beam is a fixed beam. In an alternative embodiment, it is possible to use a micro-lens type diffuser ("micro-lens array" in English, or MLA) is used, the image is parasitized by a repetitive structured pattern, called moiré effect. For reasons of manufacturing tolerance, alignment of lasers, etc., the moiré effect and the appearance of scab may also appear simultaneously.
Selon l'invention, pour réduire, voire éliminer les tavelures et/ou l'effet moiré, on utilise des moyens de diffraction 140. Avantageusement, le même composant optique est utilisé pour les moyens de diffraction 140 et les moyens de diffusion 150. Cependant, les moyens de diffraction 140 et les moyens de diffusion 150 peuvent être fournis par deux éléments optiques distincts. Dans un mode de réalisation de la présente invention, les moyens de diffraction 140 comprennent un élément optique diffractant. La fonction de cet élément optique est de décomposer le faisceau entrant en une pluralité de faisceaux de sortie se propageant selon différentes directions, ces différents faisceaux de sortie correspondant à différents ordres de diffraction, dont l'ordre zéro et des ordres supérieurs (±1, ±2, ±3, etc.). La direction des faisceaux sortant dépend de la structure responsable de la diffraction qui est présente sur la face de l'élément optique diffractant 140, et de la longueur d'onde de la lumière incidente. Généralement, la face de l'élément optique diffractant comprend une structure périodique, micro-structurée, dont le pas est de l'ordre de la longueur d'onde de la lumière. Pour une seule dimension, il s'agit d'un réseau de diffraction, dont le pas dépend de la longueur d'onde de la lumière. Préférentiellement, ces structures peuvent comporter deux niveaux d'épaisseur, dans la direction de propagation du faisceau lumineux : dans ce cas il s'agit d'un élément optique diffractant binaire, également appelé masque à décalage de phase dans la littérature. Certaines régions ont une épaisseur plus faible, et d'autres régions ont une épaisseur plus élevée, induisant ainsi une différence de chemin optique et par suite un décalage de phase entre différentes portions du faisceau diffracté. Préférentiellement, pour que les variations d'épaisseur du masque génèrent un déphasage dans le faisceau de π, la différence de chemin optique entre deux régions, est de λ/2, où λ correspond à la longueur d'onde de la lumière incidente. L'élément optique diffractant est donc généralement optimisé pour une seule longueur d'onde. Si le dispositif comprend trois sources lasers, l'élément optique diffractant sera optimal pour une des trois sources. De préférence, le masque de phase est conçu pour la longueur d'onde moyenne des différentes sources laser, la longueur d'onde moyenne étant la moyenne des longueurs d'onde des sources laser. Dans un autre mode de réalisation, l'élément optique diffractant 140 peut comprendre une pluralité d'épaisseurs différentes dans la direction de propagation du faisceau. Les éléments optiques diffractant multi-niveaux sont généralement conçus pour rendre le faisceau diffracté dissymétrique, par exemple, pour faire coïncider l'ordre -1 avec l'ordre 1. Préférentiellement, l'élément optique diffractant multi-niveau est conçu pour la longueur d'onde moyenne des différentes sources laser. According to the invention, in order to reduce or eliminate scabs and / or the moiré effect, diffraction means 140 are used. Advantageously, the same optical component is used for the diffraction means 140 and the diffusion means 150. the diffraction means 140 and the diffusion means 150 may be provided by two distinct optical elements. In one embodiment of the present invention, the diffraction means 140 comprise a diffractive optical element. The function of this optical element is to decompose the incoming beam into a plurality of output beams propagating in different directions, these different output beams corresponding to different diffraction orders, whose zero order and higher orders (± 1, ± 2, ± 3, etc.). The direction of the outgoing beams depends on the structure responsible for the diffraction that is present on the face of the diffractive optical element 140, and the wavelength of the incident light. Generally, the face of the diffractive optical element comprises a periodic structure, micro-structured, the pitch of which is of the order of the wavelength of the light. For a single dimension, it is a diffraction grating, the pitch of which depends on the wavelength of the light. Preferably, these structures may comprise two thickness levels, in the propagation direction of the light beam: in this case it is a binary diffractive optical element, also called phase shift mask in the literature. Some regions have a smaller thickness, and other regions have a higher thickness, thus inducing an optical path difference and hence a phase shift between different portions of the diffracted beam. Preferably, for the thickness variations of the mask to generate a phase shift in the π beam, the difference in optical path between two regions is λ / 2, where λ corresponds to the wavelength of the incident light. The diffractive optical element is therefore generally optimized for a single wavelength. If the device comprises three laser sources, the diffractive optical element will be optimal for one of the three sources. Preferably, the phase mask is designed for the average wavelength of the different laser sources, the average wavelength being the average of the wavelengths of the laser sources. In another embodiment, the diffractive optical element 140 may comprise a plurality of different thicknesses in the propagation direction of the beam. The multi-level diffracting optical elements are generally designed to make the diffracted beam asymmetrical, for example, to make the order -1 coincide with the order 1. Preferably, the multi-level diffractive optical element is designed for the length of d average wave of different laser sources.
La distribution du faisceau lumineux sortant de l'élément optique diffractant 140 dépend de la structure de la face de l'élément optique diffractant. Cette structure peut être calculée analytiquement, par la théorie des réseaux de diffraction ou peut également être simulée, etc. The distribution of the light beam emerging from the diffractive optical element 140 depends on the structure of the face of the diffractive optical element. This structure can be computed analytically, by the theory of diffraction gratings or can also be simulated, etc.
Généralement, un élément optique diffractant 140 génère également de la diffusion. Par exemple, dans le cas d'un élément optique diffractant binaire, les discontinuités dans les variations d'épaisseur génèrent de la diffusion. L'intensité de la diffusion dépend également de la structure de la face de l'élément optique diffractant et peut être déterminée à l'avance au moyen de simulations, de calculs, etc. Generally, a diffractive optical element 140 also generates scattering. For example, in the case of a binary diffractive optical element, discontinuities in thickness variations generate scattering. The intensity of diffusion also depends on the structure of the diffractive optical element face and can be determined in advance by means of simulations, calculations, etc.
Les figures 7a et 7b illustrent la diffraction d'un faisceau lumineux monochromatique 70, tel qu'une source lumineuse laser, sur un élément optique diffractant 140. Sur la figure 7a, l'élément optique diffractant 140 transmet le faisceau lumineux 70. Sur la figure 7b, l'élément optique diffractant réfléchit le faisceau lumineux 140. Après transmission et réflexion respectivement, l'élément optique diffractant 140 décompose le faisceau lumineux 70 en une pluralité de faisceaux correspondant à différents ordres de diffraction dans lequel les ordres zéro, 1, 2, -1, -2 sont représentés par les axes des faisceaux 700, 701, 702, 711, 712 respectivement. Les ordres de diffraction sont distribués de manière discrète et la séparation angulaire entre les ordres dépend des caractéristiques physiques de l'élément optique diffractant. En transmission, l'ordre zéro 700 est non dévié par le réseau et en réflexion il est réfléchi selon les lois de l'optique géométrique. Les ordres supérieurs, par exemple les ordres 1 [701), 2 (702), 3 (non représenté), etc. sont diffractés selon des angles de diffraction dépendant de la structure sur la face de l'élément optique diffractant. Les ordres -1 (711), -2 (712), -3 (non représenté), etc. sont les symétriques des ordres 1, 2, 3, etc. par rapport à l'ordre zéro 700, comme illustré sur le schéma de la figure 7. FIGS. 7a and 7b illustrate the diffraction of a monochromatic light beam 70, such as a laser light source, on a diffractive optical element 140. In FIG. 7a, the diffractive optical element 140 transmits the light beam 70. FIG. 7b, the diffractive optical element reflects the light beam 140. After transmission and reflection respectively, the diffractive optical element 140 breaks down the light beam 70 into a plurality of beams corresponding to different diffraction orders in which the orders zero, 1, 2, -1, -2 are represented by the axes of the beams 700, 701, 702, 711, 712 respectively. Diffraction orders are discretely distributed and the angular separation between orders depends on the physical characteristics of the diffractive optical element. In transmission, the zero order 700 is undeviated by the network and in reflection it is reflected according to the laws of geometrical optics. Higher orders, for example orders 1 [701), 2 (702), 3 (not shown), etc. are diffracted according to structure-dependent diffraction angles on the face of the diffractive optical element. The commands -1 (711), -2 (712), -3 (not shown), etc. are the symmetries of orders 1, 2, 3, etc. compared to the zero order 700, as shown in the diagram of FIG. 7.
Généralement, l'ordre zéro, qui est l'ordre dont l'intensité est dominante par rapport aux ordres supérieurs est choisi pour générer l'image virtuelle 130. Generally, the zero order, which is the order whose intensity is dominant relative to the higher orders, is chosen to generate the virtual image 130.
Cependant, l'utilisation de l'ordre zéro pour générer l'image virtuelle finale 130 du dispositif selon l'invention pose deux problèmes majeurs. La distribution de l'intensité lumineuse dans l'ordre zéro n'est pas homogène : elle est concentrée au centre de l'image et réduite sur les bords. Cette inhomogénéité de l'éclairement dans le champ est inconfortable pour l'utilisateur et provoque une image qui lui semble plus lumineuse le long de la direction du rayon optique principal et moins lumineuse le long des autres directions. D'autre part, l'intensité lumineuse de l'ordre zéro est forte. Cette forte intensité lumineuse peut également éblouir l'utilisateur, voire générer des dommages pour les yeux de l'utilisateur, en particulier lorsque la source lumineuse comprend un laser. However, the use of the zero order to generate the final virtual image 130 of the device according to the invention poses two major problems. The distribution of light intensity in zero order is not homogeneous: it is concentrated at the center of the image and reduced at the edges. This inhomogeneity of illumination in the field is uncomfortable for the user and causes an image that appears brighter along the direction of the main optical ray and less luminous along the other directions. On the other hand, the luminous intensity of the zero order is strong. This high light intensity can also dazzle the user, even generate damage to the eyes of the user, especially when the light source comprises a laser.
Il est possible de concevoir une structure d'élément optique diffractant réduisant l'intensité de l'ordre zéro, cependant ceci ne sera valable que pour une seule longueur d'onde. Etant donné que dans le mode de réalisation préféré de l'invention, le système comprend trois sources laser, ceci n'est pas une solution. It is possible to design a diffracting optical element structure reducing the intensity of the zero order, however this will only be valid for a single wavelength. Since in the preferred embodiment of the invention, the system comprises three laser sources, this is not a solution.
Préférentiellement, afin d'éliminer l'ordre zéro, et ce pour chaque source laser, on dispose des moyens de masquage de l'ordre zéro du faisceau diffracté disposés entre le plan image intermédiaire 111 et l'élément semi-réfléchissant 126. Preferably, in order to eliminate the zero order, and this for each laser source, means are available for masking the zero order of the diffracted beam disposed between the intermediate image plane 111 and the semi-reflective element 126.
Dans un mode de réalisation, les moyens de masquage sont réalisés en adaptant l'alignement optique entre les moyens de diffraction et l'élément semi- réfléchissant, par exemple en transmettant à l'élément semi-réfléchissant 126 au moins un faisceau diffracté d'ordre supérieur du faisceau balayé 103. Pour ce faire, les éléments optiques placés entre l'élément optique diffractant et l'élément semi-réfléchissant 126 sont orientés de telle sorte que seuls un ou plusieurs faisceaux d'ordre supérieur soient transmis à l'élément semi réfléchissant 126, l'ordre zéro n'étant pas transmis. In one embodiment, the masking means are made by adapting the optical alignment between the diffraction means and the semi-reflective element, for example by transmitting to the semi-reflecting element 126 at least one diffracted beam of higher order of the scanned beam 103. To do this, the optical elements placed between the diffractive optical element and the semi-reflective element 126 are oriented such that only one or more higher order beams are transmitted to the element semi-reflective 126, the zero order not being transmitted.
Revenons à la figure 1 qui illustre la propagation du faisceau lumineux 30 après diffraction par les moyens de diffraction 140, ou plus particulièrement par l'élément optique diffractant 140. Returning to FIG. 1, which illustrates the propagation of the light beam 30 after diffraction by the diffraction means 140, or more particularly by the diffractive optical element 140.
Le faisceau lumineux 30 correspond à l'ordre 1 de diffraction du faisceau lumineux et le faisceau lumineux 40 correspond à l'ordre 0 du faisceau de diffraction. Le miroir de repliement 125 est positionné de telle sorte qu'il reçoive l'ordre 1 du faisceau diffracté. The light beam 30 corresponds to the order 1 of diffraction of the light beam and the light beam 40 corresponds to the order 0 of the diffraction beam. The folding mirror 125 is positioned such that it receives the order 1 of the diffracted beam.
Dans un mode de réalisation selon l'invention, l'ordre 1 est choisi pour être transmis aux éléments optiques suivants et former l'image 130 du dispositif selon l'invention. In one embodiment of the invention, the order 1 is chosen to be transmitted to the following optical elements and form the image 130 of the device according to the invention.
Généralement la diffusion est maximale pour l'ordre zéro, et se fait le long de l'axe principal de l'élément optique diffractant, l'axe principal étant généralement un axe perpendiculaire à l'élément optique diffractant. Il est possible d'optimiser la diffusion sur un des ordres de diffraction supérieurs, c'est-à-dire le long d'un axe distinct de l'axe principal , en utilisant un élément optique diffractant par exemple. Les éléments optique diffractant multi-niveaux comprennent au moins deux épaisseurs différentes, induisant une pluralité de déphasages de l'onde compris entre 0 et 2π, voire 0 et 4π (ou n'importe quel autre multiple de 2π ). Le terme optimisation concerne dans un premier temps une optimisation spatiale de la diffusion. En particulier, la fonction de diffusion inscrite sur l'élément optique diffractant est conçue pour générer une pupille d'une certaine dimension prédéterminée. C'est le cône de diffusion qui va déterminer cette dimension de pupille. Le terme optimisation couvre également une optimisation en intensité lumineuse. L'intensité lumineuse dépend d'une part de la dimension de la pupille (ou du cône de diffusion) mais il est également possible de superposer des ordres supérieurs pour augmenter l'intensité lumineuse. En particulier, l'intensité lumineuse va être déterminée par l'intensité lumineuse de l'image virtuelle. Le schéma de la figure 8 illustre l'effet généré par une optimisation de la diffusion autour de l'ordre 1. La lumière incidente 70 et la direction de l'ordre zéro 700 coïncident. L'élément optique diffractant 140 est placé dans le plan image intermédiaire 111. La taille de la pupille dans le plan 111 est identique pour l'ordre zéro 700 et l'ordre 1 701. Dans un plan 620 de sortie, la taille de la pupille de sortie est supérieure pour l'ordre 1 801 que pour l'ordre zéro 800 grâce à la diffusion 811 générée par l'élément optique diffractant 140 autour de l'ordre 1. Ainsi, l'alignement optique du système est adapté, les optiques seront placées en aval de la pupille de sortie le long de l'axe 630, perpendiculaire à l'élément optique diffractant 140. L'ordre zéro 700 est ainsi masqué de l'image finale, et ce pour chaque longueur d'onde. Différents paramètres peuvent influencer le système : l'angle entre l'ordre zéro et l'ordre 1, l'angle du cône de diffusion, etc. Préférentiellement, pour éviter des réflexions parasites de l'ordre zéro, un piège à lumière 650 est inséré dans le dispositif pour absorber la lumière de l'ordre zéro. Le piège à lumière peut également absorber la lumière de certains ordres supérieurs afin de limiter l'existence de lumière parasite. Generally the diffusion is maximum for the zero order, and is along the main axis of the diffractive optical element, the main axis being generally an axis perpendicular to the diffractive optical element. It is possible to optimize the diffusion on one of the higher diffraction orders, that is to say along an axis distinct from the main axis, by using an element diffracting optics for example. The multi-level diffracting optical elements comprise at least two different thicknesses, inducing a plurality of phase shifts of the wave between 0 and 2π, or even 0 and 4π (or any other multiple of 2π). The term optimization initially concerns a spatial optimization of the diffusion. In particular, the diffusion function inscribed on the diffractive optical element is designed to generate a pupil of a certain predetermined size. It is the diffusion cone that will determine this pupil dimension. The term optimization also covers optimization in light intensity. The luminous intensity depends partly on the size of the pupil (or the diffusion cone) but it is also possible to superpose higher orders to increase the luminous intensity. In particular, the light intensity will be determined by the light intensity of the virtual image. The diagram of FIG. 8 illustrates the effect generated by an optimization of the diffusion around the order 1. The incident light 70 and the direction of the zero order 700 coincide. The diffractive optical element 140 is placed in the intermediate image plane 111. The size of the pupil in the plane 111 is identical for the zero order 700 and the order 701. In an output plane 620, the size of the The exit pupil is greater for the order 1 801 than for the zero order 800 thanks to the diffusion 811 generated by the diffractive optical element 140 around the order 1. Thus, the optical alignment of the system is adapted, the Optics will be placed downstream of the exit pupil along the axis 630, perpendicular to the diffractive optical element 140. The zero order 700 is thus masked from the final image, and this for each wavelength. Different parameters can influence the system: the angle between the zero order and the order 1, the angle of the diffusion cone, etc. Preferably, to avoid spurious reflections of the zero order, a light trap 650 is inserted into the device to absorb the zero order light. The light trap can also absorb light from certain higher orders to limit the existence of stray light.
Comme illustré sur la figure 9, le faisceau lumineux correspondant à l'ordre zéro 700 peut se superposer au moins partiellement au faisceau lumineux correspondant à l'ordre 1 701 diffusé, ou le cône de diffusion 911 peut comprendre au moins une partie du faisceau lumineux correspondant à l'ordre zéro 700. Dans le plan de sortie 620, les pupilles de sortie de l'ordre 1 901 et de l'ordre zéro 900 se superposent sur la surface 902. La partie 902 de la pupille de sortie de l'ordre 1 est alors supprimée. Seule la lumière passant au travers de la pupille de sortie 901 (« Exit Pupil » en anglais) est exploitée par le système optique placé en aval du plan 620 pour former l'image virtuelle 130. La lumière provenant de l'ordre zéro 900 et de l'ordre 1 902, confondu avec l'ordre 0, ne sont pas exploitées (coupée ou exploitée pour d'autres besoins). Préférentiellement, pour éviter des réflexions parasites de l'ordre zéro, un piège à lumière 650 est inséré dans le dispositif pour absorber la lumière de l'ordre zéro. As illustrated in FIG. 9, the light beam corresponding to the zero order 700 may be superimposed at least partially on the light beam corresponding to the scattered order 1701, or the diffusion cone 911 may comprise at least a portion of the light beam corresponding to the zero order 700. In the output plane 620, the exit pupils of the order 1 901 and the zero order 900 are superimposed on the surface 902. The portion 902 of the exit pupil of the order 1 is deleted. Only the light passing through the exit pupil 901 ("Exit Pupil" in English) is exploited by the optical system placed downstream of the plane 620 to form the virtual image 130. The light coming from the zero order 900 and of the order 1 902, confused with the order 0, are not exploited (cut or exploited for other needs). Preferably, to avoid spurious reflections of the zero order, a light trap 650 is inserted into the device to absorb the zero order light.
Préférentiellement, l'énergie de l'ordre zéro peut être surveillée par un détecteur. Toute altération des moyens de diffraction entraînera un changement de puissance de l'ordre zéro et ce changement peut donc être utilisé comme une vérification de l'intégrité du système pour ce qui est de la sécurité liée à l'utilisation d'un laser. L'effet de diffusion permet d'éclairer de manière homogène l'entièreté de la pupille du système optique et d'agrandir la taille de la pupille là où elle sera perçue par l'utilisateur, c'est-à-dire dans la boite à œil. Comme illustré sur la figure 1, l'ordre zéro est ignoré par le système. Preferably, the zero order energy can be monitored by a detector. Any alteration of the diffraction means will result in a zero order power change and this change may therefore be used as a verification of the integrity of the system with respect to the safety associated with the use of a laser. The diffusion effect makes it possible to uniformly illuminate the entire pupil of the optical system and to enlarge the size of the pupil where it will be perceived by the user, that is to say in the box to eye. As shown in Figure 1, the zero order is ignored by the system.

Claims

REVENDICATIONS
1. Dispositif d'affichage tête haute, notamment pour véhicule automobile, comprenant Head-up display device, especially for a motor vehicle, comprising
- au moins une source laser (4, 5, 6) produisant un faisceau lumineux (10),  at least one laser source (4, 5, 6) producing a light beam (10),
des moyens de formation d'une image dans un plan image intermédiaire (111),  means for forming an image in an intermediate image plane (111),
un élément semi-réfléchissant (126) formant une image virtuelle (130) de ladite image dans le plan intermédiaire (111),  a semi-reflective element (126) forming a virtual image (130) of said image in the intermediate plane (111),
caractérisé en ce que le dispositif d'affichage tête haute comporte en outre :  characterized in that the head-up display device further comprises:
des moyens de diffraction (140) placés dans le plan image intermédiaire (111) et diffractant le faisceau (10) en une pluralité de faisceaux de diffraction d'ordre zéro (40) et d'ordre supérieur (30).  diffractive means (140) placed in the intermediate image plane (111) and diffracting the beam (10) into a plurality of zero order (40) and higher order diffraction beams (30).
2. Dispositif d'affichage tête haute selon la revendication 1, comprenant en outre des moyens de masquage de l'ordre zéro (40) du faisceau diffracté, disposés entre le plan image intermédiaire (111) et l'élément semi-réfléchissant (126). The head-up display device according to claim 1, further comprising means for masking the zero-order (40) of the diffracted beam disposed between the intermediate image plane (111) and the semi-reflective element (126). ).
3. Dispositif d'affichage tête haute selon la revendication 2, dans lequel les moyens de masquage sont configurés pour transmettre sélectivement à l'élément semi-réfléchissant (126) au moins un des ordres supérieurs de diffraction. The head-up display device according to claim 2, wherein the masking means is configured to selectively transmit to the semireflective element (126) at least one of the higher diffraction orders.
4. Dispositif d'affichage tête haute selon l'une des revendications 2 ou 3, dans lequel les moyens de masquage incluent un alignement optique approprié entre les moyens de diffraction (140) et l'élément semi-réfléchissant (126) de sorte que l'ordre zéro n'est pas transmis à l'élément semi-réfléchissant (126). The head-up display device according to one of claims 2 or 3, wherein the masking means includes an appropriate optical alignment between the diffractive means (140) and the semi-reflective element (126) so that the zero order is not transmitted to the semi-reflective element (126).
5. Dispositif d'affichage tête haute selon les revendications 3 ou 4, dans lequel l'ordre supérieur de diffraction transmis à l'élément semi-réfléchissant [126) est l'ordre premier. A head-up display device according to claims 3 or 4, wherein the higher order of diffraction transmitted to the semi-reflective element [126] is the first order.
6. Dispositif d'affichage tête haute selon l'une quelconque des revendications 3 à 5, selon lequel le dispositif comporte en outre un piège à lumière configuré pour capter le faisceau d'ordre zéro (40). The head-up display device according to any one of claims 3 to 5, wherein the device further comprises a light trap configured to capture the zero-order beam (40).
7. Dispositif d'affichage tête haute selon l'une quelconque des revendications 3 à 6, selon lequel le dispositif comporte en outre un piège à lumière configuré pour capter les faisceaux d'ordre supérieur à l'exception de l'ordre premier. 7. A head-up display device according to any one of claims 3 to 6, wherein the device further comprises a light trap configured to capture higher order beams except the first order.
8. Dispositif d'affichage tête haute selon l'une quelconque des revendications précédentes, dans lequel les moyens de diffraction (140) comprennent en outre des moyens de diffusion (150). 8. A head-up display device according to any one of the preceding claims, wherein the diffraction means (140) further comprises diffusion means (150).
9. Dispositif d'affichage tête haute selon la revendication précédente, dans lequel les moyens de diffusion (150) sont configurés de sorte que la diffusion d'un des ordres supérieurs du faisceau diffracté est optimisée. 9. A head-up display device according to the preceding claim, wherein the diffusion means (150) are configured so that the diffusion of one of the higher orders of the diffracted beam is optimized.
10. Dispositif d'affichage tête haute selon la revendication 5, dans lequel les moyens de diffusion (150) sont configurés de sorte que la diffusion de l'ordre 1 du faisceau diffracté est optimisée. The head-up display device according to claim 5, wherein the diffusion means (150) is configured so that the diffusion of the order 1 of the diffracted beam is optimized.
11. Dispositif d'affichage tête haute selon l'une quelconque des revendications précédentes, dans lequel les moyens de diffraction (140) comportent un élément optique diffractant, traversé par le faisceau (10) et présentant au moins deux niveaux d'épaisseurs différentes dans la direction de propagation du faisceau (10). Head-up display device according to any one of the preceding claims, in which the diffraction means (140) comprise a diffractive optical element traversed by the beam (10) and having at least two different thickness levels in the beam propagation direction (10).
12. Dispositif d'affichage tête haute selon l'une quelconque des revendications précédentes, dans lequel l'élément optique diffractant est utilisé en transmission. 12. A head-up display device according to any one of the preceding claims, wherein the diffractive optical element is used in transmission.
13. Dispositif d'affichage tête haute selon les revendications 11 et 12, dans lequel l'élément optique diffractant est binaire, et la différence de chemin optique entre les deux niveaux d'épaisseur est sensiblement égale à la moitié de la longueur d'onde moyenne, la longueur d'onde moyenne étant la moyenne des longueurs d'onde des au moins une source laser (4, 5, 6). The head-up display device according to claims 11 and 12, wherein the diffractive optical element is binary, and the optical path difference between the two thickness levels is substantially equal to half the wavelength. mean, the average wavelength being the average of the wavelengths of the at least one laser source (4, 5, 6).
14. Dispositif d'affichage tête haute selon l'une quelconque des revendications précédentes, comprenant en outre un générateur de balayageThe head-up display device according to any one of the preceding claims, further comprising a scanning generator
(110) pour produire un faisceau de balayage (103), le faisceau de balayage (103) étant diffracté par les moyens de diffraction (140). (110) for producing a scanning beam (103), the scanning beam (103) being diffracted by the diffraction means (140).
15. Dispositif d'affichage tête haute selon l'une quelconque des revendications 1 à 14, dans lequel le faisceau lumineux (10) est un faisceau fixe, le faisceau fixe étant diffracté par les moyens de diffraction (140). A head-up display device according to any one of claims 1 to 14, wherein the light beam (10) is a fixed beam, the fixed beam being diffracted by the diffraction means (140).
PCT/FR2016/000050 2015-03-17 2016-03-17 Head-up display device, particularly for a motor vehicle WO2016146904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552161 2015-03-17
FR1552161A FR3033904B1 (en) 2015-03-17 2015-03-17 HEAD DISPLAY DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE

Publications (1)

Publication Number Publication Date
WO2016146904A1 true WO2016146904A1 (en) 2016-09-22

Family

ID=53008774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/000050 WO2016146904A1 (en) 2015-03-17 2016-03-17 Head-up display device, particularly for a motor vehicle

Country Status (2)

Country Link
FR (1) FR3033904B1 (en)
WO (1) WO2016146904A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120837A (en) * 2018-10-31 2019-01-01 Oppo广东移动通信有限公司 Image acquiring method, image acquiring device, structure optical assembly and electronic device
CN109167904A (en) * 2018-10-31 2019-01-08 Oppo广东移动通信有限公司 Image acquiring method, image acquiring device, structure optical assembly and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349884A2 (en) * 1988-07-05 1990-01-10 Hughes Aircraft Company Full-color zero-order suppressed diffraction optics diffusing screen/louver filter laminate
US5742262A (en) * 1993-06-23 1998-04-21 Olympus Optical Co., Ltd. Image display apparatus
US20040004586A1 (en) * 2002-07-05 2004-01-08 Minolta Co., Ltd. Image display apparatus
US20050237615A1 (en) * 2004-04-23 2005-10-27 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
US20090161191A1 (en) * 2007-12-21 2009-06-25 Microvision, Inc. Scanned Beam Display Having High Uniformity and Diminished Coherent Artifacts
US20130106847A1 (en) * 2011-04-27 2013-05-02 Keiji Sugiyama Display device
US20130265622A1 (en) * 2010-07-14 2013-10-10 Two Trees Photonics Limited 2d/3d holographic display system
WO2015019064A1 (en) * 2013-08-06 2015-02-12 Bae Systems Plc Display system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349884A2 (en) * 1988-07-05 1990-01-10 Hughes Aircraft Company Full-color zero-order suppressed diffraction optics diffusing screen/louver filter laminate
US5742262A (en) * 1993-06-23 1998-04-21 Olympus Optical Co., Ltd. Image display apparatus
US20040004586A1 (en) * 2002-07-05 2004-01-08 Minolta Co., Ltd. Image display apparatus
US20050237615A1 (en) * 2004-04-23 2005-10-27 Microvision, Inc. Beam multiplier that can be used as an exit-pupil expander and related system and method
US20090161191A1 (en) * 2007-12-21 2009-06-25 Microvision, Inc. Scanned Beam Display Having High Uniformity and Diminished Coherent Artifacts
US20130265622A1 (en) * 2010-07-14 2013-10-10 Two Trees Photonics Limited 2d/3d holographic display system
US20130106847A1 (en) * 2011-04-27 2013-05-02 Keiji Sugiyama Display device
WO2015019064A1 (en) * 2013-08-06 2015-02-12 Bae Systems Plc Display system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120837A (en) * 2018-10-31 2019-01-01 Oppo广东移动通信有限公司 Image acquiring method, image acquiring device, structure optical assembly and electronic device
CN109167904A (en) * 2018-10-31 2019-01-08 Oppo广东移动通信有限公司 Image acquiring method, image acquiring device, structure optical assembly and electronic device
CN109167904B (en) * 2018-10-31 2020-04-28 Oppo广东移动通信有限公司 Image acquisition method, image acquisition device, structured light assembly and electronic device
CN109120837B (en) * 2018-10-31 2020-05-01 Oppo广东移动通信有限公司 Image acquisition method, image acquisition device, structured light assembly and electronic device

Also Published As

Publication number Publication date
FR3033904A1 (en) 2016-09-23
FR3033904B1 (en) 2018-04-27

Similar Documents

Publication Publication Date Title
EP2875398B1 (en) Device and method for emitting a light beam intended to form an image, projection system, and display using said device
FR2993677A1 (en) DEVICE AND METHOD FOR TRANSMITTING A LIGHT BEAM FOR FORMING AN IMAGE, PROJECTION SYSTEM AND DISPLAY USING THE SAME
EP2875397B1 (en) Device and method for emitting a light beam intended to form an image, projection system, and display using said device
FR3000572A1 (en) IMAGE TRANSMISSION DEVICE FOR DISPLAY AND HIGH TEAM DISPLAY EQUIPPED WITH SAID DEVICE
WO2014102462A1 (en) Display for displaying a virtual image in the field of view of a vehicle driver and image-generating device for said display
EP3696595B1 (en) Viewing device comprising a pupil expander with two mirrors
EP2936239A1 (en) Display for displaying a virtual image in the field of vision of a driver, and device for generating images for said display
EP3507542B1 (en) Lighting and/or signalling device, in particular for an automotive vehicle
WO2016146904A1 (en) Head-up display device, particularly for a motor vehicle
EP3438725B1 (en) Display system comprising a holographic optical device for displaying images in various planes
WO2016146903A1 (en) Image generator, particularly for head-up display device
EP2957146A1 (en) Display, in particular a head-up display, for a vehicle
WO2017191053A1 (en) Device for generating a multicolour image and heads-up display including such a device
WO2017191052A1 (en) Device for generating images and head-up display including such a device
EP3017333B1 (en) Head-up display
WO2023111151A1 (en) Head-up display
EP3807698A1 (en) Projecting apparatus intended for a head-up display system for a motor-vehicle driver and corresponding system
FR3000231A1 (en) Information display system for motor vehicle i.e. car, has processing unit intended to generate common data to be transmitted to head-up display and instrumentation case for displaying common information
FR3082631A1 (en) TRANSLUCENT PLATE, METHOD FOR MANUFACTURING SUCH A PLATE, PROJECTION APPARATUS AND HIGH HEAD DISPLAY SYSTEM THEREOF
FR3004816A1 (en) IMAGE GENERATOR FOR DISPLAY, IN PARTICULAR HIGH HEAD DISPLAY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16722265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16722265

Country of ref document: EP

Kind code of ref document: A1