WO2015081872A1 - Sample tube assemblies and pipette tip with improved leakage prevention - Google Patents

Sample tube assemblies and pipette tip with improved leakage prevention Download PDF

Info

Publication number
WO2015081872A1
WO2015081872A1 PCT/CN2014/093033 CN2014093033W WO2015081872A1 WO 2015081872 A1 WO2015081872 A1 WO 2015081872A1 CN 2014093033 W CN2014093033 W CN 2014093033W WO 2015081872 A1 WO2015081872 A1 WO 2015081872A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
upper wall
wall section
vessel body
sealing cap
Prior art date
Application number
PCT/CN2014/093033
Other languages
French (fr)
Inventor
Weiming Yu
Original Assignee
Gene Era Biotech Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gene Era Biotech Co. Ltd. filed Critical Gene Era Biotech Co. Ltd.
Priority to CN201480066330.9A priority Critical patent/CN106103686A/en
Publication of WO2015081872A1 publication Critical patent/WO2015081872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/043Hinged closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid

Definitions

  • the present invention generally relates to sample tubes for handling liquid reagents and pipette tips for transferring liquids, and particularly to sample tubes with improved leakage prevention especially suitable for thermocycling reactions, sample preparation and storage, and pipette tips with improved leakage and cross-contamination prevention.
  • the present invention provides sample tube assemblies with improved leakage protection. Using such sample tube assemblies effectively prevents sample leakage from contaminating the experimental environment.
  • the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body.
  • the sample tube includes a sealing cap comprising a substantially cylindrically shaped member, when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section.
  • the sample tube further includes an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
  • the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body; a sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and an adsorbent layer attached to the sealing cap, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
  • the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body; a sealing cap having a substantially cylindrically shaped member, wherein the substantially cylindrically shaped member is skirt like, and wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow vessel body for closing the opening.
  • the present invention provides a sample tube strip.
  • the sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether, wherein each of the hollow vessel bodies comprises an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
  • the present invention provides a sample tube strip.
  • the sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether, each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and each sealing cap having an adsorbent layer, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
  • the present invention provides a sample tube strip.
  • the sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether; each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow
  • the present invention provides a multiwell plate assembly.
  • the multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; wherein each of the wells comprises an adsorbent layer attached to an outer peripheral surface of the upper wall section and around the opening of the well to absorb sample leakage from the well.
  • the present invention provides a multiwell plate assembly.
  • the multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; an array of a plurality of sealing caps each in sealing contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet; each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the substantially cylindrical upper wall section; and each sealing cap having an adsorbent layer, wherein when the sealing cap engages the well for closing the opening, the adsorbent layer is around the substantially cylindrical upper wall section to adsorb sample leakage from the well.
  • the present invention provides a multiwell plate assembly.
  • the multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; an array of a plurality of sealing caps each in contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet; each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the substantially cylindrically upper wall section; and each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the substantially cylindrical upper wall section of
  • the present invention provides a pipette tip member for releasably mating with a pipette shaft and transferring liquid.
  • the pipette tip member has an elongated tubular receptacle which includes a proximal opening for receiving a pipette shaft; a distal tip opening for dispensing liquid from the pipette tip member; and an upper wall section adjacent the proximal opening for removably engaging the pipette shaft, and a filter element attached to an inner peripheral surface of the upper wall section to prevent sample contained within the pipette tip member from passing therethrough, wherein the filter element comprises a porous carrier with adsorbent particles dispersed therein.
  • Figure 1 is a sectional view of one embodiment of a sample tube
  • Figure 2 is a sectional view of another embodiment of a sample tube
  • Figure 3 is a sectional view of a further embodiment of a sample tube
  • Figure 4 is a sectional view of yet a further embodiment of a sample tube
  • Figure 4A is a sectional view of an upper part of the sample tube in Figure 4 when the sealing cap is inserted into the vessel body;
  • Figure 4B is a sectional view of an alternative embodiment of the sealing cap
  • Figure 5 is a sectional view of an embodiment of a sample tube strip
  • Figure 5A is an expanded view of the Section A in Figure 4.
  • Figure 6 is a sectional view of an embodiment of a multiwell plate assembly
  • Figure 6A is an expanded view of the Section B in Figure 6;
  • Figure 7 is a sectional view of an embodiment of a pipette tip member.
  • the sample tube 100 includes a hollow vessel body 102 for containing either solid or liquid reagents.
  • the vessel body 102 has a closed bottom and at its top edge portion an opening 104, which is defined by a substantially cylindrical upper wall section 106.
  • the sample tube 100 also includes a sealing cap 110, which may be separate and detached from the hollow vessel body 102, or optionally may be connected to the vessel body 102 through a tether that is preferably flexible.
  • the sealing cap 110 includes a substantially cylindrically shaped member 112 for removable insertion into the vessel body 102 through the vessel body opening 104, and engages the upper wall section 106 of the vessel body 102.
  • the substantially cylindrically shaped member 112 is a cylindrical skirt. At the upper rim of the cylindrical skirt 112 is a transverse wall 118 closing off one end of the cylindrical skirt 112.
  • the substantially cylindrically shaped member 112 may be a substantially cylindrical solid core (not shown) that is capable of closing the vessel body opening 104.
  • the substantially cylindrically shaped member 112 may have an outer sealing layer 114 in sealing contact with the inner peripheral surface of upper wall section 106 to provide a tight seal, and preferably fluid-tight seal, as shown in Figure 1.
  • the sealing layer 114 may span an entire face of the cylindrically shaped member 112, or may only cover axially a section of the cylindrical surface of the cylindrically shaped member 112, but around the entire circumference of the section.
  • the sample tube 100 further includes an adsorbent layer 116 mounted around the opening 104 of the vessel body 102.
  • the adsorbent layer 116 may be attached to an outer peripheral surface of the upper wall section 106.
  • the adsorbent layer 116 is around the vessel body opening 104, preferably around an entire circumference of the upper wall section 106, to adsorb sample leakage, e. g. liquid leakage or aerosol leakage from the vessel body 102.
  • the adsorbent layer 116 may have a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up substantial space around the opening 104 and forms a supporting frame with small pores.
  • the adsorbent layer 116 also contains adsorbent particles dispersed in the adsorbent layer 116.
  • the adsorbent particles may be attached to the support frame of the porous carrier.
  • the adsorbent particles may be active carbon particles, aluminum oxide particles, or the like.
  • the adsorbent layer 116 may be adhered to the outer peripheral surface of the upper wall section 106 using adhesives. In certain embodiments, the adsorbent layer 116 may be removably mounted onto the outer peripheral surface of the upper wall section 106.
  • the adsorbent layer 116 may be prefabricated as a circular skirt or ring of a diameter slightly smaller than an outer diameter of the upper wall section 106 at the opening 104. When the adsorbent layer 116 is mounted onto the outer peripheral surface of the upper wall section 106, it may slightly enlarge to fit for the outer peripheral surface of the upper wall section 106. In this way, the adsorbent layer 116 can be mounted onto the outer peripheral surface of the upper wall section 106 without using any adhesives.
  • the sample tube 200 includes a hollow vessel body 202 for containing either solid or liquid reagents.
  • the vessel body 202 has a closed bottom and at its top edge portion an opening 204, which is defined by a substantially cylindrical upper wall section 206.
  • the sample tube 200 also includes a sealing cap 210 having a substantially cylindrically shaped member 212,which may be separate and detached from the hollow vessel body 202.
  • the sample tube 200 includes an external shoulder 222 near the opening 204 of the upper wall section 206.
  • the external shoulder 222 may be a few millimeters, e.g. one, two three, five or ten millimeter, away from the open 204.
  • the sealing cap 210 may be connected to the vessel body 202 through a tether 220 that is preferably flexible.
  • the tether 220 may have a first end connected to an edge portion of the sealing cap 210, and a second end connected to the external shoulder 222 which is opposite to the first end.
  • the sample tube 200 further includes an adsorbent layer 216 attached to an outer peripheral surface of the upper wall section 206 and around the vessel body opening 204.
  • the adsorbent layer 216 is around the vessel body opening 204, preferably around an entire circumference of the upper wall section 206, to adsorb sample leakage from the vessel body 202.
  • the adsorbent layer 216 may extend between the opening 204 and the external shoulder 222.
  • the adsorbent layer 216 may be adhered to the outer peripheral surface of the upper wall section 206.
  • the adsorbent layer 216 may be removably mounted onto the outer peripheral surface of the upper wall section 206.
  • the adsorbent layer 216 may be prefabricated as a circular skirt or ring of a diameter slightly smaller than an outer diameter of the vessel body opening 204 when it is in a released position with no external forces.
  • the porous carrier of the adsorbent layer 216 may have some flexibility, when the adsorbent layer 216 is mounted onto the outer peripheral surface of the upper wall section 206, the adsorbent layer 216 slightly enlarges to fit for the outer peripheral surface of the upper wall section 206 in an enlarged position. In this way, the adsorbent layer 216 can be fixed onto the outer peripheral surface of the upper wall section 206 without using any adhesives.
  • the external shoulder 222 may be in any shape, e. g.
  • the adsorbent layer 216 can be secured between the sealing cap 210 and the external shoulder 222, avoiding forming a gap or slit that liquid or aerosol leakage may pass therethrough.
  • the adsorbent layer 216 may have a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up substantial space around the opening 204 and forms a supporting frame with small pores.
  • the adsorbent layer 216 also contains adsorbent particles dispersed in the adsorbent layer 216.
  • the adsorbent particles may be active carbon particles, aluminum oxide particles, or the like.
  • the sample tube 300 includes a hollow vessel body 302 for containing either solid or liquid reagents.
  • the vessel body 302 has a closed bottom and at its top edge portion an opening 304, which is defined by a substantially cylindrical upper wall section 306.
  • the sample tube 300 also includes a sealing cap 310 having a substantially cylindrically shaped member 312 for removable insertion into the vessel body 302 through the vessel body opening 304, which may be separate and detached from the hollow vessel body 302.
  • the sealing cap 310 further includes an adsorbent layer 316 positioned concentrically with the substantially cylindrically shaped member 312.
  • the adsorbent layer 316 is attached to the sealing cap 310, for example, to a transverse wall 318 closing off one end of the substantially cylindrically shaped member 312.
  • the adsorbent layer 316 may also be substantially cylindrically shaped and have an inner diameter greater than an outer diameter of the substantially cylindrically shaped member 312.
  • a circular gap 324 may be formed between the substantially cylindrically shaped member 312 and the adsorbent layer 316 such that the upper wall section 306 of the vessel body 302 may be placed in between the substantially cylindrically shaped member 312 and the adsorbent layer 316 when the sealing cap 310 closes the vessel body opening 304, as is shown in Figure 3A.
  • the adsorbent layer 316 may engage the outer peripheral surface of the upper wall section 306 to adsorb sample leakage from the hollow vessel body 302.
  • the sealing cap 310 may further include a supporting layer 317 positioned outside the adsorbent layer 316.
  • the supporting layer 317 may be shaped as a circular skirt.
  • the adsorbent layer 316 may be attached onto an inner surface of the supporting layer 317 such that the adsorbent layer 316 can be supported by the supporting layer 317.
  • the supporting layer 317 is generally intended to be supportive and to maintain the shape and rigidity.
  • the supporting layer 317 may have a hardness of greater than about 20 Shore D or greater than about 30 Shore D, as measured by ASTM test D 2240.
  • the supporting layer has a hardness of from about 30 to about 90 Shore D, as measured by ASTM test D 2240.
  • the supporting layer has a compression set of at least about 20%, or at least 30%.
  • polymer materials for forming the supporting layer include, but are not limited to, polypropylene (PP) , polycarbonate (PC) , polyvinyl chloride (PVC) , acrylonitrile butadiene styrene (ABS) , and polystyrene (PS) .
  • PP polypropylene
  • PC polycarbonate
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • the sample tube 400 includes a hollow vessel body 402 for containing either solid or liquid reagents.
  • the vessel body 402 has a closed bottom and at its top edge portion an opening 404, which is defined by a substantially cylindrical upper wall section 406.
  • the sample tube 400 also includes a sealing cap 410 having a substantially cylindrically shaped member 412 for removable insertion into the vessel body 402 through the vessel body opening 404, which may be separate and detached from the hollow vessel body 402.
  • the substantially cylindrically shaped member 412 is skirt like.
  • the substantially cylindrically shaped member 412 is outside an outer peripheral surface of the upper wall section 406, e. g. in contact with the outer peripheral surface, or slightly separate from the outer peripheral surface but having certain insertion (e. g. sealing and/or adsorbent insertion) positioned therebeween.
  • the sealing cap 410 has an adsorbent layer 416 attached to an inner surface of the substantially cylindrically shaped member 412 and positioned concentrically with the substantially cylindrically shaped member 412. As shown in Figure 4A, the adsorbent layer 412 may be around the upper wall section 406 of the vessel body 402 when the sealing cap 410 engages the hollow vessel body 402 for closing the opening 404. For example, the adsorbent layer 412 extends between the opening 404 and an external shoulder on the upper wall section. In certain examples, the adsorbent layer 412 may extends partially between the opening 404 and the external shoulder on the upper wall section.
  • Figure 4B shows an alternative embodiment of the sealing cap of Figure 4.
  • the sealing cap further includes a sealing layer 419a attached to the inner surface of the substantially cylindrically shaped member 412 and positioned above the adsorbent layer 416a.
  • the sealing layer 419a is in sealing contact with the outer peripheral surface of the upper wall section 406 and around the opening, which provides a tight seal between the sealing cap and the upper wall section 406.
  • the adsorbent layer 416a which is slightly away from the opening of the upper wall section 406 relative to the sealing layer 419a, can adsorb sample leakage, e. g. liquid leakage or aerosol leakage from the vessel body opening. In this way, the sample leakage can be significantly avoided and reduce contamination to the environment.
  • the sealing layer may have a compression set of less than about 30%, preferably less than 20%, more preferably less than 10%, and most preferably less than 5%, as measured according to ASTM D395 Method B.
  • the sealing layer may have a hardness of from about 30 to about 90 Shore A, preferably about 35 to about 80 Shore A, about 40 to about 75 or 80 Shore A, about 40 to about 70 Shore A, more preferably about 40 to about 50 or 60 Shore A, as measured by ASTM test D 2240.
  • polymer materials useful for forming the sealing layer include, but are not limited to, polyethylene (PE) (especially low density polyethylene or LDPE) , polyurethane (PU) , thermoplastic polyurethanes (TPU) , thermoplastic elastomers (TPE) , thermoplastic polyolefin (TPO) , styrenic thermoplastic elastomers (S-TPEs) , thermoplastic rubber (TPR) , poly [styrene-b- (ethylene-co-butylene) -b-styrene] (SEBS) , thermoplastic vulcanizates (TPV) , styrene-butadiene-styrene (SBS) , flexible PVC (elPVC) , etc.
  • the sealing layer is made of one or more of TPE, TPU and PVC, preferably TPE or TPU or both.
  • the polymer material for the sealing layer and the polymer material for the other parts of the sealing cap (except the adsorbent layer) and the vessel body are chosen such that the two polymer materials may interact with each other under the molding or bonding conditions such that the sealing layer is retentively attached onto the supporting layer.
  • the sealing layer is made of one or more polymer materials selected from the group of TPE, TPV and PVC, and the other parts of the sealing cap (except the adsorbent layer) and the vessel body may be made of one or more polymers chosen from the group of polypropylene (PP) , polycarbonate (PC) , polyvinyl chloride (PVC) , acrylonitrile butadiene styrene (ABS) , and polystyrene (PS) .
  • PP polypropylene
  • PC polycarbonate
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • the vessel body generally has a lower wall section joining the substantially cylindrical upper wall section described above.
  • the lower wall section may be a thin-walled tapered or conical section with an angle of about 10 to about 20 degrees to form a closed dome-shaped bottom of the vessel body.
  • the sample tube assembly is particularly suited for thermocyling reactions such as PCR, and the walls of the vessel body may have a thickness of from about 0.008 to about 0.015 inches.
  • the lower wall section may be thinner and may have a thickness of from about 0.008 to about 0.012 inches, while the upper wall section may be thicker with a thickness of from about 0.010 to about 0.015 inches.
  • the sample tube may have a volume sufficient to contain from about 50 ⁇ l to less than about 1 ml of liquid, preferably less than about 0.5 ml of liquid.
  • the sample tube has a total volume of from about 0.1ml to about 2.0 ml. In preferred embodiments, all materials used for the sample tube assembly are heat stable and can withstand heat at a temperature of up to 100°C.
  • sample tubes can be adapted into sample tube strips or multiwell plates, e.g., in industry standard formats, i. e. 36-, 48-, 96-, 192-, 384-well PCR plates.
  • a plurality e.g., 4, 8 or 12
  • hollow vessel bodies in one of the embodiments described above may be arranged symmetrically in a linear array whereby their axes are in parallel.
  • the adjacent two of these vessel bodies may optionally be connected through a strip.
  • sample tube strip 500 An exemplary embodiment of a sample tube strip 500 is shown in Figure 5.
  • the sample tube strip 500 also includes a plurality (e.g., 4, 8 or 12) of the corresponding sealing caps in that embodiment arranged in a linear array, and any two adjacent members of the plurality of caps being are connected by a tether.
  • each tether may have two ends connected to external shoulders of two adjacent vessel bodies, respectively.
  • Each of the plurality of caps removably engages an upper wall section of a vessel body.
  • Figure 5A is an expanded view of section A in Figure 5, showing the upper wall section of a vessel body having an adsorbent layer amounted around an opening of the vessel body and attached to an outer peripheral surface of the upper wall section.
  • a plurality e.g., 36, 48, 96, 192 or 384
  • hollow vessel bodies of the same design as in one of the embodiments described above may be arranged in a multiwell plate format, according to standard formats in the industry.
  • a 96-well microtiter plate is a tray with a width of 3 5/8 inches and a length of 5 inches and containing 96 identical sample wells in an 8 well by 12 well rectangular array.
  • each well of the microtiter plate of the present invention has the same design as the vessel body in one of the above embodiments of the sample tube assembly.
  • Figure 6 shows an illustrative embodiment of a 96-well plate 600 with each well having a design similar to the vessel body shown in Figure 2.
  • Figure 6A is an expanded view of Section B in Figure 6.
  • a plate body includes a supporting sheet having therein a plurality of well each having an opening, a closed bottom and a side wall extending between the opening and the closed bottom.
  • Each well has a substantially cylindrical upper wall section defining at its edge portion the opening.
  • the upper wall section at least partially extends upward from the supporting sheet.
  • Each well has an adsorbent layer mounted around the opening of the well. The adsorbent layer may be attached onto an outer peripheral surface of the upper wall section.
  • the plate also includes a plurality (e.g., 4, 8, 12, 96) of the corresponding sealing caps in that same embodiment arranged in an array, and any two adjacent members of the plurality of caps being connected by a tether or sheet.
  • the caps are arranged such that their axes are in parallel.
  • Each of the plurality of sealing caps removably engages the upper wall section of the well.
  • Each well and its corresponding sealing cap shown in Figures 5 and 6 may have a design similar to the sample tube show in Figures 1, 3 and 4.
  • the adsorbent layers of the wells of the 96-well plate 600 can adsorb sample leakage from the wells, thereby avoiding or at least reducing cross-contamination between different wells.
  • the pipette tip member 700 is used for releasably mating with a pipette shaft and transferring liquid.
  • the pipette tip member 700 includes a larger proximal tip opening 702 for insertion of a pipette shaft in the axial direction into the pipette tip member, an upper wall section 704, a lower wall section 706, and a smaller distal tip opening 708 for drawing and dispensing liquid.
  • the upper wall section 704 is adjacent to the proximal opening 702. Through the proximal opening 702, the distal end of a pipette shaft may be inserted into or removed from elongated pipette tip member 700.
  • the pipette tip member 700 further includes a filter element 710 attached to an inner peripheral surface of the upper wall section 704 to prevent sample contained within the pipette tip member 700 from passing therethrough.
  • the filter element 710 has a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up an inner cross section of the upper wall section 704 and forms a supporting frame with small pores.
  • the filter element 710 also contains adsorbent particles dispersed therein.
  • the adsorbent particles may be active carbon particles, aluminum oxide particles, or the like.
  • the adsorbent particles in the filter element 710 can then adsorb biological molecules such as proteins, nucleic acid, microorganism or other similar materials in the aerosol leakage and fix them in the filter element 710. In this way, the aerosol leakage from pipette tip member 700 can not further move into the cavity defined by the upper wall section 704 that engages the pipette shaft, which reduces cross contamination between different samples through the same pipette shaft.
  • the adsorbent particles of the adsorbent layer shown in Figures 1-6 or the filter element shown in Figure 7 may be combined to the porous carrier by soaking, coating, sintering, spraying or other suitable methods.
  • certain filtering materials such as a filter element made of polyethylene or the like may be carbonized in vacuum by heating to form the porous carrier with active carbon particles dispersed therein.
  • the adsorbent particles such as aluminum oxide particles may be sprayed or sputtered to the filter element, sponge or non-woven fabrics to form the porous carrier with active carbon particles.
  • the porous carrier with the adsorbent particles may then be shaped and sized that it is adapted to be mounted onto the upper wall section of the vessel body or the sealing cap as the adsorbent layer, or mounted onto the inner cavity of the pipette tip member as the filter element.
  • the adsorbent layer shown in Figures 1-6 or the filter element shown in Figure 7 may contain 35%to 55%by weight adsorbent particles, e. g. 40%, 45%, 50%by weight adsorbent particles.
  • the porous carrier provides a good supporting frame capable of fixing the adsorbent particles, thereby expanding the use of the adsorbent particles.
  • the materials used as the adsorbent layer or the filter element can also be used in other applications.
  • the material can be formed as a mat or cloth, which can be placed on a test bench or a lab table to adsorb liquid sample leakage from test tubes or other containers. The adsorbent particles in the material can effectively reduce contamination caused by the sample leakage.

Abstract

The present invention provides sample tubes and pipette tips with improved leakage prevention. The sample tube includes a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body. The sample tube includes a sealing cap comprising a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section. The sample tube further includes an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.

Description

SAMPLE TUBE ASSEMBLIES AND PIPETTE TIP WITH IMPROVED LEAKAGE PREVENTION
Cross Reference to Related Application
This application claims the benefit of the Chinese Patent Application No. 201310639182.2 filed on December 4, 2013, the entire content of which is hereby incorporated herein by reference.
Field of the Invention
The present invention generally relates to sample tubes for handling liquid reagents and pipette tips for transferring liquids, and particularly to sample tubes with improved leakage prevention especially suitable for thermocycling reactions, sample preparation and storage, and pipette tips with improved leakage and cross-contamination prevention.
Background of the Invention
Molecular biology experiments are conducted at ever increasing throughputs in low reaction volumes and often require high temperature conditions. Frequently, biological samples to be analyzed are only available in small quantities. Moreover, the need for reducing reagent costs especially in commercial settings demands minimization of reaction volumes. When heated, e.g., in PCR experiments, the biological sample contained in a sample tube may leak from the sample tube in aerosol form. The sample leakage may result in environmental contamination or cross-contamination between different samples tubes. Thus, there is a continued need for further improvement.
Summary of the Invention
The present invention provides sample tube assemblies with improved leakage protection. Using such sample tube assemblies effectively prevents sample leakage from contaminating the experimental environment.
Accordingly, in a first aspect, the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body. The sample tube includes a sealing cap comprising a substantially cylindrically shaped member, when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section. The sample tube further includes an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
In a second aspect, the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body; a sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and an adsorbent layer attached to the sealing cap, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
In a third aspect, the present invention provides a sample tube including a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body; a sealing cap having a substantially cylindrically shaped member, wherein the substantially cylindrically shaped member is skirt like, and wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow vessel body for closing the opening.
In a fourth aspect, the present invention provides a sample tube strip. The sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in  parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether, wherein each of the hollow vessel bodies comprises an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
In a fifth aspect, the present invention provides a sample tube strip. The sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether, each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and each sealing cap having an adsorbent layer, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
In a sixth aspect, the present invention provides a sample tube strip. The sample tube strip includes a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and a linear array of a plurality of sealing caps each in contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether; each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow vessel body for closing the opening.
In a seventh aspect, the present invention provides a multiwell plate assembly. The multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; wherein each of the wells comprises an adsorbent layer attached to an outer peripheral surface of the upper wall section and around the opening of the well to absorb sample leakage from the well.
In an eighth aspect, the present invention provides a multiwell plate assembly. The multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; an array of a plurality of sealing caps each in sealing contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet; each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the substantially cylindrical upper wall section; and each sealing cap having an adsorbent layer, wherein when the sealing cap engages the well for closing the opening, the adsorbent layer is around the substantially cylindrical upper wall section to adsorb sample leakage from the well.
In a ninth aspect, the present invention provides a multiwell plate assembly. The multiwell plate assembly includes a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet; an array of a plurality of sealing caps each in contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet; each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the  substantially cylindrically upper wall section; and each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the substantially cylindrical upper wall section of the well to adsorb sample leakage from the well when the sealing cap engages the well for closing the opening.
In a tenth embodiment, the present invention provides a pipette tip member for releasably mating with a pipette shaft and transferring liquid. The pipette tip member has an elongated tubular receptacle which includes a proximal opening for receiving a pipette shaft; a distal tip opening for dispensing liquid from the pipette tip member; and an upper wall section adjacent the proximal opening for removably engaging the pipette shaft, and a filter element attached to an inner peripheral surface of the upper wall section to prevent sample contained within the pipette tip member from passing therethrough, wherein the filter element comprises a porous carrier with adsorbent particles dispersed therein.
The foregoing and other advantages and features of the invention, and the manner in which the same are accomplished, will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying examples, which illustrate preferred and exemplary embodiments.
Brief Description of the Drawings
Figure 1 is a sectional view of one embodiment of a sample tube;
Figure 2 is a sectional view of another embodiment of a sample tube;
Figure 3 is a sectional view of a further embodiment of a sample tube;
Figure 4 is a sectional view of yet a further embodiment of a sample tube;
Figure 4A is a sectional view of an upper part of the sample tube in Figure 4 when the sealing cap is inserted into the vessel body;
Figure 4B is a sectional view of an alternative embodiment of the sealing cap;
Figure 5 is a sectional view of an embodiment of a sample tube strip;
Figure 5A is an expanded view of the Section A in Figure 4;
Figure 6 is a sectional view of an embodiment of a multiwell plate assembly;
Figure 6A is an expanded view of the Section B in Figure 6;
Figure 7 is a sectional view of an embodiment of a pipette tip member.
Detailed Description of the Invention
Referring to Figure 1, an illustrative embodiment of a sample tube 100 is shown. The sample tube 100 includes a hollow vessel body 102 for containing either solid or liquid reagents. The vessel body 102 has a closed bottom and at its top edge portion an opening 104, which is defined by a substantially cylindrical upper wall section 106. The sample tube 100 also includes a sealing cap 110, which may be separate and detached from the hollow vessel body 102, or optionally may be connected to the vessel body 102 through a tether that is preferably flexible.
The sealing cap 110 includes a substantially cylindrically shaped member 112 for removable insertion into the vessel body 102 through the vessel body opening 104, and engages the upper wall section 106 of the vessel body 102. In an embodiment, as shown in Figure 1, the substantially cylindrically shaped member 112 is a cylindrical skirt. At the upper rim of the cylindrical skirt 112 is a transverse wall 118 closing off one end of the cylindrical skirt 112. In another embodiment, the substantially cylindrically shaped member 112 may be a substantially cylindrical solid core (not shown) that is capable of closing the vessel body opening 104. In some embodiments, the substantially cylindrically shaped member 112 may have an outer sealing layer 114 in sealing contact with the inner peripheral surface of upper wall section 106 to provide a tight seal, and preferably fluid-tight seal, as shown in Figure 1. The sealing layer 114 may span an entire face of the cylindrically shaped member 112, or may only cover axially a section of the cylindrical surface of the cylindrically shaped member 112, but around the entire circumference of the section.
The sample tube 100 further includes an adsorbent layer 116 mounted around the opening 104 of the vessel body 102. For example, the adsorbent layer 116 may be attached to an outer peripheral surface of the upper wall section 106. The adsorbent layer 116 is around the vessel body opening 104, preferably around an entire circumference of the upper wall section 106, to adsorb sample leakage, e. g. liquid leakage or aerosol leakage from the vessel body 102. The adsorbent layer 116 may have a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up substantial space around the opening 104 and forms a supporting frame with small pores. The adsorbent layer 116 also contains adsorbent particles dispersed in the adsorbent layer 116. The adsorbent particles may  be attached to the support frame of the porous carrier. The adsorbent particles may be active carbon particles, aluminum oxide particles, or the like. When sample leaks from the vessel body 102 due to a bad seal of the vessel body opening 104 in aerosol form, it would generally travel through or near the adsorbent layer 116 around the vessel body opening 104. The adsorbent particles in the adsorbent layer 116 can then adsorb biological molecules such as proteins, nucleic acid, microorganism or other similar materials in the aerosol leakage and fix them in the adsorbent layer 116. In this way, the aerosol leakage from the sample tube 100 can not further leak into the outer space and contaminate the experimental environment.
In certain embodiments, the adsorbent layer 116 may be adhered to the outer peripheral surface of the upper wall section 106 using adhesives. In certain embodiments, the adsorbent layer 116 may be removably mounted onto the outer peripheral surface of the upper wall section 106. For example, the adsorbent layer 116 may be prefabricated as a circular skirt or ring of a diameter slightly smaller than an outer diameter of the upper wall section 106 at the opening 104. When the adsorbent layer 116 is mounted onto the outer peripheral surface of the upper wall section 106, it may slightly enlarge to fit for the outer peripheral surface of the upper wall section 106. In this way, the adsorbent layer 116 can be mounted onto the outer peripheral surface of the upper wall section 106 without using any adhesives.
Referring to Figure 2, another illustrative embodiment of sample tube 200 is shown. The sample tube 200 includes a hollow vessel body 202 for containing either solid or liquid reagents. The vessel body 202 has a closed bottom and at its top edge portion an opening 204, which is defined by a substantially cylindrical upper wall section 206. The sample tube 200 also includes a sealing cap 210 having a substantially cylindrically shaped member 212,which may be separate and detached from the hollow vessel body 202.
The sample tube 200 includes an external shoulder 222 near the opening 204 of the upper wall section 206. For example, the external shoulder 222 may be a few millimeters, e.g. one, two three, five or ten millimeter, away from the open 204. The sealing cap 210 may be connected to the vessel body 202 through a tether 220 that is preferably flexible. In an embodiment, as shown in Figure 2, the tether 220 may have a first end connected to an edge portion of the sealing cap 210, and a second end connected to the external shoulder 222 which is opposite to the first end.
The sample tube 200 further includes an adsorbent layer 216 attached to an outer peripheral surface of the upper wall section 206 and around the vessel body opening 204. The adsorbent layer 216 is around the vessel body opening 204, preferably around an entire circumference of the upper wall section 206, to adsorb sample leakage from the vessel body 202. The adsorbent layer 216 may extend between the opening 204 and the external shoulder 222. In one embodiment, the adsorbent layer 216 may be adhered to the outer peripheral surface of the upper wall section 206. In another embodiment, the adsorbent layer 216 may be removably mounted onto the outer peripheral surface of the upper wall section 206. For example, the adsorbent layer 216 may be prefabricated as a circular skirt or ring of a diameter slightly smaller than an outer diameter of the vessel body opening 204 when it is in a released position with no external forces. As the porous carrier of the adsorbent layer 216 may have some flexibility, when the adsorbent layer 216 is mounted onto the outer peripheral surface of the upper wall section 206, the adsorbent layer 216 slightly enlarges to fit for the outer peripheral surface of the upper wall section 206 in an enlarged position. In this way, the adsorbent layer 216 can be fixed onto the outer peripheral surface of the upper wall section 206 without using any adhesives. The external shoulder 222 may be in any shape, e. g. flat or conically beveled, so long as it engages the lower end of the adsorbent layer 216 to provide some support for the adsorbent layer 216 and prevent an axial movement, especially downward movement, of the adsorbent layer 216 along the vessel body 202. As the upward movement of the adsorbent layer 216 along the vessel body 202 may be restricted by the sealing cap 210 engaging the vessel body opening 204, the adsorbent layer 216 can be secured between the sealing cap 210 and the external shoulder 222, avoiding forming a gap or slit that liquid or aerosol leakage may pass therethrough.
The adsorbent layer 216 may have a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up substantial space around the opening 204 and forms a supporting frame with small pores. The adsorbent layer 216 also contains adsorbent particles dispersed in the adsorbent layer 216. The adsorbent particles may be active carbon particles, aluminum oxide particles, or the like.
Referring to Figure 3, a further illustrative embodiment of sample tube 300 is shown. The sample tube 300 includes a hollow vessel body 302 for containing either solid or liquid reagents. The vessel body 302 has a closed bottom and at its top edge portion an opening 304, which is defined by a substantially cylindrical upper wall section 306. The sample tube  300 also includes a sealing cap 310 having a substantially cylindrically shaped member 312 for removable insertion into the vessel body 302 through the vessel body opening 304, which may be separate and detached from the hollow vessel body 302.
The sealing cap 310 further includes an adsorbent layer 316 positioned concentrically with the substantially cylindrically shaped member 312. The adsorbent layer 316 is attached to the sealing cap 310, for example, to a transverse wall 318 closing off one end of the substantially cylindrically shaped member 312. The adsorbent layer 316 may also be substantially cylindrically shaped and have an inner diameter greater than an outer diameter of the substantially cylindrically shaped member 312. A circular gap 324 may be formed between the substantially cylindrically shaped member 312 and the adsorbent layer 316 such that the upper wall section 306 of the vessel body 302 may be placed in between the substantially cylindrically shaped member 312 and the adsorbent layer 316 when the sealing cap 310 closes the vessel body opening 304, as is shown in Figure 3A. In this way, the adsorbent layer 316 may engage the outer peripheral surface of the upper wall section 306 to adsorb sample leakage from the hollow vessel body 302.
In certain embodiments, the sealing cap 310 may further include a supporting layer 317 positioned outside the adsorbent layer 316. The supporting layer 317 may be shaped as a circular skirt. The adsorbent layer 316 may be attached onto an inner surface of the supporting layer 317 such that the adsorbent layer 316 can be supported by the supporting layer 317.
The supporting layer 317 is generally intended to be supportive and to maintain the shape and rigidity. In some embodiments, the supporting layer 317 may have a hardness of greater than about 20 Shore D or greater than about 30 Shore D, as measured by ASTM test D 2240. In some embodiments, the supporting layer has a hardness of from about 30 to about 90 Shore D, as measured by ASTM test D 2240. In some embodiments, the supporting layer has a compression set of at least about 20%, or at least 30%. Examples of polymer materials for forming the supporting layer include, but are not limited to, polypropylene (PP) , polycarbonate (PC) , polyvinyl chloride (PVC) , acrylonitrile butadiene styrene (ABS) , and polystyrene (PS) .
Referring to Figure 4, a yet further illustrative embodiment of sample tube 400 is shown. The sample tube 400 includes a hollow vessel body 402 for containing either solid or liquid reagents. The vessel body 402 has a closed bottom and at its top edge portion an opening  404, which is defined by a substantially cylindrical upper wall section 406. The sample tube 400 also includes a sealing cap 410 having a substantially cylindrically shaped member 412 for removable insertion into the vessel body 402 through the vessel body opening 404, which may be separate and detached from the hollow vessel body 402. The substantially cylindrically shaped member 412 is skirt like. Thus, the substantially cylindrically shaped member 412 is outside an outer peripheral surface of the upper wall section 406, e. g. in contact with the outer peripheral surface, or slightly separate from the outer peripheral surface but having certain insertion (e. g. sealing and/or adsorbent insertion) positioned therebeween.
The sealing cap 410 has an adsorbent layer 416 attached to an inner surface of the substantially cylindrically shaped member 412 and positioned concentrically with the substantially cylindrically shaped member 412. As shown in Figure 4A, the adsorbent layer 412 may be around the upper wall section 406 of the vessel body 402 when the sealing cap 410 engages the hollow vessel body 402 for closing the opening 404. For example, the adsorbent layer 412 extends between the opening 404 and an external shoulder on the upper wall section. In certain examples, the adsorbent layer 412 may extends partially between the opening 404 and the external shoulder on the upper wall section.
Figure 4B shows an alternative embodiment of the sealing cap of Figure 4. As shown in Figure 4B, the sealing cap further includes a sealing layer 419a attached to the inner surface of the substantially cylindrically shaped member 412 and positioned above the adsorbent layer 416a. When the sealing cap 410 engages the hollow vessel body 406 for closing the opening, the sealing layer 419a is in sealing contact with the outer peripheral surface of the upper wall section 406 and around the opening, which provides a tight seal between the sealing cap and the upper wall section 406. Furthermore, the adsorbent layer 416a, which is slightly away from the opening of the upper wall section 406 relative to the sealing layer 419a, can adsorb sample leakage, e. g. liquid leakage or aerosol leakage from the vessel body opening. In this way, the sample leakage can be significantly avoided and reduce contamination to the environment.
The sealing layer may have a compression set of less than about 30%, preferably less than 20%, more preferably less than 10%, and most preferably less than 5%, as measured according to ASTM D395 Method B. The sealing layer may have a hardness of from about 30 to about 90 Shore A, preferably about 35 to about 80 Shore A, about 40 to about 75 or 80 Shore A, about 40 to about 70 Shore A, more preferably about 40 to about 50 or 60 Shore A, as  measured by ASTM test D 2240. Examples of polymer materials useful for forming the sealing layer include, but are not limited to, polyethylene (PE) (especially low density polyethylene or LDPE) , polyurethane (PU) , thermoplastic polyurethanes (TPU) , thermoplastic elastomers (TPE) , thermoplastic polyolefin (TPO) , styrenic thermoplastic elastomers (S-TPEs) , thermoplastic rubber (TPR) , poly [styrene-b- (ethylene-co-butylene) -b-styrene] (SEBS) , thermoplastic vulcanizates (TPV) , styrene-butadiene-styrene (SBS) , flexible PVC (elPVC) , etc. In preferred embodiments, the sealing layer is made of one or more of TPE, TPU and PVC, preferably TPE or TPU or both.
Preferably, the polymer material for the sealing layer and the polymer material for the other parts of the sealing cap (except the adsorbent layer) and the vessel body are chosen such that the two polymer materials may interact with each other under the molding or bonding conditions such that the sealing layer is retentively attached onto the supporting layer. In preferred embodiments, the sealing layer is made of one or more polymer materials selected from the group of TPE, TPV and PVC, and the other parts of the sealing cap (except the adsorbent layer) and the vessel body may be made of one or more polymers chosen from the group of polypropylene (PP) , polycarbonate (PC) , polyvinyl chloride (PVC) , acrylonitrile butadiene styrene (ABS) , and polystyrene (PS) .
In various embodiments of the sample tubes, the vessel body generally has a lower wall section joining the substantially cylindrical upper wall section described above. In some embodiments, the lower wall section may be a thin-walled tapered or conical section with an angle of about 10 to about 20  degrees to form a closed dome-shaped bottom of the vessel body. In preferred embodiments, the sample tube assembly is particularly suited for thermocyling reactions such as PCR, and the walls of the vessel body may have a thickness of from about 0.008 to about 0.015 inches. The lower wall section may be thinner and may have a thickness of from about 0.008 to about 0.012 inches, while the upper wall section may be thicker with a thickness of from about 0.010 to about 0.015 inches.
In preferred embodiments, the sample tube may have a volume sufficient to contain from about 50 μl to less than about 1 ml of liquid, preferably less than about 0.5 ml of liquid.
In preferred embodiments, the sample tube has a total volume of from about 0.1ml to about 2.0 ml. In preferred embodiments, all materials used for the sample tube assembly are heat stable and can withstand heat at a temperature of up to 100℃.
The various embodiments of the sample tubes can be adapted into sample tube strips or multiwell plates, e.g., in industry standard formats, i. e. 36-, 48-, 96-, 192-, 384-well PCR plates. Essentially, in a sample tube strip, a plurality (e.g., 4, 8 or 12) of hollow vessel bodies in one of the embodiments described above may be arranged symmetrically in a linear array whereby their axes are in parallel. The adjacent two of these vessel bodies may optionally be connected through a strip.
An exemplary embodiment of a sample tube strip 500 is shown in Figure 5. In addition, the sample tube strip 500 also includes a plurality (e.g., 4, 8 or 12) of the corresponding sealing caps in that embodiment arranged in a linear array, and any two adjacent members of the plurality of caps being are connected by a tether. In certain embodiments, each tether may have two ends connected to external shoulders of two adjacent vessel bodies, respectively. Each of the plurality of caps removably engages an upper wall section of a vessel body. Figure 5A is an expanded view of section A in Figure 5, showing the upper wall section of a vessel body having an adsorbent layer amounted around an opening of the vessel body and attached to an outer peripheral surface of the upper wall section.
Similarly, in a multiwell microtiter plate, a plurality (e.g., 36, 48, 96, 192 or 384) of hollow vessel bodies of the same design as in one of the embodiments described above may be arranged in a multiwell plate format, according to standard formats in the industry. For example, a 96-well microtiter plate is a tray with a width of 3 5/8 inches and a length of 5 inches and containing 96 identical sample wells in an 8 well by 12 well rectangular array. Thus, each well of the microtiter plate of the present invention has the same design as the vessel body in one of the above embodiments of the sample tube assembly.
Figure 6 shows an illustrative embodiment of a 96-well plate 600 with each well having a design similar to the vessel body shown in Figure 2. Figure 6A is an expanded view of Section B in Figure 6. As shown in Figure 6A, a plate body includes a supporting sheet having therein a plurality of well each having an opening, a closed bottom and a side wall extending between the opening and the closed bottom. Each well has a substantially cylindrical upper wall section defining at its edge portion the opening. The upper wall section at least partially  extends upward from the supporting sheet. Each well has an adsorbent layer mounted around the opening of the well. The adsorbent layer may be attached onto an outer peripheral surface of the upper wall section. Additionally the plate also includes a plurality (e.g., 4, 8, 12, 96) of the corresponding sealing caps in that same embodiment arranged in an array, and any two adjacent members of the plurality of caps being connected by a tether or sheet. The caps are arranged such that their axes are in parallel. Each of the plurality of sealing caps removably engages the upper wall section of the well.
Each well and its corresponding sealing cap shown in Figures 5 and 6 may have a design similar to the sample tube show in Figures 1, 3 and 4. As can be seen that the adsorbent layers of the wells of the 96-well plate 600 can adsorb sample leakage from the wells, thereby avoiding or at least reducing cross-contamination between different wells.
Referring to Figure 7, an illustrative embodiment of a pipette tip member 700 is shown. The pipette tip member 700 is used for releasably mating with a pipette shaft and transferring liquid. The pipette tip member 700 includes a larger proximal tip opening 702 for insertion of a pipette shaft in the axial direction into the pipette tip member, an upper wall section 704, a lower wall section 706, and a smaller distal tip opening 708 for drawing and dispensing liquid. The upper wall section 704 is adjacent to the proximal opening 702. Through the proximal opening 702, the distal end of a pipette shaft may be inserted into or removed from elongated pipette tip member 700.
The pipette tip member 700 further includes a filter element 710 attached to an inner peripheral surface of the upper wall section 704 to prevent sample contained within the pipette tip member 700 from passing therethrough. The filter element 710 has a porous carrier made of a porous material, e. g. sponge, non-woven fabrics, filter element material or the like, which takes up an inner cross section of the upper wall section 704 and forms a supporting frame with small pores. The filter element 710 also contains adsorbent particles dispersed therein. The adsorbent particles may be active carbon particles, aluminum oxide particles, or the like. When sample is drawn into the cavity defined by the lower wall section 706 through the distal tip opening 708, some sample may travel upward through the filter element 710 in aerosol form. The adsorbent particles in the filter element 710 can then adsorb biological molecules such as proteins, nucleic acid, microorganism or other similar materials in the aerosol leakage and fix them in the filter element 710. In this way, the aerosol leakage from pipette tip member 700  can not further move into the cavity defined by the upper wall section 704 that engages the pipette shaft, which reduces cross contamination between different samples through the same pipette shaft.
In preferred embodiments, the adsorbent particles of the adsorbent layer shown in Figures 1-6 or the filter element shown in Figure 7 may be combined to the porous carrier by soaking, coating, sintering, spraying or other suitable methods. In certain embodiments, certain filtering materials such as a filter element made of polyethylene or the like may be carbonized in vacuum by heating to form the porous carrier with active carbon particles dispersed therein. In certain other examples, the adsorbent particles such as aluminum oxide particles may be sprayed or sputtered to the filter element, sponge or non-woven fabrics to form the porous carrier with active carbon particles. The porous carrier with the adsorbent particles may then be shaped and sized that it is adapted to be mounted onto the upper wall section of the vessel body or the sealing cap as the adsorbent layer, or mounted onto the inner cavity of the pipette tip member as the filter element.
In certain embodiments, the adsorbent layer shown in Figures 1-6 or the filter element shown in Figure 7 may contain 35%to 55%by weight adsorbent particles, e. g. 40%, 45%, 50%by weight adsorbent particles. The porous carrier provides a good supporting frame capable of fixing the adsorbent particles, thereby expanding the use of the adsorbent particles. The materials used as the adsorbent layer or the filter element can also be used in other applications. In certain embodiments, the material can be formed as a mat or cloth, which can be placed on a test bench or a lab table to adsorb liquid sample leakage from test tubes or other containers. The adsorbent particles in the material can effectively reduce contamination caused by the sample leakage.
All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. The mere mentioning of the publications and patent applications does not necessarily constitute an admission that they are prior art to the instant application.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

Claims (29)

  1. A sample tube, comprising:
    a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body;
    a sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and
    an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
  2. The sample tube of claim 1, wherein the adsorbent layer is attached to an outer peripheral surface of the upper wall section.
  3. The sample tube of claim 2, wherein the hollow vessel body comprises an external shoulder near the opening of the upper wall section, and the adsorbent layer extends between the opening and the external shoulder.
  4. A sample tube, comprising:
    a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body;
    a sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and
    an adsorbent layer attached to the sealing cap, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
  5. The sample tube of claim 4, wherein the adsorbent layer is positioned concentrically with the substantially cylindrically shaped member such that the upper wall section is placed in between the substantially cylindrically shaped member and the adsorbent layer when the sealing cap engages the hollow vessel body for closing the opening.
  6. The sample tube of claim 5, wherein the sealing cap further comprises a supporting layer positioned outside the adsorbent layer and for supporting the adsorbent layer.
  7. A sample tube, comprising:
    a hollow vessel body having a substantially cylindrical upper wall section defining at its edge portion an opening of the hollow vessel body;
    a sealing cap having a substantially cylindrically shaped member, wherein the substantially cylindrically shaped member is skirt like, and wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and
    an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow vessel body for closing the opening.
  8. The sample tube of claim 7, wherein the sealing cap further comprises a sealing layer attached to the inner surface of the substantially cylindrically shaped member and positioned above the adsorbent layer, and wherein when the sealing cap engages the hollow vessel body for closing the opening, the sealing layer is in sealing contact with the outer peripheral surface of the upper wall section and around the opening.
  9. A sample tube strip, comprising:
    a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and
    a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether,
    wherein each of the hollow vessel bodies comprises an adsorbent layer mounted around the opening of the hollow vessel body to absorb sample leakage from the hollow vessel body.
  10. The sample tube strip of claim 9, wherein the adsorbent layer is attached to an outer peripheral surface of the upper wall section.
  11. The sample tube strip of claim 10, wherein the hollow vessel body comprises an external shoulder near the opening of the upper wall section, and the adsorbent layer extends between the opening and the external shoulder.
  12. A sample tube strip, comprising:
    a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and
    a linear array of a plurality of sealing caps each in sealing contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether,
    each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the upper wall section; and
    each sealing cap having an adsorbent layer, wherein when the sealing cap engages the hollow vessel body for closing the opening, the adsorbent layer is around the upper wall section to adsorb sample leakage from the hollow vessel body.
  13. The sample tube strip of claim 12, wherein the adsorbent layer is positioned concentrically with the substantially cylindrically shaped member such that the upper wall  section is placed in between the substantially cylindrically shaped member and the adsorbent layer when the sealing cap engages the hollow vessel body for closing the opening.
  14. The sample tube strip of claim 13, wherein each sealing cap further comprises a supporting layer positioned outside the adsorbent layer and for supporting the adsorbent layer.
  15. A sample tube strip, comprising:
    a plurality of hollow vessel bodies each having a substantially cylindrical upper wall section, arranged symmetrically in a linear array whereby their axes are in parallel, the upper wall section defining at its edge portion an opening of the hollow vessel body; and
    a linear array of a plurality of sealing caps each in contact with one of the plurality of vessel bodies, and any two adjacent members of the plurality of sealing caps being connected by a tether;
    each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the hollow vessel body for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the upper wall section; and
    each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the upper wall section of the vessel body to adsorb sample leakage from the hollow vessel body when the sealing cap engages the hollow vessel body for closing the opening.
  16. The sample tube strip of claim 15, wherein each sealing cap further comprises a sealing layer attached to the inner surface of the substantially cylindrically shaped member and positioned above the adsorbent layer, and wherein when the sealing cap engages the hollow vessel body for closing the opening, the sealing layer is in sealing contact with the outer peripheral surface of the upper wall section and around the opening.
  17. A multiwell plate assembly comprising:
    a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet;
    wherein each of the wells comprises an adsorbent layer attached to an outer peripheral surface of the upper wall section and around the opening of the well to absorb sample leakage from the well.
  18. The multiwell plate assembly of claim 17, wherein the adsorbent layer extends between the opening and the supporting sheet.
  19. A multiwell plate assembly comprising:
    a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet;
    an array of a plurality of sealing caps each in sealing contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet;
    each sealing cap having a substantially cylindrically shaped member, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is in sealing contact with an inner peripheral surface of the substantially cylindrical upper wall section; and
    each sealing cap having an adsorbent layer, wherein when the sealing cap engages the well for closing the opening, the adsorbent layer is around the substantially cylindrical upper wall section to adsorb sample leakage from the well.
  20. The multiwell plate of claim 19, wherein the adsorbent layer is positioned concentrically with the substantially cylindrically shaped member such that the substantially  cylindrical upper wall section is placed in between the substantially cylindrically shaped member and the adsorbent layer when the sealing cap engages the well for closing the opening.
  21. The multiwell plate assembly of claim 20, wherein each sealing cap further comprises a supporting layer positioned outside the adsorbent layer and for supporting the adsorbent layer.
  22. A multiwell plate assembly, comprising:
    a plate body comprising a supporting sheet, the supporting sheet having therein a plurality of wells each having an opening, a closed bottom, and a side wall extending therebetween, wherein at least one of the plurality of wells has a substantially cylindrical upper wall section defining at its edge portion the opening and at least partially extending upward from the supporting sheet;
    an array of a plurality of sealing caps each in contact with one of the plurality of wells, the plurality of sealing caps being connected together by a connection sheet;
    each sealing cap having a substantially cylindrically shaped member being skirt like, wherein when the sealing cap engages the well for closing the opening, the substantially cylindrically shaped member is outside an outer peripheral surface of the substantially cylindrically upper wall section; and
    each sealing cap having an adsorbent layer attached to an inner surface of the substantially cylindrically shaped member and positioned concentrically with the substantially cylindrically shaped member such that the adsorbent layer is around the substantially cylindrical upper wall section of the well to adsorb sample leakage from the well when the sealing cap engages the well for closing the opening.
  23. The multiwell plate assembly of claim 22, wherein each sealing cap further comprises a sealing layer attached to the inner surface of the substantially cylindrically shaped member and positioned above the adsorbent layer, and wherein when the sealing cap engages the well for closing the opening, the sealing layer is in sealing contact with the outer peripheral surface of the substantially cylindrical upper wall section and around the opening.
  24. The sample tube of any of claims 1-8, the sample tube strip of any of claims 9-16, or the multiwell plate assembly of any of claims 17-23, wherein the adsorbent layer comprises a porous carrier with adsorbent particles dispersed therein.
  25. The sample tube of any of claims 1-8, the sample tube strip of any of claims 9-16, or the multiwell plate assembly of any of claims 17-23, wherein the porous carrier comprises sponge, non-woven fabrics or filter elements.
  26. The sample tube of any of claims 1-8, the sample tube strip of any of claims 9-16, or the multiwell plate assembly of any of claims 17-23, wherein the adsorbent particles comprise active carbon particles and/or aluminum oxide particles.
  27. A pipette tip member for releasably mating with a pipette shaft and transferring liquid, having an elongated tubular receptacle which comprises:
    a proximal opening for receiving a pipette shaft;
    a distal tip opening for dispensing liquid from the pipette tip member; and
    an upper wall section adjacent the proximal opening for removably engaging the pipette shaft, and
    a filter element attached to an inner peripheral surface of the upper wall section to prevent sample contained within the pipette tip member from passing therethrough, wherein the filter element comprises a porous carrier with adsorbent particles dispersed therein.
  28. The pipette tip member of claim 27, wherein the porous carrier comprises sponge or non-woven fabrics.
  29. The pipette tip member of claim 27, wherein the adsorbent particles comprise active carbon particles or aluminum oxide particles.
PCT/CN2014/093033 2013-12-04 2014-12-04 Sample tube assemblies and pipette tip with improved leakage prevention WO2015081872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480066330.9A CN106103686A (en) 2013-12-04 2014-12-04 There is the sample cell assembly that improved leakage is taken precautions against

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310639182 2013-12-04
CN201310639182.2 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015081872A1 true WO2015081872A1 (en) 2015-06-11

Family

ID=53272901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093033 WO2015081872A1 (en) 2013-12-04 2014-12-04 Sample tube assemblies and pipette tip with improved leakage prevention

Country Status (2)

Country Link
CN (1) CN106103686A (en)
WO (1) WO2015081872A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728339A (en) * 2018-05-31 2018-11-02 浙江懿康医疗科技有限公司 A kind of higher PCR single tubes of strength of stability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439511A (en) * 2018-11-14 2019-03-08 广东佛润斯科生物科技有限公司 A kind of biological material extraction element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748859A (en) * 1987-03-06 1988-06-07 Rainin Instrument Co., Inc. Disposable pipette tip
CN201603564U (en) * 2010-01-15 2010-10-13 袁建华 Plug core disposable transfer pipette
CN202730124U (en) * 2012-07-24 2013-02-13 杭州金源生物技术有限公司 Sealed sample tube
CN203307336U (en) * 2013-06-03 2013-11-27 杭州金源生物技术有限公司 PCR (Polymerase Chain Reaction) tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1693151A (en) * 2004-05-08 2005-11-09 陈格 Apparatus for drying preserving and recovering of liquid sample
CN202638452U (en) * 2012-06-08 2013-01-02 惠州鸿雨科技有限公司 Centrifugal tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748859A (en) * 1987-03-06 1988-06-07 Rainin Instrument Co., Inc. Disposable pipette tip
CN201603564U (en) * 2010-01-15 2010-10-13 袁建华 Plug core disposable transfer pipette
CN202730124U (en) * 2012-07-24 2013-02-13 杭州金源生物技术有限公司 Sealed sample tube
CN203307336U (en) * 2013-06-03 2013-11-27 杭州金源生物技术有限公司 PCR (Polymerase Chain Reaction) tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728339A (en) * 2018-05-31 2018-11-02 浙江懿康医疗科技有限公司 A kind of higher PCR single tubes of strength of stability

Also Published As

Publication number Publication date
CN106103686A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US20130309147A1 (en) Sample tube with improved seal
JP7440465B2 (en) Multi-chamber lid device
EP2574326B1 (en) Filter vial having a tubular piston a retainer cup and a filter
US6258325B1 (en) Method and apparatus for preventing cross-contamination of multi-well test plates
EP1997558B1 (en) Collection device containing specimen-retrieval device
JP4245354B2 (en) Well for fluid processing
US8387810B2 (en) Pierceable cap having piercing extensions for a sample container
US20020006361A1 (en) Method and apparatus for preventing cross-contamination of multi-well test plates
US20060171851A1 (en) Liquid sampling utilizing ribbed pipette tip for barrier penetration
US20060172433A1 (en) Liquid sampling utilizing ribbed pipette tip for barrier penetration
WO1995027196A1 (en) Method and apparatus for preventing cross-contamination of multi-well test plates
US20190009271A1 (en) Diagnostic cartridges having flexible seals
WO2015081872A1 (en) Sample tube assemblies and pipette tip with improved leakage prevention
AU2012202681A1 (en) Apparatus for securely processing biological sample
WO2013170539A1 (en) Sample tube with improved seal
WO2015035953A1 (en) Sealing caparrays, sealing mats, sample tube strips and multi-well plate assemblies
US8858898B2 (en) Pipette tip with improved seal
CN115298297A (en) Cell culture container
US7152492B2 (en) Lid for sample holder
WO2014139139A1 (en) Sample tube assembly
US20220401958A1 (en) Fluid container cover
WO2013137756A1 (en) Pipette tip for centrifuge with two closures
WO2013170538A1 (en) Pipette tip member
CN105813750B (en) Folding miniature plate
CN216155821U (en) Nucleic acid extraction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14-10-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14868073

Country of ref document: EP

Kind code of ref document: A1