WO2016095194A1 - Power conversion and power factor correction circuit for power supply device - Google Patents

Power conversion and power factor correction circuit for power supply device Download PDF

Info

Publication number
WO2016095194A1
WO2016095194A1 PCT/CN2014/094333 CN2014094333W WO2016095194A1 WO 2016095194 A1 WO2016095194 A1 WO 2016095194A1 CN 2014094333 W CN2014094333 W CN 2014094333W WO 2016095194 A1 WO2016095194 A1 WO 2016095194A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mode
control
power
threshold
Prior art date
Application number
PCT/CN2014/094333
Other languages
French (fr)
Inventor
Carre Denise Scheidegger
Hongbin WEI
Gang Yao
Original Assignee
GE Lighting Solutions, LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Lighting Solutions, LLC filed Critical GE Lighting Solutions, LLC
Priority to CN201480084570.1A priority Critical patent/CN107210681B/en
Priority to PCT/CN2014/094333 priority patent/WO2016095194A1/en
Publication of WO2016095194A1 publication Critical patent/WO2016095194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the technical field relates generally to system having a power supply device (e.g., an indoor lighting system having a light emitting diode (LED) lighting driver or power supply) .
  • a power supply device e.g., an indoor lighting system having a light emitting diode (LED) lighting driver or power supply
  • the present invention relates to controlling high power factor (PF) and total harmonic distortion (THD) LED lighting driver or power supply.
  • PF power factor
  • TDD total harmonic distortion
  • PF is a ratio of the actual output power and the power drawn from the power source. A PF of “1” is typically desired. A current method for achieving PFC in low power applications is transition mode (TM) control.
  • TM transition mode
  • Some integrated circuits may include good PF ratio and low THD for a particular type of load such as a fixed load having a wide input voltage.
  • PF and the THD worsens when the load changes to a wide range. For example, from full power to a low percentage (e.g., 3%) of the full power load.
  • a boost circuit is typically used in the dimming circuit, and is controlled to operate at a TM with peak current control in order to save costs.
  • the current flowing through the boost circuit may be minimal, also the capacitance in the high line input may store a large amount of energy.
  • the energy stored may not be fully discharged causing poor THD and PF.
  • the various embodiments of the present disclosure are configured to provide a power conversion circuit and a method of controlling ZCD voltage in order to switch mode operations at deep dimming range, for example, in order to achieve gain in the PF and a low THD.
  • power conversion and power factor correction circuit for a power supply device.
  • the power conversion and power factor correction circuit includes a AC/DC converter and a DC/DC converter connected together and configured to convert received input power into output power, the DC/DC converter comprising a converting switch electrically coupled with the input. Also included is a circuit configured for receiving a sensing signal as selected by a user and converting the sensing signal into a control signal proportional to the output power and comparing the control signal with a threshold signal, and controlling a switching mode.
  • a method in one exemplary embodiment, includes selecting a sensing signal and converting the sensing signal into a control signal proportional to output power of the lighting driver. The method further includes comparing the control signal with a threshold signal of a threshold device; and controlling a switching mode.
  • FIG. 1 is a block diagram illustrating a power conversion and power factor correction circuit for a power supply device (e.g., a lighting driver) of an indoor lighting system that can be implemented within one or more embodiments of the present invention.
  • a power supply device e.g., a lighting driver
  • FIG. 2 is a circuit schematic diagram illustration of an exemplary the power conversion and power factor correction circuit shown in FIG. 1 that can be implemented within one or more embodiments of the present invention.
  • FIG. 3 is a circuit schematic of a mode switching circuit of the power conversion and power factor correction circuit shown in FIG. 2 that can be implemented within one or more embodiments of the present invention.
  • FIG. 4 is a flow diagram illustrating an exemplary method of implementing an embodiment of the present invention.
  • FIG. 5A and 5B are illustrations of the switching point for switching control modes in accordance with embodiments of the present invention.
  • Exemplary embodiments of the present invention provides method for controlling voltage of a lighting driver within an indoor lighting system by selecting in real-time, a sensing voltage to be used to sense output power to be supplied to the lighting elements of the lighting system, determining whether a voltage at a voltage point is greater than a threshold voltage, controlling the voltage at the voltage point based on a first control mode (e.g., a fixed on time mode (Ton) ) .
  • the controlling occurs when the voltage is greater than the threshold voltage.
  • the voltage is controlled at the voltage point based on a second control mode (e.g., a fixed off time mode (Toff) ) by performing a switching operation when the voltage is less than the threshold voltage.
  • FIG. 1 is a block diagram illustrating a power conversion and power factor correction circuit for a power supply device (e.g., a lighting driver) for an indoor lighting system that can be implemented within one or more embodiments of the present invention.
  • a power supply device e.g., a lighting driver
  • the power conversion and power factor correction circuit 100 performs power factor correction (PFC) and controls output power in an LED lighting system.
  • PFC power factor correction
  • the power conversion and power factor correction circuit not limited to performing PFC and controlling power in any particular operations of the LED lighting system, and can be applicable to several operations thereof.
  • the power conversion and power factor correction circuit 100 includes a filter 20 and an alternate current-to-direct current (AC/DC) converter 50, a boost converter having a direct current-to-direct current (DC/DC) converter 60 and an output power sampling circuit 70.
  • the power conversion and power factor correction circuit 100 provides a sensing voltage during performance of various operations, for example, a dimming operation, for example, of an LED lighting system.
  • the power conversion and power factor correction circuit 100 also switches the working mode of the boost converter.
  • Input power to the LED lighting system is alternating current (AC) power and is input into the filter 20 for filtering.
  • the filter 20 may be an electromagnetic interference (EMI) type filter for filtering the input power input to an LED lighting driver.
  • the filter 20 includes a plurality of chokes, capacitors and inductors for filtering undesirable EMI noise.
  • the AC power is then input into the AC/DC converter 50.
  • the voltage is varied to reduce the current flowing through the AC/DC converter 50.
  • the DC voltage from the AC/DC converter 50 is transmitted to the DC/DC converter 60 and then output to LEDs of the lighting system.
  • a sensing voltage V sense is selected and converted into a control voltage V control is selected and input to the output power sampling circuit 70, from a selection point, for example, the DC/DC converter 60 (indicated by arrow 82) .
  • the sensing voltage V sense may be a signal from a microcontroller, or other device being controlled by a smart signal.
  • the power conversion and power factor correction circuit 100 linearly senses the driver power of the LED driver in order to switch the operation of the boost converter (i.e., AC/DC converter 50) from a first control mode 90 (e.g., fixed on-time (Ton) ) to a second control mode 92 (e.g., fixed off-time (Toff) ) at low power (dimmed) applications.
  • a first control mode 90 e.g., fixed on-time (Ton)
  • a second control mode 92 e.g., fixed off-time (Toff)
  • the boost PFC working mode is changed to achieve longer switching on time of the boost converter when the control voltage is lower than a threshold voltage, this process results in lower current distortion and high PF, as desired.
  • the AC/DC converter 50 may be changed from the fixed Ton control to the fixed Toff control when the control voltage linearly reflecting the output power is lower than the threshold voltage.
  • the present invention is not limited to the power conversion and power factor correction circuit 100 being applicable to a dimming operation of the LED lighting system. Further, embodiments of the present invention can implement any combination of modes, for example, fixed Toff to fixed Ton and fixed Ton to fixed Toff. The embodiments can also implement a boundary conduction mode (BCM) to continuous conduction mode (CCM) and vice versa.
  • BCM boundary conduction mode
  • CCM continuous conduction mode
  • the power conversion and power correction circuit 100 is a dual mode circuit however the present invention is not limited hereto.
  • FIG. 2 is a circuit schematic diagram illustration of the exemplary power conversion and power factor correction circuit 100 shown in FIG. 1.
  • the power conversion and power factor correction circuit 100 includes a boost converter (i. e., the DC/DC converter circuit 60) .
  • the DC/DC converter circuit 60 can be a form of a buck converter, a cuk converter and other type of converter suitable for the purpose set forth herein.
  • the circuit 100 also includes a bridge rectifier circuit 110 that includes a plurality of diodes for delivering a rectified voltage V rect into the circuit 100.
  • the DC/DC converter 60 converts the rectified voltage V rect into an output power at the output terminal OUT for output to a load.
  • the DC/DC converter 60 also includes a transformer 115 comprising a primary winding 116 and secondary windings 118.
  • the DC/DC converter 60 having a first inductor 120 being the primary windings 116, a diode 122, a converting switch 124 and a plurality of output capacitors 126 and 128.
  • the converting switch 124 is coupled to the output terminal OUT.
  • the converting switch 124 can include a metal oxide semiconductor field effect transistor (MOSFET) , an insulated gate bipolar transistor (IGBT) or other suitable switch circuits.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • the circuit 100 also includes a power factor correction (PFC) control circuit 150 for shaping an input sinusoidal current, at the input of circuit 100, to be in phase with an input sinusoidal voltage and regulate the output power at the output terminal OUT.
  • PFC power factor correction
  • the PFC control circuit 150 includes a mode switching circuit 130 and a switch controller 140. Details regarding the mode switching circuit 130 will be discussed below with reference to FIG. 3.
  • the switch controller 140 includes an integrated circuit (IC) and receives a plurality of electrical signals at a plurality of input pins thereof, from the DC/DC converter 60.
  • the switch controller 140 also provides a switch signal to the converting switch 124.
  • the input pins include, for example, a INV pin 1, COMP pin 2, MULT pin 3, CS pin 4, ZCD pin 5, Ground GND pin 6, Gate Drive (GD) pin 7 and VCC pin 8.
  • the switch controller 140 is not limited to a particular type of switch controller and therefore include any switch controller suitable for the purpose set forth herein.
  • the input sinusoidal voltage is applied across the bridge rectifier circuit 110 (i.e., the AC/DC converter 50) , filtered by a capacitor 160, and applied across a voltage divider 162.
  • the controller supply voltage, Vcc is applied to the switch controller 140 at the Vcc pin 8 and is used to power the switch controller 140.
  • the converting switch 124 is coupled between the first inductor 120, and when the converting switch 124 is closed the first inductor 120 is connected to ground via resistors 125a, 125b, 125c and 125d, forming a controlled power switch path for charging and discharging of the first inductor 120.
  • a gate of the converting switch 124 is controlled by an output GD pin 7 of the switch controller 140.
  • the gate control is a function of input signals at the plurality of input pins of the switch controller 140 including for example, the ZCD pin 5, the COMP pin 2, the INV pin 1 and the MULT pin 3.
  • the ZCD pin 5 is coupled to the second inductor 121 via the mode switching circuit 130 for performing zero current detection and mode switching operations.
  • the switch controller 140 generates a startup signal at the GD pin 7 which switches on the converting switch 104.
  • the INV pin 1 and the COMP pin 2 are coupled to an intermediate node between two resistors 166 and 168.
  • a feedback capacitor 170 is provided for frequency compensation.
  • the switch controller 140 compares a sensed signal at the output terminal OUT with an internal reference voltage. The comparison maintains the output voltage at output terminal OUT constant by turning on and off of the converting switch 124.
  • a voltage across resistors 125a, 125b, 125c and 125d is applied to the CS pin 4 to determine a time when the converting switch 124 is switched off.
  • the MULT pin 3 is coupled between resistors of the voltage divider 162 to receive a power signal from the rectified power line (i.e., a portion of the V rect ) .
  • the power signal is used to set a peak current of the converting switch 104.
  • a capacitor 172 is coupled with the MULT pin 3 for filtering purposes.
  • the mode switching circuit 130 is coupled with the switch controller 140 and works in concert with the switch controller 140 to maintain a high PF and low THD for wide input range and wide output range.
  • the mode switching circuit 130 is coupled with the second inductor 121, and the ZCD pin 5 of the switch controller 140.
  • the mode switching circuit 130 receives a sensed voltage (V sense ) from the second inductor 121, linearly reflecting the output power.
  • the mode switching circuit 130 further receives a selected sensing voltage V sense and converts the sensing voltage V sense to a control voltage V control and performs a comparison of the control voltage V control and a threshold voltage to determine a switching point for switching between two switching modes. Additional details regarding the mode switching circuit 130 will be discussed below with reference to FIG. 3.
  • FIG. 3 is a circuit schematic of the mode switching circuit 130 of the power conversion and power factor correction circuit 100 shown in FIG. 2 that can be implemented within one or more embodiments of the present invention.
  • the mode switching circuit 130 comprises a mode decision unit 180 and an external unit 200.
  • the mode decision unit 180 includes a rectifier diode 182 coupled to a voltage divider 184 having a plurality of resistors 186 and 188, a threshold device (e.g., a Zener diode 190) which determines a threshold signal, a plurality of capacitors 191 and 192 coupled between the voltage divider 184 and the threshold device 190 for filtering.
  • the mode decision unit 180 also includes a switch 193, and a capacitor 194 and a resistor 195 coupled between an anode of the threshold device 190 and a gate of the switch 193.
  • the mode decision unit 180 is configured to receive sensing voltage V sense from the second inductor 121 of the ZCD circuitry.
  • the sensing voltage V sense is sensing the voltage change across the second inductor 121. This voltage decreases as the output power decreases because less current is flowing through the primary winding 116 of the first inductor 120. Thus, the voltage linearly reflects the power by decreasing as the output power decreases, providing an indication of when the power supply device (e.g., the lighting driver) is dimming.
  • a control voltage V control is determined from the output sampling circuit 70 depicted in FIG. 1, as determined by the user.
  • the sensing voltage V sense is rectified via the rectifier diode 182 and converted to a control voltage V control .
  • the control voltage V control changes with the sensing voltage V sense . That is, the control voltage V control linearly reflects the sensing voltage V sense .
  • both the sensing voltage V sensing and the control voltage Vcontrol is proportional to the output power. Since the output voltage is maintained constant, the output power is proportional to an output current or current flowing through the first inductor 120 or the second inductor 121 of the transformer 115.
  • a power sensor or current sensor may be coupled with the first or second inductors 120 and 121 to sense the output power directly and output the sensing voltage V sense .
  • the mode decision unit 180 then supplies the control voltage V control to the threshold device 190 between the resistors 186 and 188 of the voltage divider 184.
  • a threshold signal is generated at the threshold device 190 and is selectable.
  • the control voltage V control is therefore tunable to any selected threshold signal.
  • the threshold signal may be determined based on a reverse breakdown voltage of the threshold device 190.
  • the resistors 186 and 188 are configured to limit a current flowing through the threshold device 190 to protect the threshold device 190 and provide a voltage proportional to the control voltage V control to the threshold device 190.
  • a voltage across the threshold device 190 maintains a constant value (e.g., 6V) .
  • the current flowing through the threshold device 190 is then transmitted to the switch 193 and the voltage is supplied across the switch 193 and the switch is switched on. Power is then supplied to the external circuit 200 coupled with the mode decision unit 180.
  • the external circuit 200 includes a diode 202 having a cathode coupled with the ZCD pin 5 and an anode coupled with the drain of the switch 193.
  • the anode of the diode 202 is also coupled with a resistor 204 at an intermediate node.
  • the switch 193 When the switch 193 is switched on, the voltage level at the anode of the diode 202 is zero.
  • the external circuit 200 is blocked, no electrical signal from the gate of the converting switch 104 (depicted in FIG. 2) flows into the ZCD pin 5 (also depicted in FIG. 2) , and the boost converter is operating in control mode 1 (Fixed on time (Ton) control mode) .
  • the external circuit 200 further includes a resistor 204 coupled with the cathode of the diode 202 at an intermediate node.
  • the external circuit 200 also includes a plurality of capacitors 206 and 207, a resistor 210, and a diode 212 coupled with the GD pin 7 of the switch controller 140.
  • the threshold device 190 when it is determined at the threshold device, that the control voltage V control is less than the threshold signal, the threshold device 190 is blocked and the switch 193 is switched off.
  • the resistor 195, and the switch 193 or the threshold device 190, the resistor 188 and the switch 193 form a circuit path for dissipating power in the switch 193.
  • a drive voltage at the gate of the converting switch 124 is supplied to the ZCD pin 5 as the ZCD signal.
  • the switch controller 140 is configured to generate a second switch signal to the converting switch 124 and switches to a control mode 2 (fixed off time (Toff) control mode) . That is, when the switch 193 is open (i.e., turned off) the external circuit 200 is therefore able to electrically supply the ZCD pin 5 directly.
  • the external circuit 200 is based on the switch controller’s fixed off time mode (Toff) (control mode 2) . Since the circuit 200 is electrically supplying ZCD Pin 5 through diode 202, the PFC control circuit
  • the illustrious embodiments therefore enables a specific sensing voltage V sense to be selected as desired since the sensing voltage V sense reflects the dimming of the output power.
  • the output power can be sensed by a control voltage Vcontrol that is decreasing, to thereby control the switching point of the modes from control mode 1 to control mode 2 and vice versa.
  • FIG. 4 is a flow diagram illustrating an exemplary method 400 of implementing an embodiment of the present invention.
  • the method 400 begins at operation 410 where a sensing voltage is selected and converted to a control voltage proportional to output power. From operation 410 the process continues to operation 420. In operation 420, a determination is made as to whether the control voltage in the mode decision unit 180, is greater than or less than a threshold voltage at a threshold device. In operation 430, an on and off state of the switch 193 is performed along with switching of the control modes based on the outcome of the determination.
  • FIG. 5A and 5B are illustrations of the switching point for switching control modes in accordance with the embodiments of the present invention.
  • PF data for a standard lighting driver depicts the PF level at 0.6 when the output power is approximately 20.34 watts (W) .
  • the PF data for a PF improved lighting driver is depicted by line B and shows PF level at 0.85 when output power is at approximately 20.34W.
  • the PF level of the PF improved lighting driver is depicted by line C and shows the improved PF and a continued improvement in the PF after the switching mode point.
  • Line C shows the added Fixed on Time (Ton) control mode being used at the lowest dimming ranges to improve PF and THD.
  • the THD plot shows at approximately 20.34 W, and the standard lighting driver at line A1 having a THD level of approximately 40%.
  • the THD plot also shows PF improved lighting driver at line B1, having a THD level at approximately 30%and the PFC successfully initiated to Fixed on time (Ton) control mode with ZCD voltage sensing.
  • a THD improvement of approximately 22% is depicted by line C1.

Abstract

A method and a power conversion and power factor correction circuit (100) includes at least one switching mode (90, 92) for power supply device, an AC/DC converter (50) and a DC/DC converter (60) that converts input power received from an input, into output power. The DC/DC converter (60) includes a converter switch (124) electrically coupled with the input. The power conversion and power factor correction circuit (100) also includes a circuit that receives a sensing signal (Vsense) selected by a user, converts the sensing signal (Vsense) into a control signal (Vcontrol) proportional to the output power, compares the control signal (Vcontrol) with a threshold signal, and controls the switching mode (90, 92).

Description

POWER CONVERSTION AND POWER FACTOR CORRECTION CIRCUIT FOR POWER SUPPLY DEVICE I. Technical Field
The technical field relates generally to system having a power supply device (e.g., an indoor lighting system having a light emitting diode (LED) lighting driver or power supply) . In particularly, the present invention relates to controlling high power factor (PF) and total harmonic distortion (THD) LED lighting driver or power supply.
II. Background
Heat management plays an important role in an indoor lighting system. Therefore, dimming has become popular with the use of LEDs in the indoor lighting system.
PF is a ratio of the actual output power and the power drawn from the power source. A PF of “1” is typically desired. A current method for achieving PFC in low power applications is transition mode (TM) control.
Some integrated circuits (ICs) may include good PF ratio and low THD for a particular type of load such as a fixed load having a wide input voltage. In other ICs, PF and the THD worsens when the load changes to a wide range. For example, from full power to a low percentage (e.g., 3%) of the full power load.
Further, the PF and THD also worsen during deep dimming modes, especially for high line inputs. A boost circuit is typically used in the dimming circuit, and is controlled to operate at a TM with peak current control in order to save costs. When the power supply works at high line input and in deep diming mode, the current flowing through the boost circuit may be minimal, also the capacitance in the high  line input may store a large amount of energy. Thus, during dimming operation, the energy stored may not be fully discharged causing poor THD and PF.
III. Summary of the Embodiments
The various embodiments of the present disclosure are configured to provide a power conversion circuit and a method of controlling ZCD voltage in order to switch mode operations at deep dimming range, for example, in order to achieve gain in the PF and a low THD.
In one exemplary embodiment, power conversion and power factor correction circuit for a power supply device is provided. The power conversion and power factor correction circuit includes a AC/DC converter and a DC/DC converter connected together and configured to convert received input power into output power, the DC/DC converter comprising a converting switch electrically coupled with the input. Also included is a circuit configured for receiving a sensing signal as selected by a user and converting the sensing signal into a control signal proportional to the output power and comparing the control signal with a threshold signal, and controlling a switching mode.
In one exemplary embodiment, a method is provided. The method includes selecting a sensing signal and converting the sensing signal into a control signal proportional to output power of the lighting driver. The method further includes comparing the control signal with a threshold signal of a threshold device; and controlling a switching mode.
The foregoing has broadly outlined some of the aspects and features of various embodiments, which should be construed to be merely illustrative of various potential applications of the disclosure. Other beneficial results can be obtained by  applying the disclosed information in a different manner or by combining various aspects of the disclosed embodiments. Accordingly, other aspects and a more comprehensive understanding may be obtained by referring to the detailed description of the exemplary embodiments taken in conjunction with the accompanying drawings, in addition to the scope defined by the claims.
IV. DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating a power conversion and power factor correction circuit for a power supply device (e.g., a lighting driver) of an indoor lighting system that can be implemented within one or more embodiments of the present invention.
FIG. 2 is a circuit schematic diagram illustration of an exemplary the power conversion and power factor correction circuit shown in FIG. 1 that can be implemented within one or more embodiments of the present invention.
FIG. 3 is a circuit schematic of a mode switching circuit of the power conversion and power factor correction circuit shown in FIG. 2 that can be implemented within one or more embodiments of the present invention.
FIG. 4 is a flow diagram illustrating an exemplary method of implementing an embodiment of the present invention.
FIG. 5A and 5B are illustrations of the switching point for switching control modes in accordance with embodiments of the present invention.
The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting the disclosure. Given the following enabling description of the drawings, the novel aspects of the present disclosure should become evident to a person of ordinary skill in the art. This detailed description uses  numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of embodiments of the invention.
V. DETAILED DESCRIPTION OF THE EMBODIMENTS
As required, detailed embodiments are disclosed herein. It must be understood that the disclosed embodiments are merely exemplary of various and alternative forms. As used herein, the word “exemplary” is used expansively to refer to embodiments that serve as illustrations, specimens, models, or patterns. The figures are not necessarily to scale and some features may be exaggerated or minimized to show details of particular components. In other instances, well-known components, systems, materials, or methods that are known to those having ordinary skill in the art have not been described in detail in order to avoid obscuring the present disclosure. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art.
Exemplary embodiments of the present invention provides method for controlling voltage of a lighting driver within an indoor lighting system by selecting in real-time, a sensing voltage to be used to sense output power to be supplied to the lighting elements of the lighting system, determining whether a voltage at a voltage point is greater than a threshold voltage, controlling the voltage at the voltage point based on a first control mode (e.g., a fixed on time mode (Ton) ) . The controlling occurs when the voltage is greater than the threshold voltage. The voltage is controlled at the voltage point based on a second control mode (e.g., a fixed off time mode (Toff) ) by performing a switching operation when the voltage is less than the threshold voltage.
FIG. 1 is a block diagram illustrating a power conversion and power factor correction circuit for a power supply device (e.g., a lighting driver) for an indoor lighting system that can be implemented within one or more embodiments of the present invention.
As shown in FIG. 1, the power conversion and power factor correction circuit 100 performs power factor correction (PFC) and controls output power in an LED lighting system. The power conversion and power factor correction circuit not limited to performing PFC and controlling power in any particular operations of the LED lighting system, and can be applicable to several operations thereof.
The power conversion and power factor correction circuit 100 includes a filter 20 and an alternate current-to-direct current (AC/DC) converter 50, a boost converter having a direct current-to-direct current (DC/DC) converter 60 and an output power sampling circuit 70. The power conversion and power factor correction circuit 100 provides a sensing voltage during performance of various operations, for example, a dimming operation, for example, of an LED lighting system. The power conversion and power factor correction circuit 100 also switches the working mode of the boost converter.
Input power to the LED lighting system is alternating current (AC) power and is input into the filter 20 for filtering. The filter 20 may be an electromagnetic interference (EMI) type filter for filtering the input power input to an LED lighting driver. The filter 20 includes a plurality of chokes, capacitors and inductors for filtering undesirable EMI noise.
Upon filtering, the AC power is then input into the AC/DC converter 50. During dimming, the voltage is varied to reduce the current flowing through the  AC/DC converter 50. The DC voltage from the AC/DC converter 50 is transmitted to the DC/DC converter 60 and then output to LEDs of the lighting system.
According to the embodiments, a sensing voltage Vsense is selected and converted into a control voltage Vcontrol is selected and input to the output power sampling circuit 70, from a selection point, for example, the DC/DC converter 60 (indicated by arrow 82) .
The sensing voltage Vsense may be a signal from a microcontroller, or other device being controlled by a smart signal.
The power conversion and power factor correction circuit 100 linearly senses the driver power of the LED driver in order to switch the operation of the boost converter (i.e., AC/DC converter 50) from a first control mode 90 (e.g., fixed on-time (Ton) ) to a second control mode 92 (e.g., fixed off-time (Toff) ) at low power (dimmed) applications. Thus, the boost PFC working mode is changed to achieve longer switching on time of the boost converter when the control voltage is lower than a threshold voltage, this process results in lower current distortion and high PF, as desired. By way of example, the AC/DC converter 50 may be changed from the fixed Ton control to the fixed Toff control when the control voltage linearly reflecting the output power is lower than the threshold voltage.
The present invention is not limited to the power conversion and power factor correction circuit 100 being applicable to a dimming operation of the LED lighting system. Further, embodiments of the present invention can implement any combination of modes, for example, fixed Toff to fixed Ton and fixed Ton to fixed Toff. The embodiments can also implement a boundary conduction mode (BCM) to continuous conduction mode (CCM) and vice versa.
Further, one or more embodiments of the present invention will now be discussed in Fig. 2 with reference to the power conversion and power correction circuit 100. By way of example, the power conversion and power correction circuit 100 is a dual mode circuit however the present invention is not limited hereto.
FIG. 2 is a circuit schematic diagram illustration of the exemplary power conversion and power factor correction circuit 100 shown in FIG. 1. The power conversion and power factor correction circuit 100 includes a boost converter (i. e., the DC/DC converter circuit 60) . The DC/DC converter circuit 60can be a form of a buck converter, a cuk converter and other type of converter suitable for the purpose set forth herein.
The circuit 100 also includes a bridge rectifier circuit 110 that includes a plurality of diodes for delivering a rectified voltage Vrect into the circuit 100. The DC/DC converter 60converts the rectified voltage Vrect into an output power at the output terminal OUT for output to a load. The DC/DC converter 60 also includes a transformer 115 comprising a primary winding 116 and secondary windings 118.
Additionally, the DC/DC converter 60having a first inductor 120 being the primary windings 116, a diode 122, a converting switch 124 and a plurality of  output capacitors  126 and 128. The converting switch 124 is coupled to the output terminal OUT. The converting switch 124 can include a metal oxide semiconductor field effect transistor (MOSFET) , an insulated gate bipolar transistor (IGBT) or other suitable switch circuits.
The circuit 100 also includes a power factor correction (PFC) control circuit 150 for shaping an input sinusoidal current, at the input of circuit 100, to be in  phase with an input sinusoidal voltage and regulate the output power at the output terminal OUT.
According to the embodiments, the PFC control circuit 150 includes a mode switching circuit 130 and a switch controller 140. Details regarding the mode switching circuit 130 will be discussed below with reference to FIG. 3.
As depicted in FIG. 2, the switch controller 140 includes an integrated circuit (IC) and receives a plurality of electrical signals at a plurality of input pins thereof, from the DC/DC converter 60. The switch controller 140 also provides a switch signal to the converting switch 124. The input pins include, for example, a INV pin 1, COMP pin 2, MULT pin 3, CS pin 4, ZCD pin 5, Ground GND pin 6, Gate Drive (GD) pin 7 and VCC pin 8. The switch controller 140 is not limited to a particular type of switch controller and therefore include any switch controller suitable for the purpose set forth herein.
During operation of the circuit 100, the input sinusoidal voltage is applied across the bridge rectifier circuit 110 (i.e., the AC/DC converter 50) , filtered by a capacitor 160, and applied across a voltage divider 162. The controller supply voltage, Vcc, is applied to the switch controller 140 at the Vcc pin 8 and is used to power the switch controller 140.
The converting switch 124 is coupled between the first inductor 120, and when the converting switch 124 is closed the first inductor 120 is connected to ground via resistors 125a, 125b, 125c and 125d, forming a controlled power switch path for charging and discharging of the first inductor 120. A gate of the converting switch 124 is controlled by an output GD pin 7 of the switch controller 140. The gate control is a function of input signals at the plurality of input pins of the switch controller 140  including for example, the ZCD pin 5, the COMP pin 2, the INV pin 1 and the MULT pin 3.
The ZCD pin 5 is coupled to the second inductor 121 via the mode switching circuit 130 for performing zero current detection and mode switching operations. The switch controller 140 generates a startup signal at the GD pin 7 which switches on the converting switch 104. The INV pin 1 and the COMP pin 2 are coupled to an intermediate node between two  resistors  166 and 168. A feedback capacitor 170 is provided for frequency compensation. The switch controller 140 compares a sensed signal at the output terminal OUT with an internal reference voltage. The comparison maintains the output voltage at output terminal OUT constant by turning on and off of the converting switch 124. A voltage across resistors 125a, 125b, 125c and 125d is applied to the CS pin 4 to determine a time when the converting switch 124 is switched off. Further, the MULT pin 3 is coupled between resistors of the voltage divider 162 to receive a power signal from the rectified power line (i.e., a portion of the Vrect) . The power signal is used to set a peak current of the converting switch 104. Further, a capacitor 172 is coupled with the MULT pin 3 for filtering purposes.
As shown in FIG. 2, the mode switching circuit 130 is coupled with the switch controller 140 and works in concert with the switch controller 140 to maintain a high PF and low THD for wide input range and wide output range. The mode switching circuit 130 is coupled with the second inductor 121, and the ZCD pin 5 of the switch controller 140. The mode switching circuit 130 receives a sensed voltage (Vsense) from the second inductor 121, linearly reflecting the output power. The mode switching circuit 130 further receives a selected sensing voltage Vsense and converts the sensing voltage Vsense to a control voltage Vcontrol and performs a comparison of the  control voltage Vcontrol and a threshold voltage to determine a switching point for switching between two switching modes. Additional details regarding the mode switching circuit 130 will be discussed below with reference to FIG. 3.
FIG. 3 is a circuit schematic of the mode switching circuit 130 of the power conversion and power factor correction circuit 100 shown in FIG. 2 that can be implemented within one or more embodiments of the present invention. The mode switching circuit 130 comprises a mode decision unit 180 and an external unit 200.
According to one or more embodiments, the mode decision unit 180 includes a rectifier diode 182 coupled to a voltage divider 184 having a plurality of  resistors  186 and 188, a threshold device (e.g., a Zener diode 190) which determines a threshold signal, a plurality of  capacitors  191 and 192 coupled between the voltage divider 184 and the threshold device 190 for filtering. The mode decision unit 180 also includes a switch 193, and a capacitor 194 and a resistor 195 coupled between an anode of the threshold device 190 and a gate of the switch 193.
The mode decision unit 180 is configured to receive sensing voltage Vsense from the second inductor 121 of the ZCD circuitry. The sensing voltage Vsense is sensing the voltage change across the second inductor 121. This voltage decreases as the output power decreases because less current is flowing through the primary winding 116 of the first inductor 120. Thus, the voltage linearly reflects the power by decreasing as the output power decreases, providing an indication of when the power supply device (e.g., the lighting driver) is dimming. Based on the sensing voltage, a control voltage Vcontrol is determined from the output sampling circuit 70 depicted in FIG. 1, as determined by the user. The sensing voltage Vsense is rectified via the rectifier diode 182 and converted to a control voltage Vcontrol. The control voltage Vcontrol changes with the sensing voltage Vsense. That is, the control voltage Vcontrol  linearly reflects the sensing voltage Vsense. Thus, both the sensing voltage Vsensing and the control voltage Vcontrol is proportional to the output power. Since the output voltage is maintained constant, the output power is proportional to an output current or current flowing through the first inductor 120 or the second inductor 121 of the transformer 115. Thus, in one or more embodiments, a power sensor or current sensor may be coupled with the first or  second inductors  120 and 121 to sense the output power directly and output the sensing voltage Vsense.
The mode decision unit 180 then supplies the control voltage Vcontrol to the threshold device 190 between the  resistors  186 and 188 of the voltage divider 184. A threshold signal is generated at the threshold device 190 and is selectable. The control voltage Vcontrol is therefore tunable to any selected threshold signal. According to one embodiment, the threshold signal may be determined based on a reverse breakdown voltage of the threshold device 190. The  resistors  186 and 188 are configured to limit a current flowing through the threshold device 190 to protect the threshold device 190 and provide a voltage proportional to the control voltage Vcontrol to the threshold device 190.
When the control voltage Vcontrol is greater than the threshold signal, a voltage across the threshold device 190 maintains a constant value (e.g., 6V) . The current flowing through the threshold device 190 is then transmitted to the switch 193 and the voltage is supplied across the switch 193 and the switch is switched on. Power is then supplied to the external circuit 200 coupled with the mode decision unit 180.
According to one or more embodiments, the external circuit 200 includes a diode 202 having a cathode coupled with the ZCD pin 5 and an anode coupled with the drain of the switch 193. The anode of the diode 202 is also coupled with a resistor 204 at an intermediate node. When the switch 193 is switched on, the voltage level at  the anode of the diode 202 is zero. As a result, the external circuit 200 is blocked, no electrical signal from the gate of the converting switch 104 (depicted in FIG. 2) flows into the ZCD pin 5 (also depicted in FIG. 2) , and the boost converter is operating in control mode 1 (Fixed on time (Ton) control mode) .
The external circuit 200 further includes a resistor 204 coupled with the cathode of the diode 202 at an intermediate node. The external circuit 200 also includes a plurality of  capacitors  206 and 207, a resistor 210, and a diode 212 coupled with the GD pin 7 of the switch controller 140.
Alternatively, when it is determined at the threshold device, that the control voltage Vcontrol is less than the threshold signal, the threshold device 190 is blocked and the switch 193 is switched off. The resistor 195, and the switch 193 or the threshold device 190, the resistor 188 and the switch 193 form a circuit path for dissipating power in the switch 193. A drive voltage at the gate of the converting switch 124 is supplied to the ZCD pin 5 as the ZCD signal. The switch controller 140 is configured to generate a second switch signal to the converting switch 124 and switches to a control mode 2 (fixed off time (Toff) control mode) . That is, when the switch 193 is open (i.e., turned off) the external circuit 200 is therefore able to electrically supply the ZCD pin 5 directly. The external circuit 200 is based on the switch controller’s fixed off time mode (Toff) (control mode 2) . Since the circuit 200 is electrically supplying ZCD Pin 5 through diode 202, the PFC control circuit is altered to be Toff.
The illustrious embodiments therefore enables a specific sensing voltage Vsense to be selected as desired since the sensing voltage Vsense reflects the dimming of the output power. Thus, the output power can be sensed by a control voltage  Vcontrol that is decreasing, to thereby control the switching point of the modes from control mode 1 to control mode 2 and vice versa.
FIG. 4 is a flow diagram illustrating an exemplary method 400 of implementing an embodiment of the present invention. The method 400 begins at operation 410 where a sensing voltage is selected and converted to a control voltage proportional to output power. From operation 410 the process continues to operation 420. In operation 420, a determination is made as to whether the control voltage in the mode decision unit 180, is greater than or less than a threshold voltage at a threshold device. In operation 430, an on and off state of the switch 193 is performed along with switching of the control modes based on the outcome of the determination.
FIG. 5A and 5B are illustrations of the switching point for switching control modes in accordance with the embodiments of the present invention.
In Fig. 5A, PF data for a standard lighting driver, as shown by line A, depicts the PF level at 0.6 when the output power is approximately 20.34 watts (W) . The PF data for a PF improved lighting driver is depicted by line B and shows PF level at 0.85 when output power is at approximately 20.34W.
Additionally, the PF level of the PF improved lighting driver is depicted by line C and shows the improved PF and a continued improvement in the PF after the switching mode point. Line C shows the added Fixed on Time (Ton) control mode being used at the lowest dimming ranges to improve PF and THD.
As shown in FIG. 5B, the THD plot shows at approximately 20.34 W, and the standard lighting driver at line A1 having a THD level of approximately 40%. The THD plot also shows PF improved lighting driver at line B1, having a THD level at approximately 30%and the PFC successfully initiated to Fixed on time (Ton)  control mode with ZCD voltage sensing. A THD improvement of approximately 22%is depicted by line C1.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Parts List
Figure 1
100 –Power Conversion and Power Factor Correction circuit
20 –Filter
50 –AC/DC converter
60 –DC/DC converter
70 –Sampling circuit
82 –Arrow
90 –Control mode 1
92 –Control mode 2
Figure 2
100 –Power Conversion and Power Factor Correction circuit
50 –AC/DC converter
110 –Bridge rectifier circuit
115 - Transformer
116 –Primary winding
118 –Secondary windings
120 –First inductor
121 –Second inductor
122 –Diode
124 –Converting switch
125a, b, c, d -Resistors
126 –Output capacitor
128 –Output capacitor
130 –Mode Switching circuit
140 –Switch controller
150 –PFC control circuit
160 –Capacitor
162 –Voltage divider
166 –Resistor
168 –Resistor
170 –Feedback capacitor
172 –Capacitor
Figure 3
130 –Mode Switching circuit
182 –Rectifier diode
184 –Voltage divider
186 –Resistor
188 –Resistor
190 –Threshold device
191 –Capacitor
192 –Capacitor
193 –Switch
194 –Capacitor
195 –Resistor
200 –External circuit
202 –Diode
204 –Resistor
206 -Capacitor
207 –Capacitor
210 -Resistor
212 –Diode
Figure 4
400 –Exemplary method
410, 420, 430 –Steps

Claims (21)

  1. A power conversion and power factor correction circuit including at least one switching mode for power supply device comprising:
    an AC/DC converter and a DC/DC converter connected together and configured to convert input power, into output power, and the DC/DC converter comprising a converter switch electrically coupled with the input;
    a circuit configured to:
    receive a sensing signal selected by a user,
    convert the sensing signal into a control signal proportional to the output power,
    compare the control signal with a threshold signal, and
    control the switching mode.
  2. The power conversion and power factor correction circuit of claim 1, wherein the power supply device comprises a lighting driver.
  3. The power conversion and power factor correction circuit of claim 1, wherein when the control signal is greater than the threshold signal, the mode switch operation switches to a first control mode and when the control signal is less than the threshold signal, the mode switch operation switches to a second control mode.
  4. The power conversion and power factor correction circuit of claim 3, wherein the first control mode is a fixed on time control mode, and the second control mode is a fixed off time control mode.
  5. The power conversion and power factor correction circuit of claim 1, wherein the sensing signal is selected from an external control device.
  6. The power conversion and power factor correction circuit of claim 1, wherein the circuit comprises:
    a mode switching circuit configured to:
    receive the sensing signal and convert the sensing signal into the control signal proportionally reflecting the output power; and
    compare the control signal with the threshold signal to output a ZCD signal.
  7. The power conversion and power factor correction circuit of claim 6, further comprising:
    a switch controller coupled with the mode switching circuit and configured to drive the converting switch based on the ZCD signal received.
  8. The power conversion and power factor correction circuit of claim 6, wherein the mode switching circuit comprises:
    a mode decision unit comprising a switch and a threshold device coupled with a gate of the switch, and configured to compare the control signal to the threshold signal and determine the ZCD signal to be generated, and an on or off state of the switch.
  9. The power conversion and power factor correction circuit of claim 8, wherein when the control signal is greater than the threshold signal, the switch is turned to an on state, and the DC/DC converter is operating in the first control mode, and when the control signal is less than the threshold signal, the switch is turned to an off state, and the DC/DC converter is operating in the second control mode.
  10. The power conversion and power factor correction circuit of claim 8, wherein the threshold device comprises a Zener diode, and a reverse breakdown voltage of the Zener diode is the threshold signal.
  11. The power conversion and power factor correction circuit of claim 7, wherein the mode switching circuit further comprises an external circuit in communication with the mode decision unit and configured to generate the ZCD signal when the control signal is less than the threshold signal.
  12. A power factor correction circuit including at least one switching mode for a power supply device, comprising:
    a mode switching circuit configured to:
    receive a sensing signal selected by a user,
    convert the sensing signal to a control signal proportional to output power,
    compare the control signal with a threshold signal, and
    control the at least one switching mode.
  13. The power factor correction circuit of claim 12, wherein the power supply device comprising a lighting driver.
  14. The power factor correction circuit of claim 12, wherein the mode switching circuit comprises:
    a threshold device configured to receive the control signal, and to control a ZCD signal, by comparing the control signal with a threshold signal of the threshold device.
  15. The power factor correction circuit of claim 14, wherein the mode switching circuit further comprises:
    a mode decision unit comprising a switch and the threshold device coupled with a gate of the switch, and configured to compare the control signal to the threshold signal and determine the ZCD signal to be generated, and an on or off state of the switch.
  16. The power factor correction circuit of claim 15, wherein when the control signal is greater than the threshold signal, the switch is turned to an on state, and the DC/DC converter is operating in the first control mode, and when the control signal is less than the threshold signal, the switch is turned to an off state, and the DC/DC converter is operating in the second control mode.
  17. The power factor correction circuit of claim 15, wherein the threshold device comprises a Zener diode, and a reverse breakdown voltage of the Zener diode is the threshold signal.
  18. The power factor correction circuit of claim 15, wherein the mode switching circuit further comprises an external circuit in communication with the mode decision unit and configured to generate the ZCD signal when the control signal is less than the threshold signal.
  19. A method comprising:
    selecting a sensing signal;
    converting the sensing signal into a control signal proportional to output power;
    comparing the control signal with a threshold
    signal of a threshold device; and
    controlling a switching mode.
  20. The method of claim 19, further comprising:
    switching, aswitch, between an on and off state based on the comparison of the control signal and the threshold signal,
    wherein when the control signal is greater than the threshold signal, the switch is turned to an on state, and the switching mode includes switching to a first control mode, and
    when the control signal is less than the threshold signal, the switch is turned to an off state, and the switching mode includes switching to a second control mode.
  21. The method of claim 20, further comprising:
    generating a ZCD signal by an external circuit when the control signal is less than the threshold signal.
PCT/CN2014/094333 2014-12-19 2014-12-19 Power conversion and power factor correction circuit for power supply device WO2016095194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480084570.1A CN107210681B (en) 2014-12-19 2014-12-19 Power conversion and power factor correction circuit for power supply device
PCT/CN2014/094333 WO2016095194A1 (en) 2014-12-19 2014-12-19 Power conversion and power factor correction circuit for power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094333 WO2016095194A1 (en) 2014-12-19 2014-12-19 Power conversion and power factor correction circuit for power supply device

Publications (1)

Publication Number Publication Date
WO2016095194A1 true WO2016095194A1 (en) 2016-06-23

Family

ID=56125654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094333 WO2016095194A1 (en) 2014-12-19 2014-12-19 Power conversion and power factor correction circuit for power supply device

Country Status (2)

Country Link
CN (1) CN107210681B (en)
WO (1) WO2016095194A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086335B (en) * 2018-01-26 2024-03-22 Abb瑞士股份有限公司 Frequency control circuit for use in power factor correction circuit
US10531527B1 (en) * 2019-04-26 2020-01-07 Infineon Technologies Ag Circuit for controlling delivery of an electrical signal to one or more light-emitting diode strings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110593A1 (en) * 2008-11-03 2010-05-06 Silicon Mitus, Inc. Power factor correction circuit and driving method thereof
US20110095731A1 (en) * 2009-10-22 2011-04-28 Silitek Electronic (Guangzhou) Co., Ltd. Power factor correction controller, controlling method thereof, and electric power converter using the same
US20130127353A1 (en) * 2011-11-22 2013-05-23 Cree, Inc. Driving Circuits for Solid-State Lighting Apparatus With High Voltage LED Components and Related Methods
US20130141002A1 (en) * 2011-12-05 2013-06-06 Panasonic Corporation Lighting apparatus and illuminating fixture with the same
US8810146B1 (en) * 2011-11-04 2014-08-19 Universal Lighting Technologies, Inc. Lighting device with circuit and method for detecting power converter activity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387183B2 (en) * 2009-07-08 2014-01-15 サンケン電気株式会社 Power factor correction circuit
JP5576818B2 (en) * 2011-03-22 2014-08-20 パナソニック株式会社 Lighting device and lighting fixture using the same
CN103580467B (en) * 2012-07-18 2017-08-25 欧司朗股份有限公司 Circuit of power factor correction and its control method, drive device and lighting unit
CN105305805B (en) * 2014-07-23 2018-09-21 通用电气照明解决方案有限公司 Power factor correcting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110593A1 (en) * 2008-11-03 2010-05-06 Silicon Mitus, Inc. Power factor correction circuit and driving method thereof
US20110095731A1 (en) * 2009-10-22 2011-04-28 Silitek Electronic (Guangzhou) Co., Ltd. Power factor correction controller, controlling method thereof, and electric power converter using the same
US8810146B1 (en) * 2011-11-04 2014-08-19 Universal Lighting Technologies, Inc. Lighting device with circuit and method for detecting power converter activity
US20130127353A1 (en) * 2011-11-22 2013-05-23 Cree, Inc. Driving Circuits for Solid-State Lighting Apparatus With High Voltage LED Components and Related Methods
US20130141002A1 (en) * 2011-12-05 2013-06-06 Panasonic Corporation Lighting apparatus and illuminating fixture with the same

Also Published As

Publication number Publication date
CN107210681B (en) 2021-03-12
CN107210681A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
CN205160392U (en) System for an equipment and be used for power conversion for power transistor driver of control power circuit
US10447146B2 (en) Method for controlling a power factor correction circuit, power factor correction circuit and operating device for an illuminant
US8593069B2 (en) Power converter with compensation circuit for adjusting output current provided to a constant load
US9300215B2 (en) Dimmable LED power supply with power factor control
US8901851B2 (en) TRIAC dimmer compatible LED driver and method thereof
US9502963B2 (en) Switching power supply device, switching power supply control method and electronic apparatus
US9083245B2 (en) Switching power supply with optimized THD and control method thereof
US8324822B2 (en) System and method for dimmable constant power light driver
US10028340B2 (en) Wall mounted AC to DC converter gang box
US9241381B2 (en) LED driving circuit, control circuit and associated current sensing circuit
US9431895B2 (en) High power-factor control circuit and power supply
US8139378B2 (en) LED dimmer device adapted for use in dimmer
TW201440574A (en) DC Power-Supply Apparatus
US10285231B2 (en) Switching regulator for operating luminaires, featuring peak current value controlling and mean current value detection
WO2016014250A1 (en) Power factor correction apparatus
TW201328417A (en) Driving circuits, methods and controllers thereof for driving light sources
TWI505746B (en) Circuits and method for powering led light source and power converter thereof
US9433060B2 (en) Power factor correction circuit, operating device for a light-emitting means and method for controlling a power factor correction circuit
WO2016095194A1 (en) Power conversion and power factor correction circuit for power supply device
CN102655700A (en) Control method of continuous current detection and floating based constant-current LED (light-emitting diode) driver
KR102207025B1 (en) Dimming LED circuit enhancement DC/DC controller integrated circuit
JP6550876B2 (en) LED power supply device and LED lighting device
CN117279153A (en) Light modulator compatible LED driving circuit, driving method and lighting system
Molina et al. Design and evaluation of a 28W solid state lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908229

Country of ref document: EP

Kind code of ref document: A1