WO2014173337A1 - Method and terminal for determining frequency hopping pattern of sounding reference signal - Google Patents

Method and terminal for determining frequency hopping pattern of sounding reference signal Download PDF

Info

Publication number
WO2014173337A1
WO2014173337A1 PCT/CN2014/077342 CN2014077342W WO2014173337A1 WO 2014173337 A1 WO2014173337 A1 WO 2014173337A1 CN 2014077342 W CN2014077342 W CN 2014077342W WO 2014173337 A1 WO2014173337 A1 WO 2014173337A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
reference signal
sounding reference
sounding
base station
Prior art date
Application number
PCT/CN2014/077342
Other languages
French (fr)
Chinese (zh)
Inventor
谢一宁
梁春丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014173337A1 publication Critical patent/WO2014173337A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7136Arrangements for generation of hop frequencies, e.g. using a bank of frequency sources, using continuous tuning or using a transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and terminal for determining the frequency hopping pattern of a sounding reference signal, the method comprising: the terminal constructing a first master table and a second master table, wherein the first master table comprises a plurality of first sub-tables and the second master table comprises a plurality of second sub-tables; the terminal obtaining a corresponding sequence through table lookup according to whether a base station enables the frequency hopping of the sounding reference signal (SRS), and obtaining identifications of the 0th to Bth SRS layers of a tree structure through the sequence, and determining the frequency domain location of the current sounding reference signal on the basis of the identifications, so as to determine the frequency hopping pattern of the sounding reference signal. Through the embodiment of the present invention, parameters can be sent according to relevant SRS configured by the base station, and the frequency hopping pattern of the SRS can be rapidly and conveniently determined.

Description

一种确定探测参考信号跳频图案方法及终端  Method and terminal for determining frequency hopping pattern of sounding reference signal
技术领域 Technical field
本发明涉及无线通信领域, 尤其涉及第三代合作伙伴计划(3GPP )长期 演进( LTE )系统中的终端 ( UE )及一种确定上行发送的探测参考信号 ( SRS ) 跳频图案的方法及终端。 背景技术  The present invention relates to the field of wireless communications, and in particular, to a terminal (UE) in a 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) system, and a method and terminal for determining a sounding reference signal (SRS) hopping pattern for uplink transmission . Background technique
在 3GPP LTE系统中, 为了辅助基站( eNodeB )进行上行信道测量, 基 站配置所在小区内的终端在一些特定的时间-频率资源上发送探测参考信号 ( Sounding Reference Signal, 以下简称 SRS )。 基于所收到的 SRS的测量结 果, 基站可以针对该终端的物理上行共享信道(PUSCH )发送, 进行频域调 度( frequency-domain scheduling ) , 并决定上行业务信道传输所用的调制和 编码方式, 来提高上行链路的频谱利用率。  In the 3GPP LTE system, in order to assist the base station (eNodeB) to perform uplink channel measurement, the terminal in the cell in which the base station is configured transmits a Sounding Reference Signal (SRS) on some specific time-frequency resources. Based on the received SRS measurement result, the base station may transmit, perform frequency-domain scheduling on the physical uplink shared channel (PUSCH) of the terminal, and determine a modulation and coding mode used for uplink traffic channel transmission. Improve the spectrum utilization of the uplink.
在 LTE 系统中, 将信道带宽划分为若干资源块(RB ) , 所有上行信号 或信道, 都以资源块为单位进行分配。 在频域上, 一个 RB的宽度是 12个子 载波、 即 180kHz。 信道带宽内总的资源块数, 是由信道带宽决定的, 例如, LTE系统 20MHz带宽选项共含有 100个 RB, 10MHz带宽选项共含有 50个 RB。  In the LTE system, the channel bandwidth is divided into several resource blocks (RBs), and all uplink signals or channels are allocated in units of resource blocks. In the frequency domain, the width of one RB is 12 subcarriers, that is, 180 kHz. The total number of resource blocks in the channel bandwidth is determined by the channel bandwidth. For example, the LTE system 20MHz bandwidth option contains a total of 100 RBs, and the 10MHz bandwidth option contains a total of 50 RBs.
为了进行上行信道探测, 基站为终端分配 SRS资源时, 需要确保各终端 的 SRS发送信号是彼此正交的。 例如, 基站通过为小区内各终端分配不同的 时间资源 (子帧) 、 和 /或不同的频率资源 (RB ) 、 和 /或不同的码资源 (循 环移位)等手段, 来进行小区内可用 SRS资源的划分, 从而保证各终端发送 的 SRS彼此不干扰。而且,为了保证上行信号的单载波( SC-FDMA( frequency division multiple access, 频分多址)特性, 基站总是配置每个终端在连续若 干个 RB上进行 SRS发送, 即 SRS传输带宽内总是包含连续若干个 RB。  In order to perform uplink channel sounding, when the base station allocates SRS resources for the terminal, it is necessary to ensure that the SRS transmission signals of the terminals are orthogonal to each other. For example, the base station performs intra-cell availability by allocating different time resources (subframes), and/or different frequency resources (RBs), and/or different code resources (cyclic shift) to each terminal in the cell. The SRS resources are divided to ensure that the SRSs sent by the terminals do not interfere with each other. Moreover, in order to ensure the single-carrier (SC-FDMA) feature of the uplink signal, the base station always configures each terminal to perform SRS transmission on consecutive RBs, that is, the SRS transmission bandwidth is always Contains several consecutive RBs.
针对上述系统需求, 在 3GPP LTE规范 TS 36.211第 5.5.3.2节中, 分别 针对不同的信道带宽定义了不同 SRS带宽配置参数 ( Table 5.5.3.2-1 〜 Table 5.5.3.2-4 ) 。 例如, 以 20MHz带宽 (上行含 100个 RB ) 为例, 参见下表: SRS-带宽 SRS-带宽 SRS-带宽 SRS-带宽In response to the above system requirements, different SRS bandwidth configuration parameters (Table 5.5.3.2-1 to Table 5.5.3.2-4) are defined for different channel bandwidths in section 5.5.3.2 of the 3GPP LTE specification TS 36.211. For example, take the 20MHz bandwidth (100 RBs in the uplink) as an example, see the following table: SRS-bandwidth SRS-bandwidth SRS-bandwidth SRS-bandwidth
SRS 带宽配置 1 SRS bandwidth configuration 1
( c ) wSRS N0 WSRS,1 N\ WSRS,2 w2 WSRS,3 w3 ( c ) w SRS N 0 W SRS, 1 N\ W SRS, 2 w 2 W SRS, 3 w 3
0 96 1 48 2 24 2 4 60 96 1 48 2 24 2 4 6
1 96 1 32 3 16 2 4 41 96 1 32 3 16 2 4 4
2 80 1 40 2 20 2 4 52 80 1 40 2 20 2 4 5
3 72 1 24 3 12 2 4 33 72 1 24 3 12 2 4 3
4 64 1 32 2 16 2 4 44 64 1 32 2 16 2 4 4
5 60 1 20 3 4 5 4 15 60 1 20 3 4 5 4 1
6 48 1 24 2 12 2 4 36 48 1 24 2 12 2 4 3
7 48 1 16 3 8 2 4 2 7 48 1 16 3 8 2 4 2
上表中 , 参数 "SRS带宽配置" ( SRS Bandwidth Configuration )代表了 基站为小区内所有终端的 SRS发送分配的总的频域资源, 因此是一个小区级 ( cell-specific ) 参数; 另一个参数 "SRS-带宽" 则代表了针对特定的终端 ( UE-specific ) , 根据系统需要, 所分配的实际 SRS发送所占的带宽。 为了 表述方便起见, SRS带宽配置用变量 CSRS代表, 而 SRS-带宽用变量 SSRS代 表。为了提供灵活的配置,基站可根据实际需求,分别配置 cSR 。eSRS参数。 以上表为例,小区允许有 8种 SRS带宽配置,最小 48个 RB、最大 96个 RB; 而针对特定的终端,则允许有 4种不同的 SRS-带宽配置,最小可取 4个 RB, 最大可占满整个 SRS带宽配置。 由于 LTE系统中, SRS的最小带宽为 4RB, 且允许最多在 96个 RB频域范围内发送, 因此存在 96/4=24种可能的频域发 送起始位置。 相应的, 基站为每个终端指定了一个 SRS 频域位置索引参数 «RRc , 其取值范围是 [0,23]范围内的整数, 根据此参数, 终端就可决定其发送 SRS的频域位置。 In the above table, the parameter "SRS Bandwidth Configuration" represents the total frequency domain resource allocated by the base station for SRS transmission of all terminals in the cell, and therefore is a cell-specific parameter; another parameter" SRS-Bandwidth represents the bandwidth occupied by the actual SRS transmission allocated to a specific terminal (UE-specific) according to the needs of the system. For convenience of presentation, the SRS bandwidth configuration is represented by the variable C SRS , and the SRS-bandwidth is represented by the variable S SRS . In order to provide a flexible configuration, the base station can separately configure c SR according to actual needs. e SRS parameters. For example, the above table allows eight SRS bandwidth configurations, with a minimum of 48 RBs and a maximum of 96 RBs. For a specific terminal, four different SRS-bandwidth configurations are allowed, and a minimum of four RBs is available. Compensates for the entire SRS bandwidth configuration. Since the minimum bandwidth of the SRS in the LTE system is 4 RBs and is allowed to be transmitted in the range of up to 96 RB frequency domains, there are 96/4=24 possible frequency domain transmission start positions. Correspondingly, the base station assigns each terminal a SRS frequency domain location index parameter «RRc, which is an integer ranging from [0, 23]. According to this parameter, the terminal can determine the frequency domain location of the SRS. .
从频域资源分配来看, 一方面, 为了获取更佳的频域调度增益, 期望终 端在较宽的频率范围内进行 SRS发送, 即需要将 SRS传输带宽设置得较大, 从而基站可获得接近整个信道带宽内的上行信道测量结果; 但另一方面, 考 虑到小区内可能存在大量终端需要发送 SRS,而上行分配给 SRS传输的总资 源是有限的, 因此又期望限制每个终端所发送的 SRS带宽。 为了解决这个矛 盾, 在 LTE规范中定义了一种 SRS "跳频" ( Frequency Hopping )模式。 在 这种跳频模式下, 虽然终端每次发送的 SRS带宽较小, 但可以通过不同时刻 在不同的频域位置上发送, 经过一个 SRS跳频周期后, 可完整覆盖一个较宽 的带宽。 以图 1所示的跳频图案为例, 参照上表, 假设参数 CSRS=6、
Figure imgf000005_0001
以及《RRC=0 , 图中黑色框代表相应的频域位置发送了 SRS , 白色框则代表未 发送。 假定基站使能了 SRS跳频, 每次 SRS实际发送带宽是 4个 RB , 经过 一个 SRS跳频周期中 48/4=12次彼此不同频域位置的 SRS发送后,可以覆盖 整个 48个 RB的频谱部分, 然后在下一个 SRS跳频周期中继续重复该跳频 图案。 其中, 一个 SRS跳频周期内, SRS发送所选的起始 RB偏移序列, 称 为 SRS "跳频图案" ( Frequency Hopping Pattern ) , 在该例子中, SRS跳频 图案为 {0, 6, 3, 9, 1 , 7, 4, 10, 3, 8, 5, 1 1 }。小区内不同终端,尽管可能有相同的 跳频模式, 但可以通过 SRS频域位置索引《RRC作为 "基准" , 仍可以避免他 们之间 SRS发送频域位置的冲突, 相互不干扰。
From the perspective of frequency domain resource allocation, on the one hand, in order to obtain better frequency domain scheduling gain, it is expected that the terminal performs SRS transmission in a wide frequency range, that is, the SRS transmission bandwidth needs to be set large, so that the base station can be accessed. Uplink channel measurement results in the entire channel bandwidth; on the other hand, considering that there may be a large number of terminals in the cell that need to transmit SRS, and the total resources allocated to the SRS transmission are limited, it is desirable to limit the transmission of each terminal. SRS bandwidth. To address this contradiction, an SRS "Frequency Hopping" mode is defined in the LTE specification. In this frequency hopping mode, although the SRS bandwidth sent by the terminal is small each time, it can be transmitted in different frequency domain positions at different times. After a SRS hopping period, it can completely cover a wider bandwidth. Bandwidth. Taking the frequency hopping pattern shown in Figure 1 as an example, refer to the above table, assuming the parameter C SRS = 6,
Figure imgf000005_0001
And RR C =0, the black box in the figure represents the corresponding frequency domain location sent SRS, and the white box represents unsent. It is assumed that the SRS frequency hopping is enabled in the base station. The actual transmission bandwidth of the SRS is 4 RBs per time. After 48/4=12 times of SRS transmission in different frequency domain positions in one SRS hopping period, the entire 48 RBs can be covered. The spectrum portion then continues to repeat the hopping pattern during the next SRS hopping period. In an SRS hopping period, the SRS sends the selected starting RB offset sequence, called the SRS "Frequency Hopping Pattern". In this example, the SRS hopping pattern is {0, 6, 3, 9, 1 , 7, 4, 10, 3, 8, 5, 1 1 }. Different terminals in the small area, although they may have the same frequency hopping mode, can use the SRS frequency domain location index "RRC as the "reference", and can still avoid conflicts between the frequency domain locations of SRS transmission between them, and do not interfere with each other.
在 3GPP规范中釆用了一种 "树" 型结构来辅助进行 SRS跳频图案的定 义。 这个 "树" 包含最多 4层, 分别依次用 b=0,l ,2,3来标记, 其中 b=0对应 "树" 的最高层, 即根节点。 在第 b层中, "树" 上的每个节点在频率包含 的 RB数等于 wSRS 而 ^则表示第 b-1层节点所包含的、 位于第 b层的分 支节点数目。 该 "树" 型结构中, 处于第 b层的每个节点, 可由第 0~b层的 一组标识 «1 , ..., «¾}来唯一确定 0 < nb < Nb 。 "树" 中的每个节点, 就 代表了 SRS发送在频域所占的带宽和起始偏移。参见图 2的一个树型结构示 例, 其中每个节点中显示了一个数字标识 。 A "tree" type structure is used in the 3GPP specification to assist in the definition of SRS hopping patterns. This "tree" contains up to 4 layers, which are in turn labeled with b=0, l, 2, 3, where b=0 corresponds to the highest level of the "tree", the root node. In layer b, each node on the "tree" has the number of RBs included in the frequency equal to w SRS and ^ indicates the number of branch nodes in the b-th layer contained in the b-1th node. In the "tree" type structure, each node in the bth layer can uniquely determine 0 < n b < N b by a group of identifiers «1, ..., «3⁄4} of the 0th to the bth layers. Each node in the "tree" represents the bandwidth and starting offset of the SRS transmission in the frequency domain. See Figure 2 for an example of a tree structure in which a digital identifier is displayed in each node.
若基站使能了 SRS跳频,终端一方面根据基站配置的 SRS带宽配置 SSRS , 可基于 b=SSRS来确定在 "树" 中所处的层, 得到 SRS每次发送的实际带宽 等于 ,¾s。 另一方面, 终端根据基站配置的一个 "SRS 跳频带宽" 参数 bh。P, 可基于 6= 。 p来确定在 "树" 中所处的另一个层, 得到 SRS跳频所覆 盖的总带宽等于 这样, 基于该 "树" 型结构, 可方便地定义 SRS 跳频图案:根据 SRS发送时机计数《SRS,来确定相应的 SRS发送在频域所处 的偏移和带宽, 即确定一组标识 n …,η 。 在 3GPP LTE规范 TS 36.21 1 第 5.5.3.2节中, 釆用下式定义 ( b=0,l , . . . , BSRS ) :
Figure imgf000005_0002
上式的物理含义, 可从两方面来理解, 一方面根据基站配置的 SRS频域 位置索引 WRRC可确定 SRS发射的基准位置: {^=L4" /«½wJm。dN¾ | b=0,l, ... ,
If the base station enables SRS frequency hopping, the terminal configures the S SRS according to the SRS bandwidth configured by the base station, and determines the layer in the "tree" based on b=S SRS , and obtains the actual bandwidth of each SRS sent by the SRS. 3⁄4s . On the other hand, the terminal is based on a "SRS hopping bandwidth" parameter bh configured by the base station. P , can be based on 6= . p to determine the other layer in the "tree", the total bandwidth covered by the SRS frequency hopping is equal to this, based on the "tree" type structure, the SRS hopping pattern can be conveniently defined: according to the SRS transmission timing count SRS , to determine the offset and bandwidth in which the corresponding SRS is transmitted in the frequency domain, that is, to determine a set of identifiers n..., η. In Section 5.5.3.2 of the 3GPP LTE specification TS 36.21 1 , the following formula is defined ( b = 0, l , . . . , B SRS ):
Figure imgf000005_0002
The physical meaning of the above formula, may be understood in two ways, on the one hand the frequency-domain location index WRRC SRS transmission may be determined according to the reference position of the base station configuration SRS: {^ = L 4 "/«½wJm.dN ¾ | b = 0, l, ... ,
^SRS} ; 另一方面, 在此基础上, 从第 bh p+l层开始到第 SSRS层, 加上一个^SRS} ; on the other hand, on the basis of the bh p + l layer to the S S RS layer, plus one
SRS跳频图案频域偏移 ¾«SRS), 最终得到 SRS的实际频域发送位置。 注意, 这个公式统一了 SRS跳频禁用和使能的两种情形, 针对禁用 SRS跳频的情 形, 基站只需要配置 bh ≥ BSRS即可, 此时就不会进入上式中下面那个分支 去计算跳频图案频域偏移 ¾«SRS)。 在图 1的示例中, 给出了 {«0, , ... , nb} 的取值和实际跳频位置之间的关联。 跳频图案周期等于》½ 。ρ/»½^^。 The frequency domain offset of the SRS hopping pattern is 3⁄4 « SRS ), and finally the actual frequency domain transmission position of the SRS is obtained. Note that this formula unifies the two scenarios of SRS frequency hopping disable and enable. For the case of disabling SRS frequency hopping, the base station only needs to configure bh ≥ BSRS. At this time, it will not enter the following branch in the above formula to calculate. The frequency hopping pattern has a frequency domain offset of 3⁄4 « SRS ). In the example of Figure 1, the correlation between the value of {« 0 , , ... , n b } and the actual frequency hopping position is given. The frequency hopping pattern period is equal to "1⁄2". ρ /»1⁄2^^.
SRS 跳频图案的确定原则包括两点: (1 )在一个跳频周期内不重复, 并完整覆盖所针对的 SRS带宽配置; ( 2 )连续两个 SRS发送频域位置之间, 频率间隔应尽量大。为了满足上述需求,在 3GPP LTE规范 TS 36.211第 5.5.3.2 节中, 还给出了 SRS跳频图案频域偏移 («SRS)的一种计算公式: The principle of determining the SRS hopping pattern includes two points: (1) not repeating in one hopping period, and completely covering the SRS bandwidth configuration for the target; (2) between two consecutive SRS transmission frequency domain positions, the frequency interval should be As large as possible. In order to meet the above requirements, a calculation formula for the frequency domain offset (« SRS ) of the SRS hopping pattern is also given in section 5.5.3.2 of the 3GPP LTE specification TS 36.211:
Figure imgf000006_0001
Figure imgf000006_0001
根据上式, UE可以计算得到 SRS跳频图案频域偏移, 从而可进一步确 定 SRS跳频发射的频域位置。  According to the above formula, the UE can calculate the frequency domain offset of the SRS hopping pattern, so that the frequency domain position of the SRS hopping transmission can be further determined.
由上式可见,尽管该公式可以无歧义的给出 SRS跳频图案频域偏移计算 公式,形式较为简洁,但由于计算中涉及了诸如连乘( n N¾, )、取模(mod )、 向下取整( L*」)和乘 /除法等计算, 终端的计算复杂度相对较高。 此外, 相 关联的 SRS发射的基准位置的计算, 即根据 L4" m。dN¾公式来确定 值, 也涉及了除法、 向下取整、 取模等计算。 It can be seen from the above equation that although the formula can give the SRS hopping pattern frequency domain offset calculation formula unambiguously, the form is relatively simple, but the calculation involves such things as multiplication (n N 3⁄4 , ) and modulo (mod). The calculation of the terminal is relatively high, such as rounding down (L*) and multiplying/dividing. Further, the calculation of the reference positions associated with the SRS transmission, i.e. the value determined according to L 4 "m.dN ¾ formula, also relates to the division, rounded down, computing modulo the like.
终端利用上述公式来在线(on-line )计算 SRS跳频图案, 将带来不小的 复杂度: 如果釆用处理器软方式来计算, 将导致终端处理器所需的工作频率 更高, 造成功耗增加; 如果釆用硬件电路来计算, 将增加硬件电路的开销, 造成终端成本的增加。  The terminal uses the above formula to calculate the SRS hopping pattern on-line, which will bring about no small complexity: If the processor soft mode is used for calculation, the terminal processor will require a higher operating frequency, resulting in The power consumption increases; if the hardware circuit is used for calculation, the overhead of the hardware circuit will increase, resulting in an increase in terminal cost.
发明内容 Summary of the invention
本发明要解决的技术问题是提供一种确定探测参考信号跳频图案的方法 及终端, 以快速、 方便地确定 SRS跳频图案。 The technical problem to be solved by the present invention is to provide a method for determining a frequency hopping pattern of a sounding reference signal And the terminal to quickly and conveniently determine the SRS hopping pattern.
为了解决上述技术问题, 本发明提供了一种确定探测参考信号跳频图案 的方法, 包括:  In order to solve the above technical problem, the present invention provides a method for determining a hopping pattern of a sounding reference signal, including:
终端构造第一母表和第二母表, 其中, 第一母表包含多个第一子表, 第 二母表包含多个第二子表;  The terminal constructs a first parent table and a second parent table, wherein the first parent table includes a plurality of first child tables, and the second mother table includes a plurality of second child tables;
所述终端根据系统上行带宽 NRBUL和基站下发的探测参考信号带宽配置 参数 CSRS, 从所述第一母表中选择一个第一子表; The terminal selects a first sub-table from the first parent table according to the system uplink bandwidth NRB UL and the sounding reference signal bandwidth configuration parameter C SRS delivered by the base station;
所述终端根据所述基站下发的探测参考信号带宽参数 SSRS和探测参考信 号频域位置索引参数《RRC , 基于所选的第一子表以《RRC作为索引, 通过查表 得到包含 SSRS +1个元素的序列 z)}, 其中,
Figure imgf000007_0001
The terminal according to the sounding reference signal bandwidth parameter S SRS and the sounding reference signal frequency domain position index parameter “RR C ” sent by the base station, based on the selected first sub-table and “RR C as an index, obtains the inclusion by looking up the table. S SRS +1 sequence of elements z)}, where
Figure imgf000007_0001
所述终端判断所述基站是否使能了探测参考信号跳频, 如判断所述基站 使能了探测参考信号跳频, 则通过以下步骤确定探测参考信号跳频图案: 根据所述 NRBUL和所述 CSRS从所述第二母表中选择一个第二子表; 根据所述基站下发的探测参考信号跳频带宽参数 bhp, 在每个探测参考 信号跳频周期内, 根据探测参考信号发送时机计数《SRS, 基于所选择的第二 子表, 以《,^ = («^ 1110(1 作为索引, 通过查表得到包含 SSRS -bhp个元 素的序列: {g(/)}, 其中, = 。 P+1,— ,SSRS, S是与 。 p相关的一个步长, P = mSRSJ m , 表示探测参考信号树型结构中第 bhp层所对应的带 宽, 表示探测参考信号树型结构中第 ¾RS层所对应的带宽, 通过所述序列(p(0}, 以及所述序列 ί Ο}和所述序列 相加, 来分别 得到树型结构第 0至第 SSRS层的标识 nb: Determining, by the terminal, whether the base station enables the sounding of the sounding reference signal, and if the base station determines that the sounding of the sounding reference signal is enabled by the base station, determining the sounding pattern of the sounding reference signal by the following steps: according to the NRB UL and the The C SRS selects a second sub-table from the second parent table; and hops the bandwidth parameter b h according to the sounding reference signal sent by the base station. p , in each hopping reference signal hopping period, according to the sounding reference signal transmission timing count " SRS , based on the selected second sub-table, with ", ^ = («^ 1110 (1 as an index, obtained by looking up the table) Contains S SRS -b h . Sequence of p elements: {g(/)}, where = = P +1, — , S SRS , S is a step associated with .p , P = m SRSJ m , sounding reference signal tree structure represents the first b h. p layer corresponding to the bandwidth sounding reference signal tree structure represents the first ¾ RS bandwidth corresponding layer, by the sequence (p (0}, and the sequence ί Ο} is added to the sequence to obtain the identifiers n b of the 0th to S Sth layers of the tree structure:
对于 0≤b≤bhop, nb =p(b), For 0 ≤ bb hop , n b = p (b),
对于 ^hop < b < BSRS , nb = (p(b) + q(b)) mod Nb , For ^hop < b < B SRS , n b = (p(b) + q(b)) mod N b ,
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案;  And determining, according to the determining a frequency domain position of the current sounding reference signal, by determining a frequency domain position of the sounding reference signal in a total of P times in a sounding period of the sounding reference signal, to obtain a sounding pattern of the sounding reference signal;
所述终端如判断所述基站未使能探测参考信号跳频, 则通过以下步骤确 定探测参考信号跳频图案: 通过所述序列(p(0}得到树型结构第 0至第 SSRS层的标识 nb: If the terminal determines that the base station does not enable the sounding reference signal to hop, the terminal determines the sounding reference signal hopping pattern by the following steps: Tree obtained by the sequence (p (0} 0 through S SRS layer identifier n b:
nb = p(b) , b=(V.. ,BSRS n b = p(b) , b=(V.. , B SRS
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案。  Based on the determining the frequency domain position of the current sounding reference signal, the sounding domain position of the sounding reference signal is determined a total of P times in a sounding period of the sounding reference signal to obtain a sounding pattern of the sounding reference signal.
优选地, 上述方法还具有下面特点: 所述终端判断所述基站是否使能了 探测参考信号跳频, 包括:  Preferably, the foregoing method has the following features: the terminal determines whether the base station enables the sounding of the sounding reference signal, including:
所述终端读取所述基站下发的专用配置中的探测参考信号跳频带宽参数 bhp, 然后与所述 SSRS做比较, 如果 bh。P<BsRS , 则判断所述基站使能了探测 参考信号跳频; 如果 bh。p≥BsRs , 则判断所述基站未使能 SRS跳频。 The terminal reads the sounding reference signal hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. p , then compare with the S SRS , if bh. P < BsRS , then determining that the base station enables the sounding reference signal to hop; if bh. If p≥BsRs, it is determined that the base station does not enable SRS frequency hopping.
优选地, 上述方法还具有下面特点:  Preferably, the above method also has the following features:
所述第一子表包含 24行, 依次对应所述 WRRC的所有可能取值; 所述第二子表包含 mSRS,0 /4行, 依次对应了 bhP=0时一个探测参考信号 跳频周期内所有的探测参考信号发送时机, 其中, wSRS,。表示 SRS树型结构 第 0层所对应的带宽, 是根据所述 NRBUL和所述 CSRS确定的一个正整数, 其 取值是 4的倍数且最大不超过 96。 The first sub-list includes 24 rows, which in turn correspond to all possible values of the WRRC; the second sub-table includes m SRS , 0 / 4 rows, which in turn correspond to b h . When P =0, all sounding reference signal transmission timings of a sounding reference signal hopping period, where w SRS ,. The bandwidth corresponding to the layer 0 of the SRS tree structure is a positive integer determined according to the NRB UL and the C SRS , and the value is a multiple of 4 and a maximum of 96.
优选地, 上述方法还具有下面特点:  Preferably, the above method also has the following features:
所述第一子表和所述第二子表中, 每行均包含了 4个非负整数。  Each of the first sub-table and the second sub-table includes four non-negative integers.
优选地, 上述方法还具有下面特点:  Preferably, the above method also has the following features:
所述第一母表中依次对应了所有的 NRBUL和 CSRS的组合; The first parent table sequentially corresponds to all combinations of NRB UL and C SRS ;
所述第二母表中依次对应了所有的 NRBUL和 CSRS的组合。 The second mother table sequentially corresponds to all combinations of NRB UL and C SRS .
为了解决上述问题, 本发明还提供了一种终端, 包括:  In order to solve the above problems, the present invention further provides a terminal, including:
构造模块, 设置为: 构造第一母表和第二母表, 其中, 第一母表包含多 个第一子表, 第二母表包含多个第二子表;  Constructing a module, configured to: construct a first parent table and a second parent table, wherein the first parent table includes a plurality of first child tables, and the second mother table includes a plurality of second child tables;
选择模块, 设置为: 根据系统上行带宽 NRBUL和基站下发的探测参考信 号带宽配置参数 CSRS, 从所述第一母表中选择一个第一子表; The selecting module is configured to: select a first sub-table from the first parent table according to the system uplink bandwidth NRB UL and the sounding reference signal bandwidth configuration parameter C SRS delivered by the base station;
查表模块, 设置为: 根据基站下发的探测参考信号带宽参数 SSRS和探测 参考信号频域位置索引参数《RRC , 基于所选的第一子表以《RRC作为索引, 通 过查表得到包含 SSRS +1个元素的序列 其中,
Figure imgf000009_0001
δ] δ
The table lookup module is configured to: according to the sounding parameter bandwidth parameter S SRS and detection sent by the base station Reference signal frequency domain location index parameter "RR C , based on the selected first sub-table with "RR C as an index, by looking up the table to obtain a sequence containing S SRS +1 elements,
Figure imgf000009_0001
, β δ] δ ;
判断模块, 设置为: 判断所述基站是否使能了探测参考信号跳频; 第一确定模块, 设置为: 在所述判断模块判断所述基站使能了探测参考 信号跳频, 则通过以下确定探测参考信号跳频图案:  The determining module is configured to: determine whether the base station is enabled with the sounding of the sounding reference signal; the first determining module is configured to: when the determining module determines that the base station enables the sounding of the sounding reference signal, the determining is determined by the following Sounding reference signal hopping pattern:
根据所述 NRBUL和所述 CSRS从所述第二母表中选择一个第二子表; 根据所述基站下发的探测参考信号跳频带宽参数 bhp, 在每个探测参考 信号跳频周期内, 根据探测参考信号发送时机计数《SRS, 基于所选择的第二 子表, 以《,^ = («^ 1110(1 作为索引, 通过查表得到包含 SSRS -bhp个元 素的序列: { , 其中, 尸 bhop+1, S是与 。 p相关的一个步长,Selecting a second sub-table from the second mother table according to the NRB UL and the C SRS ; and hopping the bandwidth parameter b h according to the sounding reference signal sent by the base station. p , in each hopping reference signal hopping period, according to the sounding reference signal transmission timing count " SRS , based on the selected second sub-table, with ", ^ = («^ 1110 (1 as an index, obtained by looking up the table) Contains S SRS -b h . Sequence of p elements: { , where corpse bhop+1, S is a step size associated with .p,
P = mSRS,bhop /mSRS,BSRS , 表示探测参考信号树型结构中第 p层所对应 的带宽, ^,¾s表示探测参考信号树型结构中第 eSRS层所对应的带宽, 通过所述序列( 0}, 以及所述序列 和所述序列 相加, 来分别 得到树型结构第 0至第 SSRS层的标识 nb: P = m SRS, bhop /m S RS, B SRS , represents the bandwidth corresponding to the p- th layer in the tree structure of the sounding reference signal, ^, 3⁄4s represents the bandwidth corresponding to the e- SRS layer in the tree structure of the sounding reference signal, The identifier n b of the 0th to S Sth layers of the tree structure is obtained by the sequence (0}, and the sequence and the sequence are added:
对于 0≤b≤bhop, nb = p(b) , For 0 ≤ bb hop , n b = p(b) ,
对于 ^hop < b < BSRS , nb = (p(b) + q(b)) mod Nb , For ^hop < b < B SRS , n b = (p(b) + q(b)) mod N b ,
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案;  And determining, according to the determining a frequency domain position of the current sounding reference signal, by determining a frequency domain position of the sounding reference signal in a total of P times in a sounding period of the sounding reference signal, to obtain a sounding pattern of the sounding reference signal;
第二确定模块, 设置为: 在所述判断模块判断所述基站未使能探测参考 信号跳频, 则通过以下确定探测参考信号跳频图案:  The second determining module is configured to: when the determining module determines that the base station does not enable the sounding reference signal frequency hopping, determine the sounding reference signal hopping pattern by:
通过所述序列(p(0}得到树型结构第 0至第 SSRS层的标识 nb: Tree obtained by the sequence (p (0} 0 through S SRS layer identifier n b:
nb = p(b) , b=(V.. ,BSRS n b = p(b) , b=(V.. , B SRS
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案。  Based on the determining the frequency domain position of the current sounding reference signal, the sounding domain position of the sounding reference signal is determined a total of P times in a sounding period of the sounding reference signal to obtain a sounding pattern of the sounding reference signal.
优选地, 上述终端还具有下面特点: 所述判断模块, 设置为: 读取所述基站下发的专用配置中的探测参考信 号跳频带宽参数 bhp, 然后与所述 SSRS做比较, 如果 bh。P<BsRS , 则判断所述 基站使能了探测参考信号跳频; 如果 bh。P≥¾ S , 则判断所述基站未使能 SRS 跳频。 Preferably, the terminal further has the following features: The determining module is configured to: read the sounding reference signal hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. p , then compare with the S SRS , if bh. P < BsRS , then determining that the base station enables the sounding reference signal to hop; if bh. P ≥ 3⁄4 S , then it is judged that the base station does not enable SRS frequency hopping.
优选地, 上述终端还具有下面特点:  Preferably, the terminal further has the following features:
所述构建模块构建的所述第一子表包含 24行, 依次对应所述《RRC的所 有可能取值; 所述第二子表包含 wSRS,Q /4行, 依次对应了 bhP=0时一个探测 参考信号跳频周期内所有的探测参考信号发送时机, 其中, SRS,。表示 SRS 树型结构第 0层所对应的带宽, 是根据所述 NRBUL和所述 CSRS确定的一个正 整数, 其取值是 4的倍数且最大不超过 96。 The first sub-table constructed by the building module includes 24 lines, which in turn correspond to all possible values of the RRC; the second sub-table includes w SRS , Q / 4 lines, which in turn correspond to b h . When P =0, the timing of all sounding reference signals in a hopping period of a sounding reference signal, where SRS , is. The bandwidth corresponding to the layer 0 of the SRS tree structure is a positive integer determined according to the NRB UL and the C SRS , and the value is a multiple of 4 and a maximum of 96.
优选地, 上述终端还具有下面特点:  Preferably, the terminal further has the following features:
所述构建模块构建的所述第一子表和所述第二子表中, 每行均包含了 4 个非负整数。  Each of the first sub-table and the second sub-table constructed by the building block includes 4 non-negative integers.
优选地, 上述终端还具有下面特点:  Preferably, the terminal further has the following features:
所述构建模块构建的所述第一母表中依次对应了所有的 NRBUL和 CSRS的 组合; 所述第二母表中依次对应了所有的
Figure imgf000010_0001
Csrs的组合。
The first parent table constructed by the building block sequentially corresponds to all combinations of NRB UL and C SRS ; the second mother table sequentially corresponds to all
Figure imgf000010_0001
A combination of C srs .
综上,本发明实施例提供一种确定探测参考信号跳频图案的方法及终端, 可以根据基站配置的相关 SRS发送参数, 较为快速、 方便地确定 SRS跳频 图案。 附图概述  In summary, the embodiment of the present invention provides a method and a terminal for determining a hopping pattern of a sounding reference signal, which can determine a SRS frequency hopping pattern more quickly and conveniently according to the relevant SRS transmission parameters configured by the base station. BRIEF abstract
图 1是一个 SRS跳频图案的示意图;  1 is a schematic diagram of an SRS frequency hopping pattern;
图 2是一个用来确定 SRS跳频图案的 "树" 型结构的示意图;  2 is a schematic diagram of a "tree" type structure for determining an SRS hopping pattern;
图 3是本发明实施例的确定探测参考信号跳频图案的方法的流程图; 图 4是本发明实施例的第一母表(包含了若干第一子表)的结构示意图; 图 5是本发明实施例的第二母表(包含了若干第二子表)的结构示意图; 图 6是根据不同的 SRS跳频参数 bhp配置, 查第二子表时釆用不同步长 的示意图; 3 is a flowchart of a method for determining a hopping pattern of a sounding reference signal according to an embodiment of the present invention; FIG. 4 is a schematic structural diagram of a first mother table (including a plurality of first child tables) according to an embodiment of the present invention; A schematic diagram of the structure of the second parent table (including a plurality of second sub-tables) of the embodiment of the invention; FIG. 6 is based on different SRS frequency hopping parameters b h . p configuration, when using the second subtable to check the length of the asynchronous Schematic diagram
图 7是本发明实施例的终端的示意图。 本发明的较佳实施方式  FIG. 7 is a schematic diagram of a terminal according to an embodiment of the present invention. Preferred embodiment of the invention
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。  Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
下面结合图 3〜图 6 , 对技术方案的一个优选实施作详细描述:  A preferred implementation of the technical solution will be described in detail below with reference to FIG. 3 to FIG. 6 :
步骤 310 , 终端构造第一母表和第二母表, 其中, 第一母表包含若干个 第一子表, 第二母表包含若干个第二子表。  Step 310: The terminal constructs a first parent table and a second parent table, wherein the first parent table includes a plurality of first child tables, and the second mother table includes a plurality of second child tables.
终端事先基于 3GPP TS 36.21 1规范第 5.5.3.2节中的相关定义,来构造第 一母表。利用第一母表,终端可根据基站配置的 SRS频域位置索引 WRRC来查 表获得 SRS跳频图案的基准位置。  The terminal constructs the first parent table in advance based on the relevant definitions in section 5.5.3.2 of the 3GPP TS 36.21 1 specification. Using the first parent table, the terminal can look up the reference position of the SRS hopping pattern according to the SRS frequency domain location index WRRC configured by the base station.
参考图 4 , 在第一母表 400中, 根据上行带宽 NRBUI% 包含了分别针对 6 <
Figure imgf000011_0001
< 1 10这四个 NRB1^取值范围的表格。 针对其中某个范围的表格 410 内, 又分别对应所有 可能的 SRS带宽配置 CSRS ( 0 < CSRS < 7 ) , 包含了 8张第一子表 420。 每个 第一子表 420内, 分别针对每个可能的 WRRC取值 ( 0 < WRRC < 23 ) , 包含了 相应的 4、 c 、 ί¾和 ί¾取值。 例如, 根据 3GPP TS 36.21 1规范第 5.5.3.2节 中的有关公式, 可按: db = L ¾RC/w¾SRS,Jmod N, (b = 0, 1, 2, 3) 来计算得到 db值。考虑到 ί¾的取值为不会超过 6的非负整数, 因此最多 用 3比特就可以表示, 为了方便存储每项釆用整数字节存储, 因此釆用不超 过 2个字节就可以存储 、 dx , ί¾和 ί¾。 这样, 就完成了第一母表 400的构 造。 第一母表中, 总共有 4 * 8 = 32张这样的第一子表, 其中每个第一子表 包含 24项, 每项的存储不超过 2个字节。 因此, 第一母表总大小不超过 32 * 24 * 2 = 1536字节。 终端可将该第一母表存储在 ROM或 FLASH中。 第一子 表的大小不超过 24 * 2 = 48字节。 另一方面,终端事先基于 3GPP TS 36.21 1规范第 5.5.3.2节中的相关定义, 来构造第二母表。 利用第二母表, 终端可根据 SRS发送时机计数《SRS来查表 获得 SRS跳频图案的频域偏移。
Referring to FIG. 4, in the first parent table 400, according to the uplink bandwidth NRB UI % is included for 6 <
Figure imgf000011_0001
< 1 10 Table of the four NRB 1 ^ range of values. For each of the ranges 410, a corresponding CRSS (0 < C SRS < 7) corresponding to all possible SRS bandwidths is included, and eight first sub-tables 420 are included. In each of the first sub-tables 420, values for each possible WRRC (0 < WRRC < 23) are included, and the corresponding values of 4, c, ί3⁄4, and ί3⁄4 are included. For example, according to specification 3GPP TS 36.21 1 in Section 5.5.3.2 of the relevant formula, according to: d b = L ¾ RC / w¾ SRS, Jmod N, (b = 0, 1, 2, 3) is calculated to obtain d b value. Considering that the value of ί3⁄4 is a non-negative integer that does not exceed 6, it can be represented by up to 3 bits. In order to store each integer byte storage, it can be stored with no more than 2 bytes. d x , ί3⁄4 and ί3⁄4. Thus, the construction of the first mother table 400 is completed. In the first parent table, there are a total of 4 * 8 = 32 such first sub-tables, wherein each first sub-table contains 24 items, and each item stores no more than 2 bytes. Therefore, the total size of the first parent table does not exceed 32 * 24 * 2 = 1536 bytes. The terminal may store the first parent table in ROM or FLASH. The size of the first subtable does not exceed 24 * 2 = 48 bytes. On the other hand, the terminal constructs the second mother table in advance based on the relevant definitions in section 5.5.3.2 of the 3GPP TS 36.21 1 specification. Using the second mother table, the terminal can obtain the frequency domain offset of the SRS hopping pattern according to the SRS transmission timing count SRS .
参考图 5 , 在第二母表 500中, 根据上行带宽 NRBUI% 包含了分别针对 6 <
Figure imgf000012_0001
< 1 10这四个 NRB1^取值范围的表格。 针对其中某个范围的表格 510 内, 又分别对应所有 可能的 SRS带宽配置 CSRS ( 0 < CSRS < 7 ) , 包含了 8张第二子表 520。 每个 第二子表 520内, 分别针对跳频周期内每个 SRS发送计数 wSRS的可能取值, 包含了相应的 d0、 4、 ί¾和 ί¾取值。例如,根据 3GPP TS 36.21 1规范第 5.5.3.2 节中的有关公式, 可按:
Referring to FIG. 5, in the second mother table 500, according to the uplink bandwidth NRB UI % is included for 6 <
Figure imgf000012_0001
< 1 10 Table of the four NRB 1 ^ range of values. For each of the ranges 510, C SRS ( 0 < C SRS < 7 ) is configured corresponding to all possible SRS bandwidths, and 8 second sub-tables 520 are included. Within each second sub-table 520, the possible values of the counts w SRS for each SRS in the frequency hopping period are respectively included, and the corresponding values of d 0 , 4, ί3⁄4 and ί3⁄4 are included. For example, according to the relevant formula in section 5.5.3.2 of the 3GPP TS 36.21 1 specification, you can press:
Figure imgf000012_0002
Figure imgf000012_0002
(b = 0, 1 , 2, 3) 来计算得到 ^值。考虑到 ί¾的取值为不会超过 6的非负整数, 因此最多 用 3比特就可以表示, 为了方便存储每项釆用整数字节存储, 因此釆用不超 过 2个字节就可以存储 、 dx , ί¾和 ί¾。 这样, 就完成了第二母表 500的构 造。 第二子表的深度可按公式: / SRS,。/4计算得到, 其中, SRS,Q表示 SRS 树型结构第 0层所对应的带宽, 是根据 NRBUL和CSRS来确定的一个正整数, 其取值是 4的倍数且最大不超过 96。 例如, 根据 36.21 1规范中第 5.5.3.2节 中的相关定义, 对应 4种 NRBUL的取值范围, wSRS,o的取值最大分别不超过 36、 48、 72和 96 , 因此相应的第二子表的行数 D不超过 9、 12、 18和 24。 第二母表中, 总共有 4 * 8 = 32张这样的第二子表, 每个第二子表包含 D项, 每项的存储不超过 2个字节这样, 这样第二母表总大小不超过: (9 + 12 + 18 +24) * 8 * 2 = 1008 字节。 终端可将该第一母表存储在 ROM或 FLASH中。 第二子表的大小不超过 24 * 2 = 48字节。 (b = 0, 1, 2, 3) to calculate the ^ value. Considering that the value of ί3⁄4 is a non-negative integer that does not exceed 6, it can be represented by up to 3 bits. In order to store each integer byte storage, it can be stored with no more than 2 bytes. d x , ί3⁄4 and ί3⁄4. Thus, the construction of the second mother table 500 is completed. The depth of the second subtable can be expressed as: / SRS . /4 is calculated, where SRS and Q represent the bandwidth corresponding to layer 0 of the SRS tree structure, which is a positive integer determined according to N R B UL and C SRS , and the value is a multiple of 4 and the maximum does not exceed 96. For example, according to a specification 36.21 5.5.3.2 in the section definitions, corresponding to the range of four kinds NRB UL, w SRS, o maximum values are not more than 36, 48, 72 and 96, thus the respective first The number of rows D of the two sub-tables does not exceed 9, 12, 18, and 24. In the second parent table, there are a total of 4 * 8 = 32 such second sub-tables, and each second sub-table contains D items, each of which stores no more than 2 bytes, so that the total size of the second parent table Do not exceed: (9 + 12 + 18 +24) * 8 * 2 = 1008 bytes. The terminal may store the first parent table in ROM or FLASH. The size of the second subtable does not exceed 24 * 2 = 48 bytes.
步骤 320 , 终端接收到系统上行带宽
Figure imgf000012_0003
以及基站下发的 SRS带宽 配置参数 CSRS后, 根据 NRBUL和 CSRS从第一母表中选择第一子表。
Step 320, the terminal receives the uplink bandwidth of the system.
Figure imgf000012_0003
After the SRS bandwidth configuration parameter C SRS delivered by the base station, the first sub-table is selected from the first parent table according to the NRB UL and the C SRS .
终端接入网络, 读取基站下发的系统消息和小区公共配置后, 即可获得 上行带宽 NRBUL、 以及 SRS带宽配置参数 Csrs。 根据
Figure imgf000013_0001
Csrs, 终端可 从第一母表所含的 32个第一子表中,选取相应的第一子表。终端可将所选择 的第一子表从 ROM或 FLASH加载到 DBB芯片内部,以便可快速进行访问。 由于第一子表的大小不超过 48字节, 因此搬移到 DBB芯片内部后的开销很
After the terminal accesses the network and reads the system message and the common configuration of the cell delivered by the base station, the terminal can obtain Upstream bandwidth NRB UL and SRS bandwidth configuration parameter C srs . according to
Figure imgf000013_0001
C srs , the terminal may select the corresponding first sub-table from the 32 first sub-tables included in the first parent table. The terminal can load the selected first sub-table from ROM or FLASH into the DBB chip for quick access. Since the size of the first sub-table does not exceed 48 bytes, the overhead after moving to the inside of the DBB chip is very high.
步骤 330, 根据基站下发的 SRS-带宽参数 SSRS和 SRS频域位置索引参 数 WRRC, 基于第一子表, 以 WRRC作为索引, 通过查表得到包含 SSRS +1个元 素的序列: /?(0),/?(1), ... ,p(B Step 330: According to the SRS-bandwidth parameter S SRS and the SRS frequency domain location index parameter WRRC sent by the base station, based on the first sub-table, using WRRC as an index, obtain a sequence including S SRS +1 elements by looking up the table: /? (0), /?(1), ... , p(B
终端接入网络后,读取基站下发专用信令中的 SRS-带宽参数 SSRS, 可确 定每次 SRS发送所占的实际带宽, 因此在 "树" 型结构中只需要确定前 SSRS + 1层的标识 即可, 其中 b = 0,l, ... , SSRS。 基于在步骤 320中所选择的第 一子表, 根据基站在专用信令中所指示的 SRS频域位置索引参数《RRC, 查第 一子表后即可获得相应的 4、 dx. ί¾和 ί¾取值, 取其中前 SSRS+ 1项, 得到 包含 SSRS+ 1个元素的序列: /?(0),/?(1), ... ,p(BSRS): After the terminal accesses the network, the SRS-bandwidth parameter S SRS in the dedicated signaling sent by the base station is read, and the actual bandwidth occupied by each SRS transmission can be determined. Therefore, only the pre-S SRS + needs to be determined in the "tree" type structure. The identification of the 1st layer can be, where b = 0, l, ..., S SRS . Based on the first sub-list selected in step 320, according to the SRS frequency domain location index parameter “RR C indicated by the base station in the dedicated signaling, the corresponding sub-table can be obtained after obtaining the corresponding 4, d x . 3 3⁄4 And ί3⁄4 take the value, take the pre-S SRS + 1 item, and get the sequence containing S S RS+ 1 element: /?(0), /?(1), ..., p(B SRS ):
p{i = db, = 0,1,…,SSRS p{i = d b , = 0,1,...,S SRS
其中, 每个元素;? (z)都是一个非负整数, 其取值范围是 0≤/?(ζ)≤^, ι = 0,1,…, ¾RS  Where each element;? (z) is a non-negative integer whose value ranges from 0≤/?(ζ)≤^, ι = 0,1,..., 3⁄4RS
然后, 终端读取基站下发的专用配置中的 SRS跳频带宽参数 bh。p, 然后 与参数 SSRS做比较后, 来判断基站是否使能了 SRS跳频。 如果 bh。p<BSRS, 则基站使能了 SRS跳频, 顺序执行步骤 340至步骤 360; 如果 bh。P ≥ BsRs, 则基站未使能 SRS跳频, 跳转到步骤 370执行。 Then, the terminal reads the SRS frequency hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. Then, after comparing with the parameter S SRS , it is determined whether the base station enables SRS frequency hopping. If bh. If p<B S RS, the base station enables SRS frequency hopping, and steps 340 to 360 are sequentially performed; if bh. If P ≥ BsRs, the base station does not enable SRS frequency hopping, and the process proceeds to step 370.
步骤 340, 根据系统上行带宽 NRBUL、 以及基站下发的 SRS带宽配置参 数 CSRS, 从第二母表中选择一个第二子表。 Step 340: Select a second sub-table from the second parent table according to the system uplink bandwidth NRB UL and the SRS bandwidth configuration parameter C SRS delivered by the base station.
终端接入网络, 读取基站下发的系统消息和小区公共配置后, 即可获得 上行带宽 NRBUL、 以及 SRS带宽配置参数 Csrs。 根据
Figure imgf000013_0002
Csrs, 终端可 从第二母表所含的 32个第二子表中,选取相应的第二子表。终端可将所选择 的第二子表从 ROM或 FLASH加载到 DBB芯片内部,以便可快速进行访问。 由于第二子表的大小不超过 48字节, 因此搬移到 DBB芯片内部后的开销很 小。 步骤 350, 根据基站下发的 SRS跳频带宽参数 bhp, 在每个 SRS跳频周 期内, 根据 SRS发送时机计数" SRS, 基于所选择的第二子表, 以 W'SRS = ("SRS mod · S为索引, 通过查表得到包含 ^-^ 个元素的序列: bh。P+l), (bhop+2), ... , q(BSRS)0
After the terminal accesses the network and reads the system message and the common configuration of the cell, the uplink bandwidth NRB UL and the SRS bandwidth configuration parameter C srs are obtained . according to
Figure imgf000013_0002
C srs , the terminal may select a corresponding second sub-table from the 32 second sub-tables included in the second parent table. The terminal can load the selected second sub-table from ROM or FLASH into the DBB chip for quick access. Since the size of the second sub-table does not exceed 48 bytes, the overhead after moving to the inside of the DBB chip is small. Step 350: According to the SRS frequency hopping bandwidth parameter b h delivered by the base station. p , in each SRS hopping period, according to the SRS transmission timing " SRS , based on the selected second sub-table, with W'SRS = ("SRS mod · S as an index, by looking up the table to get ^-^ Sequence of elements: bh. P +l), (b hop +2), ... , q(B SRS ) 0
根据 SRS发送时机计数《SRS、 以及根据参数 bh。P, 来确定查第二子表的 索引: "'SRS = ("SRS mod P) · S。 According to the SRS transmission timing, " SRS , and according to the parameter bh. P , to determine the index of the second subtable: "'SRS = ("SRS mod P) · S.
其中, 尸由参数 bhopSRS共同决定, P二 mSRS b / SRS BsRs , mSRS,b 表 示探测参考信号树型结构中第 bhp层所对应的带宽, ^½5,¾5表示探测参考信 号树型结构中第 eSRS层所对应的带宽,且 的取值不会超过第二子表的行数 D。 当 bhp=0时, Ρ=Γ»即第二子表的行数, 选取步长 =^=1; 当 bh。p>0时, 可利用第二子表的 "嵌套" 特性, 继续采用第二子表来查表, 但修改步长为 s=nb b Nb。 参见图 6的示例, 该例子中假定了 BSRS=3。 然后,基于在步骤 340中所 选择的第二子表, 以《,SRS作为索引, 查第二子表后即可获得相应的 4、 di、 4和 ί¾取值, 取其中笫 bhp+l至第 SRS项, 得到 ^^-^^个元素的序列: (¾op+l),
Figure imgf000014_0001
... , q(BSRs)
Among them, the corpse is determined by the parameters b hop and SRS together, P 2 m SRS b / SRS BsRs , m SRS , b represents the b h in the tree structure of the sounding reference signal. The bandwidth corresponding to the p layer, ^1⁄25, 3⁄45, represents the bandwidth corresponding to the e- SRS layer in the tree structure of the sounding reference signal, and the value does not exceed the number D of rows of the second sub-table. When b h . When p =0, Ρ=Γ» is the number of rows in the second subtable, and the step size is selected =^=1; when b h . When p>0, the second subtable can be used to look up the table by using the "nesting" feature of the second subtable, but the modification step is s=n b b N b . Referring to the example of Fig. 6, B SRS = 3 is assumed in this example. Then, based on the second sub-table selected in step 340, using SRS as an index, the second sub-table is checked to obtain corresponding values of 4, di, 4, and ί3⁄4, where 笫b h is obtained . From p + l to the SRS term, the sequence of ^^-^^ elements is obtained: (3⁄4op+l),
Figure imgf000014_0001
... , q(B S Rs)
q(i) = db, i = bhop + 1, ^hop + 2, ... , SS S q(i) = d b , i = bhop + 1, ^hop + 2, ... , S S S
其中, 每个元素 (z)都是一个非负整数, 其取值范围是 0≤g(z)≤N6, ι =  Where each element (z) is a non-negative integer whose value ranges from 0 ≤ g(z) ≤ N6, ι =
该示例 中 , 对应参数 bhp = 0 , 可计算的而到跳频周期In this example, the corresponding parameter b h is used . p = 0, can be calculated to the frequency hopping period
P = N6 = N。 = 1; P = N 6 = N. = 1;
Figure imgf000014_0002
Figure imgf000014_0002
对应参数 bhp= l, 可计算的而到跳频周期 二 /^^.^ =24M = 6, 步长^ N^No 'N^ l · 2 = 2; Corresponding to the parameter b h . p = l, Computable to the frequency hopping period two /^^.^ = 24 M = 6, step size ^ N^No 'N^ l · 2 = 2;
对应参数 bhp = 2, 可计算的而到跳频周期 P = w½¾ /"½ ¾s = U/4 = 3, ψ长
Figure imgf000014_0003
1 · 2 · 2 = 4。 步骤 360, 通过所述序列 p(/:)}, 以及所述序列 和所述序列 相 力口, 来分别得到树型结构第 0、 第 1 第 SSRS层的标识
Corresponding to the parameter b h . p = 2, computable to the frequency hopping period P = w1⁄23⁄4 /"1⁄2 3⁄4s = U/ 4 = 3, ψ long
Figure imgf000014_0003
1 · 2 · 2 = 4. Step 360, obtaining the identifiers of the 0th and 1st S SRS layers of the tree structure by using the sequence p(/:)}, and the sequence and the sequence phase port respectively.
对于 0≤b≤bhop, nb=p{b) 对于 ^hop <b< BSRS, nb = (p{b) + q{b)) mod Nb; For 0 ≤ bb hop , n b = p{b) For ^hop <b< B SRS , n b = (p{b) + q{b)) mod N b ;
然后转向步骤 380。  Then go to step 380.
步骤 370, 如果 bh。p ≥ BSRs, 则基站未使能 SRS跳频, 跳转到步骤 370 执行, 通过步骤 330得到的所述序列 分别得到树型结构第 0、 第 1 第 SSRS层的标识 ^, nb=p(b), 然后转向步骤 380。 Step 370, if bh. If p ≥ B S Rs, the base station does not enable SRS frequency hopping, and the process proceeds to step 370. The sequence obtained in step 330 obtains the identifiers of the 0th and 1st S SRS layers of the tree structure respectively, n b =p(b), then go to step 380.
步骤 380,基于标识 nQ, «!, nBsRs , 就可确定得到当前 SRS发送的频域 位置。 Step 380, based on the identifier n Q , «!, n BsRs , can determine the frequency domain location of the current SRS transmission.
可按如下公式,基于 "树"型结构,计算每次 SRS发送的频域起始位置、 即 R
Figure imgf000015_0001
The frequency domain start position of each SRS transmission, that is, R, can be calculated based on the "tree" structure according to the following formula
Figure imgf000015_0001
其中, wSRS,6是根据 NRBUL、 CSRS和 SSRS来确定的一个正整数, 其取值是 4的倍数且最大不超过 96。 Where w SRS , 6 is a positive integer determined according to NRB UL , C SRS and S SRS , and its value is a multiple of 4 and the maximum does not exceed 96.
这样, 针对使能 SRS跳频的情形, 通过在一个 SRS跳频周期内总共 P 次这样的上述步骤 310至步骤 360以及步骤 380的处理步骤, 可以得到 SRS 跳频图案。 针对未使能 SRS跳频的情形, 通过上述步骤 310至步骤 330、 以 及步骤 370和步骤 380, 可以得到 SRS发送固定的一个频域位置。 其中, 步 骤 310、 即表格构造可事先执行, 而步骤 320可在读取基站的公共配置后即 执行, 因此步骤 310和步骤 320无需重复执行。  Thus, for the case of enabling SRS frequency hopping, the SRS hopping pattern can be obtained by a total of P times in the above-mentioned steps 310 to 360 and the processing steps of step 380 in one SRS hopping period. For the case where the SRS frequency hopping is not enabled, through the above steps 310 to 330, and steps 370 and 380, a fixed frequency domain position of the SRS transmission can be obtained. Wherein, step 310, that is, the table construction can be performed in advance, and step 320 can be performed after reading the common configuration of the base station, so steps 310 and 320 need not be repeated.
其中:  among them:
第一子表包含 24行, 依次对应《RRC索引的所有可能取值;  The first sub-table contains 24 lines, which in turn correspond to all possible values of the RRC index;
第二子表包含 D = mSRS,0/ 4行, 依次对应了 bhP = 0时一个 SRS跳频周 期内所有的 SRS发送时机; S= Π^¾。。/ ^是与 bhp相关的一个步长; 第一子表和第二子表中, 每行均包含了 4个非负整数: d0, d (12和 d3 其中, ί¾的取值范围是 0≤ί¾<^ (b=0,l,2,3 ) , 这里 N6是根据 NRBUL、 CSRS 和 BSRS来确定的一个正整数。 The second subtable contains D = m SRS , 0 / 4 lines, which in turn correspond to b h . When S = 0, all SRS transmission timings in one SRS hopping period; S = Π^ 3⁄4 . . / ^ is with b h . A step associated with p ; in the first sub-table and the second sub-table, each row contains 4 non-negative integers: d 0 , d (1 2 and d 3 where ί3⁄4 has a value range of 0 ≤ ί3⁄4 <^ (b=0, l, 2, 3), where N6 is a positive integer determined according to NRB UL , C SRS and BSRS.
终端存储第一母表, 第一母表中依次对应了所有可能的 NRBUL和 (^!^参 数组合, 包含了多个第一子表。 Terminal storing a first alphabet, the first master table corresponds to the sequence of all the possible and NRB UL (^! ^ Parameters The number combination contains multiple first subtables.
终端存储第二母表, 第二母表中依次对应了所有可能的 NRBUL和 (^!^参 数组合, 包含了多个第二子表。 The terminal stores the second mother table, which in turn corresponds to all possible NRB UL and (^!^ parameter combinations, and includes a plurality of second child tables.
针对使能 SRS跳频的情形, 通过在一个 SRS跳频周期内总共 P次这样 的上述处理步骤, 可以得到 SRS跳频图案。  For the case of enabling SRS frequency hopping, the SRS hopping pattern can be obtained by a total of P such processing steps in one SRS hopping period.
图 7是本发明实施例的终端的示意图, 如图 7所示, 本实施例的终端可 以包括:  FIG. 7 is a schematic diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 7, the terminal in this embodiment may include:
构造模块, 用于构造第一母表和第二母表, 其中, 第一母表包含多个第 一子表, 第二母表包含多个第二子表; 选择模块, 用于根据系统上行带宽 NRBUL和基站下发的探测参考信号带 宽配置参数 CSRS, 从所述第一母表中选择一个第一子表; 查表模块, 用于根据基站下发的探测参考信号带宽参数 ^SRS和探测参考 信号频域位置索引参数《RRC , 基于所选的第一子表以《RRC作为索引, 通过查 表得到包含 SSRS +1个元素的序列 { (ζ)} , 其中, ζ=( ..,βδ]«; a constructing module, configured to construct a first parent table and a second mother table, wherein the first parent table includes a plurality of first child tables, the second mother table includes a plurality of second child tables; and the selecting module is configured to perform uplink according to the system The bandwidth NRB UL and the sounding reference signal bandwidth configuration parameter C SRS sent by the base station, select a first sub-table from the first parent table; the look-up table module is configured to use the sounding reference signal bandwidth parameter ^SRS sent by the base station And the sounding position reference parameter "RR C of the sounding reference signal", based on the selected first sub-table with "RR C as an index, by looking up the table to obtain a sequence containing S SRS +1 elements { (ζ)}, where, =( ..,β δ] «;
判断模块, 用于判断所述基站是否使能了探测参考信号跳频; 第一确定模块 , 用于在所述判断模块判断所述基站使能了探测参考信号 跳频, 则通过以下确定探测参考信号跳频图案:  a determining module, configured to determine whether the base station is enabled with the sounding of the sounding reference signal; the first determining module is configured to: when the determining module determines that the base station enables the sounding of the sounding reference signal, determine the sounding reference by the following Signal hopping pattern:
根据所述 NRBUL和所述 CSRS从所述第二母表中选择一个第二子表; 根据所述基站下发的探测参考信号跳频带宽参数 bhp, 在每个探测参考 信号跳频周期内, 根据探测参考信号发送时机计数《SRS, 基于所选择的第二 子表, 以《,^ = («^ 1110(1 作为索引, 通过查表得到包含 SSRS -bhp个元 素的序列: { (/)} , 其中, = 。P+l,— ,esRS, S是与 。 p相关的一个步长,Selecting a second sub-table from the second mother table according to the NRB UL and the C SRS ; and hopping the bandwidth parameter b h according to the sounding reference signal sent by the base station. p , in each hopping reference signal hopping period, according to the sounding reference signal transmission timing count " SRS , based on the selected second sub-table, with ", ^ = («^ 1110 (1 as an index, obtained by looking up the table) Contains S SRS -b h . Sequence of p elements: { (/)} , where , = P + l, — , esR S , S is a step size associated with .
P = mSRS op
Figure imgf000016_0001
, 表示探测参考信号树型结构中第 p层所对应 的带宽, ^,¾s表示探测参考信号树型结构中第 SSRS层所对应的带宽, 通过所述序列( 0}, 以及所述序列 ί Ο}和所述序列 相加, 来分别 得到树型结构第 0至第 SSRS层的标识 nb:
P = m SRS op
Figure imgf000016_0001
, indicating the bandwidth corresponding to the p- th layer in the tree structure of the sounding reference signal, ^, 3⁄4s represents the bandwidth corresponding to the S SRS layer in the sounding reference signal tree structure, through the sequence (0}, and the sequence ί Ο} is added to the sequence to obtain the identifiers n b of the 0th to S Sth layers of the tree structure:
对于 0≤b≤bhop, nb = p(b) , 对于 ^hop < b < BSRS , nb = (p{b) + q{b)) mod Nb , For 0 ≤ bb hop , n b = p(b) , For ^hop < b < B SRS , n b = (p{b) + q{b)) mod N b ,
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案;  And determining, according to the determining a frequency domain position of the current sounding reference signal, by determining a frequency domain position of the sounding reference signal in a total of P times in a sounding period of the sounding reference signal, to obtain a sounding pattern of the sounding reference signal;
第二确定模块, 用于在所述判断模块判断所述基站未使能探测参考信号 跳频, 则通过以下确定探测参考信号跳频图案:  a second determining module, configured to: when the determining module determines that the base station does not enable the sounding reference signal hopping, determine the sounding reference signal hopping pattern by:
通过所述序列(p(0}得到树型结构第 0至第 SSRS层的标识 nb: Tree obtained by the sequence (p (0} 0 through S SRS layer identifier n b:
nb = p(b) , b=(V.. ,BSRS n b = p(b) , b=(V.. , B SRS
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案。  Based on the determining the frequency domain position of the current sounding reference signal, the sounding domain position of the sounding reference signal is determined a total of P times in a sounding period of the sounding reference signal to obtain a sounding pattern of the sounding reference signal.
其中, 所述判断模块, 具体用于读取所述基站下发的专用配置中的探测 参考信号跳频带宽参数 bhp, 然后与所述 SSRS做比较, 如果 bhp<SSRS , 则判 断所述基站使能了探测参考信号跳频; 如果 bh。P≥¾ s , 则判断所述基站未使 能 SRS跳频。 The determining module is specifically configured to read the sounding reference signal hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. p , then compare with the S SRS if b h . p < S SRS , then determining that the base station enables the sounding reference signal to hop; if bh. P ≥ 3⁄4 s, then it is judged that the base station does not enable SRS frequency hopping.
其中,所述构建模块构建的所述第一子表包含 24行,依次对应所述《RRC 的所有可能取值; 所述第二子表包含 wSRS,Q /4行, 依次对应了 bhP=0时一个 探测参考信号跳频周期内所有的探测参考信号发送时机, 其中, SRS,。表示 SRS树型结构第 0层所对应的带宽, 是根据所述 NRBUL和所述 CSR J|定的一 个正整数, 其取值是 4的倍数且最大不超过 96。 The first sub-table constructed by the building module includes 24 lines, which in turn correspond to all possible values of the RRC; the second sub-table includes w SRS , Q / 4 lines, which in turn correspond to b h . When P =0, the timing of all sounding reference signals in a hopping period of a sounding reference signal, where SRS , is. The bandwidth corresponding to the 0th layer of the SRS tree structure is a positive integer determined according to the NRB UL and the C SR J|, which is a multiple of 4 and a maximum of 96.
通过上述优选实施例可见, 釆用本发明实施例提供的方法和终端, 与现 有技术相比,通过查表的方法降低了终端确定 SRS跳频图案过程的计算复杂 度, 可节省终端功率或降低终端成本。  The method and the terminal provided by the embodiment of the present invention can reduce the computational complexity of determining the SRS frequency hopping pattern process by the terminal, and save the terminal power or Reduce terminal costs.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 One of ordinary skill in the art will appreciate that all or a portion of the above steps may be performed by a program to instruct the associated hardware, such as a read only memory, a magnetic disk, or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any What is the combination of specific forms of hardware and software.
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。 The above is only a preferred embodiment of the present invention, and of course, the present invention may be embodied in various other embodiments without departing from the spirit and scope of the invention. Corresponding changes and modifications are intended to be included within the scope of the appended claims.
工业实用性 Industrial applicability
本发明实施例提供一种确定探测参考信号跳频图案的方法及终端, 可以 根据基站配置的相关 SRS发送参数, 较为快速、 方便地确定 SRS跳频图案。  The embodiment of the invention provides a method and a terminal for determining a hopping pattern of a sounding reference signal, which can determine the SRS frequency hopping pattern more quickly and conveniently according to the relevant SRS transmission parameters configured by the base station.

Claims

权 利 要 求 书 Claim
1、 一种确定探测参考信号跳频图案的方法, 包括:  A method for determining a frequency hopping pattern of a sounding reference signal, comprising:
终端构造第一母表和第二母表, 其中, 第一母表包含多个第一子表, 第 二母表包含多个第二子表;  The terminal constructs a first parent table and a second parent table, wherein the first parent table includes a plurality of first child tables, and the second mother table includes a plurality of second child tables;
所述终端根据系统上行带宽 NRBUL和基站下发的探测参考信号带宽配置 参数 CSRS , 从所述第一母表中选择一个第一子表; The terminal selects a first sub-table from the first parent table according to the system uplink bandwidth NRB UL and the sounding reference signal bandwidth configuration parameter C SRS delivered by the base station;
所述终端根据所述基站下发的探测参考信号带宽参数 SSRS和探测参考信 号频域位置索引参数《RRC , 基于所选的第一子表以《RRC作为索引, 通过查表 得到包含 SSRS +1个元素的序列 其中,
Figure imgf000019_0001
The terminal according to the sounding reference signal bandwidth parameter S SRS and the sounding reference signal frequency domain position index parameter “RR C ” sent by the base station, based on the selected first sub-table and “RR C as an index, obtains the inclusion by looking up the table. S SRS +1 sequence of elements,
Figure imgf000019_0001
所述终端判断所述基站是否使能了探测参考信号跳频, 如判断所述基站 使能了探测参考信号跳频, 则通过以下步骤确定探测参考信号跳频图案: 根据所述 NRBUL和所述 CSRS从所述第二母表中选择一个第二子表; 根据所述基站下发的探测参考信号跳频带宽参数 bhp, 在每个探测参考 信号跳频周期内, 根据探测参考信号发送时机计数《SRS, 基于所选择的第二 子表, 以《,^ = («^ 1110(1 作为索引, 通过查表得到包含 SSRS -bhp个元 素的序列: {g(/)}, 其中, = 。 P+1 ,— ,SSRS , S是与 。 p相关的一个步长, P = m JmSRS,BsRs , 表示探测参考信号树型结构中第 bhp层所对应的带 宽, 表示探测参考信号树型结构中第 ¾RS层所对应的带宽, 通过所述序列( 0}, 以及所述序列 和所述序列 相加, 来分别 得到树型结构第 0至第 SSRS层的标识 nb: Determining, by the terminal, whether the base station enables the sounding of the sounding reference signal, and if the base station determines that the sounding of the sounding reference signal is enabled by the base station, determining the sounding pattern of the sounding reference signal by the following steps: according to the NRB UL and the The C SRS selects a second sub-table from the second parent table; and hops the bandwidth parameter b h according to the sounding reference signal sent by the base station. p , in each hopping reference signal hopping period, according to the sounding reference signal transmission timing count " SRS , based on the selected second sub-table, with ", ^ = («^ 1110 (1 as an index, obtained by looking up the table) Contains S SRS -b h . Sequence of p elements: {g(/)}, where = = P +1 , — , S SRS , S is a step associated with .p, P = m Jm SRS , BsRs , representing the b h of the sounding reference signal tree structure, the bandwidth corresponding to the p layer, representing the bandwidth corresponding to the 3rd RS layer in the sounding reference signal tree structure, through the sequence ( 0 }, and the sequence Adding to the sequence to obtain the identifiers n b of the 0th to S SRS layers of the tree structure, respectively:
对于 0≤b≤bhop, nb = p(b) , For 0 ≤ bb hop , n b = p(b) ,
对于 ^hop < b < BSRS , nb = (p(b) + q(b)) mod Nb , For ^hop < b < B SRS , n b = (p(b) + q(b)) mod N b ,
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案;  And determining, according to the determining a frequency domain position of the current sounding reference signal, by determining a frequency domain position of the sounding reference signal in a total of P times in a sounding period of the sounding reference signal, to obtain a sounding pattern of the sounding reference signal;
所述终端如判断所述基站未使能探测参考信号跳频, 则通过以下步骤确 定探测参考信号跳频图案: 通过所述序列(p(0}得到树型结构第 0至第 SSRS层的标识 nb: If the terminal determines that the base station does not enable the sounding reference signal to hop, the terminal determines the sounding reference signal hopping pattern by the following steps: Tree obtained by the sequence (p (0} 0 through S SRS layer identifier n b:
nb = p(b) , b=(V.. ,BSRS n b = p(b) , b=(V.. , B SRS
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案。  Based on the determining the frequency domain position of the current sounding reference signal, the sounding domain position of the sounding reference signal is determined a total of P times in a sounding period of the sounding reference signal to obtain a sounding pattern of the sounding reference signal.
2、如权利要求 1所述方法, 其中, 所述终端判断所述基站是否使能了探 测参考信号跳频, 包括:  The method of claim 1, wherein the terminal determines whether the base station enables the hopping of the reference signal, including:
所述终端读取所述基站下发的专用配置中的探测参考信号跳频带宽参数 bhp, 然后与所述 SSRS做比较, 如果 bh。P<BsRS , 则判断所述基站使能了探测 参考信号跳频; 如果 bh。p≥BsRs , 则判断所述基站未使能 SRS跳频。 The terminal reads the sounding reference signal hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. p , then compare with the S SRS , if bh. P < BsRS , then determining that the base station enables the sounding reference signal to hop; if bh. If p≥BsRs, it is determined that the base station does not enable SRS frequency hopping.
3、 如权利要求 1或 2所述方法, 其中,  3. The method of claim 1 or 2, wherein
所述第一子表包含 24行, 依次对应所述 WRRC的所有可能取值; 所述第二子表包含 mSRS,0 /4行, 依次对应了 bhP=0时一个探测参考信号 跳频周期内所有的探测参考信号发送时机, 其中, wSRS,。表示 SRS树型结构 第 0层所对应的带宽, 是根据所述 NRBUL和所述 CSRS确定的一个正整数, 其 取值是 4的倍数且最大不超过 96。 The first sub-list includes 24 rows, which in turn correspond to all possible values of the WRRC; the second sub-table includes m SRS , 0 / 4 rows, which in turn correspond to b h . When P =0, all sounding reference signal transmission timings of a sounding reference signal hopping period, where w SRS ,. The bandwidth corresponding to the layer 0 of the SRS tree structure is a positive integer determined according to the NRB UL and the C SRS , and the value is a multiple of 4 and a maximum of 96.
4、 如权利要求 1或 2所述方法, 其中,  4. The method of claim 1 or 2, wherein
所述第一子表和所述第二子表中, 每行均包含了 4个非负整数。  Each of the first sub-table and the second sub-table includes four non-negative integers.
5、 如权利要求 1或 2所述方法, 其中,  5. The method of claim 1 or 2, wherein
所述第一母表中依次对应了所有的 NRBUL和 CSRS的组合; The first parent table sequentially corresponds to all combinations of NRB UL and C SRS ;
所述第二母表中依次对应了所有的 NRBUL和 CSRS的组合。 The second mother table sequentially corresponds to all combinations of NRB UL and C SRS .
6、 一种终端, 包括:  6. A terminal, comprising:
构造模块, 设置为: 构造第一母表和第二母表, 其中, 第一母表包含多 个第一子表, 第二母表包含多个第二子表;  Constructing a module, configured to: construct a first parent table and a second parent table, wherein the first parent table includes a plurality of first child tables, and the second mother table includes a plurality of second child tables;
选择模块, 设置为: 根据系统上行带宽 NRBUL和基站下发的探测参考信 号带宽配置参数 CSRS, 从所述第一母表中选择一个第一子表; The selecting module is configured to: select a first sub-table from the first parent table according to the system uplink bandwidth NRB UL and the sounding reference signal bandwidth configuration parameter C SRS delivered by the base station;
查表模块, 设置为: 根据基站下发的探测参考信号带宽参数 SSRS和探测 参考信号频域位置索引参数《RRC , 基于所选的第一子表以《RRC作为索引, 通 过查表得到包含 SSRS +1个元素的序列 其中,
Figure imgf000021_0001
δ] δ
The table lookup module is configured to: according to the sounding parameter bandwidth parameter S SRS and detection sent by the base station Reference signal frequency domain location index parameter "RR C , based on the selected first sub-table with "RR C as an index, by looking up the table to obtain a sequence containing S SRS +1 elements,
Figure imgf000021_0001
, β δ] δ ;
判断模块, 设置为: 判断所述基站是否使能了探测参考信号跳频; 第一确定模块, 设置为: 在所述判断模块判断所述基站使能了探测参考 信号跳频, 则通过以下确定探测参考信号跳频图案:  The determining module is configured to: determine whether the base station is enabled with the sounding of the sounding reference signal; the first determining module is configured to: when the determining module determines that the base station enables the sounding of the sounding reference signal, the determining is determined by the following Sounding reference signal hopping pattern:
根据所述 NRBUL和所述 CSRS从所述第二母表中选择一个第二子表; 根据所述基站下发的探测参考信号跳频带宽参数 bhp, 在每个探测参考 信号跳频周期内, 根据探测参考信号发送时机计数《SRS, 基于所选择的第二 子表, 以《,^ = («^ 1110(1 作为索引, 通过查表得到包含 SSRS -bhp个元 素的序列: { , 其中, 尸 bhop+1, S是与 。 p相关的一个步长,Selecting a second sub-table from the second mother table according to the NRB UL and the C SRS ; and hopping the bandwidth parameter b h according to the sounding reference signal sent by the base station. p , in each hopping reference signal hopping period, according to the sounding reference signal transmission timing count " SRS , based on the selected second sub-table, with ", ^ = («^ 1110 (1 as an index, obtained by looking up the table) Contains S SRS -b h . Sequence of p elements: { , where corpse bhop+1, S is a step size associated with .p,
P = mSRS,bhop /mSRS,BSRS , 表示探测参考信号树型结构中第 p层所对应 的带宽, ^,¾s表示探测参考信号树型结构中第 eSRS层所对应的带宽, 通过所述序列( 0}, 以及所述序列 和所述序列 相加, 来分别 得到树型结构第 0至第 SSRS层的标识 nb: P = m SRS, bhop /m S RS, B SRS , represents the bandwidth corresponding to the p- th layer in the tree structure of the sounding reference signal, ^, 3⁄4s represents the bandwidth corresponding to the e- SRS layer in the tree structure of the sounding reference signal, The identifier n b of the 0th to S Sth layers of the tree structure is obtained by the sequence (0}, and the sequence and the sequence are added:
对于 0≤b≤bhop, nb = p(b) , For 0 ≤ bb hop , n b = p(b) ,
对于 ^hop < b < BSRS , nb = (p(b) + q(b)) mod Nb , For ^hop < b < B SRS , n b = (p(b) + q(b)) mod N b ,
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案;  And determining, according to the determining a frequency domain position of the current sounding reference signal, by determining a frequency domain position of the sounding reference signal in a total of P times in a sounding period of the sounding reference signal, to obtain a sounding pattern of the sounding reference signal;
第二确定模块, 设置为: 在所述判断模块判断所述基站未使能探测参考 信号跳频, 则通过以下确定探测参考信号跳频图案:  The second determining module is configured to: when the determining module determines that the base station does not enable the sounding reference signal frequency hopping, determine the sounding reference signal hopping pattern by:
通过所述序列(p(0}得到树型结构第 0至第 SSRS层的标识 nb: Tree obtained by the sequence (p (0} 0 through S SRS layer identifier n b:
nb = p(b) , b=(V.. ,BSRS n b = p(b) , b=(V.. , B SRS
基于所述 确定当前探测参考信号的频域位置,通过在一个探测参考信 号跳频周期内总共 P次确定探测参考信号的频域位置, 得到探测参考信号跳 频图案。  Based on the determining the frequency domain position of the current sounding reference signal, the sounding domain position of the sounding reference signal is determined a total of P times in a sounding period of the sounding reference signal to obtain a sounding pattern of the sounding reference signal.
7、 如权利要求 6所述终端, 其中, 所述判断模块, 设置为: 读取所述基站下发的专用配置中的探测参考信 号跳频带宽参数 bhp, 然后与所述 SSRS做比较, 如果 bh。P<BsRS , 则判断所述 基站使能了探测参考信号跳频; 如果 bh。P≥¾ S , 则判断所述基站未使能 SRS 跳频。 7. The terminal of claim 6, wherein The determining module is configured to: read the sounding reference signal hopping bandwidth parameter b h in the dedicated configuration delivered by the base station. p , then compare with the S SRS , if bh. P < BsRS , then determining that the base station enables the sounding reference signal to hop; if bh. P ≥ 3⁄4 S , then it is judged that the base station does not enable SRS frequency hopping.
8、 如权利要求 6或 7所述终端, 其中,  8. The terminal according to claim 6 or 7, wherein
所述构建模块构建的所述第一子表包含 24行, 依次对应所述《RRC的所 有可能取值; 所述第二子表包含 wSRS,Q /4行, 依次对应了 bhP=0时一个探测 参考信号跳频周期内所有的探测参考信号发送时机, 其中, SRS,。表示 SRS 树型结构第 0层所对应的带宽, 是根据所述 NRBUL和所述 CSRS确定的一个正 整数, 其取值是 4的倍数且最大不超过 96。 The first sub-table constructed by the building module includes 24 lines, which in turn correspond to all possible values of the RRC; the second sub-table includes w SRS , Q / 4 lines, which in turn correspond to b h . When P =0, the timing of all sounding reference signals in a hopping period of a sounding reference signal, where SRS , is. The bandwidth corresponding to the layer 0 of the SRS tree structure is a positive integer determined according to the NRB UL and the C SRS , and the value is a multiple of 4 and a maximum of 96.
9、 如权利要求 6或 7所述终端, 其中,  9. The terminal according to claim 6 or 7, wherein
所述构建模块构建的所述第一子表和所述第二子表中, 每行均包含了 4 个非负整数。  Each of the first sub-table and the second sub-table constructed by the building block includes 4 non-negative integers.
10、 如权利要求 6或 7所述终端, 其中,  10. The terminal according to claim 6 or 7, wherein
所述构建模块构建的所述第一母表中依次对应了所有的 NRBUL和 CSRS的 组合; 所述第二母表中依次对应了所有的
Figure imgf000022_0001
Csrs的组合。
The first parent table constructed by the building block sequentially corresponds to all combinations of NRB UL and C SRS ; the second mother table sequentially corresponds to all
Figure imgf000022_0001
A combination of C srs .
PCT/CN2014/077342 2013-07-01 2014-05-13 Method and terminal for determining frequency hopping pattern of sounding reference signal WO2014173337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310275236.1 2013-07-01
CN201310275236.1A CN104283582B (en) 2013-07-01 2013-07-01 A kind of determining detection reference signal frequency hopping pattern method and terminal

Publications (1)

Publication Number Publication Date
WO2014173337A1 true WO2014173337A1 (en) 2014-10-30

Family

ID=51791067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077342 WO2014173337A1 (en) 2013-07-01 2014-05-13 Method and terminal for determining frequency hopping pattern of sounding reference signal

Country Status (2)

Country Link
CN (1) CN104283582B (en)
WO (1) WO2014173337A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169166A (en) * 2017-01-05 2019-08-23 日本电气株式会社 For reference signal transmission and received method and apparatus
CN111586708A (en) * 2019-02-15 2020-08-25 中兴通讯股份有限公司 Method, device and system for transmitting sounding reference signal

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131186A1 (en) * 2015-02-17 2016-08-25 华为技术有限公司 Uplink reference signal communication device and method
CN108683486B (en) * 2015-02-17 2019-05-10 华为技术有限公司 A kind of communication device and method of uplink reference signals
CN110383927B (en) 2017-03-23 2021-05-18 诺基亚技术有限公司 Enhanced SRS frequency hopping scheme for 5G NR
CN108631976B (en) 2017-03-23 2021-07-16 华为技术有限公司 Communication method and device
JP6864095B2 (en) * 2017-04-27 2021-04-21 エルジー エレクトロニクス インコーポレイティド How to send SRS and terminal for it
US10820353B2 (en) * 2017-08-10 2020-10-27 Huawei Technologies Co., Ltd. System and method for sounding reference signal transmission
WO2022061640A1 (en) * 2020-09-24 2022-03-31 Qualcomm Incorporated Partial frequency sounding for wireless communication
WO2022151439A1 (en) * 2021-01-15 2022-07-21 华为技术有限公司 Communication method and apparatus
US20220321312A1 (en) * 2021-04-06 2022-10-06 Mediatek Inc. Partial Sounding Method for Sounding Reference Signal in Mobile Communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651469A (en) * 2008-08-15 2010-02-17 三星电子株式会社 Frequency hopping method for sending uplink monitoring reference mark in LET system
CN101771463A (en) * 2009-01-05 2010-07-07 大唐移动通信设备有限公司 Method, device and system for sending uplink sounding reference signal
CN101795145A (en) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 Sending method and system for measuring reference signals
US20110090862A1 (en) * 2008-07-29 2011-04-21 Chunli Liang Method for transmitting an uplink channel sounding reference signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110090862A1 (en) * 2008-07-29 2011-04-21 Chunli Liang Method for transmitting an uplink channel sounding reference signal
CN101651469A (en) * 2008-08-15 2010-02-17 三星电子株式会社 Frequency hopping method for sending uplink monitoring reference mark in LET system
CN101771463A (en) * 2009-01-05 2010-07-07 大唐移动通信设备有限公司 Method, device and system for sending uplink sounding reference signal
CN101795145A (en) * 2010-02-08 2010-08-04 中兴通讯股份有限公司 Sending method and system for measuring reference signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169166A (en) * 2017-01-05 2019-08-23 日本电气株式会社 For reference signal transmission and received method and apparatus
CN111586708A (en) * 2019-02-15 2020-08-25 中兴通讯股份有限公司 Method, device and system for transmitting sounding reference signal

Also Published As

Publication number Publication date
CN104283582A (en) 2015-01-14
CN104283582B (en) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2014173337A1 (en) Method and terminal for determining frequency hopping pattern of sounding reference signal
WO2014173183A1 (en) Method and system for determining sounding reference signal frequency hopping pattern
ES2935526T3 (en) Selection of time domain resource allocation tables
JP6740442B2 (en) Resource scheduling method, apparatus, and device
CN109802796B (en) Reference signal transmission method and reference signal transmission device
KR20210025120A (en) Method and apparatus for transmitting positioning reference signal
RU2605036C1 (en) Method and device for determining control channel search space
WO2018228458A1 (en) Reference signal transmission method and transmission apparatus
CN109995491B (en) Transmission method and device for measurement reference signal
KR20180126001A (en) Wireless device, network node and method in wireless communication system
TWI687116B (en) Resource configuration method and device, and computer storage medium
CN111586861B (en) Random access method, equipment and system
KR20120068960A (en) System and method for signaling configuration of sounding reference signals
WO2012019412A1 (en) Configuration method and system for sounding reference signal
CN109391577B (en) Signal processing method and device
JP6504482B2 (en) Apparatus and method for determining subband resources
CN109219948B (en) Signal processing method and device
TWI688234B (en) Information transmission method, terminal and base station
JP7174859B2 (en) Random access method, device and system
JP2021503791A (en) Detection window instruction method and device
CN108347323B (en) RS generating and receiving method, terminal and base station
KR102434932B1 (en) Method and device for determining resource position, and method and device for determining resource
WO2017031643A1 (en) Resource allocation, resource type instruction and recognition, and data receiving methods and apparatuses
JP2022500925A (en) Reference signal configuration method and device and series configuration method and device
WO2019129274A1 (en) Method and device for transmitting measurement reference signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788218

Country of ref document: EP

Kind code of ref document: A1