WO2014089739A1 - Sapo-35 zeolite and synthesis method therefor - Google Patents

Sapo-35 zeolite and synthesis method therefor Download PDF

Info

Publication number
WO2014089739A1
WO2014089739A1 PCT/CN2012/086279 CN2012086279W WO2014089739A1 WO 2014089739 A1 WO2014089739 A1 WO 2014089739A1 CN 2012086279 W CN2012086279 W CN 2012086279W WO 2014089739 A1 WO2014089739 A1 WO 2014089739A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
molecular sieve
choline
hydrazine
mixture
Prior art date
Application number
PCT/CN2012/086279
Other languages
French (fr)
Chinese (zh)
Inventor
王德花
田鹏
刘中民
樊栋
张莹
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2012/086279 priority Critical patent/WO2014089739A1/en
Publication of WO2014089739A1 publication Critical patent/WO2014089739A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates (SAPO compounds), e.g. CoSAPO

Definitions

  • the invention belongs to the field of SAPO molecular sieves, and particularly relates to a SAPO-35 molecular sieve and a synthetic method thereof. Background technique
  • the aluminum phosphate molecular sieve is a new generation molecular sieve (US4310440) invented by UCC in the early 1980s after the silica-alumina molecular sieve.
  • the skeleton of the molecular sieve is formed by alternating the phosphorus-oxygen tetrahedron and the aluminum-oxygen tetrahedron. Since the molecular sieve skeleton is electrically neutral, there is no cation exchange performance and catalytic reaction performance.
  • silicon When silicon is introduced into the framework of the aluminum phosphate molecular sieve, it is a silicoaluminophosphate molecular sieve, that is, a SAPO series molecular sieve (US4440871), and the molecular sieve skeleton is composed of a phosphorus-oxygen tetrahedron, an aluminoxytetrahedron and a silicon tetrahedron, and the skeleton has a negative charge. There are equilibrium cations outside the backbone and therefore have cation exchange properties. When the extra-framework cation is H ⁇ , the molecular sieve has an acidic center and will possess acid-catalyzed reaction properties. SAPO molecular sieves as active components of catalysts are likely to be used in refining and petrochemical industries such as catalytic cracking, hydrocracking, isomerization, aromatic alkylation, and oxidant-containing conversion.
  • SAPO molecular sieves as active components of catalysts are likely to
  • SAPO-35 is a delta-zeolite type (LEV) molecular sieve with intersecting eight-membered ring channels with a pore size of 3.6 X 4.8A, which is a small pore molecular sieve.
  • the skeleton of SAPO-35 is a LEV cage connected by a single six-membered ring and a double six-membered ring. There are two different T atom positions in the skeleton, one in the double six-membered ring and the other in the single six-membered ring. The distribution ratio of these two positions is 2:1.
  • the SAPO-35 molecular sieve is generally carried out by hydrothermal or alcoholic synthesis using water or an alcohol as a solvent in a closed autoclave.
  • the synthetic components include an aluminum source, a silicon source, a phosphorus source, a structure directing agent, and deionized water.
  • Optional silicon source is silica sol, fumed silica
  • aluminum source is activated alumina, aluminum isopropoxide, pseudoboehmite and alkyl aluminum oxide.
  • Phosphorus source is generally 85% phosphoric acid.
  • the choice of structure-directing agent will have a certain influence on the microstructure, element composition and morphology of the synthetic molecular sieve, which will affect its catalytic performance.
  • US 440871 first disclosed a synthesis using quinuclidine as a template.
  • the method of SAPO-35 molecular sieve In 1999, CN1299776A discloses a method for synthesizing SAPO-35 using hexamethyleneimine (HMI) and hexamethylenediamine (HDA) as a template. In 2005, US 2005/0090390 discloses a method for synthesizing a highly crystalline, strongly acidic SAPO-35 molecular sieve using hexamethyleneimine as a template in an alcoholic heat system.
  • HMI hexamethyleneimine
  • HDA hexamethylenediamine
  • the invention adopts the amine thermal method for the first time to synthesize pure phase SAPO-35 molecular sieve under the condition of amine heat with choline cation as structure directing agent and alcohol amine as solvent.
  • the prepared SAPO-35 molecular sieve exhibits excellent catalytic performance and gas adsorption separation performance in the catalytic reaction. Summary of the invention
  • the alcoholamine is any one or any of hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropanolamine, diisopropanolamine, diglycolamine. A mixture of several.
  • the molecular sieve X-ray diffraction analysis results include at least diffraction peaks as shown in the following table:
  • Another object of the present invention is to provide a method for synthesizing SAPO-35 molecular sieve.
  • a further object of the present invention is to provide an SAPO-35 molecular sieve synthesized by the above method and an acid catalytic reaction catalyst and a gas adsorbent prepared therefrom.
  • the technical problem to be solved by the invention is that the choline cation is used as a structure-directing agent, and the phosphorus source, the silicon source and the aluminum source used in the synthesis of the conventional molecular sieve are used as raw materials, and the amine thermal condition using the alcohol amine as a solvent
  • the pure phase SAPO-35 molecular sieve was synthesized.
  • the present invention is characterized in that the preparation process is as follows - a) mixing an alcohol amine, an aluminum source, a silicon source, a phosphorus source, a compound containing a choline cation, and deionized water in a certain ratio to obtain an initial coagulation having the following molar ratio.
  • Glue mixture is as follows - a) mixing an alcohol amine, an aluminum source, a silicon source, a phosphorus source, a compound containing a choline cation, and deionized water in a certain ratio to obtain an initial coagulation having the following molar ratio.
  • Ch + /Al 2 0 3 0.01 ⁇ 3, wherein Ch + is a choline cation
  • step b) The initial gel mixture obtained in step a) is charged into a high pressure synthesis kettle, sealed, and heated to
  • the silicon source in the initial gel mixture is a mixture of one or a combination of silica sol, active silica, orthosilicate, metakaolin; aluminum source is aluminum salt, activated alumina, a mixture of one or any of alkoxyaluminum, metakaolin; a phosphorus source of one or a mixture of any of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, organic phosphide or phosphorus oxide .
  • the alcoholamine is any one or any of hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropanolamine, diisopropanolamine, diglycolamine. a mixture of several;
  • the choline cation Ch + -containing compound is a choline inorganic salt and / or a choline organic salt.
  • the step a) the compound containing the choline cation Ch + in the initial gel mixture is a mixture of any one or any one of choline chloride, phosphorylcholine, choline choline and choline hydroxide.
  • the molar ratio of Si0 2 /Al 2 0 3 in the initial gel mixture is preferably from 0.1 to 1.0.
  • the molar ratio of P 2 0 5 /A1 2 3 3 in the initial gel mixture in the step a) is preferably from 0.7 to 2.0.
  • the molar ratio of H 2 0/A1 2 0 3 in the initial gel mixture in the step a) is preferably from 8 to 17.
  • the molar ratio of Ch + /Al 2 ⁇ 3 in the initial gel mixture in the step a) is preferably from 0.42 to 2.0.
  • the molar ratio of the alcoholamine/A1 2 0 3 in the initial gel mixture in the step a) is preferably 6.0 to 15.
  • the crystallization process in step b) can be carried out either statically or dynamically.
  • the present invention also relates to a catalyst for acid-catalyzed reaction which is obtained by calcining in an air of 400 to 700 ° C by the SAPO-35 molecular sieve described above or the SAPO-35 molecular sieve synthesized according to the above method.
  • the present invention also relates to a catalyst for the conversion of an oxygen-containing compound to an olefin, which is obtained by calcining the above-mentioned SAPO-35 molecular sieve or SAPO-35 molecular sieve synthesized according to the above method through 400 to 70 (TC air).
  • the invention also relates to an adsorbent for CH 4 /C ⁇ 2 and N 2 /C ⁇ 2 separation, which is passed through the above SAPO-35 molecular sieve or the SAPO-35 molecular sieve synthesized according to the above method through 400 ⁇ 70 ( It is obtained by calcination in TC air.
  • SAPO-35 molecular sieve was obtained by amine thermal method, which opened up a new system for the preparation of SAPO-35 molecular sieve.
  • the prepared SAPO-35 molecular sieve can be used as a catalyst for acid catalytic reaction and oxygenate conversion to exhibit good catalytic performance in the olefin reaction.
  • the prepared SAPO-35 molecular sieve can be used as an adsorbent for CH 4 /CO 2 and N 2 /CO 2 separation.
  • the SEM morphology analysis was performed using a KYKY-AMRAY-1000B scanning electron microscope from the Scientific Instrument Factory of the Chinese Academy of Sciences.
  • the CHN elemental analysis was carried out using a Vario EL Cube elemental analyzer made in Germany.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • Example 1 The invention is described in detail below by way of examples, but the invention is not limited to the examples.
  • the molar ratio of each raw material and the crystallization conditions are shown in Table 1.
  • the specific batching process is as follows, mixing pseudo-boehmite (A1 2 0 3 mass percentage 72.5%) and hydrazine, hydrazine-diethylethanolamine (mass percentage 99%), and then adding silica sol (Si0 2 The mass percentage is 30.04%), stir evenly, then add phosphoric acid (H 3 P0 4 mass% 85%) dropwise, stir evenly, then add water, finally add choline chloride, stir to form a gel. , Transfer the gel to the stainless steel reactor. After the reactor was placed in an oven, the temperature was programmed to crystallization for 48 h at 200 ° C.
  • the solid alcohol amine and the aluminum source and the phosphorus source and the silicon source and the H 2 0 contain choline crystallized crystallization amount of A1 2 0 3 p 2 o 5 moles containing 0 2 cations. Molar number of compounds and
  • Example 1-20 3 g of the synthetic sample of Example 1-20 was separately placed in a plastic beaker, and 3 ml of a 40% hydrofluoric acid solution was added to dissolve the molecular sieve skeleton in an ice water bath, and then 15 ml of carbon tetrachloride was added to dissolve the organic matter therein.
  • the organic matter was analyzed by ICS-3000 ion chromatography and the cation column type was CS12A, and the composition was analyzed to show that both contained choline cations. Comparative Example 1 (no choline cationization in the synthesis system)
  • Example 22 The specific proportion of ingredients, the batching process and the crystallization conditions were the same as in Example 1. No choline chloride was added to the synthetic gel. The XD analysis of the synthesized sample showed that the XRD result of the synthesized product was the characteristic peak of SAPO-34. Example 22
  • Example 1 The sample obtained in Example 1 was subjected to air baking at 60 CTC for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • the l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by activating nitrogen gas at 550 ° C for 1 hour and then cooling to 400 ° C. Methanol was carried by nitrogen, nitrogen flow rate was 40 ml/mm, methanol weight space velocity was 4.0 h - the reaction product was analyzed by on-line gas chromatography (Vanan 3800, FID detector, capillary column PoraPLOT Q-HT). The results are shown in Table 3.
  • Example 4 The sample obtained in Example 4 was used as a CO 2 adsorbent.
  • the adsorption isotherm of the sample is in the United States
  • the measurement was performed on ASAP2020 by Micromeritics.
  • the adsorbed gases are C ⁇ 2 (99.99%), CH 4 (99.99%), and N 2 (99.99%).
  • the sample was air-fired at 600 °C for 4 hours before the isotherm test, and then further processed in ASAP2020 under the condition that it was extremely low. Under vacuum (5x10-3 mmHg), it was raised to 350 °C at a heating rate of rC/min for 8 hours.
  • the temperature of the gas adsorption was controlled by a constant temperature water bath (accuracy: plus or minus 0.05 Q C), and the adsorption temperature was 298 K.
  • the adsorption amounts of the samples for C0 2 , CH 4 and N 2 were 3.79, 0.36 and 0.28 mmol/g, respectively (at a pressure of 10 kPa).
  • the sample after the adsorption experiment was subjected to vacuum adsorption treatment at room temperature for 30 mm on an ASAP2020 apparatus, and then subjected to adsorption adsorption isotherm measurement.
  • the adsorption amounts of the sample to C ⁇ 2 and CH n N 2 were 3.78, 0.38 and 0.30 mmol/g, respectively. lOlkPa), indicating that the sample has good regeneration performance and can be regenerated under very mild conditions.

Abstract

Provided in the present invention is a SAPO-35 zeolite. The anhydrous chemical composition of same is: mR1·nCh+·(SixAlyPz)O2, where R1 is an alkanolamine, Ch+ is a choline cation distributed in zeolite cages and pores, m is the number of moles of the alkanolamine per mole of (SixAlyPz)O2, n is the number of moles f the choline cation per mole of (SixAlyPz)O2, m = 0-0.03, n = 0.05-0.25, and x, y, and z respectively express the mole fractions of Si, Al, and P, respectively ranged as x = 0.01-0.30, y = 0.35-0.55, and z = 0.25-0.49, while x + y + z = 1. The synthesized SAPO-35 zeolite of the present invention can be used as a catalyst in an acid-catalyzed reaction, such as a methanol-to-olefin reaction. The present invention also relates to applications of the SAPO-35 zeolite in terms of adsorption and isolation of CH4, CO2, and N2.

Description

一种 SAPO-35分子筛及其合成方法 技术领域  SAPO-35 molecular sieve and synthesis method thereof
本发明属于 SAPO分子筛领域, 具体涉及一种 SAPO-35分子筛及其 合成方法。 背景技术  The invention belongs to the field of SAPO molecular sieves, and particularly relates to a SAPO-35 molecular sieve and a synthetic method thereof. Background technique
磷酸铝分子筛是继硅铝分子筛之后, 美国 UCC公司在二十世纪八十 年代初发明的新一代分子筛 (US4310440 ), 该类分子筛的骨架由磷氧四 面体和铝氧四面体交替连接而成, 由于分子筛骨架呈电中性, 因此没有阳 离子交换性能和催化反应性能。  The aluminum phosphate molecular sieve is a new generation molecular sieve (US4310440) invented by UCC in the early 1980s after the silica-alumina molecular sieve. The skeleton of the molecular sieve is formed by alternating the phosphorus-oxygen tetrahedron and the aluminum-oxygen tetrahedron. Since the molecular sieve skeleton is electrically neutral, there is no cation exchange performance and catalytic reaction performance.
在磷酸铝分子筛骨架中引入硅,则为磷酸硅铝分子筛, 即 SAPO系列 分子筛 (US4440871 ), 其分子筛骨架由磷氧四面体、 铝氧四面体和硅氧 四面体构成, 由于骨架带负电荷, 骨架外有平衡阳离子存在, 因此具有阳 离子交换性能。 当骨架外阳离子为 H÷时, 分子筛具有酸性中心, 将拥有 酸催化反应性能。 SAPO分子筛作为催化剂的活性组元有可能用于炼油和 石油化工等领域, 如催化裂化、 加氢裂化、 异构化、 芳烃烷基化、 含氧化 合物的转化等。  When silicon is introduced into the framework of the aluminum phosphate molecular sieve, it is a silicoaluminophosphate molecular sieve, that is, a SAPO series molecular sieve (US4440871), and the molecular sieve skeleton is composed of a phosphorus-oxygen tetrahedron, an aluminoxytetrahedron and a silicon tetrahedron, and the skeleton has a negative charge. There are equilibrium cations outside the backbone and therefore have cation exchange properties. When the extra-framework cation is H÷, the molecular sieve has an acidic center and will possess acid-catalyzed reaction properties. SAPO molecular sieves as active components of catalysts are likely to be used in refining and petrochemical industries such as catalytic cracking, hydrocracking, isomerization, aromatic alkylation, and oxidant-containing conversion.
SAPO-35 是插晶菱沸石型 (LEV) 分子筛,具有相互交叉的八元环孔 道, 孔径为 3.6 X 4.8A, 属小孔分子筛。 SAPO-35的骨架是 LEV笼通过单 六元环和双六元环连接而成。骨架中有两种不同的 T原子位置,一种在双 六元环中, 另一个在单六元环中, 这两种位置的分布比例为 2: 1。  SAPO-35 is a delta-zeolite type (LEV) molecular sieve with intersecting eight-membered ring channels with a pore size of 3.6 X 4.8A, which is a small pore molecular sieve. The skeleton of SAPO-35 is a LEV cage connected by a single six-membered ring and a double six-membered ring. There are two different T atom positions in the skeleton, one in the double six-membered ring and the other in the single six-membered ring. The distribution ratio of these two positions is 2:1.
SAPO-35分子筛一般采用水热或醇热合成法, 以水或醇为溶剂,在密 闭高压釜中进行, 合成组分包括铝源、 硅源、 磷源、 结构导向剂和去离子 水。 可选做硅源的有硅溶胶、 发烟二氧化硅, 铝源有活性氧化铝、 异丙醇 铝、拟薄水铝石和烷基氧化铝, 磷源一般采用 85%的磷酸。结构导向剂的 选择对于合成分子筛的微结构、元素组成和形貌会产生一定的影响,进而 影响其催化性能。  The SAPO-35 molecular sieve is generally carried out by hydrothermal or alcoholic synthesis using water or an alcohol as a solvent in a closed autoclave. The synthetic components include an aluminum source, a silicon source, a phosphorus source, a structure directing agent, and deionized water. Optional silicon source is silica sol, fumed silica, aluminum source is activated alumina, aluminum isopropoxide, pseudoboehmite and alkyl aluminum oxide. Phosphorus source is generally 85% phosphoric acid. The choice of structure-directing agent will have a certain influence on the microstructure, element composition and morphology of the synthetic molecular sieve, which will affect its catalytic performance.
1984 年, US440871 中首次公开了一种以奎宁环为模板剂合成 SAPO-35分子筛的方法。 1999年 CN1299776A公开了一种以六亚甲基亚 胺 (HMI) 和己二胺 (HDA) 为模板剂合成 SAPO-35的方法。 2005年, US2005/0090390 中公开了一种在醇热体系中以六亚甲基亚胺为模板剂合 成高结晶度、 强酸性的 SAPO-35分子筛的方法。 In 1984, US 440871 first disclosed a synthesis using quinuclidine as a template. The method of SAPO-35 molecular sieve. In 1999, CN1299776A discloses a method for synthesizing SAPO-35 using hexamethyleneimine (HMI) and hexamethylenediamine (HDA) as a template. In 2005, US 2005/0090390 discloses a method for synthesizing a highly crystalline, strongly acidic SAPO-35 molecular sieve using hexamethyleneimine as a template in an alcoholic heat system.
本发明首次采用胺热方法, 在以胆碱阳离子为结构导向剂、 以醇胺为 溶剂的胺热条件下合成出了纯相 SAPO-35分子筛。制备的 SAPO-35分子 筛在催化反应中表现出优良的催化性能和气体吸附分离性能。 发明内容  The invention adopts the amine thermal method for the first time to synthesize pure phase SAPO-35 molecular sieve under the condition of amine heat with choline cation as structure directing agent and alcohol amine as solvent. The prepared SAPO-35 molecular sieve exhibits excellent catalytic performance and gas adsorption separation performance in the catalytic reaction. Summary of the invention
本发明的目的在于提供一种 SAPO-35分子筛, 该分子筛无水化学组 成为: !^^.!^!^ (SixAlyPz)02, 其中: 为醇胺, Ch+为胆碱阳离子, 分布 于分子筛笼及孔道中; m为每摩尔 (SixAlyPz)02中醇胺的摩尔数, m=0〜0.03; n为每摩尔 (81?{八1^ 02中胆碱阳离子的摩尔数 ,n=0.05〜0.25; x、 y、 z分 别表示 Si、 Al、 P的摩尔分数, 其范围分别是 x=0.01~0.30, y=0.35~0.55 , z=0.25-0.49 , 且 x+y+z=l; 优选范围为 x=0.05~0.20 , y=0.38-0.52 ,
Figure imgf000003_0001
且 x+y+z=l。 醇胺 为 Ν,Ν-二甲基乙醇胺、 Ν,Ν-二乙基乙 醇胺、 三乙醇胺、 二乙醇胺、 三异丙醇胺、 二异丙醇胺、 二甘醇胺中的任 意一种或任意几种的混合。 该分子筛 X射线衍射分析结果中至少含有如 下表所示的衍射峰:
The object of the present invention is to provide a SAPO-35 molecular sieve whose anhydrous chemical composition is: ^^.!^!^ (Si x Al y P z )0 2 , where: is an alcoholamine, Ch + is a choline cation, distributed in a molecular sieve cage and a channel; m is per mole (Si x Al y P z The number of moles of the alcohol amine in 0 2 , m = 0 to 0.03; n is the number of moles of choline cation per mole (81 ? { 8 1 ^ 0 2 , n = 0.05 to 0.25; x, y, z respectively represent The molar fractions of Si, Al and P are respectively x=0.01~0.30, y=0.35~0.55, z=0.25-0.49, and x+y+z=l; the preferred range is x=0.05~0.20, y =0.38-0.52 ,
Figure imgf000003_0001
And x+y+z=l. The alcoholamine is any one or any of hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropanolamine, diisopropanolamine, diglycolamine. A mixture of several. The molecular sieve X-ray diffraction analysis results include at least diffraction peaks as shown in the following table:
Figure imgf000003_0002
Figure imgf000003_0002
本发明的又一目的在于提供一种 SAPO-35分子筛的合成方法。  Another object of the present invention is to provide a method for synthesizing SAPO-35 molecular sieve.
本发明的又一目的在于提供一种通过上述方法合成的 SAPO-35分子 筛及由其制备的酸催化反应催化剂和气体吸附剂。  A further object of the present invention is to provide an SAPO-35 molecular sieve synthesized by the above method and an acid catalytic reaction catalyst and a gas adsorbent prepared therefrom.
本发明所要解决的技术问题是以胆碱阳离子为结构导向剂,以常规分 子筛合成所采用的磷源、硅源和铝源为原料, 在以醇胺为溶剂的胺热条件 下合成纯相 SAPO-35分子筛。 The technical problem to be solved by the invention is that the choline cation is used as a structure-directing agent, and the phosphorus source, the silicon source and the aluminum source used in the synthesis of the conventional molecular sieve are used as raw materials, and the amine thermal condition using the alcohol amine as a solvent The pure phase SAPO-35 molecular sieve was synthesized.
本发明的特点在于制备过程如下- a) 将醇胺、 铝源、 硅源、 磷源、 含有胆碱阳离子的化合物和去离子水 按一定的比例混合均匀, 得到具有如下摩尔配比的初始凝胶混合 物:  The present invention is characterized in that the preparation process is as follows - a) mixing an alcohol amine, an aluminum source, a silicon source, a phosphorus source, a compound containing a choline cation, and deionized water in a certain ratio to obtain an initial coagulation having the following molar ratio. Glue mixture:
Si02/Al203 =0.01 - 1 .5; Si0 2 /Al 2 0 3 =0.01 -1 .5;
Ρ2Ο5/Α12Ο3 = 0.5 ~ 3; Ρ 2 Ο 5 /Α1 2 Ο 3 = 0.5 ~ 3;
H20/A1203 = 3- 20; H 2 0/A1 2 0 3 = 3- 20;
Ch+/Al203 = 0.01 ~ 3, 其中 Ch+为胆碱阳离子; Ch + /Al 2 0 3 = 0.01 ~ 3, wherein Ch + is a choline cation;
¾/Α12Ο3 = 3 ~ 30 , 其中 为醇胺; 3⁄4/Α1 2 Ο 3 = 3 ~ 30 , where is an alcoholamine;
b)将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到  b) The initial gel mixture obtained in step a) is charged into a high pressure synthesis kettle, sealed, and heated to
150-220 °C在自生压力下晶化 5〜120小时;  Crystallization at 150-220 ° C under autogenous pressure for 5 to 120 hours;
c) 待晶化完全后, 固体产物经离心分离, 用去离子水洗涤至中性, 干 燥后即得 SAPO-35分子筛。  c) After the crystallization is completed, the solid product is centrifuged, washed with deionized water to neutrality, and dried to obtain SAPO-35 molecular sieve.
所述步骤 a) 初始凝胶混合物中的硅源为硅溶胶、 活性二氧化硅、 正 硅酸酯、偏高岭土中的一种或任意几种的混合物; 铝源为铝盐、活性氧化 铝、 烷氧基铝、 偏高岭土中的一种或任意几种的混合物; 磷源为正磷酸、 磷酸氢铵、磷酸二氢铵、有机磷化物或磷氧化物中的一种或任意几种的混 合物。 醇胺为 Ν,Ν-二甲基乙醇胺、 Ν,Ν-二乙基乙醇胺、 三乙醇胺、 二乙 醇胺、三异丙醇胺、 二异丙醇胺、 二甘醇胺中的任意一种或任意几种的混 合物; 所述含有胆碱阳离子 Ch+的化合物为胆碱无机盐和 /或胆碱有机盐。 The step a) the silicon source in the initial gel mixture is a mixture of one or a combination of silica sol, active silica, orthosilicate, metakaolin; aluminum source is aluminum salt, activated alumina, a mixture of one or any of alkoxyaluminum, metakaolin; a phosphorus source of one or a mixture of any of orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, organic phosphide or phosphorus oxide . The alcoholamine is any one or any of hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropanolamine, diisopropanolamine, diglycolamine. a mixture of several; the choline cation Ch + -containing compound is a choline inorganic salt and / or a choline organic salt.
所述步骤 a) 初始凝胶混合物中含有胆碱阳离子 Ch+的化合物为氯化 胆碱、磷酸胆碱、柠檬酸胆碱、氢氧化胆碱中任意一种或任意几种的混合 所述步骤 a) 初始凝胶混合物中 Si02/Al203的摩尔比优选为 0.1~1 .0。 所述步骤 a)初始凝胶混合物中 P205/A1203的摩尔比优选为 0.7 ~ 2.0。 所述步骤 a) 初始凝胶混合物中 H20/A1203的摩尔比优选为 8~ 17。 所述步骤 a) 初始凝胶混合物中 Ch+/Al23的摩尔比优选为 0.42〜2.0。 所述步骤 a) 初始凝胶混合物中醇胺 /A1203的摩尔比优选为 6.0~15。 所述步骤 b ) 中的晶化过程可在静态或动态下进行。 本发明还涉及一种酸催化反应的催化剂, 它是通过上述的 SAPO-35 分子筛或根据上述方法合成的 SAPO-35分子筛经 400~700°C空气中焙烧 得到。 The step a) the compound containing the choline cation Ch + in the initial gel mixture is a mixture of any one or any one of choline chloride, phosphorylcholine, choline choline and choline hydroxide. a) The molar ratio of Si0 2 /Al 2 0 3 in the initial gel mixture is preferably from 0.1 to 1.0. The molar ratio of P 2 0 5 /A1 2 3 3 in the initial gel mixture in the step a) is preferably from 0.7 to 2.0. The molar ratio of H 2 0/A1 2 0 3 in the initial gel mixture in the step a) is preferably from 8 to 17. The molar ratio of Ch + /Al 23 in the initial gel mixture in the step a) is preferably from 0.42 to 2.0. The molar ratio of the alcoholamine/A1 2 0 3 in the initial gel mixture in the step a) is preferably 6.0 to 15. The crystallization process in step b) can be carried out either statically or dynamically. The present invention also relates to a catalyst for acid-catalyzed reaction which is obtained by calcining in an air of 400 to 700 ° C by the SAPO-35 molecular sieve described above or the SAPO-35 molecular sieve synthesized according to the above method.
本发明还涉及一种含氧化合物转化制烯烃反应的催化剂, 它是通过上 述的 SAPO-35 分子筛或根据上述方法合成的 SAPO-35 分子筛经 400 〜 70(TC空气中焙烧得到。  The present invention also relates to a catalyst for the conversion of an oxygen-containing compound to an olefin, which is obtained by calcining the above-mentioned SAPO-35 molecular sieve or SAPO-35 molecular sieve synthesized according to the above method through 400 to 70 (TC air).
本发明还涉及一种用于 CH4/C〇2和 N2/C〇2分离的吸附剂,它是通过上 述的 SAPO-35 分子筛或根据上述方法合成的 SAPO-35 分子筛经 400 ~ 70(TC空气中焙烧得到。 The invention also relates to an adsorbent for CH 4 /C〇 2 and N 2 /C〇 2 separation, which is passed through the above SAPO-35 molecular sieve or the SAPO-35 molecular sieve synthesized according to the above method through 400 ~ 70 ( It is obtained by calcination in TC air.
本发明能产生的有益效果包括:  The beneficial effects that can be produced by the present invention include:
(1) 获得了一种以胆碱阳离子为模板剂的 SAPO-35分子筛。  (1) A SAPO-35 molecular sieve having a choline cation as a template was obtained.
(2) 首次采用胺热方法获得了 SAPO-35分子筛, 为 SAPO-35分子 筛的制备开辟了一个新体系。  (2) For the first time, SAPO-35 molecular sieve was obtained by amine thermal method, which opened up a new system for the preparation of SAPO-35 molecular sieve.
(3) 制备的 SAPO-35分子筛可作为催化剂用于酸催化反应和含氧 化合物转化制 '烯烃反应中表现出良好的催化性能。  (3) The prepared SAPO-35 molecular sieve can be used as a catalyst for acid catalytic reaction and oxygenate conversion to exhibit good catalytic performance in the olefin reaction.
(4) 制备的 SAPO-35分子筛可用作 CH4/C02和 N2/C02分离的吸附 剂。 附图说明 (4) The prepared SAPO-35 molecular sieve can be used as an adsorbent for CH 4 /CO 2 and N 2 /CO 2 separation. DRAWINGS
图 1 具体实施方式- 元素组成采用 Philips 公司的 Magix 2424 X型射线荧光分析仪(XRF)  Figure 1 Detailed Description - Elemental composition using Philips' Magix 2424 X-ray fluorescence analyzer (XRF)
X射线粉末衍射物相分析(XRD)采用荷兰帕纳科(PANalytical)公 司的 XTertPROX射线衍射仪, Cu靶, Κα辐射源 (λ=0.15418 nm), 电 压 40KV, 电流 40mA。 X-ray powder diffraction phase analysis (XRD) was carried out by XNaert PROX ray diffractometer from PANalytical, Netherlands, Cu target, Κα radiation source (λ = 0.15418 nm), voltage 40 KV, current 40 mA.
SEM形貌分析采用中国科学院科学仪器厂 KYKY-AMRAY-1000B型扫 描电子显微镜。  The SEM morphology analysis was performed using a KYKY-AMRAY-1000B scanning electron microscope from the Scientific Instrument Factory of the Chinese Academy of Sciences.
碳核磁共振(13CMASNM )分析采用美国 Vanan公司的 Infinity plus 400WB固体核磁波谱分析仪, 用 BBO MAS探针, 操作磁场强度为 9.4T。 Carbon magnetic resonance ( 13 CMASNM ) analysis using Infinity plus from Vanan, USA 400WB solid nuclear magnetic spectrum analyzer, using BBO MAS probe, the operating magnetic field strength is 9.4T.
CHN元素分析采用德国制造的 Vario EL Cube元素分析仪。  The CHN elemental analysis was carried out using a Vario EL Cube elemental analyzer made in Germany.
下面通过实施例详述本发明, 但本发明并不局限于这些实施例。 实施例 1  The invention is described in detail below by way of examples, but the invention is not limited to the examples. Example 1
各原料摩尔比例和晶化条件见表 1。 具体配料过程如下, 将拟薄水铝 石(A1203质量百分含量 72.5%)和 Ν,Ν-二乙基乙醇胺(质量百分含量 99%) 混合搅拌, 然后加入硅溶胶(Si02质量百分含量 30.04%), 搅拌均匀, 然 后将磷酸(H3P04质量百分含量 85%)逐滴加入,搅拌均匀,然后加入水, 最后加入氯化胆碱, 搅拌均匀制成凝胶, 将凝胶转移到不诱钢反应釜中。 将反应釜放入烘箱后, 程序升温到 200°C动态下晶化 48h。 晶化结束后, 将固体产物离心, 洗涤, 在 10CTC空气中烘干后, 得原粉。 样品做 XRD 分析, 结果表明合成产物具有 SAPO-35结构的特征, XRD数据见表 2。 表 1 分子筛合成配料及晶化条件表 * The molar ratio of each raw material and the crystallization conditions are shown in Table 1. The specific batching process is as follows, mixing pseudo-boehmite (A1 2 0 3 mass percentage 72.5%) and hydrazine, hydrazine-diethylethanolamine (mass percentage 99%), and then adding silica sol (Si0 2 The mass percentage is 30.04%), stir evenly, then add phosphoric acid (H 3 P0 4 mass% 85%) dropwise, stir evenly, then add water, finally add choline chloride, stir to form a gel. , Transfer the gel to the stainless steel reactor. After the reactor was placed in an oven, the temperature was programmed to crystallization for 48 h at 200 ° C. After the crystallization was completed, the solid product was centrifuged, washed, and dried in 10 CTC of air to obtain a raw powder. The sample was subjected to XRD analysis, and the results showed that the synthesized product had the characteristics of SAPO-35 structure, and the XRD data are shown in Table 2. Table 1 Molecular sieve synthesis ingredients and crystallization conditions table *
实 醇胺及摩 铝源及所 磷源及所含 硅源及所 H20 含有胆碱 晶化 晶化 施 尔用量 含 A1203 p2o5摩尔 含 02摩 阳离子的 温度 时间 例 摩尔数 数 尔数 化合物及 The solid alcohol amine and the aluminum source and the phosphorus source and the silicon source and the H 2 0 contain choline crystallized crystallization amount of A1 2 0 3 p 2 o 5 moles containing 0 2 cations. Molar number of compounds and
摩尔数  Molar number
1 Ν,Ν-二乙 拟薄水铝 正磷酸 硅溶胶 1.54mol 氯化胆碱 200°C 48h 基乙醇胺 石 0.10 O. l Omol 0.04mol 0.05mol  1 Ν,Ν-二乙 拟薄水水铝正phosphoric acid silica sol 1.54mol choline chloride 200°C 48h base ethanolamine stone 0.10 O. l Omol 0.04mol 0.05mol
0.8mol mol  0.8mol mol
2 Ν,Ν-二乙 异丙醇铝 正磷酸 硅溶胶 1.2mol 氯化胆碱 220°C 12h 基乙醇胺 0.1 mol O. l Omol O.OOlmol 0.005mol  2 Ν,Ν-diethyl aluminum isopropoxide orthophosphoric acid silica sol 1.2mol choline chloride 220°C 12h ethanolamine 0.1 mol O. l Omol O.OOlmol 0.005mol
0.60mol  0.60mol
3 Ν,Ν-二 乙 拟薄水铝 正磷酸 硅溶胶 2.0mol 氣化胆碱 200°C 24h 基乙醇胺 石 0.1 mol 0.15mol 0.15mol 0.3mol  3 Ν,Ν-二乙 拟薄水水铝 orthophosphoric acid silica sol 2.0mol gasification choline 200°C 24h base ethanolamine stone 0.1 mol 0.15mol 0.15mol 0.3mol
1.2mol  1.2mol
4 Ν,Ν-二乙 Y氧化铝 正磷酸 硅溶胶 0.9mol 氣化胆碱 200°C 24h 基乙醇胺 0.1 mol O. l Omol O. l Omol 0.042mol  4 Ν,Ν-二乙 Y alumina orthophosphoric acid silica sol 0.9mol gasification choline 200°C 24h base ethanolamine 0.1 mol O. l Omol O. l Omol 0.042mol
0.88mol  0.88mol
5 三乙醇胺 硫 酸 正 磷 酸 活性二氧 l . lmol 磷酸胆碱 190°C 48h 0.6mol 0.1 mol 0.05mol 化硅 0.2mol  5 triethanolamine sulfuric acid orthophosphoric acid active dioxin l. lmol phosphorylcholine 190 ° C 48 h 0.6 mol 0.1 mol 0.05 mol silicon oxide 0.2 mol
0.03mol  0.03mol
6 三乙醇胺 氯化铝 0.1 正磷酸 正硅酸乙 0.3mol 200°C 24h 0.3mol mol O. l Omol 酯 0.08mol 碱  6 triethanolamine aluminum chloride 0.1 orthophosphoric acid tetraethyl orthosilicate 0.3mol 200 ° C 24h 0.3mol mol O. l Omol ester 0.08mol alkali
O.OOlmol Ν,Ν-二乙 拟薄水铝 正磷酸 硅溶胶 1.8mol 磷酸胆碱 200°C 24h 基乙醇胺 石 0.1 mol 0.09mol 0.15mol 0.25mol O.OOlmol Ν,Ν-二乙拟薄水铝铝phosphoric acid silica sol 1.8mol Phosphocholine 200°C 24h-based ethanolamine 0.1 mol 0.09mol 0.15mol 0.25mol
l .Omol l .Omol
三乙醇胺 拟薄水铝 正磷酸 硅溶胶 1.54mol 氣化胆碱 200°C 48h 0.8mol 石 0.1 mol O. l Omol 0.04mol 0.05mol Triethanolamine pseudo-thin aluminum orthophosphate silica sol 1.54mol gasification choline 200°C 48h 0.8mol stone 0.1 mol O. l Omol 0.04mol 0.05mol
Ν,Ν-二乙 拟薄水铝 磷酸氢胺 硅溶胶 1.8mol 柠橡酸胆 220°C 12h 基乙醇胺 石 0.1 mol O. l Omol 0.01 mol 碱 0.2mol  Ν,Ν-二乙 拟薄水水 Ammonia hydrogen phosphate sol 1.8mol citric acid bile 220°C 12h basal ethanolamine stone 0.1 mol O. l Omol 0.01 mol alkali 0.2mol
1.6mol 1.6mol
二异丙醇 拟薄水铝 磷酸氢二胺 活性二氧 1.6mol 氯化胆碱 200°C 24h 胺 1.5mol 石 0.1 mol O. l Omol 化硅 0.3mol Diisopropyl alcohol Quasi-thin aluminum hydroxide Hydrogen phosphate diamine Active dioxane 1.6mol Choline chloride 200°C 24h Amine 1.5mol Stone 0.1 mol O. l Omol Siliconized 0.3mol
0.06mol  0.06mol
Ν,Ν-二乙 硫酸 S 磷酸氢二胺 硅溶胶 1.6mol 200°C 18h 基乙醇胺 0.1 mol 0.15mol 0.07mol 碱 0.08mol  Ν,Ν-Diethyl sulphate S Hydrogen phosphate diamine Silica sol 1.6mol 200°C 18h Ethylethanolamine 0.1 mol 0.15mol 0.07mol Base 0.08mol
2.0mol 2.0mol
N-甲基二 拟薄水铝 正磷酸 硅溶胶 1.6mol 氯化胆碱 180°C 96h 乙醇胺 石 0.1 mol 0.12mol 0.12mol 0.2mol  N-methyldiphosphorus thin aluminum hydroxide orthophosphoric acid silica sol 1.6mol choline chloride 180°C 96h ethanolamine stone 0.1 mol 0.12 mol 0.12 mol 0.2 mol
0.8mol  0.8mol
N-甲基二 拟薄水铝 磷酸酐 活性二氧 1.8mol 磷酸胆碱 210°C l Oh 乙 醇 胺 石 0.1 mol 0.13mol 化硅 0.18mol  N-methyldiphosphoric acid aluminum hydroxide phosphoric acid active dioxane 1.8mol phosphorylcholine 210°C l Oh ethanol amine stone 0.1 mol 0.13mol silicon 0.18mol
1.4mol 0.03mol 1.4mol 0.03mol
Ν,Ν-二乙 拟薄水铝 正磷酸 硅溶胶 l .Omol 氣化胆碱 190°C 12h 基乙醇胺 石 0.1 mol O. l Omol 0.03mol 0.28mol  Ν,Ν-二乙 拟薄水水铝正phosphoric acid silica sol l .Omol gasification choline 190°C 12h-based ethanolamine stone 0.1 mol O. l Omol 0.03mol 0.28mol
l .Omol l .Omol
二异丙醇 拟薄水铝 正磷酸 正硅酸甲 1.7mol 氯化胆碱 150°C 120h 胺 1.5mol 石 0.1 mol O. l Omol 酯 0.03mol 0.25mol Diisopropyl alcohol pseudo-thin aluminum orthophosphate orthophosphoric acid 1.7 mol choline chloride 150 ° C 120 h amine 1.5 mol stone 0.1 mol O. l Omol ester 0.03 mol 0.25 mol
Ν,Ν-二 乙 拟薄水铝 三甲基磷 硅溶胶 1.7mol 210°C 12h 基乙醇胺 石 0.1 mol O. l Omol 0.03mol 碱 0.3mol  Ν,Ν-二乙 拟薄水水铝 Trimethylphosphorus silica sol 1.7mol 210°C 12h-based ethanolamine stone 0.1 mol O. l Omol 0.03mol alkali 0.3mol
1.5mol 1.5mol
三乙醇胺 拟薄水铝 三乙基磷 硅溶胶 1.5mol 氣化胆碱 170°C 96h 1.7mol 石 0.1 mol O. l Omol 0.03mol 0.19mol Triethanolamine pseudo-thin aluminum triethylphosphide silica sol 1.5mol gasification choline 170°C 96h 1.7mol stone 0.1 mol O. l Omol 0.03mol 0.19mol
Ν,Ν-二乙 拟薄水铝 正磷酸 硅溶胶 2.0mol 磷酸胆碱 220°C 5h 基乙醇胺 石 0.1 mol 0.20mol 0.075mol 0.28mol  Ν,Ν-二乙 拟薄水水铝正phosphoric acid silica sol 2.0mol phosphorylcholine 220°C 5h basal ethanolamine stone 0.1 mol 0.20mol 0.075mol 0.28mol
1.8mol 1.8mol
Ν,Ν-二乙 拟薄水铝 正磷酸 硅溶胶 2.0mol 氯化胆碱 200°C 24h 基乙醇胺 石 0.1 mol 0.30mol 0.06mol 0.3mol  Ν,Ν-二乙 拟薄水水铝 orthophosphoric acid silica sol 2.0mol choline chloride 200°C 24h basal ethanolamine stone 0.1 mol 0.30mol 0.06mol 0.3mol
3.00mol 表 2实施例 1样品的 XRD结果 3.00mol Table 2 XRD results of the sample of Example 1
No. 2Θ d(A) 100x1/1° No. 2Θ d(A) 100x1/1°
1 8.6317 10.24437 14.261 8.6317 10.24437 14.26
2 10.9414 8.08649 62.82 10.9414 8.08649 62.8
3 1 1.6544 7.59327 7.13 1 1.6544 7.59327 7.1
4 13.3789 6.61 816 35. 164 13.3789 6.61 816 35. 16
5 15.9398 5.5602 7.215 15.9398 5.5602 7.21
6 17.3168 5.12104 67.476 17.3168 5.12104 67.47
7 17.7816 4.9882 12.087 17.7816 4.9882 12.08
8 20.9872 4.233 59.38 20.9872 4.233 59.3
9 21.9518 4.04913 1009 21.9518 4.04913 100
10 22.6986 3.91756 4.1710 22.6986 3.91756 4.17
Π 23.2826 3.82061 29.23Π 23.2826 3.82061 29.23
12 24.9802 3.56468 1 1.4712 24.9802 3.56468 1 1.47
13 25.8324 3.44899 2.8913 25.8324 3.44899 2.89
14 26.966 3.30652 18.9514 26.966 3.30652 18.95
15 28.5264 3.1291 43.8215 28.5264 3.1291 43.82
16 29. 1684 3.06167 7.1616 29. 1684 3.06167 7.16
17 31.6272 2.82904 8.617 31.6272 2.82904 8.6
18 32.234 2.77715 36.5218 32.234 2.77715 36.52
19 34.487 2.60071 1 1.5519 34.487 2.60071 1 1.55
20 35.0524 2.56004 3.4320 35.0524 2.56004 3.43
21 35.5046 2.52847 3.0421 35.5046 2.52847 3.04
22 35.9207 2.50013 4.9122 35.9207 2.50013 4.91
23 37.7786 2.38134 1.3723 37.7786 2.38134 1.37
24 39.5783 2.2771 1 1.1724 39.5783 2.2771 1 1.17
25 40.9423 2.20434 1.7125 40.9423 2.20434 1.71
26 42.0343 2.14957 3.3526 42.0343 2.14957 3.35
27 44.8294 2.02183 2.33 28 47.9661 1.89668 4.3427 44.8294 2.02183 2.33 28 47.9661 1.89668 4.34
29 49.7191 1.83384 3.729 49.7191 1.83384 3.7
30 51.4118 1.77737 8.4230 51.4118 1.77737 8.42
31 55.296 1.66137 3.3231 55.296 1.66137 3.32
32 58.7295 1.57216 2.27 实施例 2-19 32 58.7295 1.57216 2.27 Example 2-19
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。合成样 品做 XRD分析, 数据结果与表 2接近, 即峰位置和形状相同, 依合成条 件的变化峰相对峰强度在 ±10%范围内波动, 表明合成产物具有 SAPO-35 结构的特征。  The specific proportion of ingredients and crystallization conditions are shown in Table 1. The specific batching process is the same as in Example 1. The synthesized samples were subjected to XRD analysis, and the data results were close to those of Table 2, that is, the peak positions and shapes were the same, and the relative peak intensity of the peaks fluctuated within ±10% according to the synthesis conditions, indicating that the synthesized product has the characteristics of the SAPO-35 structure.
对实施例 1-7原粉样品进行 13C MAS NMR分析,通过与胆碱阳离子 和醇胺的 13C MAS NMR标准谱图对照, 发现样品中同时含有胆碱阳离子 和相应的醇胺, 依据两种物质特有不重合的 NMR峰进行定量分析, 确定 两者的比例。 13 C MAS NMR analysis of the original powder samples of Examples 1-7, by comparison with the 13 C MAS NMR standard spectrum of choline cations and alcohol amines, it was found that the sample contained both choline cations and corresponding alcohol amines, according to The NMR peaks with unique non-coincidence were quantitatively analyzed to determine the ratio of the two.
采用 X F分析分子筛产品体相元素组成, 对实施例 1-7原粉样品进 行 CHN元素分析。 综合 CHN元素分析、 XRF和 13C MAS NMR分析结 果, 得到分子筛原粉的组成依次为-The CHN elemental analysis of the original powder samples of Examples 1-7 was carried out by XF analysis of the bulk elemental composition of the molecular sieve product. Based on the results of CHN elemental analysis, XRF and 13 C MAS NMR analysis, the composition of the molecular sieve raw powder was obtained as follows -
Ο.ΟΙΝ,Ν-二乙基乙醇胺 O.10Ch+.(Si。.12Al。.49P。.39)O2 Ο.ΟΙΝ,Ν-Diethylethanolamine O.10Ch + .(Si.. 12 Al.. 49 P.. 39 )O 2
0.02N,N-二乙基乙醇胺 .0.08Ch+.(Si0.07Al0.53P0.40)O2, 0.02N, N-diethylethanolamine. 0.08Ch + . (Si 0 . 07 Al 0 . 53 P 0 . 40 )O 2 ,
0.03N,N-二乙基乙醇胺 .0.05Ch+.(Si0.17Al0.46P0.37)O2, 0.03N, N-diethylethanolamine. 0.05Ch+. (Si 0 . 17 Al 0 . 46 P 0 . 37 )O 2 ,
0.013N,N-二乙基乙醇胺 .0.17Ch+.(Si i4Al 47P 39)O2, 0.013N, N-diethylethanolamine. 0.17Ch + . (Si i4 Al 47 P 39 )O 2 ,
0.005三乙醇胺 O.19Ch+.(Si i lAl0.50P 39)O2, 0.005 triethanolamine O.19Ch + .(Si il Al 0 . 50 P 39 )O 2 ,
0.008三乙醇胺 .0.23Ch+.(Si。.13Al。.46P。.41)O2, 0.008 triethanolamine. 0.23Ch + . (Si.. 13 Al.. 46 P.. 41 )O 2 ,
0.014N,N-二乙基乙醇胺 .0.19Ch+.(Si。.15Al。.47P。.38)O20.014N, N-Diethylethanolamine. 0.19Ch + . (Si.. 15 Al.. 47 P.. 38 )O 2 .
实施例 20 Example 20
具体配料比例和晶化条件见表 1, 具体配料过程同实施例 1。 只将 Ν,Ν-二乙基乙醇胺换成三乙醇胺。 合成样品做 XRD分析, 结果表明合成 产物 XRD结果与表 2接近,即峰位置和形状相同,各峰相对峰强度在 ±10% 范围内波动, 表明合成产物具有 SAPO-35结构的特征。 The specific proportion of ingredients and crystallization conditions are shown in Table 1, and the specific batching process is the same as in Example 1. Only hydrazine, hydrazine-diethylethanolamine was replaced with triethanolamine. The XRD analysis of the synthesized samples showed that the XRD results of the synthesized products were close to those of Table 2, that is, the peak positions and shapes were the same, and the relative peak intensities of the peaks were ±10%. Fluctuations within the range indicate that the synthesized product has the characteristics of the SAPO-35 structure.
对原粉样品进行 13C MAS NMR分析,结果显示,其中只含有胆碱的特 征共振峰。 实施例 21 The 13 C MAS NMR analysis of the original powder sample showed that it contained only the characteristic resonance peak of choline. Example 21
分别取实施例 1-20的合成样品 3g, 放入塑料烧杯中, 于冰水浴条件 下加入 3ml 40%的氢氟酸溶液溶解分子筛骨架, 然后加入 15ml四氯化碳 溶解其中的有机物。将有机物用 ICS-3000离子色谱,阳离子柱型为 CS12A, 分析组成, 显示其中均含有胆碱阳离子。 对比例 1 (合成体系中无胆碱阳离子化 o合物添加)  3 g of the synthetic sample of Example 1-20 was separately placed in a plastic beaker, and 3 ml of a 40% hydrofluoric acid solution was added to dissolve the molecular sieve skeleton in an ice water bath, and then 15 ml of carbon tetrachloride was added to dissolve the organic matter therein. The organic matter was analyzed by ICS-3000 ion chromatography and the cation column type was CS12A, and the composition was analyzed to show that both contained choline cations. Comparative Example 1 (no choline cationization in the synthesis system)
 Bu
具体配料比例、 配料过程和晶化条件同实施例 1, 合成凝胶中不再添 加氯化胆碱。 合成样品做 X D分析, 结果表明寸合成产物 XRD结果是 SAPO-34的特征峰。 实施例 22  The specific proportion of ingredients, the batching process and the crystallization conditions were the same as in Example 1. No choline chloride was added to the synthetic gel. The XD analysis of the synthesized sample showed that the XRD result of the synthesized product was the characteristic peak of SAPO-34. Example 22
将实施例 1得到的样品于 60CTC下通入空气焙烧 4小时, 然后压片、 破碎至 20〜40目。 称取 l .Og样品装入固定床反应器, 进行 MTO反应 评价。 在 550 °C下通氮气活化 1小时, 然后降温至 400 °C进行反应。 甲醇 由氮气携带, 氮气流速为 40ml/mm, 甲醇重量空速 4.0h— 反应产物由 在线气相色谱进行分析(Vanan3800, FID检测器, 毛细管柱 PoraPLOT Q-HT) 。 结果示于表 3。  The sample obtained in Example 1 was subjected to air baking at 60 CTC for 4 hours, and then tableted and crushed to 20 to 40 mesh. The l.Og sample was weighed into a fixed bed reactor for MTO reaction evaluation. The reaction was carried out by activating nitrogen gas at 550 ° C for 1 hour and then cooling to 400 ° C. Methanol was carried by nitrogen, nitrogen flow rate was 40 ml/mm, methanol weight space velocity was 4.0 h - the reaction product was analyzed by on-line gas chromatography (Vanan 3800, FID detector, capillary column PoraPLOT Q-HT). The results are shown in Table 3.
表 3样品的甲醇转化制烯'烃反应结果  Table 3 sample methanol conversion to olefin' hydrocarbon reaction results
寿命 选择性 (质量%) *  Life selectivity (% by mass) *
样品  Sample
(min) CH4 C2H C2H6 C3H6 C3H8 C4+ c5 + C2H +C3H6 实施 (min) CH 4 C2H C 2 H6 C3H6 C3H8 C4+ c 5 + C2H +C3H6
100 4.05 42.16 0.84 3.87 80.23 例 1 实施例 23  100 4.05 42.16 0.84 3.87 80.23 Example 1 Example 23
将实施例 4得到的样品用作 C02吸附剂。 样品的吸附等温线是在美国 Micromeritics 公司的 ASAP2020 上进行测定。吸附气体为 C〇2 (99.99%)、 CH4 (99.99%)和 N2 (99.99%) 。 为了避免分子筛中由于物理吸附的水对 吸附测试的影响, 样品在进行等温线测试前, 在 600°C下通入空气焙烧 4 小时, 然后在 ASAP2020 中进行进一步处理, 处理条件为, 在极低真空 度 (5x10-3 mmHg) 下, 以 rC/min 的升温速率升至 350°C, 保持 8小时。 用恒温水浴 (精度: 正负 0.05QC) 控制气体吸附的温度, 吸附温度 298K。 样品对 C02、 CH4和 N2 的吸附量分别为 3.79、 0.36和 0.28mmol/g (压力为 lOlkPa时)。 以此计算得到的吸附选择性为 CO2/CH4=10.5, C〇2/N2=13.5。 将吸附实验后的样品在 ASAP2020装置上室温抽真空处理 30mm后,进行 再次吸附等温线测定,样品对 C〇2、 CH n N2 的吸附量分别为 3.78、 0.38 和 0.30mmol/g (压力为 lOlkPa时), 说明样品具有良好的再生性能, 可以 在非常温和的条件下再生。 The sample obtained in Example 4 was used as a CO 2 adsorbent. The adsorption isotherm of the sample is in the United States The measurement was performed on ASAP2020 by Micromeritics. The adsorbed gases are C〇 2 (99.99%), CH 4 (99.99%), and N 2 (99.99%). In order to avoid the influence of the physically adsorbed water on the adsorption test in the molecular sieve, the sample was air-fired at 600 °C for 4 hours before the isotherm test, and then further processed in ASAP2020 under the condition that it was extremely low. Under vacuum (5x10-3 mmHg), it was raised to 350 °C at a heating rate of rC/min for 8 hours. The temperature of the gas adsorption was controlled by a constant temperature water bath (accuracy: plus or minus 0.05 Q C), and the adsorption temperature was 298 K. The adsorption amounts of the samples for C0 2 , CH 4 and N 2 were 3.79, 0.36 and 0.28 mmol/g, respectively (at a pressure of 10 kPa). The adsorption selectivity calculated therefrom was CO 2 /CH 4 = 10.5, and C 〇 2 /N 2 = 13.5. The sample after the adsorption experiment was subjected to vacuum adsorption treatment at room temperature for 30 mm on an ASAP2020 apparatus, and then subjected to adsorption adsorption isotherm measurement. The adsorption amounts of the sample to C〇 2 and CH n N 2 were 3.78, 0.38 and 0.30 mmol/g, respectively. lOlkPa), indicating that the sample has good regeneration performance and can be regenerated under very mild conditions.

Claims

权 利 要 求 Rights request
1、 一种 SAPO-35分子筛,其特征在于, 所述分子筛具有如下的无水化 学组成: ΐΉ¾ .η(:ΐι+. (SixAlyPz)02, 其中: A SAPO-35 molecular sieve characterized in that the molecular sieve has the following anhydrous chemical composition: ΐΉ3⁄4 .η(:ΐι + . (Si x Al y P z )0 2 , wherein:
1^为醇胺, m为每摩尔 (SixAlyPz)02中醇胺的摩尔数, m=0〜0.03 ; Ch+为胆碱阳离子, n为每摩尔 (SlxAlyPz)02中胆碱阳离子的摩尔数, n=0.05~0.25 ; 1 is an alkanolamine, m is the number of moles of alkanolamine per mole of (Si x Al y P z ) 0 2 , m = 0 to 0.03; Ch + is a choline cation, and n is per mole (S lx Al y P z ) the number of moles of choline cation in 0 2 , n=0.05~0.25 ;
x、 y、 z分别表示 Si、 Al、 P的摩尔分数,其范围分别是 x=0.01〜0.30, y=0.35〜0.55, z=0.25~0.49, 且 x+y+z=l。  x, y, and z represent the molar fractions of Si, Al, and P, respectively, and the ranges are x = 0.01 to 0.30, y = 0.35 to 0.55, z = 0.25 to 0.49, and x + y + z = 1.
2、 根据权利要求 1所述的 SAPO-35分子筛,其特征在于, X射线衍射 图谱在以下位置具有衍射峰:  2. The SAPO-35 molecular sieve according to claim 1, wherein the X-ray diffraction pattern has a diffraction peak at the following position:
Figure imgf000012_0001
Figure imgf000012_0001
3、 根据权利要求 1所述的 SAPO-35分子筛, 其特征在于, 所述醇胺 为 Ν,Ν-二甲基乙醇胺、 Ν,Ν-二乙基乙醇胺、 三乙醇胺、 二乙醇胺、 三异丙醇胺、 二异丙醇胺、 二甘醇胺中的任意一种或任意几种的混 合。  The SAPO-35 molecular sieve according to claim 1, wherein the alcohol amine is hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropyl Any one or a mixture of any of alkanoamine, diisopropanolamine, and diglycolamine.
4、 一种合成权利要求 1所述的 SAPO-35分子筛的方法, 其特征在于, 采用胺热方法, 合成步骤如下- a) 将醇胺、 铝源、 硅源、 磷源、 含有胆碱阳离子的化合物和去离子 水按一定的比例混合均匀, 得到具有如下摩尔配比的初始凝胶混 合物:  4. A method of synthesizing the SAPO-35 molecular sieve according to claim 1, wherein the step of synthesizing is carried out by an amine thermal method as follows: a) an alcohol amine, an aluminum source, a silicon source, a phosphorus source, and a choline cation The compound and deionized water are uniformly mixed in a certain ratio to obtain an initial gel mixture having the following molar ratio:
Si02/Al203 =0.01〜 1.5 ; Si0 2 /Al 2 0 3 =0.01~1.5 ;
Ρ2Ο5/Α12Ο3 = 0.5〜 3 ; Ρ 2 Ο 5 /Α1 2 Ο 3 = 0.5~ 3 ;
H20/A1203 = 3〜 20; H 2 0/A1 2 0 3 = 3~ 20;
Ch+/Al203 = 0.01 〜 3, 其中 Ch+为胆碱阳离子; ΐνΑ12Ο3 = 3〜30, 其中 1^为醇胺; Ch + /Al 2 0 3 = 0.01 〜 3, wherein Ch + is a choline cation; ΐνΑ1 2 Ο 3 = 3 ~30, wherein 1^ is an alcoholamine;
b)将步骤 a) 所得初始凝胶混合物装入高压合成釜, 密闭, 升温到  b) The initial gel mixture obtained in step a) is charged into a high pressure synthesis kettle, sealed, and heated to
150-220 °C在自生压力下晶化 5〜120小时;  Crystallization at 150-220 ° C under autogenous pressure for 5 to 120 hours;
c) 待晶化完全后, 固体产物经分离, 用去离子水洗涤至中性, 干燥 后即得 SAPO-35分子筛。  c) After the crystallization is completed, the solid product is separated, washed with deionized water to neutrality, and dried to obtain SAPO-35 molecular sieve.
、 按照权利要求 4所述的方法, 其特征在于, 所述步骤 a) 初始凝胶 混合物中的硅源为硅溶胶、 活性二氧化硅、 正硅酸酯、 偏高岭土中 的一种或任意几种的混合物; 铝源为铝盐、活性氧化铝、烷氧基铝、 偏高岭土中的一种或任意几种的混合物;磷源为正磷酸、磷酸氢铵、 磷酸二氢铵、 有机磷化物或磷氧化物中的一种或任意几种的混合 物; 醇胺为 Ν,Ν-二甲基乙醇胺、 Ν,Ν-二乙基乙醇胺、 三乙醇胺、 二 乙醇胺、 三异丙醇胺、 二异丙醇胺、 二甘醇胺中的任意一种或任意 几种的混合物; 所述含有胆碱阳离子 Ch+的化合物为胆碱无机盐和 / 或胆碱有机盐。 The method according to claim 4, wherein the step a) the silicon source in the initial gel mixture is one or any of silica sol, active silica, orthosilicate, metakaolin. a mixture of aluminum; aluminum source, activated alumina, alkoxy aluminum, metakaolin or a mixture of any of the following; phosphorus source is orthophosphoric acid, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, organic phosphide Or a mixture of one or any of several phosphorus oxides; the alcohol amine is hydrazine, hydrazine-dimethylethanolamine, hydrazine, hydrazine-diethylethanolamine, triethanolamine, diethanolamine, triisopropanolamine, diiso Any one or a mixture of any one of propanolamine and diglycolamine; the compound containing a choline cation Ch + is a choline inorganic salt and/or a choline organic salt.
、 按照权利要求 4所述的方法, 其特征在于, 所述步骤 a) 初始凝胶 混合物中含有胆碱阳离子 Ch+的化合物为氯化胆碱、 磷酸胆碱、 柠 檬酸胆碱、 氢氧化胆碱中任意一种或任意几种的混合物。 The method according to claim 4, wherein the step a) the compound containing the choline cation Ch + in the initial gel mixture is choline chloride, phosphorylcholine, choline citrate, and choline hydroxide. Any one or a mixture of any of the bases.
、 按照权利要求 4所述的方法其特征在于, 所述步骤 b ) 中的晶化过 程在静态或动态下进行。 The method according to claim 4, characterized in that the crystallization process in the step b) is carried out under static or dynamic conditions.
、 按照权利要求 4所述的方法, 其特征在于, 所述步骤 a) 初始凝胶 混合物中 Ch+/Al23 = 0.42〜2.0。 The method according to claim 4, wherein said step a) is in the initial gel mixture, Ch + /Al 23 = 0.42 to 2.0.
、 按照权利要求 4所述的方法, 其特征在于, 所述步骤 a) 初始凝胶 混合物中醇胺 ΐ Α123 = 6.0〜15。 The method according to claim 4, wherein said step a) the initial gel mixture has an alkamine Α 1 23 = 6.0 to 15.
、 一种酸催化反应的催化剂, 其特征在于, 根据权利要求 1 -3任一项 所述的 SAPO-35分子筛或根据权利要求 4-9所述任一方法合成的 SAPO-35分子筛经 400 ~ 700 °C空气中焙烧得到。 A catalyst for acid-catalyzed reaction, characterized in that the SAPO-35 molecular sieve according to any one of claims 1 to 3 or the SAPO-35 molecular sieve synthesized according to any one of claims 4 to 9 is subjected to 400 ~ It is obtained by calcination in air at 700 °C.
1、 一种含氧化合物转化制'烯烃反应的催化剂, 其特征在于, 根据权利 要求 1 -3任一项所述的 SAPO-35分子筛或根据权利要求 4-9所述任 一方法合成的 SAPO-35分子筛经 400 ~ 700 °C空气中焙烧得到。 、 一种用于(:114/( 02和]^2/( 02分离的吸附剂, 其特征在于, 根据权 利要求 1-3任一项所述的 SAPO-35分子筛或根据权利要求 4-9所述 任一方法合成的 SAPO-35分子筛经 400〜 700 °C空气中焙烧得到。 A catalyst for the conversion of an oxygenate to an olefin, characterized in that the SAPO-35 molecular sieve according to any one of claims 1 to 3 or the SAPO synthesized according to any of the methods of claims 4-9 -35 molecular sieves are obtained by calcination in air at 400 ~ 700 °C. , an adsorbent for (: 11 4 / ( 0 2 and ] ^ 2 / (0 2 separated), characterized by The SAPO-35 molecular sieve according to any one of claims 1 to 3 or the SAPO-35 molecular sieve synthesized according to any one of claims 4 to 9 is obtained by calcination in air at 400 to 700 °C.
PCT/CN2012/086279 2012-12-10 2012-12-10 Sapo-35 zeolite and synthesis method therefor WO2014089739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086279 WO2014089739A1 (en) 2012-12-10 2012-12-10 Sapo-35 zeolite and synthesis method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086279 WO2014089739A1 (en) 2012-12-10 2012-12-10 Sapo-35 zeolite and synthesis method therefor

Publications (1)

Publication Number Publication Date
WO2014089739A1 true WO2014089739A1 (en) 2014-06-19

Family

ID=50933664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086279 WO2014089739A1 (en) 2012-12-10 2012-12-10 Sapo-35 zeolite and synthesis method therefor

Country Status (1)

Country Link
WO (1) WO2014089739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642262A (en) * 2019-11-15 2020-01-03 广西师范大学 Method for synthesizing SAPO-35 molecular sieve by using double templates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
CN1301596A (en) * 1999-12-29 2001-07-04 中国科学院大连化学物理研究所 MeAPSO-35 molecular sieve and its synthesizing method
US7511184B2 (en) * 2002-03-20 2009-03-31 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
CN102530987A (en) * 2010-12-29 2012-07-04 中国科学院大连化学物理研究所 Solvent thermal synthesis method of SAPO (silicoaluminophosphate) molecular sieve and catalyst prepared by SAPO molecular sieve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
CN1301596A (en) * 1999-12-29 2001-07-04 中国科学院大连化学物理研究所 MeAPSO-35 molecular sieve and its synthesizing method
US7511184B2 (en) * 2002-03-20 2009-03-31 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
CN102530987A (en) * 2010-12-29 2012-07-04 中国科学院大连化学物理研究所 Solvent thermal synthesis method of SAPO (silicoaluminophosphate) molecular sieve and catalyst prepared by SAPO molecular sieve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642262A (en) * 2019-11-15 2020-01-03 广西师范大学 Method for synthesizing SAPO-35 molecular sieve by using double templates

Similar Documents

Publication Publication Date Title
Fan et al. A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template
DK2902107T3 (en) SAPO-34 MOLECULES AND METHOD OF SYNTHESIS THEREOF
WO2017133301A1 (en) New type of sapo molecular sieve and method for synthesis thereof
CN101125665B (en) Method for preparing SAPO-34 molecular sieve by liquid phase crystallization method
Fan et al. Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction
WO2008022532A1 (en) A method for rapidly synthesizing a silicoaluminophosphate sapo-34 molecular sieve
KR20110106854A (en) Chabazite-type zeolite and process for production of same
Hirota et al. Synthesis of SAPO-18 with low acidic strength and its application in conversion of dimethylether to olefins
US9611150B2 (en) SAPO-34 zeolite having diglycolamine as templating agent and synthesis method for the zeolite
CN103922361A (en) Preparation method of SAPO-17 molecular sieves
US20210188651A1 (en) Method for synthesizing an afx-structure zeolite of very high purity in the presence of an organic nitrogen-containing structuring agent
EP3658278B1 (en) Crystalline metallophosphates, their method of preparation, and use
CN112645351A (en) SCM-30 molecular sieve and preparation method and application thereof
Di et al. Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology
JP2010260777A (en) Method for producing phosphorus-containing beta type zeolite
CN106276964B (en) A kind of transgranular phosphorous ZSM-5 molecular sieve and preparation method thereof
CN105439170B (en) A kind of molecular sieves of SAPO 35 and its synthetic method
WO2014089738A1 (en) Sapo-34 zeolite having n-methyldiethanolamine as templating agent and synthesis method for the zeolite
WO2014089739A1 (en) Sapo-35 zeolite and synthesis method therefor
Wu et al. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines
CN105347356B (en) A kind of molecular sieves of SAPO 44 and its synthetic method
CN111406035B (en) MWW-type zeolite, process for producing the same, and cracking catalyst
Zhu et al. Efficient synthesis of high-silica SSZ-13 zeolite and its catalytic performance in MTO reaction
WO2014047800A1 (en) Method for synthesizing sapo-34 molecular sieve and catalyst prepared thereby
CN110790285A (en) Silicoaluminophosphate molecular sieve with LTA framework structure and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889908

Country of ref document: EP

Kind code of ref document: A1