WO2016135364A1 - Silk fibre with lateral light emission - Google Patents

Silk fibre with lateral light emission Download PDF

Info

Publication number
WO2016135364A1
WO2016135364A1 PCT/ES2016/070120 ES2016070120W WO2016135364A1 WO 2016135364 A1 WO2016135364 A1 WO 2016135364A1 ES 2016070120 W ES2016070120 W ES 2016070120W WO 2016135364 A1 WO2016135364 A1 WO 2016135364A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
light emission
lateral light
light
lateral
Prior art date
Application number
PCT/ES2016/070120
Other languages
Spanish (es)
French (fr)
Inventor
Aurelio Arenas Dalla Vecchia
Marta Rojo Martinez
Juan MUÑOZ MADRID
José Luis Cenis Anadon
Luis Meseguer Olmo
Salvador David Aznar Cervantes
Antonio Abel Lozano Perez
Original Assignee
Universidad De Murcia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Murcia filed Critical Universidad De Murcia
Publication of WO2016135364A1 publication Critical patent/WO2016135364A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01BMECHANICAL TREATMENT OF NATURAL FIBROUS OR FILAMENTARY MATERIAL TO OBTAIN FIBRES OF FILAMENTS, e.g. FOR SPINNING
    • D01B7/00Obtaining silk fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type

Definitions

  • a fiber of organic origin such as the silkworm granddaughter as a vector for the application of light in organic cells and tissues.
  • This fiber has an exclusively protein composition, and is composed of a protein, the fibroin that constitutes the silkworm of the Bombyx mor ⁇ silkworm.
  • This fiber is highly biocompatible and degradable. Therefore, it can be implanted in the target tissue and in the chosen position, so that being illuminated at one end, it emits light that acts on the surrounding tissues.
  • the grandmother is a fiber obtained by acidification and mechanical stretching of the sericigenic gland of the Bombyx mori worm. During the period between 1880 and 1950, it was widely used as a suture in surgery and fishing line, being manufactured exclusively in the Region of Murcia [MARDEN, L. Spain's Silkworm Gut. National Geographic Magazine July 1951, pages 100-108] and [HUMPHRIES, A. M. C. The Story of Silk and Silkworm Gut. Postgraduate Medical Journal. 1949, Vol. 25 (288), pages 483-488].
  • LLLT can stimulate a variety of biological processes, which include cell growth, proliferation and differentiation. These effects are verified on a wide variety of cell types, including fibroblasts, endothelial cells, mesenchymal cells, keratinocytes, myoblasts, etc.
  • cell types including fibroblasts, endothelial cells, mesenchymal cells, keratinocytes, myoblasts, etc.
  • the cellular mechanism through which the LLLT acts is not completely clarified.
  • the generally admitted mechanism indicates that the energy of the laser radiation is absorbed by intracellular chromophores and converted to metabolic energy, since there is always a significant increase in the levels of ATP (Adenosine Triphosphate) in the irradiated cells. In turn, the increase in ATP increases the synthesis of proteins, DNA and the concentration of intracellular calcium.
  • ATP Addenosine Triphosphate
  • the joint effect is the activation of a series of cell cascades, acting in the direction of increased cell proliferation.
  • This cellular stimulation translates, at the tissue level, into various effects such as the stimulation of scarring, collagen synthesis, peripheral nerve regeneration, bone tissue remodeling and repair, normalization of hormonal function, pain attenuation, stimulation of the release of endorphins and modulation of the immune system.
  • Photodynamic Therapy is an antitumor therapy that is based on the localized or systemic administration of a non-cytotoxic photosensitizer compound.
  • the compound Upon exposure to a light source, the compound emits reactive oxygen species that induce apoptosis in tumor cells in contact with it.
  • Most photosensitizing compounds have a heterocyclic ring structure similar to that of chlorophyll II or the heme group of hemoglobin. After the capture of photons by the compound, the light energy produces a chemical reaction in the presence of molecular oxygen that produces a singlet of oxygen or superoxide that induces cellular damage.
  • Photosensitizer compounds can be divided into three categories in general: those based on porphyrin, those based on chlorophyll II and dyes.
  • the light source necessary to activate the photosensitizer compounds a variety of types have been used. It is possible to use conventional non-coherent light sources, or LEDs. However, the most common light source in Photodynamic Therapy is laser light. This light is monochromatic and coherent, with a specific wavelength, optimized for each photosensitizer compound.
  • Photodynamic Therapy The clinical applications of Photodynamic Therapy are very numerous. They can be found in the field of therapy of dermatological diseases, ophthalmic diseases, head and neck cancer, brain and lung tumors, cardiovascular disease and urological diseases.
  • Optical waveguides are physical structures that guide electromagnetic waves in the optical spectrum.
  • the most common types include optical fibers and rectangular guides.
  • the optical waveguides may be printed on implantable microfluidic devices, but more commonly, the laser light is delivered to the target by means of a silicon optical fiber.
  • This type of fiber is efficient and easy to handle.
  • waveguides and optical fibers that are biocompatible, to avoid foreign body reactions in highly sensitive organs. It is also convenient that these optical devices are biodegradable, to prevent their removal once the treatment has been performed. Due to these requirements, alternative materials to standard silicon fiber have been actively sought, and optical waveguides based on biopolymers have been developed. This development of guides made of polymeric materials has been included in various patents, in the USA. and Europe, among which the following stand out:
  • Patent 3- EP 2612751 A2 Method of manufacturing a biopolymer optical waveguide.
  • the polymeric materials that are proposed are polymers of organic origin, such as silk fibroin, chitosan, collagen, gelatin, agarose, starch, chitin, cellulose and combinations thereof.
  • silk fibroin is the most efficient in terms of optical properties and mechanical strength.
  • Silk is a protein secretion of many arthropod species, with very diverse functions. The best known, due to its use as a textile fiber for centuries, is the silk produced by the Bombyx Mori Lepidoptera, known as the silkworm.
  • This silk is composed of two proteins: fibroin, of a fibrous nature that forms a continuous fiber, and sericin, a globular and adhesive protein that surrounds fibroin and allows a three-dimensional structure such as the cocoon to pupate.
  • fibroin is a protein that combines peptide domains in beta sheet, composed of repetitions of Gly-Ala-Gly-Ala-Gly-Ala, which give it great mechanical resistance, with domains in alpha helix that give it flexibility.
  • Fibroin has been revealed in the last decade as a high-performance biomaterial for the manufacture of stem cell growth frameworks in Tissue Engineering applications. This is because of the great biocompatibility of fibroin, which does not generate inflammation or foreign body reaction, once inserted into animal tissues.
  • silk fibroin as an optical waveguide, described and protected by the aforementioned patents, it is based on a liquid solution of previously solubilized fibroin that is extruded through a nozzle in a polymerizing bath, typically methanol.
  • the polymerized aqueous fibroin filament lacks mechanical strength. Because of this, it is typically applied on a surface that supports it. Subsequently, it is coated with another polymer of a suitable index of refraction, which allows the confinement of the light inside the fiber to the distal end thereof. This way of manufacturing the fiber allows it to be incorporated into printed microfluidic devices, but does not make it possible to use it as an independent, resistant and implantable fiber.
  • this light guide has the advantage that it is constituted by a biocompatible protein, which allows its reabsorption by the tissues in which it is implanted.
  • the grandmother has a high mechanical tensile strength (up to 5 kilograms of tensile strength), with values much higher than those of the fibers obtained by the extrusion procedures described in the patents mentioned above. This constitutes a considerable advantage over existing fibroin optical guidance devices, since the strength of the fiber allows the use of a support to not be required. This allows absolute flexibility in relation to the implantation of the fiber for the performance of its function, as well as in regard to the connection to the light source. This property of the grandmother empowers it as an ideal element to make superficial or deep insertions in living tissues and apply light to them, through it.
  • FIG 1. Drawing showing the system formed by the light source, the artificial guide and the grandmother connected by the assembly tube.
  • FIG 2. Photograph showing the cellular proliferation of L929 mouse fibroblasts around the grandmother when red light is applied through it in a culture.
  • a section of about 2 cm of hollow assembly tube 4 (extracted from a hypodermic needle, for example) of internal diameter equal to that of the grandmother 3 is cut and to the artificial guide 2 and the polished ends, one of the granddaughter and one of the artificial light guide, are introduced therein until the surfaces thereof make contact therein (see FIG 1).
  • the other end of the artificial guide is connected to a light source 1.
  • This source is preferably laser light whose color or wavelength is appropriate in the specific application to be addressed.
  • the other end of the is the one that will be used to apply the light in the area of the selected fabric.
  • the grandmother is inserted into a tissue to stimulate the growth of native cells [ALGHAMDI, K. M., KUMAR, A., & MOUSSA, N. A.
  • Low-level laser therapy a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012, Vol. 27 (1), pages 237-249], [BASSO, FG, PAN SAN I, TN, TURRIONI, APS, BAGNATO, VS, HEBLING, J., & DE SOUZA COSTA, CA In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. International Journal of Dentistry. 2012], or cells added in that tissue, once we illuminate the daughter by its end. This is applicable to the manufacture of a suture that, illuminated at its end, promotes a more active proliferation of fibroblasts, improving healing. It can also be placed linearly along a nerve to stimulate neuronal growth and accelerate its repair.
  • the photoactivatable molecules are not toxic in the absence of light, therefore, they can be administered locally or systemically so that they have access to the vicinity of the tumor cells. Therefore, if the little daughter is inserted into a tumor, following the administration of a photoactivatable molecule, the light provided by it produces activation of the molecule that in turn will trigger the apoptosis of the tumor cells.
  • This application is especially suitable for acting on tumors located in organic tubular structures, given the linear distribution of the lumen of the grandmother.
  • a grandmother with photoactivatable molecules can also be functionalized and implanted in a tumor. This done, when applying light to the daughter, the cells in contact with it go into apoptosis and disappear.
  • Optogenetics is a technology that is based on inserting in the brain neurons that have been transformed with membrane proteins (opsins) to respond to blue laser light by opening the ion channels. Therefore, a pulse of laser light allows to activate or deactivate these neurons, inducing or stopping an action potential, [CARDIN, JA, CARLÉN, M., MELETIS, K., KNOBLICH, U., ZHANG, F., DEISSEROTH, K., & MOORE, CI Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 2010, Vol.
  • Example 5 Drug release Within the broad field of controlled and targeted drug release there is a strategy consisting of encapsulating drugs in liposomes in whose wall a photoactivable compound is integrated. Under a pulse of light, this component activates, breaks the liposome walls and releases its therapeutic load [ ⁇ LVAREZ-LORENZO, C, BROMBERG, L, & CONCHEIRO, A. Light-sensitive Intelligent Drug Delivery Systems. Photochemistry and Photobiology. 2009, Vol. 85 (4), pages 848-860], [YANG, X., LIU, X., LIU, Z., PU, F., REN, J., & QU, X.

Abstract

The invention relates to a biocompatible and biodegradable device for emitting light, which acts on animal cells and tissues with biological and therapeutic effects. The fundamental element of the device consists in a silk fibroin fibre with a diameter of between 0.1 and 1.0 mm and a variable length, obtained from the silk gland of the silk worm. This fibre is traditionally known as silk filament and was historically used as suture and fishing lines. When the silk filament is illuminated on one end with conventional or laser light, it emits light laterally along various centimetres. This fibre can be implanted in human tissue without needing to to be removed, as a result of the biocompatible and biodegradable character thereof.

Description

DESCRIPCIÓN  DESCRIPTION
Fibra de seda de emisión lateral de luz. Objeto de la invención Silk fiber of lateral emission of light. Object of the invention
La radiación electromagnética en el rango visible tiene unos efectos biológicos ampliamente demostrados. A través de la aplicación de luz a las células es posible estimular su desarrollo, inhibirlo, modificarlo o inducir su apoptosis. La aplicación de la luz se realiza preferentemente a través de fibras ópticas convencionales de silicio. Sin embargo, en un contexto biológico, sería preferible la utilización de fibras basadas en polímeros orgánicos que presenten mejores cualidades de biocompatibilidad y degradabilidad. También es deseable la posibilidad de que la fibra emita la luz de forma lateral en aquellos casos en que la diana celular tenga una configuración longitudinal. Electromagnetic radiation in the visible range has widely demonstrated biological effects. Through the application of light to the cells it is possible to stimulate its development, inhibit it, modify it or induce its apoptosis. The application of the light is preferably carried out through conventional silicon optical fibers. However, in a biological context, it would be preferable to use fibers based on organic polymers that have better biocompatibility and degradability qualities. It is also desirable that the fiber emits light laterally in those cases where the cell target has a longitudinal configuration.
En la presente invención se propone la utilización de una fibra de origen orgánico, como es la hijuela de gusano de seda como vector para la aplicación de luz en células y tejidos orgánicos. Esta fibra tiene una composición exclusivamente proteica, y está compuesta por una proteína, la fibroína que constituye la seda del gusano de la seda Bombyx morí. Esta fibra es altamente biocompatible y degradable. Por tanto, puede ser implantada en el tejido diana y en la posición elegida, de manera que siendo iluminada por un extremo, emite luz que actúa sobre los tejidos circundantes. La hijuela es una fibra obtenida mediante la acidificación y estiramiento mecánico de la glándula sericígena del gusano Bombyx morí. Durante el período comprendido entre 1880 y 1950, fue utilizada ampliamente como hilo de sutura en cirugía y sedal de pesca, siendo fabricada exclusivamente en la Región de Murcia [MARDEN, L. Spain's Silkworm Gut. National Geographic Magazine. Julio 1951 , páginas 100-108] y [HUMPHRIES, A. M. C. The Story of Silk and Silkworm Gut. Postgraduate Medical Journal. 1949, Vol. 25(288), páginas 483-488]. In the present invention, the use of a fiber of organic origin is proposed, such as the silkworm granddaughter as a vector for the application of light in organic cells and tissues. This fiber has an exclusively protein composition, and is composed of a protein, the fibroin that constitutes the silkworm of the Bombyx morí silkworm. This fiber is highly biocompatible and degradable. Therefore, it can be implanted in the target tissue and in the chosen position, so that being illuminated at one end, it emits light that acts on the surrounding tissues. The grandmother is a fiber obtained by acidification and mechanical stretching of the sericigenic gland of the Bombyx mori worm. During the period between 1880 and 1950, it was widely used as a suture in surgery and fishing line, being manufactured exclusively in the Region of Murcia [MARDEN, L. Spain's Silkworm Gut. National Geographic Magazine July 1951, pages 100-108] and [HUMPHRIES, A. M. C. The Story of Silk and Silkworm Gut. Postgraduate Medical Journal. 1949, Vol. 25 (288), pages 483-488].
Sector de la técnica La presente invención se enmarca dentro del campo de nuevos instrumentos, dispositivos, útiles o métodos de la biología y la medicina. Technical sector The present invention is part of the field of new instruments, devices, tools or methods of biology and medicine.
Estado de la técnica State of the art
La aplicación de radiaciones luminosas tiene una amplia gama de efectos sobre células y tejidos vivos. Algunos de estos efectos son positivos para su proliferación y funcionamiento biológico, lo que ha llevado al desarrollo de terapias basadas en la aplicación de luz en el campo de la biomedicina. El conjunto de terapias y aplicaciones derivadas de la exposición de la luz a las células y tejidos se divide en tres grandes apartados: estimulación de proliferación celular mediante luz láser de baja intensidad (Low Level Láser Therapy, LLLT), activación o inhibición de neuronas que expresan opsinas en su membrana (Optogenética) y activación de moléculas fotoactivables que emiten especies reactivas de oxígeno induciendo apoptosis en células tumorales (Terapia Fotodinámica). The application of light radiation has a wide range of effects on living cells and tissues. Some of these effects are positive for their proliferation and biological functioning, which has led to the development of therapies based on the application of light in the field of biomedicine. The set of therapies and applications derived from the exposure of light to cells and tissues is divided into three main sections: stimulation of cell proliferation using low intensity laser light (Low Level Laser Therapy, LLLT), activation or inhibition of neurons that they express opsins in their membrane (Optogenetics) and activation of photoactivatable molecules that emit reactive oxygen species inducing apoptosis in tumor cells (Photodynamic Therapy).
La irradiación LLLT engloba el uso de iluminación láser en el rango de luz roja e infrarroja, con una longitud de onda comprendida entre 600 y 1 .100 nm y una potencia de salida comprendida entre 1 y 500 mW. Este tipo de radiación puede ser continua o pulsante, con una densidad de energía relativamente baja (0.04 a 50 J/cm2). La luz es dirigida al tejido diana, o a monocapas de células, con potencias en el orden de milivatios. A dosis bajas de densidad de energía (2 J/cm2), la LLLT estimula la proliferación celular, mientras que a altas dosis (16 J/cm2) actúa como supresora. La LLLT transmite energía a niveles bajos y no emite calor, sonido o vibraciones. Los tejidos irradiados no experimentan aumento significativo de temperatura, a diferencia de lo que ocurre mediante el uso de láseres de potencia que pueden cortarlos y vaporizarlos. LLLT irradiation encompasses the use of laser lighting in the red and infrared light range, with a wavelength between 600 and 1,100 nm and an output power between 1 and 500 mW. This type of radiation can be continuous or pulsating, with a relatively low energy density (0.04 to 50 J / cm 2 ). The light is directed to the target tissue, or to cell monolayers, with powers in the order of milliwatts. At low doses of energy density (2 J / cm 2 ), LLLT stimulates cell proliferation, while at high doses (16 J / cm 2 ) it acts as a suppressor. The LLLT transmits energy at low levels and does not emit heat, sound or vibrations. Irradiated tissues do not experience a significant increase in temperature, unlike what happens through the use of power lasers that can cut and vaporize them.
La LLLT puede estimular una variedad de procesos biológicos, que incluyen el crecimiento celular, la proliferación y la diferenciación. Estos efectos se verifican sobre una gran variedad de tipos celulares, que incluyen fibroblastos, células endoteliales, células mesenquimales, queratinocitos, mioblastos, etc. Sin embargo, el mecanismo celular a través del cual actúa la LLLT no está completamente clarificado. El mecanismo generalmente admitido indica que la energía de la radiación láser es absorbida por cromóforos intracelulares y convertida a energía metabólica, dado que se observa siempre un incremento significativo de los niveles de ATP (Adenosina Triphosphate) en las células irradiadas. A su vez, el incremento de ATP, aumenta la síntesis de proteínas, ADN y la concentración de calcio intracelular. El efecto conjunto es la activación de una serie de cascadas celulares, actuando en la dirección de una mayor proliferación celular. Esta estimulación celular se traduce, a nivel tisular, en diversos efectos tales como la estimulación de la cicatrización, la síntesis de colágeno, regeneración de nervio periférico, remodelación y reparación de tejido óseo, normalización de la función hormonal, atenuación del dolor, estimulación de la liberación de endorfinas y modulación del sistema inmune. LLLT can stimulate a variety of biological processes, which include cell growth, proliferation and differentiation. These effects are verified on a wide variety of cell types, including fibroblasts, endothelial cells, mesenchymal cells, keratinocytes, myoblasts, etc. However, the cellular mechanism through which the LLLT acts is not completely clarified. The generally admitted mechanism indicates that the energy of the laser radiation is absorbed by intracellular chromophores and converted to metabolic energy, since there is always a significant increase in the levels of ATP (Adenosine Triphosphate) in the irradiated cells. In turn, the increase in ATP increases the synthesis of proteins, DNA and the concentration of intracellular calcium. The joint effect is the activation of a series of cell cascades, acting in the direction of increased cell proliferation. This cellular stimulation translates, at the tissue level, into various effects such as the stimulation of scarring, collagen synthesis, peripheral nerve regeneration, bone tissue remodeling and repair, normalization of hormonal function, pain attenuation, stimulation of the release of endorphins and modulation of the immune system.
La Optogenética es una tecnología que se basa en la utilización de unas proteínas de membrana de origen microbiano, denominadas genéricamente como opsinas. Estas proteínas convierten directamente la luz en cambios en el potencial eléctrico a los lados de las membranas celulares en las que están insertadas. Las opsinas microbianas responden a la luz traslocando iones a través de las membranas de las células en las que están genéticamente expresadas. En el caso de las neuronas, ello hace posible actuar de forma externa sobre la activación o inactivación de potenciales de acción en las mismas, lo que permite el análisis y control de su función. Las opsinas deben ser previamente integradas en la membrana de las células sobre las que se quiere actuar, y ello se realiza mediante transformación genética de las células con los genes que expresan opsinas. Hay muchos tipos de opsinas y otras proteínas fotoactivables, pero las de uso más frecuente son la canalrodopsina-2 (ChR2) del alga verde C. reinhardtii que trasloca cationes dentro de las neuronas cuando es activada con luz azul, activando la actividad eléctrica de la célula. Por el contrario, la halorodopsina y la arqueorodopsina bombean iones cloruro al interior y cationes al exterior de las células, respectivamente, bajo la luz verde o amarilla. Ello produce una inactivación de la actividad eléctrica de la célula. La posibilidad de actuar sobre la activación o inactivación de neuronas mediante un pulso de luz láser abre la posibilidad de reparar disfunciones causadas por procesos degenerativos en tejido cerebral. Optogenetics is a technology that is based on the use of membrane proteins of microbial origin, generically referred to as opsins. These proteins directly convert light into changes in the electrical potential on the sides of the cell membranes in which they are inserted. Microbial opsins respond to light by translocating ions through the membranes of the cells in which they are genetically expressed. In the case of neurons, this makes it possible to act externally on the activation or inactivation of action potentials in them, which allows the analysis and control of their function. Opsins must be previously integrated into the membrane of the cells on which they want to act, and this is done by genetic transformation of the cells with the genes that express opsins. There are many types of opsins and other photoactivatable proteins, but the most frequently used are the canalrodopsin-2 (ChR2) of the green algae C. reinhardtii that translocates cations within the neurons when activated with blue light, activating the electrical activity of the cell. In contrast, halorodopsin and archaeorodopsin pump chloride ions inside and cations outside the cells, respectively, under green or yellow light. This causes an inactivation of the electrical activity of the cell. The possibility of acting on the activation or inactivation of neurons by means of a pulse of laser light opens the possibility of repairing dysfunctions caused by degenerative processes in brain tissue.
La Terapia Fotodinámica es una terapia antitumoral que se basa en la administración localizada o sistémica de un compuesto fotosensibilizador no citotóxico. Bajo la exposición a una fuente de luz, el compuesto emite especies reactivas de oxígeno que inducen apoptosis en las células tumorales en contacto con el mismo. La mayoría de compuestos fotosensibilizadores tienen una estructura de anillo heterocíclico similar a la de la clorofila II o al grupo hemo de la hemoglobina. Tras la captura de fotones por el compuesto, la energía lumínica produce una reacción química en presencia de oxígeno molecular que produce un singlete de oxígeno o superóxido que inducen el daño celular. Los compuestos fotosensibilizadores se pueden dividir en general en tres categorías: los basados en porfirina, los basados en clorofila II y los tintes. Existe una gran variedad de estos compuestos, que han demostrado su eficacia y están autorizados para su uso clínico. En cuanto a la fuente de luz necesaria para activar los compuestos fotosensibilizadores, se ha utilizado gran variedad de tipos. Es posible utilizar fuentes de luz convencional no coherente, o bien LEDs. Sin embargo, la fuente de luz más común en Terapia Fotodinámica es la luz láser. Esta luz es monocromática y coherente, con una longitud de onda específica, optimizada para cada compuesto fotosensibilizador. Photodynamic Therapy is an antitumor therapy that is based on the localized or systemic administration of a non-cytotoxic photosensitizer compound. Upon exposure to a light source, the compound emits reactive oxygen species that induce apoptosis in tumor cells in contact with it. Most photosensitizing compounds have a heterocyclic ring structure similar to that of chlorophyll II or the heme group of hemoglobin. After the capture of photons by the compound, the light energy produces a chemical reaction in the presence of molecular oxygen that produces a singlet of oxygen or superoxide that induces cellular damage. Photosensitizer compounds can be divided into three categories in general: those based on porphyrin, those based on chlorophyll II and dyes. There is a wide variety of these compounds, which have proven effective and are authorized for clinical use. As for the light source necessary to activate the photosensitizer compounds, a variety of types have been used. It is possible to use conventional non-coherent light sources, or LEDs. However, the most common light source in Photodynamic Therapy is laser light. This light is monochromatic and coherent, with a specific wavelength, optimized for each photosensitizer compound.
Las aplicaciones clínicas de la Terapia Fotodinámica son muy numerosas. Pueden encontrarse en el campo de la terapia de las enfermedades dermatológicas, enfermedades oftálmicas, cáncer de cabeza y cuello, tumores cerebrales y pulmonares, enfermedad cardiovascular y enfermedades urológicas. The clinical applications of Photodynamic Therapy are very numerous. They can be found in the field of therapy of dermatological diseases, ophthalmic diseases, head and neck cancer, brain and lung tumors, cardiovascular disease and urological diseases.
Para la realización de las técnicas descritas es esencial disponer de una fuente de luz y transmitir ésta a la diana de acción con gran precisión. Como fuente de luz se ha-empleado focos de luz convencional y LED. Sin embargo, normalmente se prefiere la luz láser de longitud de onda específica y mayor potencia. Existen numerosos tipos de fuentes de luz láser para las aplicaciones indicadas. En cuanto a la conducción de la luz, se emplea en algunos casos una iluminación desde el exterior de la zona a tratar. Esto es factible para tratamientos cutáneos o de órganos relativamente superficiales. Para dianas más profundas se prefieren guías de onda ópticas, y fibras ópticas dotadas de lentes en su extremo que producen una adecuada focalización, y por tanto, mayor precisión, del rayo de la luz aplicada. For the performance of the described techniques it is essential to have a light source and transmit it to the target with great precision. Conventional and LED light bulbs have been used as the light source. However, laser light of specific wavelength and higher power is usually preferred. There are numerous types of laser light sources for the indicated applications. As for the conduction of light, lighting is used in some cases from outside the area to be treated. This is feasible for skin treatments or relatively superficial organs. For deeper targets, optical waveguides are preferred, and optical fibers endowed with lenses at their end that produce adequate focusing, and therefore, greater precision, of the ray of light applied.
Las guías de onda ópticas son estructuras físicas que guían ondas electromagnéticas en el espectro óptico. Los tipos más comunes incluyen fibras ópticas y guías rectangulares. Las guías de onda ópticas pueden estar impresas en dispositivos microfluídicos implantables, pero más comúnmente, la luz láser se hace llegar a la diana mediante una fibra óptica de silicio. Este tipo de fibra es eficiente y sencillo de manejar. Sin embargo, para aplicaciones en tejidos y órganos vivos, resulta preferible disponer de guías de onda y fibras ópticas que sean biocompatibles, para evitar reacciones de cuerpo extraño en órganos altamente sensibles. También es conveniente que estos dispositivos ópticos sean biodegradables, para evitar la retirada de los mismos una vez realizado el tratamiento. Debido a estos requerimientos, se ha buscado activamente materiales alternativos a la fibra de silicio estándar, y se ha desarrollado guías de onda óptica basadas en biopolímeros. Este desarrollo de guías fabricadas con materiales poliméricos se ha recogido en diversas patentes, en EE.UU. y Europa, entre las que se destacan las siguientes: Optical waveguides are physical structures that guide electromagnetic waves in the optical spectrum. The most common types include optical fibers and rectangular guides. The optical waveguides may be printed on implantable microfluidic devices, but more commonly, the laser light is delivered to the target by means of a silicon optical fiber. This type of fiber is efficient and easy to handle. However, for applications in living tissues and organs, it is preferable to have waveguides and optical fibers that are biocompatible, to avoid foreign body reactions in highly sensitive organs. It is also convenient that these optical devices are biodegradable, to prevent their removal once the treatment has been performed. Due to these requirements, alternative materials to standard silicon fiber have been actively sought, and optical waveguides based on biopolymers have been developed. This development of guides made of polymeric materials has been included in various patents, in the USA. and Europe, among which the following stand out:
• Patente 1 - US 8195021 B2 Biopolymer optical waveguide and method of manufacturing the same. • Patent 1 - US 8195021 B2 Biopolymer optical waveguide and method of manufacturing the same.
· Patente 2- US 2010/0065784 A1 Electroactive biopolymer optical and electro- optical devices and method of manufacturing the same. · Patent 2- US 2010/0065784 A1 Electroactive biopolymer optical and electro-optical devices and method of manufacturing the same.
• Patente 3- EP 2612751 A2 Method of manufacturing a biopolymer optical waveguide. Los materiales poliméricos que se proponen son polímeros de origen orgánico, tales como fibroína de seda, quitosano, colágeno, gelatina, agarosa, almidón, quitina, celulosa y combinaciones de los mismos. De todos los biopolímeros indicados en las patentes mencionadas, la fibroína de la seda es el más eficiente en términos de propiedades ópticas y resistencia mecánica. La seda es una secreción proteica de muchas especies de artrópodos, con funciones muy diversas. La más conocida, debido a su uso como fibra textil desde hace siglos, es la seda producida por el Lepidóptero Bombyx morí, el conocido como gusano de la seda. Esta seda está compuesta por dos proteínas: la fibroína, de carácter fibroso que forma una fibra continua, y la sericina, una proteína globular y adhesiva que envuelve la fibroína y permite formar una estructura tridimensional como es el capullo para realizar la pupación. A su vez la fibroína, es una proteína que combina dominios peptídicos en hoja beta, compuestos por repeticiones de Gly-Ala-Gly-Ala-Gly-Ala, que le confieren gran resistencia mecánica, con dominios en hélice alfa que le confieren flexibilidad. La fibroína se ha revelado en la última década como un biomaterial de altas prestaciones para la fabricación de armazones de crecimiento de células madre en aplicaciones de Ingeniería Tisular. Esto es así debido a la gran biocompatibilidad de la fibroína, que no genera inflamación ni reacción de cuerpo extraño, una vez insertada en tejidos animales. Es biodegradable, con una tasa de degradación que puede modularse, y presenta una notable resistencia mecánica. La utilización de la fibroína como biomaterial requiere su previa solubilización para formar una solución acuosa a partir de la cual se fabrican configuraciones diversas tales como films, geles, esponjas tridimensionales porosas, mallas electrohiladas, etc. En estas estructuras se siembran las células madre que posteriormente se diferencian para formar tejidos diversos. La fibroína de la seda tiene propiedades ópticas, tales como una elevada transparencia (98%), además de ser muy apropiada para la fabricación de dispositivos ópticos destinados a ser utilizados en un entorno biológico. Como ejemplo pueden citarse los films de fibroína que se utilizan para fabricar soportes para crecimiento de epitelio y estroma corneal. En la utilización de la fibroína de la seda como guía de onda óptica, descrita y protegida por las patentes citadas anteriormente, se parte de una solución líquida de fibroína previamente solubilizada que se extruye a través de una boquilla en un baño polimerizante, típicamente metanol. El filamento de fibroína acuosa polimerizada carece de resistencia mecánica. Debido a ello, se aplica típicamente sobre una superficie que le sirve de soporte. Posteriormente se recubre con otro polímero de un índice de refracción adecuado, que permite el confinamiento de la luz en el interior de la fibra hasta el extremo distal de la misma. Esta forma de fabricar la fibra permite incorporarla a dispositivos microfluidicos impresos, pero no hace posible su uso como fibra independiente, resistente e implantable. Por tanto, se hace necesario buscar otras configuraciones de una fibra de seda que sea resistente, implantable, y capaz de transmitir luz. La hijuela es una fibra de fibroína formada a partir de las dos glándulas sericígenas del gusano de seda. Para fabricarla, se procede a la extracción en vivo de las glándulas a partir de la larva de 5o estado, su acidificación mediante inmersión en un baño de ácido acético y su estiramiento manual. Este estiramiento produce un cambio de fase desde la fibroína líquida en estado micelar en el interior de las glándulas a una fibra sólida y resistente donde la fibroína está en una configuración molecular de hoja beta. La fibra resultante tiene un grosor comprendido entre 100 y 1000 mieras y una longitud entre 30 y 40 centímetros. Esta fibra se utilizó ampliamente a partir de mediados del siglo XIX como hilo de sutura en cirugía y como sedal para pescar. Esta industria desapareció completamente hacia los años 1950, debido a la aparición del nylon y otras fibras artificiales que realizan la misma función con menor coste. La hijuela se produjo exclusivamente en la Región de Murcia, exportándose casi toda la producción a Inglaterra. Descripción de la invención • Patent 3- EP 2612751 A2 Method of manufacturing a biopolymer optical waveguide. The polymeric materials that are proposed are polymers of organic origin, such as silk fibroin, chitosan, collagen, gelatin, agarose, starch, chitin, cellulose and combinations thereof. Of all the biopolymers indicated in the aforementioned patents, silk fibroin is the most efficient in terms of optical properties and mechanical strength. Silk is a protein secretion of many arthropod species, with very diverse functions. The best known, due to its use as a textile fiber for centuries, is the silk produced by the Bombyx Mori Lepidoptera, known as the silkworm. This silk is composed of two proteins: fibroin, of a fibrous nature that forms a continuous fiber, and sericin, a globular and adhesive protein that surrounds fibroin and allows a three-dimensional structure such as the cocoon to pupate. In turn, fibroin is a protein that combines peptide domains in beta sheet, composed of repetitions of Gly-Ala-Gly-Ala-Gly-Ala, which give it great mechanical resistance, with domains in alpha helix that give it flexibility. Fibroin has been revealed in the last decade as a high-performance biomaterial for the manufacture of stem cell growth frameworks in Tissue Engineering applications. This is because of the great biocompatibility of fibroin, which does not generate inflammation or foreign body reaction, once inserted into animal tissues. It is biodegradable, with a degradation rate that can be modulated, and has a remarkable mechanical resistance. The use of fibroin as a biomaterial requires its prior solubilization to form an aqueous solution from which various configurations such as films, gels, porous three-dimensional sponges, electro-spun meshes, etc. are manufactured. In these structures, stem cells are sown and subsequently differentiated to form diverse tissues. Silk fibroin has optical properties, such as high transparency (98%), in addition to being very suitable for the manufacture of optical devices intended for use in a biological environment. As an example, the fibroin films used to manufacture supports for epithelial and corneal stromal growth can be cited. In the use of silk fibroin as an optical waveguide, described and protected by the aforementioned patents, it is based on a liquid solution of previously solubilized fibroin that is extruded through a nozzle in a polymerizing bath, typically methanol. The polymerized aqueous fibroin filament lacks mechanical strength. Because of this, it is typically applied on a surface that supports it. Subsequently, it is coated with another polymer of a suitable index of refraction, which allows the confinement of the light inside the fiber to the distal end thereof. This way of manufacturing the fiber allows it to be incorporated into printed microfluidic devices, but does not make it possible to use it as an independent, resistant and implantable fiber. Therefore, it is necessary to look for other configurations of a silk fiber that is resistant, implantable, and capable of transmitting light. The grandmother is a fibroin fiber formed from the two sericigen glands of the silkworm. To manufacture it , proceed to the extraction live glands from the larva of 5 or state, acidification by immersion in a bath of acetic acid and manual stretching. This stretching produces a phase change from the liquid fibroin in the micellar state inside the glands to a solid and resistant fiber where the fibroin is in a molecular configuration of beta sheet. The resulting fiber has a thickness between 100 and 1000 microns and a length between 30 and 40 centimeters. This fiber was widely used from the mid-nineteenth century as a suture in surgery and as a fishing line. This industry disappeared completely towards the 1950s, due to the appearance of nylon and other artificial fibers that perform the same function at a lower cost. The grandmother was produced exclusively in the Region of Murcia, exporting almost all the production to England. Description of the invention
La presente invención se refiere a un dispositivo diseñado para aplicar luz proveniente de una fuente de luz láser a tejidos superficiales o profundos de órganos de seres vivos. A diferencia de los sistemas empleados hasta ahora con guías de luz artificiales (fibras ópticas de vidrio o de plástico), en esta invención el elemento de aplicación de la luz consiste en un tramo de fibra obtenida a partir de la hijuela, extraída del procesamiento de la glándula sericígena de un gusano de seda y que se utiliza como guía de luz. La hijuela, que está constituida esencialmente por fibroina, presenta una elevada transparencia y posee la cualidad de emitir luz a través de su superficie lateral a lo largo de la misma, la luz que se aplica en uno de sus extremos. Con ello se consigue una zona más extensa de aplicación de la radiación luminosa que la que se obtiene con una fibra óptica artificial emitiendo luz sólo por su extremo. Además, esta guía de luz presenta la ventaja de que está constituida por una proteína biocompatible, lo que permite su reabsorción por parte de los tejidos en los que se encuentre implantada. Por añadidura, la hijuela presenta una elevada resistencia a la tracción mecánica (hasta 5 kilogramos de tensión a rotura), con valores muy superiores a los que presentan las fibras obtenidas por los procedimientos de extrusión descritos en las patentes citadas anteriormente. Esto constituye una considerable ventaja con respecto a los dispositivos de guía óptica de fibroina existentes, dado que la resistencia de la fibra permite que no se requiera la utilización de un soporte. Ello permite una flexibilidad absoluta en lo relativo a la implantación de la fibra para la realización de su función, así como en lo que se refiere a la conexión a la fuente de luz. Esta propiedad de la hijuela la faculta como elemento idóneo para realizar inserciones superficiales o profundas en tejidos vivos y aplicar luz a los mismos, a través de ella. Además, la superficie de la hijuela presenta la reactividad química de la fibroina, caracterizada por la presencia en su superficie de aminoácidos con grupos reactivos amino y carboxilo. Mediante la activación química de los mismos, es posible unir a la hijuela moléculas de diverso tipo que pueden aumentar su funcionalidad, por ejemplo, actividades enzimáticas o fármacos que se activen mediante la acción de la luz. También es posible recubrir la hijuela con polímeros conductores (polipirrol, PAÑI, etc.), o compuestos de carbono conductores (grafeno, nanotubos de carbono, etc.), o metales como plata o cobre, que le confieren conductividad, permitiendo que la fibra constituya una guía óptica y eléctrica (optoelectrodo). The present invention relates to a device designed to apply light from a laser light source to surface or deep tissues of living beings' organs. Unlike the systems used so far with artificial light guides (optical glass or plastic fibers), in this invention the light application element consists of a stretch of fiber obtained from the grandmother, extracted from the processing of the sericigen gland of a silkworm and which is used as a light guide. The little daughter, who is constituted essentially by fibroin, it has a high transparency and has the quality of emitting light through its lateral surface along it, the light that is applied at one of its ends. This achieves a more extensive area of application of light radiation than that obtained with an artificial optical fiber emitting light only at its end. In addition, this light guide has the advantage that it is constituted by a biocompatible protein, which allows its reabsorption by the tissues in which it is implanted. In addition, the grandmother has a high mechanical tensile strength (up to 5 kilograms of tensile strength), with values much higher than those of the fibers obtained by the extrusion procedures described in the patents mentioned above. This constitutes a considerable advantage over existing fibroin optical guidance devices, since the strength of the fiber allows the use of a support to not be required. This allows absolute flexibility in relation to the implantation of the fiber for the performance of its function, as well as in regard to the connection to the light source. This property of the grandmother empowers it as an ideal element to make superficial or deep insertions in living tissues and apply light to them, through it. In addition, the surface of the daughter presents the chemical reactivity of fibroin, characterized by the presence on its surface of amino acids with amino and carboxyl reactive groups. By chemical activation of the same, it is possible to bind to the grandmother molecules of various types that can increase their functionality, for example, enzymatic activities or drugs that are activated by the action of light. It is also possible to coat the daughter with conductive polymers (polypyrrole, PAÑI, etc.), or conductive carbon compounds (graphene, carbon nanotubes, etc.), or metals such as silver or copper, which give it conductivity, allowing the fiber constitute an optical and electrical guide (optoelectrode).
Descripción del contenido de las figuras Description of the content of the figures
FIG 1. Dibujo que muestra el sistema formado por la fuente de luz, la guía artificial y la hijuela conectadas por el tubito de ensamblaje. FIG 2. Fotografía mostrando la proliferación celular de fibroblastos de ratón L929 entorno a la hijuela al aplicar luz roja a través de ella en un cultivo. FIG 1. Drawing showing the system formed by the light source, the artificial guide and the grandmother connected by the assembly tube. FIG 2. Photograph showing the cellular proliferation of L929 mouse fibroblasts around the grandmother when red light is applied through it in a culture.
Lista de referencias Reference List
1 . - Fuente de luz. one . - Light source.
2. - Guía de luz artificial.  2. - Artificial light guide.
3. - Hijuela.  3. - Little daughter.
4. - Tubito de ensamblaje hueco  4. - Hollow assembly tube
Descripción de un modo de realización preferente de la invención Description of a preferred embodiment of the invention
La construcción del sistema completo de fibra de emisión lateral de luz comienza con la fabricación de la hijuela. Para ello se anestesia a las larvas manteniéndolas a 4°C. Se secciona la cabeza del gusano con una cuchilla, se extraen las dos glándulas sericígenas, se lavan en agua y se depositan en baño de disolución de ácido acético al 2% durante dos minutos. Seguidamente las glándulas se estiran manualmente sujetándolas por sus extremos, hasta alcanzar una longitud entre 40-50 cm. Se consigue de esta manera una fibra traslúcida de 0.5 mm de diámetro aproximado, cubierta por residuos de células y sericina que se elimina mediante un lavado con agua. Finalmente, la fibra limpia se seca y se corta a la longitud requerida. The construction of the complete system of fiber of lateral emission of light begins with the manufacture of the grandmother. For this, the larvae are anesthetized by keeping them at 4 ° C. The head of the worm is sectioned with a blade, the two seric glands are removed, washed in water and placed in a 2% acetic acid solution bath for two minutes. Then the glands are manually stretched by holding them at their ends, until they reach a length between 40-50 cm. In this way, a translucent fiber of approximately 0.5 mm in diameter is achieved, covered by cell debris and sericin that is removed by washing with water. Finally, the clean fiber is dried and cut to the required length.
Posteriormente uno de los extremos de la hijuela se secciona con una cuchilla a 90° y se pule mecánicamente la superficie seccionada, por ejemplo, con lija al agua muy fina. Subsequently, one of the ends of the grandmother is sectioned with a 90 ° blade and the sectioned surface is mechanically polished, for example, with very fine sandpaper.
También se realiza la misma operación de cortado y pulido de un tramo de una guía de luz artificial (fibra óptica de vidrio o de plástico) que tenga el mismo diámetro que la hijuela obtenida y cuya longitud sea adecuada para el manejo del sistema. The same cutting and polishing operation of a section of an artificial light guide (fiber optic glass or plastic fiber) having the same diameter as the obtained grandmother and whose length is suitable for handling the system is also performed.
Se corta un tramo de unos 2 cm de tubito de ensamblaje hueco 4 (extraído de una aguja hipodérmica, por ejemplo) de diámetro interior igual al de la hijuela 3 y a la guía artificial 2 y se introducen en el mismo los extremos pulidos, uno de la hijuela y otro de la guía de luz artificial hasta que las superficies de las mismas hagan contacto en su interior (véase FIG 1 ). A continuación, se conecta el otro extremo de la guía artificial a una fuente de luz 1 . Esta fuente es preferentemente luz láser cuyo color o longitud de onda sea la apropiada en la aplicación concreta que vaya a abordarse. El otro extremo de la es el que se utilizará para aplicar la luz en la zona del tejido que se haya seleccionado. A section of about 2 cm of hollow assembly tube 4 (extracted from a hypodermic needle, for example) of internal diameter equal to that of the grandmother 3 is cut and to the artificial guide 2 and the polished ends, one of the granddaughter and one of the artificial light guide, are introduced therein until the surfaces thereof make contact therein (see FIG 1). Next, the other end of the artificial guide is connected to a light source 1. This source is preferably laser light whose color or wavelength is appropriate in the specific application to be addressed. The other end of the is the one that will be used to apply the light in the area of the selected fabric.
La dosificación de tiempos e intensidades en la aplicación de la luz mediante este sistema dependerá de los resultados que se desee obtener, además de ser necesario tener en cuenta resultados de ensayos previos realizados para cada caso de tejido y de situación. The dosage of times and intensities in the application of the light by means of this system will depend on the results that one wishes to obtain, in addition to being necessary to take into account the results of previous tests carried out for each case of tissue and situation.
Ejemplos: Examples:
Ejemplo 1. Efecto estimulatorio de la luz láser en la proliferación celular. Example 1. Stimulatory effect of laser light on cell proliferation.
Se inserta la hijuela en un tejido para estimular el crecimiento de células nativas [ALGHAMDI, K. M., KUMAR, A., & MOUSSA, N. A. Low-level láser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012, Vol. 27(1 ), páginas 237-249], [BASSO, F. G., PAN SAN I, T. N., TURRIONI, A. P. S., BAGNATO, V. S., HEBLING, J., & DE SOUZA COSTA, C. A. In vitro wound healing improvement by low-level láser therapy application in cultured gingival fibroblasts. International Journal of Dentistry. 2012], o células añadidas en ese tejido, una vez que iluminamos la hijuela por su extremo. Esto es aplicable a la fabricación de una sutura que iluminada por su extremo promueva una proliferación más activa de fibroblastos mejorando la cicatrización. También puede colocarse linealmente a lo largo de un nervio para estimular el crecimiento neuronal y acelerar la reparación del mismo. The grandmother is inserted into a tissue to stimulate the growth of native cells [ALGHAMDI, K. M., KUMAR, A., & MOUSSA, N. A. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in Medical Science. 2012, Vol. 27 (1), pages 237-249], [BASSO, FG, PAN SAN I, TN, TURRIONI, APS, BAGNATO, VS, HEBLING, J., & DE SOUZA COSTA, CA In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. International Journal of Dentistry. 2012], or cells added in that tissue, once we illuminate the daughter by its end. This is applicable to the manufacture of a suture that, illuminated at its end, promotes a more active proliferation of fibroblasts, improving healing. It can also be placed linearly along a nerve to stimulate neuronal growth and accelerate its repair.
También se puede fabncar un trenzado plano de hijuelas que formen una superficie o estructura (scaffold) sobre la cual sembrar células. Tras la iluminación de un extremo de las fibras que constituyen el trenzado, la estructura emitirá luz que estimulará el crecimiento de las células sembradas en la misma. You can also make a flat braid of sequins that form a surface or structure (scaffold) on which to sow cells. After lighting At one end of the fibers that constitute the braid, the structure will emit light that will stimulate the growth of the cells seeded therein.
Ejemplo 2. Aprovechamiento de la luz láser en Terapia Fotodinámica. Example 2. Use of laser light in Photodynamic Therapy.
Hay moléculas fotoactivables (cumarinas, feofórbido, etc.) que cuando son iluminadas con luz láser emiten singletes de oxígeno que son altamente oxidantes. Esta oxidación induce apoptosis celular y cuando estas células forman parte de un tumor, las células se eliminan, dando lugar a una terapia antitumoral [HENDERSON, B. W., WALDOW, S. M., MANG, T. S., POTTER, W. R., MALONE, P. B., & DOUGHERTY, T. J. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cáncer Research. 1985, Vol. 45(2), páginas 572-576], [HOPPER, C. Photodynamic therapy: a clinical reality in the treatment of cáncer. The Lancet Oncology. 2000. Vol. 1 (4), páginas 212-219]. Las moléculas fotoactivables no son tóxicas en ausencia de luz, por tanto, pueden administrarse de forma localizada o sistémica para que tengan acceso a las proximidades de las células tumorales. Por ello, si se inserta la hijuela en un tumor, a continuación de la administración de una molécula fotoactivable, la luz proporcionada por la misma produce la activación de la molécula que a su vez desencadenará la apoptosis de las células tumorales. Esta aplicación es especialmente adecuada para actuar sobre tumores localizados en estructuras orgánicas de tipo tubular, dada la distribución lineal de la luz de la hijuela. There are photoactivatable molecules (coumarins, feoforbide, etc.) that when illuminated with laser light emit singles of oxygen that are highly oxidizing. This oxidation induces cell apoptosis and when these cells are part of a tumor, the cells are removed, leading to antitumor therapy [HENDERSON, BW, WALDOW, SM, MANG, TS, POTTER, WR, MALONE, PB, & DOUGHERTY, TJ Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Research 1985, Vol. 45 (2), pages 572-576], [HOPPER, C. Photodynamic therapy: a clinical reality in the treatment of cancer. The Lancet Oncology. 2000. Vol. 1 (4), pages 212-219]. The photoactivatable molecules are not toxic in the absence of light, therefore, they can be administered locally or systemically so that they have access to the vicinity of the tumor cells. Therefore, if the little daughter is inserted into a tumor, following the administration of a photoactivatable molecule, the light provided by it produces activation of the molecule that in turn will trigger the apoptosis of the tumor cells. This application is especially suitable for acting on tumors located in organic tubular structures, given the linear distribution of the lumen of the grandmother.
Por otra parte, también puede funcionalizarse una hijuela con moléculas fotoactivables e implantarla en un tumor. Hecho esto, al aplicar luz a la hijuela, las células en contacto con ésta entran en apoptosis y desaparen. On the other hand, a grandmother with photoactivatable molecules can also be functionalized and implanted in a tumor. This done, when applying light to the daughter, the cells in contact with it go into apoptosis and disappear.
Ejemplo 3. Aprovechamiento de la luz láser en sutura fotoquímica. El mismo fenómeno descrito anteriormente funciona al activar con luz una molécula fotoactivable en contacto con colágeno. Las especies oxidativas producidas inducen un entrecruzamiento (crosslinking) en las fibras de colágeno, uniendo fuertemente dos piezas separadas del mismo. Este proceso se conoce como sutura fotoquímica (Photochemical Tissue Bonding), [CHAN, B. P., KOCHEVAR, I. E., & REDMOND, R. W. Enhancement of porcine skin graft adherence using a light-activated process. Journal of Surgical Research. 2002, Vol. 108(1 ), páginas 77-84], [JOHNSON, T. S., O'NEILL, A. C, MOTARJEM, P. M., AMANN, C, NGUYEN, T., RANDOLPH, M. A., & REDMOND, R. W. Photochemical tissue bonding: a promising technique for peripheral nerve repair. Journal of Surgical Research. 2007, Vol. 143(2), páginas 224-229]. Example 3. Use of laser light in photochemical suture. The same phenomenon described above works by activating a photoactivatable molecule in contact with collagen with light. The oxidative species produced induce crosslinking in the collagen fibers, strongly joining two separate pieces of it. This process is known as Photochemical Tissue Bonding, [CHAN, BP, KOCHEVAR, IE, & REDMOND, RW Enhancement of porcine skin graft adherence using a light-activated process. Journal of Surgical Research. 2002, Vol. 108 (1), pages 77-84], [JOHNSON, TS, O'NEILL, A. C, MOTARJEM, PM, AMANN, C, NGUYEN, T., RANDOLPH, MA, & REDMOND, RW Photochemical tissue bonding: a promising technique for peripheral nerve repair. Journal of Surgical Research. 2007, Vol. 143 (2), pages 224-229].
Por tanto, utilizando como sutura una hijuela funcionalizada con una molécula fotoactivable (rosa bengala con luz verde, por ejemplo), una vez iluminada produce un entrecruzamiento entre el colágeno de los bordes de la herida, acelerando la cicatrización. Therefore, using as a suture a functionalized daughter with a photoactivable molecule (rose flare with green light, for example), once illuminated produces a cross-linking between the collagen of the edges of the wound, accelerating healing.
Ejemplo 4: Aprovechamiento de luz láser en Optogenética Example 4: Use of laser light in Optogenetics
La optogenética es una tecnología que se basa en insertar en el cerebro neuronas que se han transformado con proteínas de membrana (opsinas) para responder a la luz láser azul abriendo los canales iónicos. Por tanto, un pulso de luz láser permite activar o desactivar estas neuronas, induciendo o frenando un potencial de acción, [CARDIN, J. A., CARLÉN, M., MELETIS, K., KNOBLICH, U., ZHANG, F., DEISSEROTH, K., & MOORE, C. I. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols. 2010, Vol. 5(2), páginas 247-254], [ZHANG, F., GRADINARU, V., ADAMANTIDIS, A. R., DURAND, R., AIRAN, R. D., DE LECEA, L, & DEISSEROTH, K. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols. 2010, Vol. 5(3), páginas 439-456]. Por ello, si se implanta en tejido cerebral la hijuela biocompatible y se ilumina con esa luz láser, se activan las neuronas específicas. Si interesa focalizar la luz en un punto, se utiliza la hijuela recubierta con un polímero biocompatible con un índice de refracción adecuado para que la luz se emita sólo por el extremo. Si se quiere estimular una zona amplia de tejido neural, con una distribución lineal, se emplea la hijuela en su configuración nativa. También se ha conseguido recubir la hijuela con una fina capa de polímero conductor, grafeno o un metal eléctricamente conductor que permite la transimisión de una señal eléctrica útil, bien para excitar eléctricamente zonas de tejidos, o bien para capturar y registrar señales bioeléctricas producidas por células durante una intervención neurofisiológica en la zona de tejido neural a estudiar. Optogenetics is a technology that is based on inserting in the brain neurons that have been transformed with membrane proteins (opsins) to respond to blue laser light by opening the ion channels. Therefore, a pulse of laser light allows to activate or deactivate these neurons, inducing or stopping an action potential, [CARDIN, JA, CARLÉN, M., MELETIS, K., KNOBLICH, U., ZHANG, F., DEISSEROTH, K., & MOORE, CI Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 2010, Vol. 5 (2), pages 247-254], [ZHANG, F., GRADINARU, V., ADAMANTIDIS, AR, DURAND, R., AIRAN, RD, DE LECEA, L, & DEISSEROTH, K. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols 2010, Vol. 5 (3), pages 439-456]. Therefore, if the biocompatible daughter is implanted in brain tissue and illuminated with that laser light, specific neurons are activated. If you are interested in focusing the light on a point, use the daughter-daughter coated with a biocompatible polymer with an adequate index of refraction so that the light is emitted only at the end. If you want to stimulate a wide area of neural tissue, with a linear distribution, the grandmother is used in its native configuration. It has also been possible to coat the grandmother with a thin layer of conductive polymer, graphene or an electrically conductive metal that allows the transmission of a useful electrical signal, either to electrically excite tissue areas, or to capture and record bioelectric signals produced by cells during a neurophysiological intervention in the area of neural tissue to study.
Ejemplo 5. Liberación de fármacos Dentro del amplio campo de la liberación controlada y dirigida de fármacos existe una estrategia consistente en encapsular fármacos en liposomas en cuya pared se integra un compuesto fotoactivable. Bajo un impulso de luz, este componente se activa, rompe las paredes del liposoma y libera su carga terapéutica [ÁLVAREZ-LORENZO, C, BROMBERG, L , & CONCHEIRO, A. Light-sensitive Intelligent Drug Delivery Systems. Photochemistry and Photobiology. 2009, Vol. 85(4), páginas 848-860], [YANG, X., LIU, X., LIU, Z., PU, F., REN, J., & QU, X. Near-lnfrared Light-Triggered, Targeted Drug Delivery to Cáncer Cells by Aptamer Gated Nanovehicles. Advanced Materials. 2012, Vol. 24(21 ), páginas 2890-2895]. Utilizando la hijuela en conjunción con este tipo de liposomas, fijados en su superficie, al emitir luz por la hijuela se libera la carga terapéutica de los liposomas fijados a su superficie. Example 5. Drug release Within the broad field of controlled and targeted drug release there is a strategy consisting of encapsulating drugs in liposomes in whose wall a photoactivable compound is integrated. Under a pulse of light, this component activates, breaks the liposome walls and releases its therapeutic load [ÁLVAREZ-LORENZO, C, BROMBERG, L, & CONCHEIRO, A. Light-sensitive Intelligent Drug Delivery Systems. Photochemistry and Photobiology. 2009, Vol. 85 (4), pages 848-860], [YANG, X., LIU, X., LIU, Z., PU, F., REN, J., & QU, X. Near-lnfrared Light -Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles. Advanced Materials 2012, Vol. 24 (21), pages 2890-2895]. Using the granddaughter in conjunction with this type of liposomes, fixed on its surface, when emitting light by the grandmother, the therapeutic load of the liposomes fixed to its surface is released.

Claims

REIVINDICACIONES
1 . Fibra de emisión lateral de luz que comprende: - un tramo de fibra de seda (3) producida a partir del procesamiento químico y mecánico de la glándula sericígena del gusano de seda, one . Lateral light emission fiber comprising: - a stretch of silk fiber (3) produced from the chemical and mechanical processing of the silkworm sericigen gland,
- un tramo de fibra óptica artificial (2),  - a section of artificial fiber optics (2),
- un acoplamiento de las fibras anteriores por uno de los extremos de cada una de ellas,  - a coupling of the previous fibers at one end of each of them,
- una fuente de luz conectada al extremo libre de la fibra artificial (1 ).  - a light source connected to the free end of the artificial fiber (1).
2. Fibra de emisión lateral de luz, según reivindicación anterior, caracterizada porque la fibra de seda se obtiene por tracción longitudinal de la glándula sericígena del gusano previamente acidificada. 2. Lateral light emission fiber, according to the preceding claim, characterized in that the silk fiber is obtained by longitudinal traction of the sericigenic gland of the previously acidified worm.
3. Fibra de emisión lateral de luz, según reivindicaciones anteriores, caracterizada porque la sección transversal de la fibra del gusano de seda tiene un diámetro comprendido entre 0.1 mm y 1 .0 mm. 3. Lateral light emission fiber according to previous claims, characterized in that the cross section of the silkworm fiber has a diameter between 0.1 mm and 1.0 mm.
4. Fibra de emisión lateral de luz, según reivindicaciones anteriores, caracterizada porque la fibra de seda es extraída de un gusano de seda de cualquiera de las razas del insecto Lepidóptero Bombyx morí. 4. Lateral light emission fiber, according to previous claims, characterized in that the silk fiber is extracted from a silkworm of any of the races of the Bombyx Mori Lepidoptera insect.
5. Fibra de emisión lateral de luz, según reivindicaciones anteriores, caracterizada porque la fibra artificial es de vidrio o de plástico. 5. Lateral light emission fiber, according to previous claims, characterized in that the artificial fiber is made of glass or plastic.
6. Fibra de emisión lateral de luz caracterizada porque las dos fibras se conectan por uno de sus extremos introduciendo éstos en un tubito hueco de diámetro interior igual al diámetro de la sección de las fibras. 6. Lateral light emission fiber characterized in that the two fibers are connected at one of their ends by inserting them into a hollow tube with an inside diameter equal to the diameter of the fiber section.
7. Fibra de emisión lateral de luz, según reivindicaciones anteriores, caracterizada porque la fibra de seda está recubierta, parcialmente o en toda su longitud, con polímeros conductores (polipirrol, PAÑI, etc.), o compuestos 7. Lateral light emission fiber, according to previous claims, characterized in that the silk fiber is covered, partially or in its entire length, with conductive polymers (polypyrrole, PAÑI, etc.), or compounds
14 14
HOJA DE REEMPLAZO (REGLA 26) de carbono conductores (grafeno, nanotubos de carbono, etc.), o metales como plata o cobre. REPLACEMENT SHEET (RULE 26) conductive carbon (graphene, carbon nanotubes, etc.), or metals such as silver or copper.
8. Uso de la fibra de emisión lateral de luz descrita según las reivindicaciones 1 - 6, para estimular el crecimiento de células nativas o células añadidas en un tejido. 8. Use of the lateral light-emitting fiber described according to claims 1-6, to stimulate the growth of native cells or added cells in a tissue.
9. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para la sutura de una herida en la que se promueva la proliferación de fibroblastos. 9. Use of the fiber of lateral emission of light, according to claims 1-6, for suturing a wound in which fibroblast proliferation is promoted.
10. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para trenzar una malla de fibra sobre la que sembrar células y favorecer su crecimiento. 10. Use of the lateral light emission fiber, according to claims 1-6, to braid a fiber mesh on which to sow cells and favor their growth.
1 1 . Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para eliminar células tumorales por inducción de apoptosis celular. eleven . Use of the lateral light emission fiber according to claims 1-6, to eliminate tumor cells by induction of cellular apoptosis.
12. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para eliminar células tumorales combinando la iluminación de la hijuela con la administración de una molécula fotoactivable. 12. Use of the lateral light emission fiber, according to claims 1-6, to eliminate tumor cells by combining the illumination of the grandmother with the administration of a photoactivatable molecule.
13. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para producir suturas de hijuela funcionalizadas con moléculas fotoactivables. 13. Use of the lateral light emission fiber, according to claims 1-6, to produce functionalized grandmother sutures with photoactivatable molecules.
14. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para activar neuronas específicas por inducción o supresión del potencial de acción. 14. Use of the fiber of lateral emission of light, according to claims 1-6, to activate specific neurons by induction or suppression of the action potential.
15. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -6, para activar la liberación de analgésicos y otros fármacos mediante la funcionalización de hijuelas con liposomas cargados y fotoactivables. 15. Use of the fiber of lateral emission of light, according to claims 1-6, to activate the release of analgesics and other drugs by functionalization of flakes with loaded and photoactivatable liposomes.
15 fifteen
HOJA DE REEMPLAZO (REGLA 26) REPLACEMENT SHEET (RULE 26)
16. Uso de la fibra de emisión lateral de luz, según reivindicaciones 1 -7, para transmitir señales eléctricas, durante una intervención neurofisiológica, con la zona biológica intervenida. 16. Use of the lateral light emission fiber, according to claims 1-7, to transmit electrical signals, during a neurophysiological intervention, with the intervened biological zone.
16 16
HOJA DE REEMPLAZO (REGLA 26)  REPLACEMENT SHEET (RULE 26)
PCT/ES2016/070120 2015-02-27 2016-02-24 Silk fibre with lateral light emission WO2016135364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201500176 2015-02-27
ES201500176A ES2534528B1 (en) 2015-02-27 2015-02-27 Silk fiber side light emission

Publications (1)

Publication Number Publication Date
WO2016135364A1 true WO2016135364A1 (en) 2016-09-01

Family

ID=52829501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070120 WO2016135364A1 (en) 2015-02-27 2016-02-24 Silk fibre with lateral light emission

Country Status (2)

Country Link
ES (1) ES2534528B1 (en)
WO (1) WO2016135364A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155490A1 (en) * 2001-04-18 2002-10-24 Skinner Nigel G. Particle based assay system
US20120244143A1 (en) * 2009-09-28 2012-09-27 Trustees Of Tufts College Drawn silk egel fibers and methods of making same
US20130310908A1 (en) * 2010-09-03 2013-11-21 Tufts University Plasmonic nanoparticle-doped silk materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155490A1 (en) * 2001-04-18 2002-10-24 Skinner Nigel G. Particle based assay system
US20120244143A1 (en) * 2009-09-28 2012-09-27 Trustees Of Tufts College Drawn silk egel fibers and methods of making same
US20130310908A1 (en) * 2010-09-03 2013-11-21 Tufts University Plasmonic nanoparticle-doped silk materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARDY J G ET AL.: "Polymeric materials based on silk proteins.", POLYMER, vol. 49, no. 20, 23 September 2008 (2008-09-23), GB, pages 4309 - 4327, XP025405242, ISSN: 0032-3861, DOI: doi:10.1016/j.polymer.2008.08.006 *
XIA ET AL.: "Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers.", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 68, no. 6, 19 December 2007 (2007-12-19), UK, pages 1471 - 1479, XP022527265, ISSN: 0266-3538, DOI: doi:10.1016/j.compscitech.2007.10.044 *

Also Published As

Publication number Publication date
ES2534528A1 (en) 2015-04-23
ES2534528B1 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
CN204840698U (en) Medical low light level therapeutic equipment
JP3648555B2 (en) Improved phototherapy device for irradiating a columnar environment
US20040073278A1 (en) Method of and device for therapeutic illumination of internal organs and tissues
US8088122B2 (en) Optical ear infection treatment device and method
Pearson et al. Lighting the path: light delivery strategies to activate photoresponsive biomaterials in vivo
US20110238002A1 (en) Device for photo-dynamic therapy of a living organism's tissues
Deng et al. A biodegradable, flexible photonic patch for in vivo phototherapy
ES2291035T3 (en) SYNERGISM OF DYNAMIC EFFECTS AND ELECTROPERMEABILIZATION ON CELL VITALITY AS A NEW CITOTOXIC AGENT.
Wilson et al. Photodynamic therapy
ES2534528B1 (en) Silk fiber side light emission
LT6795B (en) Laser therapy fiber optic probe
CN115006730A (en) Double-channel optogenetic method based on rare earth-based near-infrared nanomaterial relay, rare earth-based near-infrared nanomaterial system and application thereof
RU2320381C2 (en) Photo-ultrasonic device
CN205759152U (en) A kind of aciculiform optical dynamic therapy device
RU2055609C1 (en) Light therapeutic system
RU2539535C1 (en) Matrix laser emitter for physiotherapeutic apparatus
CN112516462A (en) Photoelectric combined instrument and photodynamic therapeutic apparatus
US20230045729A1 (en) Implantable light delivery device
KR101708904B1 (en) Acupuncture device for light acupuncture and medicine needle syringe
KR101913211B1 (en) Luminescent marker and Photodynamic therapy device using the luminescent marker
CN217187494U (en) Gastric cavity photodynamic therapy optical fiber with fixed air bag and adjustable shading sheath
Maisha et al. Light-emitting fabrics for photodynamic therapy
US20230359276A1 (en) Tissue-Integrating Neural Interfaces
CN113457013B (en) Neural interface device for treating arrhythmia
CN209475403U (en) The structure of optical dynamic therapy instrument

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754799

Country of ref document: EP

Kind code of ref document: A1