WO2014072564A1 - Neuromodulation-based cognitive training system and method - Google Patents

Neuromodulation-based cognitive training system and method Download PDF

Info

Publication number
WO2014072564A1
WO2014072564A1 PCT/ES2013/070781 ES2013070781W WO2014072564A1 WO 2014072564 A1 WO2014072564 A1 WO 2014072564A1 ES 2013070781 W ES2013070781 W ES 2013070781W WO 2014072564 A1 WO2014072564 A1 WO 2014072564A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
electroencephalogram
training
interest
phase
Prior art date
Application number
PCT/ES2013/070781
Other languages
Spanish (es)
French (fr)
Inventor
Carlos ESCOLANO MARCO
Mónica AGUILAR HERRERO
María LOPEZ VALDÉS
Javier MINGUEZ ZAFRA
Original Assignee
Bit&Brain Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bit&Brain Technologies, S.L. filed Critical Bit&Brain Technologies, S.L.
Publication of WO2014072564A1 publication Critical patent/WO2014072564A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/375Electroencephalography [EEG] using biofeedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli

Definitions

  • the present invention relates to the field of cognitive skills training, and more specifically to a training method and system through the modulation of brain activity measured by electroencephalograms. Background of the invention
  • Neuromodulation is a technique framed within the field of biofeedback, that is, systems that provide the user with real-time information on their physiological functioning.
  • neuromodulation provides the user with functional information regarding their brain and their central nervous system. To do this, it obtains information about its brain activity from an electroencephalogram (EEG) or an MRI, analyzes said information, and transmits the result of said analysis to the user through an interface.
  • EEG electroencephalogram
  • the user can therefore use the information shown in the interface to train and optimize specific characteristics of their brain activity, managing to modulate them to operate at certain levels.
  • EEG electroencephalogram
  • the advantages of this type of systems have been demonstrated both for medical patients with neurological or psychological disorders (for example epilepsy, depression, attention deficit hyperactivity disorder, or addiction), as well as for healthy people who wish to improve their cognitive abilities.
  • the measurement of brain activity is carried out through sensors placed on the surface of the scalp, with the possibility of varying the sensor technology, the position of the sensors on the scalp, and their clamping system. .
  • the technique of electroencephalophy raffia does not allow an accurate functional interpretation of neuronal activity, it is possible to relate it to certain aspects of brain function, associating parts of the brain and characteristics of brain activity with different cognitive abilities (memory, attention , concentration, etc.).
  • the neuromodulation techniques therefore start from the signals measured through the sensors, and extract from them signals characteristic of interest (traditionally the activity of cerebral rhythms) for each particular system.
  • the selection of the characteristics of interest can be done statistically, using prior information from a group of reference users, which implies a loss in the accuracy of the selection given the large variations of the characteristics between users and even between different times of use of the device for the same user.
  • the parameterization of said target work levels is done manually, or is predefined by the system. This supposes an important limitation, since the parameters that characterize the levels of work are dependent on the subject, on the characteristics of interest and on the moment of use of the technology. To deal with this limitation, said parameterization can be carried out based on reference measurements taken for each user who uses the system during the calibration phase, obtaining an individualized parameterization for each user and at each particular moment of use.
  • neuromodulation that is, a phase in which the continuous measurement of level of work of these characteristics of interest, and is compared with the levels of objective work.
  • An interface for example graphic or sound, indicates to the user the relationship between the levels of work measured during the training phase, and the levels of objective work, thus guiding them towards the correct modulation of them.
  • US 2004/0210156 A1 presents a neuromodulation system in which the level of work is presented to the user in real time by means of a color code. This level of work corresponds to a direct measurement of basic parameters such as the amplitude or frequency in the user's electroencephalogram, so that the system can present individualization problems for different users, as it does not characterize their brain activity properly.
  • Artifacts are elements that appear superimposed on the measured signal, and that do not correspond to the brain's electrical activity but rather come from non-neural sources.
  • the most common artifacts come from one part of the eye or muscle movements, and the other from sensor failures and interference with other electronic devices.
  • the elimination of these devices is, therefore, essential for the correct analysis and interpretation of the measured signals, both to identify the characteristics of interest and the levels of objective work, and to provide correct information in the feedback to the user.
  • One of the most common artifact removal techniques is the application to the electroencephalogram signal of an activity threshold that, if exceeded, cancels the analysis of the part of the contaminated signal.
  • this is a serious temporary limitation, since a large part of the information is discarded.
  • the most common artifacts are those generated by eye movements (such as blinking), which can contaminate between 20% and 60% of a typical neuromodulation session.
  • This limitation can be overcome by using other types of signal processing methods, such as a filter based on independent component analysis (ICA).
  • ICA independent component analysis
  • This technique applied to the electroencephalogram signal allows to discard those components that come from non-neural sources, and reconstruct the original signal eliminating the influence of said non-neural components.
  • US 2012/0100514 A1 and US 2012/0184870 A1 present two neuromodulation techniques that include artifact correction by ICA. These techniques make use of ICA to perform offline processing of the signal prior to training to determine the characteristics of interest, or after training to analyze the acquired signal, but do not use the filter in real time during training. They therefore have limitations in terms of the proportion of the training signal they allow to use. Additionally, the inventions and techniques mentioned throughout this section provide a general cognitive training, so they do not provide the user with the freedom to train their brain activity characteristics associated with particular cognitive abilities of their choice, such as , memory or attention.
  • the present invention solves the problems described above by means of a cognitive training method and system through neuromodulation that allows the user to select the cognitive ability to train (for example: memory, attention, concentration, etc.), and that performs a treatment of signal individualized on electroencephalograms measured by sensors placed on the user's scalp, so that said treatment is completely individualized for the particular user, and time of use of the technology.
  • a cognitive training method and system through neuromodulation that allows the user to select the cognitive ability to train (for example: memory, attention, concentration, etc.), and that performs a treatment of signal individualized on electroencephalograms measured by sensors placed on the user's scalp, so that said treatment is completely individualized for the particular user, and time of use of the technology.
  • a cognitive training system is presented by neuromodulation comprising:
  • An interface for communication with the user which allows users to receive control commands, as well as transmit information, for example regarding the use of the system.
  • the interface receives a command from said user indicating a training of at least one skill, preferably selected from a set of cognitive skills available for training shown to the user through the interface, thus allowing configurable training and particularized to the cognitive ability on which the user wishes to focus.
  • the interface presents stimuli that represent the level of work of the characteristics of interest with respect to certain levels of objective work determined during a calibration phase.
  • the sensors are adapted to measure electroencephalograms during the following phases:
  • a calibration phase in which the signal processing parameters of the system are determined from a set of calibration electroencephalograms.
  • the processing methods determine the characteristics of interest and their objective work levels, that is, determine a reference level with which subsequent electroencephalograms are compared.
  • the task of selecting the characteristics associated with cognitive ability is performed from, preferably, at least one electroencephalogram measured at rest and another during the performance of an active task or game related to the cognitive ability to train.
  • the active task or game is designed so that through signal processing tools certain characteristics can be observed that mediate said ability, called characteristics of interest. More in detail, the execution of the active task allows to observe the change from rest to activation of these characteristics, obtained in the resting electroencephalogram and the electroencephalogram measured during the execution of the active task, in order to select them in an optimized way. It is thus achieved that the selection of the characteristics is individualized for the particular user, and that it is dependent on the cognitive ability and the moment of use of the technology.
  • the parameterization of the target work levels on the characteristics of interest also uses one or more of the calibration electroencephalograms for the same reasons.
  • each skill in the set has at least one associated task, so that all subsequent data processing, from which they are determined
  • the characteristics of interest and the levels of work are fully individualized for the selected skill and the specific moment of operation.
  • the processing methods are adapted to calculate an artifact correction filter from one or more of the electroencephalograms measured during the calibration phase.
  • Said artifact correction filter is, therefore, adapted to each user, and applying said filter in real time on the phase electroencephalograms Training allows you to eliminate the part of the signal not coming from neural sources and take advantage of a greater amount of information for training.
  • the filter can also be applied to one of several of the calibration electroencephalograms to clean the signal prior to the determination of the characteristics of interest and the target work levels.
  • the artifact correction filter is generated by independent component analysis.
  • the data processing to determine the characteristics of interest and their target work levels of the calibration encephalograms is performed on a subset of sensors.
  • Said subset of sensors can be a predetermined subset, dependent on the selected cognitive ability, or be selected in this phase from among all available sensors.
  • a training phase in which a succession of electroencephalograms is recorded.
  • Real-time processing methods eliminate electroencephalogram artifacts using the artifact correction filter to determine the current level of work of the characteristics of interest.
  • the current work level is compared to the target work levels, and the result of such comparison is presented to the user in any modality of sensory stimulation through the interface. With this information, the user can learn to modulate the work levels to take them to more optimal levels, which will manifest in improvements in the chosen cognitive ability.
  • the data processing to calculate the work levels of the training encephalograms is performed on a subset of sensors, determined in the calibration phase.
  • the system elements are adapted to carry out a validation phase after the training phase, in which at least one electroencephalogram is measured which is compared by the processing methods with one or more of the electroencephalograms of the phase of calibration to quantify the improvement in cognitive ability achieved through the use of the system.
  • the validation phase It comprises measuring at least one electroencephalogram during a resting state, and an electroencephalogram during an accomplishment of the same task used during the calibration phase.
  • the artifact correction filter is applied on said calibration and validation electroencephalograms. The quantification of the improvement is therefore carried out by comparing the variation of the electroencephalograms between the resting state and the active task, before and after training.
  • a method of cognitive training by neuromodulation comprising the following steps:
  • a task is performed at rest, and an active task or game related to the selected cognitive ability.
  • These calibration tasks allow to observe in the electroencephalograms the characteristics of interest related to the chosen skill.
  • an artifact correction filter on one or more of the calibration electroencephalograms. More preferably, the filter is calculated by independent component analysis, and is subsequently applied to the calibration electroencephalograms to remove the artifacts before performing subsequent steps. Select characteristics or parameters of interest from the calibration electroencephalograms, preferably taken both at rest and during the execution of the active task or game. These characteristics of interest are obtained by means of a signal treatment that determines the differences between the state of rest and the active task, related to the selected cognitive ability.
  • the signal treatment comprises a time-frequency treatment of the electroencephalograms, and an analysis to characterize the differences between the result of the treatment on said electroencephalograms, said analysis being statistical in nature.
  • the levels of objective work are determined in a particular way for each cognitive ability from an average level of work. For example, a cognitive ability may require increasing the level of work with respect to the average level, so that the levels of objective work is the set of values that is above the average level of work. On the contrary, another skill may require decreasing the level of work with respect to the average level, so that the levels of objective work is the set of values that is below the average level of work. In a preferred option, higher and lower levels of work are also determined that allow establishing a bounded scale during the training stage.
  • the signal processing to determine the average, upper, and lower level of work comprises any set of mathematical operations applied to the level of work of each characteristic, or a subset of them, measured on one or more of the calibration electroencephalograms.
  • the real-time artifact correction filter is applied to said training electroencephalograms, said filter having been previously calculated in the phase.
  • the signal processing to determine the level of work of the characteristics of interest comprises any set of mathematical operations applied to the level of work of each characteristic, or a subset of them. Note that this mathematical treatment may be the same applied to determine the average (or higher, or lower) level of work in the calibration phase, or different.
  • the data processing to calculate the work levels of the training encephalograms is performed on a subset of sensors. Said subset of sensors is chosen in the calibration phase from among all available sensors.
  • the method comprises a validation phase in which one or more validation electroencephalograms are measured, and the final work level is compared with the initial work level, obtained in the calibration phase.
  • the validation phase comprises measuring electroencephalograms in two stages, one at rest and one in which the user repeats the same task of the calibration phase.
  • the method comprises applying the correction filter of artifacts on said calibration and validation encephalograms. The quantification of the improvement is therefore carried out by comparing the variation of the electroencephalograms between the resting state and the active task, before and after training.
  • the step of selecting the characteristics of interest is carried out with a signal treatment that allows comparing electroencephalograms in which the user is at rest, with electroencephalograms in which the user is performing an active task or game.
  • the combination of these tasks allows to observe the change from rest to activation of the brain (in which the cognitive ability intervenes) reflected in the characteristics of the signal in order to allow an optimized selection of these characteristics.
  • This strategy implies a qualitative improvement both in the selection of the characteristics of interest and in the parameterization of their target work levels, given that both strategies are individualized by user and time of use of the device, and can be extended to any cognitive ability.
  • a computer program comprising computer program code means adapted to implement the described method, when running on a computer, a digital signal processor, an application-specific integrated circuit , a microprocessor, a microcontroller or any other form of programmable hardware.
  • the system, method, and computer program described therefore provide a training tool through neuromodulation that adapts perfectly to each user and training situation, and that allows the training of particular cognitive skills, without requiring the presence of a professional doctor.
  • Figure 1 shows a diagram of the elements of the invention according to a preferred embodiment thereof, as well as the information transmitted between them and with a user of the system.
  • Figure 2 presents the phases of an example training session in which the method and system of the invention is applied, as well as the different electroencephalograms measured during said phases.
  • Figure 3 shows a diagram of the steps performed by the processing means during the training phase according to a particular implementation of the method of the invention.
  • validation electroencephalogram refers to the phase of use of the invention during which they are measured, in order to facilitate the understanding of the text. All these electroencephalograms are therefore measured in the same way, and represent the same type of information, measured during different moments of a typical session of use of the invention.
  • FIG. 1 A diagram of a particular embodiment of the system of the invention is shown in Figure 1, which in turn implements a particular embodiment of the method of the invention.
  • the figure also shows a user (1), who performs cognitive training using the invention.
  • the system comprises sensors (2) that measure electroencephalograms (EEG) (3) of the user (1), and send the resulting electrical signal to processing means (4).
  • EEG electroencephalograms
  • the processing means (4) following the steps described below, generate a feedback value
  • the interface (6) receives commands (8) from the user (1).
  • the sensors (2) can be any sensor known in the state of the art capable of providing a signal relative to the user's electroencephalogram (3).
  • the use of a raffia electroencephalog cap with 19 sensors, adapted to be arranged on the user's scalp according to the international 10/20 system, is contemplated.
  • the sensors are distributed over the prefrontal, frontal, central, parietal and occipital areas. Specifically, positions FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, 01, and 02 are used. Two sensors are also used. additional.
  • the first additional sensor is placed in the prefrontal zone (FPz position) to record the signal corresponding to the user's potential ground.
  • the second additional sensor is placed in an earlobe to record a signal against which the 19 sensors are measured, called the reference potential in the electronics field.
  • the signal acquired by each sensor is filtered, amplified, and finally digitized.
  • the processing means (4) can be implemented in any programmable hardware device, whether in a computer, a digital signal processor, an application-specific integrated circuit, a microprocessor, a microcontroller, or any other. Consequently, the system can be both fixed and portable, and can be implemented, for example, in a telephone or other portable devices adapted to receive the signal from the sensors (2).
  • the interface (6) can be any type of interface capable of transmitting information to the user and receiving instructions from it. The transmission of information can therefore be visual, auditory, somatosensory or any combination of the foregoing.
  • the reception of commands can be done through buttons, touch screens, voice recognition, or any other known means of interaction with a user.
  • one of the options to transmit to the user (1) the feedback values (5) is to establish a scale that assigns different colors to different feedback values (5), and display the corresponding color on an interface screen (6).
  • the system Prior to each training session, the system receives from the user (1) through the interface (6) a command (8) by which, the user (1) selects the cognitive ability that he wishes to train during said session.
  • the cognitive ability is selected from a set of options provided by the system, each of the cognitive skills having one or more predetermined tasks or games, which allow characterizing the user's neuronal response to a problem that activates the characteristics involved in that cognitive ability Note that these tasks or games are used exclusively during the calibration phase explained below, and not during the training phase, in which the neuromodulation takes place. This allows "a la carte” learning, in which it is the user who decides what cognitive skills he wants to develop, instead of performing a generic and inefficient training.
  • Figure 2 shows the different phases of an example of a session of use of the invention, once the cognitive ability to train during said session has been selected.
  • the figure also shows the electroencephalograms (3) that are measured during each of said phases, and which allow the steps of the method performed by the processing means (4) to be executed.
  • the session begins with a calibration phase (9) that allows to calculate the parameters required by the system.
  • the bulk of the session is occupied by the training phase (10), in which the user receives in real time stimuli (7) that represent the feedback values (5) and can therefore learn to modulate their activity cerebral.
  • the process concludes with a validation phase (1 1) in which the user's progress (1) is evaluated.
  • the calibration phase (9) comprises the execution of two well differentiated tasks.
  • a rest task (12) in which the user does not perform any activity related to the cognitive ability to train, but must remain for a few minutes in a state of rest with eyes closed.
  • a resting calibration electroencephalogram (14 ') is measured.
  • an active task (13) in which the user performs an active task in which the cognitive ability previously selected by the user intervenes, following the instructions provided through the interface (6).
  • an activation calibration electroencephalogram is measured (14).
  • the active task may consist of the continuous observation of an element in which the gradual changes of color in a visual interface must be counted (6), which allows to appreciate the difference between both electroencephalograms.
  • this difference is mainly observed as a desynchronization of alpha brain rhythms in the parieto-occipital area of the scalp, considered key factors in working memory.
  • the activation calibration electroencephalogram (14) and the resting calibration electroencephalogram (14 ') are used to calibrate an artifact correction filter (18) that eliminates from the signal activity caused by non-neural sources such as eye movements and muscle of the user, as well as sensing errors and interference.
  • an artifact correction filter (18) that eliminates from the signal activity caused by non-neural sources such as eye movements and muscle of the user, as well as sensing errors and interference.
  • the filter itself is applied to the calibration electroencephalograms before analysis. Note that in this way, a particular artifact correction is achieved for the specific user, for the selected cognitive ability and time of use of the technology. This correction of Artifacts are also used in real time to clear the signal during the training phase.
  • a blind source separation technique is applied, such as independent component analysis (ICA).
  • the differences between the resting task (12) and the active task (13) are determined. From these differences, the characteristics or parameters of interest associated with the selected cognitive ability are determined, as well as the levels of objective work for said characteristics of interest.
  • neuroscience studies relate increases in activity (or potency) in the upper part of the alpha band in parieto-occipital areas with improvements in working memory. Therefore, the characteristics of interest and their work levels are measured on the sensors placed in the parieto-occipital area of the scalp, more specifically in the sensors P3, Pz, P4, 01 and 02, called training sensors, on which are looking for the differences between the states of rest and activation.
  • the frequency band of interest is determined as the range [f m , f n ], where f m is the maximum desynchronization frequency, and f n the first value with synchronization less than a threshold, where f n is greater than f m , and f m and f n are contained within the interval [f ⁇ nf , f sup ].
  • the power in the frequency band [f m , f n ] for each training sensor are the characteristics of interest.
  • the level of work of a characteristic of interest is its instantaneous power value.
  • the target work levels are determined as the set of values that exceed an average work level, which is used as a reference during training.
  • Said average work level is determined as the power in the frequency band [f m , f n ], calculated for the electroencephalogram of the active task and averaged for the training sensors. They are also calculated lower and upper limits of the work level so that said interval covers 95% of power distribution values in said band of interest in the electroencephalogram of the active task.
  • any other characteristic of interest that differentiates the activation calibration electroencephalograms (14) and the resting calibration electroencephalogram (14 ').
  • Said characteristic of interest can be any parameter resulting from the comparison of the electroencephalograms in the two calibration states, whether in the time domain, frequency, or a combination of both domains.
  • said parameters can be static, statistical, or consider temporal evolutions of the signal under analysis.
  • said parameters are individualized for each sensor used in the measurement of the electroencephalogram, although it is also contemplated to use an average measurement thereof, within the scope of the present invention.
  • the sensors on which the determination of the characteristics of interest is made, as well as the subsequent measurement of the training electroencephalograms (15), can be a predetermined subset, depending on the selected cognitive ability, or be selected as part of the own process of determining the characteristics of interest such as those sensors in which the greatest differences appear between the activation calibration electroencephalograms (14) and the resting calibration electroencephalogram (14 ').
  • the invention is individualized for each user and for each cognitive ability, as well as for each moment in which the training is carried out, including any variation produced by the state of the sensors or the sensor itself.
  • the training phase (10) comprises a set of executions or trials, and the number and duration of said tests can be configurable by the user. A typical example would consist of 5 trials of 5 minutes each.
  • calibration parameters (17) comprise the parameters calculated for the artifact correction filter (18), the selected characteristics of interest (power in a given frequency band for each training sensor), and the target work levels (power of these characteristics averaged for the training sensors in the activation calibration electroencephalogram) that serve as a reference for the calculation of the feedback values (5).
  • These levels of objective work also include an upper and lower limit to establish a bounded scale during training.
  • the filtered signal reaches calculation means (19) that determine the level of work of the characteristics of interest of the electroencephalogram for each of the training sensors. These work levels are averaged for training sensors, and the resulting value serves as input to a comparator (20) that determines the feedback value (5) as the difference between that value and the average work level calculated during calibration .
  • the joint use of the average work level, with the upper and lower limits, allows to obtain a standardized feedback value in the interval [-1, 1], so that positive values indicate target work levels, being more optimal the higher it is the value, while negative values indicate that the user is not at levels of objective work for their brain activity.
  • the feedback values (5) are provided to the user (1) in real time, which allows him to learn to adequately modulate his brain activity, which leads to an improvement in the selected cognitive ability.
  • These feedback values (5) are presented to the user (1) through stimuli (7) generated by the interface (6).
  • the stimuli consist of a square drawn on the interface (6) that changes color according to the feedback value (5).
  • feedback values in the interval [0, 1] correspond to a color scale from gray to red, gradually increasing its saturation.
  • Feedback values in the interval [0, -1] negative feedback
  • the system can provide the user (1), through the interface (6), with instructions on how to achieve this modulation.
  • a validation phase (1 1) in which validation electroencephalograms (16, 16 ') are measured to determine the improvement of the cognitive ability experienced by the user.
  • a first validation electroencephalogram (16) is measured during a second iteration of the resting state (12 '); and a second validation electroencephalogram (16 ') during a second iteration of the same active task (13') used during the calibration phase (9).
  • this phase the processes of selection of the characteristics of interest and parameterization of their target work levels performed in the calibration phase (9) are repeated, and compared with the results obtained in said calibration phase (9), which allows quantifying the evolution and progress caused by training in the work levels of the characteristics of interest.
  • the artifact correction filter is also applied to the validation electroencephalograms (16, 16 ').

Abstract

The invention relates to a cognitive training method and system that can be used to train a specific cognitive ability selected by a user (1) from a group of cognitive abilities, by performing a calibration customised for the user (1) and for the specific cognitive ability. The calibration comprises using sensors (2) to measure reference electroencephalograms (3) during the execution of a task associated with the selected cognitive ability, and calculating characteristics of interest and a neuronal activity reference level for said characteristics, the parameters being customised for the particular user and the particular cognitive ability.

Description

SISTEMA Y MÉTODO DE ENTRENAMIENTO COGNITIVO MEDIANTE  SYSTEM AND METHOD OF COGNITIVE TRAINING THROUGH
NEUROMODULACIÓN  NEUROMODULATION
Objeto de la invención Object of the invention
La presente invención se refiere al campo del entrenamiento de habilidades cognitivas, y más concretamente a un método y sistema de entrenamiento a través de la modulación de la actividad cerebral medida mediante electroencefalogramas. Antecedentes de la invención The present invention relates to the field of cognitive skills training, and more specifically to a training method and system through the modulation of brain activity measured by electroencephalograms. Background of the invention
El campo del entrenamiento de capacidades o habilidades cognitivas empleando medios electrónicos ha experimentado una fuerte expansión en los últimos años. Gracias a esta expansión su foco de acción ha dejado de limitarse a tratamientos médicos para pacientes con desórdenes neurológicos, y ha llegado a usuarios sanos que desean estimular su actividad cerebral para mejorar sus habilidades cognitivas. The field of skills training or cognitive skills using electronic media has undergone a strong expansion in recent years. Thanks to this expansion, its focus has ceased to be limited to medical treatments for patients with neurological disorders, and has reached healthy users who wish to stimulate their brain activity to improve their cognitive abilities.
En este marco, fueron desarrollados multitud de dispositivos electrónicos y programas que proporcionan al usuario una serie de tareas o juegos computerizados relacionados con habilidades cognitivas particulares como la atención o la memoria. No obstante, si bien el entrenamiento con dichos dispositivos permite a los usuarios mejorar su respuesta ante las tareas y juegos propuestos, no existe evidencia de que su uso proporcione mejoras generales a la hora de enfrentarse a problemas distintos, incluso cuando están estrechamente relacionados con la misma habilidad cognitiva. Within this framework, a multitude of electronic devices and programs were developed that provide the user with a series of tasks or computerized games related to particular cognitive abilities such as attention or memory. However, although training with these devices allows users to improve their response to the proposed tasks and games, there is no evidence that their use provides general improvements when facing different problems, even when they are closely related to Same cognitive ability.
Frente a este enfoque, han sido propuestos diferentes sistemas de neuromodulación. La neuromodulación es una técnica enmarcada dentro del campo de la bioretroalimentación, es decir, de sistemas que proporcionan al usuario información en tiempo real de su funcionamiento fisiológico. En particular, la neuromodulación proporciona al usuario información funcional relativa a su cerebro y su sistema nervioso central. Para ello, obtiene información de su actividad cerebral a partir de un electroencefalograma (EEG) o de una resonancia magnética, analiza dicha información, y transmite al usuario el resultado de dicho análisis mediante una interfaz. El usuario puede por lo tanto utilizar la información mostrada en la interfaz para entrenar y optimizar características específicas de su actividad cerebral, logrando modularlas para que operen a determinados niveles. Las ventajas de este tipo de sistemas han sido demostradas tanto para pacientes médicos con desórdenes neurológicos o psicológicos (por ejemplo epilepsia, depresión, déficit de atención con hiperactividad, o adicción), como para personas sanas que desean mejorar sus habilidades cognitivas. Against this approach, different neuromodulation systems have been proposed. Neuromodulation is a technique framed within the field of biofeedback, that is, systems that provide the user with real-time information on their physiological functioning. In particular, neuromodulation provides the user with functional information regarding their brain and their central nervous system. To do this, it obtains information about its brain activity from an electroencephalogram (EEG) or an MRI, analyzes said information, and transmits the result of said analysis to the user through an interface. The user can therefore use the information shown in the interface to train and optimize specific characteristics of their brain activity, managing to modulate them to operate at certain levels. The advantages of this type of systems have been demonstrated both for medical patients with neurological or psychological disorders (for example epilepsy, depression, attention deficit hyperactivity disorder, or addiction), as well as for healthy people who wish to improve their cognitive abilities.
En el caso del electroencefalograma, la medición de la actividad cerebral se realiza a través de unos sensores colocados sobre la superficie del cuero cabelludo, pudiendo variar la tecnología sensórica, la posición de los sensores sobre el cuero cabelludo, y el sistema de sujeción de éstos. Si bien la técnica de electroencefalog rafia no permite realizar una interpretación funcional exacta de la actividad neuronal, sí que es posible relacionarla con determinados aspectos del funcionamiento del cerebro, asociando partes del cerebro y características de la actividad cerebral a distintas habilidades cognitivas (memoria, atención, concentración, etc.). In the case of the electroencephalogram, the measurement of brain activity is carried out through sensors placed on the surface of the scalp, with the possibility of varying the sensor technology, the position of the sensors on the scalp, and their clamping system. . Although the technique of electroencephalophy raffia does not allow an accurate functional interpretation of neuronal activity, it is possible to relate it to certain aspects of brain function, associating parts of the brain and characteristics of brain activity with different cognitive abilities (memory, attention , concentration, etc.).
Las técnicas de neuromodulación parten por tanto de las señales medidas a través de los sensores, y extraen de dichas señales características de interés (tradicionalmente la actividad de ritmos cerebrales) para cada sistema particular. La selección de las características de interés puede realizarse de manera estadística, utilizando información previa de un grupo de usuarios de referencia, lo cual implica una pérdida en la precisión de la selección dadas las grandes variaciones de las características entre usuarios e incluso entre los distintos momentos de utilización del dispositivo para un mismo usuario. Alternativamente, es posible seleccionar las características de interés de forma individualizada por usuario a partir de unas medidas de referencia tomadas para cada usuario que utiliza el sistema en una fase de calibración previa a la fase de entrenamiento. Si bien esta opción es más costosa en tiempo, se consigue una mayor precisión en la selección y permite individualizar el entrenamiento a cada usuario y a cada momento particular de empleo. A continuación, es necesario determinar unos niveles de trabajo objetivo de las características de interés. En algunos sistemas tradicionales, la parametrización de dichos niveles de trabajo objetivo se realiza de forma manual, o viene predefinida por el sistema. Esto supone una limitación importante, ya que los parámetros que caracterizan los niveles de trabajo son dependientes del sujeto, de las características de interés y del momento de utilización de la tecnología. Para tratar con esta limitación dicha parametrización se puede realizar a partir de medidas de referencia tomadas para cada usuario que utiliza el sistema en la fase de calibración, obteniendo una parametrización individualizada a cada usuario y a cada momento particular de empleo. The neuromodulation techniques therefore start from the signals measured through the sensors, and extract from them signals characteristic of interest (traditionally the activity of cerebral rhythms) for each particular system. The selection of the characteristics of interest can be done statistically, using prior information from a group of reference users, which implies a loss in the accuracy of the selection given the large variations of the characteristics between users and even between different times of use of the device for the same user. Alternatively, it is possible to select the characteristics of interest individually by user from reference measurements taken for each user who uses the system in a calibration phase prior to the training phase. Although this option is more expensive in time, greater precision in the selection is achieved and it allows individualizing the training to each user and to each particular moment of employment. Next, it is necessary to determine objective levels of work of the characteristics of interest. In some traditional systems, the parameterization of said target work levels is done manually, or is predefined by the system. This supposes an important limitation, since the parameters that characterize the levels of work are dependent on the subject, on the characteristics of interest and on the moment of use of the technology. To deal with this limitation, said parameterization can be carried out based on reference measurements taken for each user who uses the system during the calibration phase, obtaining an individualized parameterization for each user and at each particular moment of use.
La selección de las características de interés y la parametrización de sus niveles de trabajo objetivo presentan variantes en función del tipo de actividad utilizada como referencia durante la fase de calibración. Mientras que algunos sistemas, como el propuesto en "Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects" (Simón Hanslmayr et al, Applied Psychophysiology and Biofeedback, Vol. 30, No. 1 , 2005) utiliza como referencia de calibración un electroencefalograma tomado mientras el usuario está en reposo, otras alternativas, como la presentada en "Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance" (B. Zoefel, Neurolmage 54, páginas 1427-1431 , 201 1 ), utilizan como referencia un electroencefalograma tomado durante la ejecución de una tarea cognitiva propuesta al usuario. En cualquiera de los dos casos, se utiliza una única medida de referencia para la calibración, por lo que la selección de las características de interés puede llegar a ser pobre y no representar acertadamente la actividad cerebral del usuario, por tanto disminuyendo o anulando las esperadas mejoras cognitivas. Dado que la parametrización de los niveles de trabajo objetivo se basan en las características seleccionadas, una selección no adecuada de las mismas también se refleja en forma de errores en la parametrización del nivel de trabajo, y por lo tanto, en la eficacia global del sistema. The selection of the characteristics of interest and the parameterization of their target work levels have variations depending on the type of activity used as a reference during the calibration phase. While some systems, such as the one proposed in "Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects" (Simón Hanslmayr et al, Applied Psychophysiology and Biofeedback, Vol. 30, No. 1, 2005) use as a calibration reference an electroencephalogram taken while the user is at rest, other alternatives, such as the one presented in "Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance" (B. Zoefel, Neurolmage 54, pages 1427-1431, 201 1), use as reference an electroencephalogram taken during the execution of a cognitive task proposed to the user. In either case, a single reference measure is used for calibration, so that the selection of the characteristics of interest can become poor and not accurately represent the user's brain activity, therefore decreasing or canceling the expected cognitive improvements Since the parameterization of the target work levels is based on the selected characteristics, an inappropriate selection of them is also reflected in the form of errors in the parameterization of the work level, and therefore, in the overall efficiency of the system .
Una vez realizada la selección de las características de interés y la parametrización de sus niveles de trabajo objetivo, comienza el entrenamiento mediante neuromodulación, es decir, una fase en la cual se miden de manera continuada el nivel de trabajo de dichas características de interés, y se compara con los niveles de trabajo objetivo. Una interfaz, por ejemplo gráfica o sonora, indica al usuario la relación entre los niveles de trabajo medidos durante la fase de entrenamiento, y los niveles de trabajo objetivo, guiándole así hacia la correcta modulación de los mismos. En particular, US 2004/0210156 A1 presenta un sistema de neuromodulación en la que el nivel de trabajo es presentado al usuario en tiempo real mediante un código de colores. Dicho nivel de trabajo se corresponde con una medida directa de parámetros básicos como la amplitud o frecuencia en el electroencefalograma del usuario, por lo que el sistema puede presentar problemas de individualización para distintos usuarios, al no caracterizar su actividad cerebral adecuadamente. Once the selection of the characteristics of interest and the parameterization of its target work levels has been completed, training begins with neuromodulation, that is, a phase in which the continuous measurement of level of work of these characteristics of interest, and is compared with the levels of objective work. An interface, for example graphic or sound, indicates to the user the relationship between the levels of work measured during the training phase, and the levels of objective work, thus guiding them towards the correct modulation of them. In particular, US 2004/0210156 A1 presents a neuromodulation system in which the level of work is presented to the user in real time by means of a color code. This level of work corresponds to a direct measurement of basic parameters such as the amplitude or frequency in the user's electroencephalogram, so that the system can present individualization problems for different users, as it does not characterize their brain activity properly.
Uno de los elementos más relevantes para el correcto funcionamiento de un dispositivo de neuromodulación es la corrección de artefactos. Los artefactos son elementos que aparecen superpuestos a la señal medida, y que no se corresponden con actividad eléctrica del cerebro sino que proceden de fuentes no neurales. En el caso del electroencefalograma, los artefactos más comunes provienen por una parte de movimientos oculares o musculares, y por otra de fallos en los sensores e interferencias con otros dispositivos electrónicos. La eliminación de estos artefactos es, por lo tanto, fundamental para el correcto análisis e interpretación de las señales medidas, tanto para identificar las características de interés y los niveles de trabajo objetivo, como para suministrar una información correcta en la retroalimentación al usuario. Una de las técnicas de eliminación de artefactos más común es la aplicación a la señal de electroencefalograma de un umbral de actividad que, en caso de sobrepasarse, anula el análisis de la parte de la señal contaminada. No obstante, esto supone una grave limitación temporal, ya que se descarta una gran parte de la información. En particular, los artefactos más comunes son los generados por movimientos oculares (como los parpadeos), que pueden llegar a contaminar entre el 20% y el 60% de una sesión típica de neuromodulación. Esta limitación puede superarse utilizando otro tipo de métodos de tratamiento de señal, como por ejemplo, un filtro basado en análisis de componentes independientes (ICA, del inglés "Independent Component Analysis"). ICA es una técnica de separación ciega de fuentes que permite descomponer una señal en componentes aditivas suponiendo la independencia estadística de éstas. Esta técnica aplicada a la señal de electroencefalograma permite descartar aquellas componentes que proceden de fuentes no neurales, y reconstruir la señal original eliminando la influencia de dichas componentes no neurales. One of the most relevant elements for the proper functioning of a neuromodulation device is the correction of artifacts. Artifacts are elements that appear superimposed on the measured signal, and that do not correspond to the brain's electrical activity but rather come from non-neural sources. In the case of the electroencephalogram, the most common artifacts come from one part of the eye or muscle movements, and the other from sensor failures and interference with other electronic devices. The elimination of these devices is, therefore, essential for the correct analysis and interpretation of the measured signals, both to identify the characteristics of interest and the levels of objective work, and to provide correct information in the feedback to the user. One of the most common artifact removal techniques is the application to the electroencephalogram signal of an activity threshold that, if exceeded, cancels the analysis of the part of the contaminated signal. However, this is a serious temporary limitation, since a large part of the information is discarded. In particular, the most common artifacts are those generated by eye movements (such as blinking), which can contaminate between 20% and 60% of a typical neuromodulation session. This limitation can be overcome by using other types of signal processing methods, such as a filter based on independent component analysis (ICA). ICA is a blind separation technique from sources that allow to break down a signal into additive components assuming their statistical independence. This technique applied to the electroencephalogram signal allows to discard those components that come from non-neural sources, and reconstruct the original signal eliminating the influence of said non-neural components.
US 2012/0100514 A1 y US 2012/0184870 A1 presentan dos técnicas de neuromodulación que incluyen corrección de artefactos mediante ICA. Dichas técnicas hacen uso de ICA para realizar un procesamiento offline de la señal previo al entrenamiento para determinar las características de interés, o posterior al entrenamiento para analizar la señal adquirida, pero no utilizan el filtro en tiempo real durante el entrenamiento. Presentan por lo tanto limitaciones en cuanto a la proporción de la señal de entrenamiento que permiten utilizar. Adicionalmente, las invenciones y técnicas mencionadas a lo largo de esta sección proporcionan un entrenamiento cognitivo de carácter general, por lo que no proporcionan al usuario la libertad de entrenar sus características de la actividad cerebral asociadas a habilidades cognitivas particulares a su elección, como por ejemplo, la memoria o la atención. US 2012/0100514 A1 and US 2012/0184870 A1 present two neuromodulation techniques that include artifact correction by ICA. These techniques make use of ICA to perform offline processing of the signal prior to training to determine the characteristics of interest, or after training to analyze the acquired signal, but do not use the filter in real time during training. They therefore have limitations in terms of the proportion of the training signal they allow to use. Additionally, the inventions and techniques mentioned throughout this section provide a general cognitive training, so they do not provide the user with the freedom to train their brain activity characteristics associated with particular cognitive abilities of their choice, such as , memory or attention.
Existe por lo tanto en el estado de la técnica la necesidad de una técnica de neuromodulación que sea capaz de proporcionar un entrenamiento individualizado a cada usuario, con un tratamiento de datos que permita optimizar la técnica para el usuario, momento de utilización de la tecnología, y la habilidad cognitiva elegida. Finalmente, cabe destacar que ninguna de las invenciones mencionadas anteriormente permite determinar y cuantificar las mejoras generadas por el entrenamiento. There is therefore a need in the state of the art for a neuromodulation technique that is capable of providing individualized training to each user, with a data processing that optimizes the technique for the user, time of use of the technology, and the chosen cognitive ability. Finally, it should be noted that none of the inventions mentioned above allow to determine and quantify the improvements generated by the training.
Descripción de la invención Description of the invention
La presente invención soluciona los problemas anteriormente descritos mediante un método y sistema de entrenamiento cognitivo a través de neuromodulación que permite al usuario seleccionar la habilidad cognitiva a entrenar (por ejemplo: memoria, atención, concentración, etc.), y que realiza un tratamiento de señal individualizado sobre unos electroencefalogramas medidos mediante sensores colocados sobre el cuero cabelludo del usuario, de modo que dicho tratamiento es totalmente individualizado para el usuario particular, y momento de uso de la tecnología. The present invention solves the problems described above by means of a cognitive training method and system through neuromodulation that allows the user to select the cognitive ability to train (for example: memory, attention, concentration, etc.), and that performs a treatment of signal individualized on electroencephalograms measured by sensors placed on the user's scalp, so that said treatment is completely individualized for the particular user, and time of use of the technology.
En un primer aspecto de la presente invención se presenta un sistema de entrenamiento cognitivo mediante neuromodulación que comprende: In a first aspect of the present invention a cognitive training system is presented by neuromodulation comprising:
- Sensores para medir electroencefalogramas del usuario durante el tiempo de utilización del sistema. - Sensors to measure electroencephalograms of the user during the time of use of the system.
- Una interfaz de comunicación con el usuario, que permite recibir comandos de control del usuario, así como transmitirle información, por ejemplo relativa al uso del sistema. Al inicio de la sesión, la interfaz recibe de dicho usuario un comando indicando un entrenamiento de al menos una habilidad, preferentemente seleccionada de entre un conjunto de habilidades cognitivas disponibles para su entrenamiento mostradas al usuario a través del interfaz, permitiendo así un entrenamiento configurable y particularizado a la habilidad cognitiva en la que el usuario desea centrarse. Posteriormente, la interfaz presenta estímulos que representan el nivel de trabajo de las características de interés con respecto a unos niveles de trabajo objetivo determinados durante una fase de calibración. - An interface for communication with the user, which allows users to receive control commands, as well as transmit information, for example regarding the use of the system. At the beginning of the session, the interface receives a command from said user indicating a training of at least one skill, preferably selected from a set of cognitive skills available for training shown to the user through the interface, thus allowing configurable training and particularized to the cognitive ability on which the user wishes to focus. Subsequently, the interface presents stimuli that represent the level of work of the characteristics of interest with respect to certain levels of objective work determined during a calibration phase.
- Métodos de procesado de señal adaptados para analizar los electroencefalogramas medidos por los sensores, filtrar los artefactos, determinar las características de interés (relacionadas con la habilidad cognitiva a entrenar) y sus niveles de trabajo tanto actuales como objetivo.  - Signal processing methods adapted to analyze the electroencephalograms measured by the sensors, filter the artifacts, determine the characteristics of interest (related to the cognitive ability to train) and their current and objective levels of work.
En particular, una vez recibido el comando del usuario, los sensores están adaptados para medir electroencefalogramas durante las siguientes fases: In particular, once the user command is received, the sensors are adapted to measure electroencephalograms during the following phases:
- Una fase de calibración, en la que se determinan los parámetros de tratamiento de señal del sistema a partir de un conjunto de electroencefalogramas de calibración. En particular, durante esta fase, los métodos de procesado determinan las características de interés y sus niveles de trabajo objetivo, es decir, determinan un nivel de referencia con el que se comparan electroencefalogramas posteriores. - A calibration phase, in which the signal processing parameters of the system are determined from a set of calibration electroencephalograms. In particular, during this phase, the processing methods determine the characteristics of interest and their objective work levels, that is, determine a reference level with which subsequent electroencephalograms are compared.
La tarea de selección de las características asociadas a la habilidad cognitiva se realiza a partir de, preferentemente, al menos, un electroencefalograma medido en estado de reposo y otro durante la realización de una tarea activa o juego relacionados con la habilidad cognitiva a entrenar. La tarea activa o juego se diseña de manera que a través de herramientas de procesamiento de señal se pueden observar ciertas características que median en dicha habilidad, denominadas características de interés. Más en detalle, la ejecución de la tarea activa permite observar el cambio de reposo a activación de estas características, obtenidas en el electroencefalograma de reposo y el electroencefalograma medido durante la ejecución de la tarea activa, para así seleccionarlas de forma optimizada. Se consigue así que la selección de las características esté individualizada para el usuario particular, y que sea dependiente de la habilidad cognitiva y del momento de uso de la tecnología. The task of selecting the characteristics associated with cognitive ability is performed from, preferably, at least one electroencephalogram measured at rest and another during the performance of an active task or game related to the cognitive ability to train. The active task or game is designed so that through signal processing tools certain characteristics can be observed that mediate said ability, called characteristics of interest. More in detail, the execution of the active task allows to observe the change from rest to activation of these characteristics, obtained in the resting electroencephalogram and the electroencephalogram measured during the execution of the active task, in order to select them in an optimized way. It is thus achieved that the selection of the characteristics is individualized for the particular user, and that it is dependent on the cognitive ability and the moment of use of the technology.
Preferentemente, y de manera equivalente, la parametrización de los niveles de trabajo objetivo sobre las características de interés también utiliza uno o varios de los electroencefalogramas de calibración por las mismas razones. Preferably, and in an equivalent manner, the parameterization of the target work levels on the characteristics of interest also uses one or more of the calibration electroencephalograms for the same reasons.
En el caso preferente en el que el comando del usuario escoge la habilidad de entre un conjunto de habilidades disponibles, cada habilidad del conjunto dispone de al menos una tarea asociada, por lo que todo el tratamiento de datos posterior, a partir del cual se determinan las características de interés y los niveles de trabajo está totalmente individualizado para la habilidad seleccionada y el momento concreto de operación. Preferentemente, los métodos de procesado están adaptados para calcular un filtro de corrección de artefactos a partir de uno o varios de los electroencefalogramas medidos durante la fase de calibración. Dicho filtro de corrección de artefactos está, por lo tanto, adaptado a cada usuario, y el aplicar dicho filtro en tiempo real sobre los electroencefalogramas de la fase de entrenamiento permite eliminar la parte de la señal no procedente de fuentes neurales y aprovechar una mayor cantidad de información para el entrenamiento. El filtro se puede aplicar además sobre uno a varios de los electroencefalogramas de calibración para limpiar la señal previamente a la determinación de las características de interés y de los niveles de trabajo objetivo. Preferentemente, el filtro de corrección de artefactos se genera mediante análisis de componentes independientes. In the preferred case in which the user's command chooses the ability from among a set of available skills, each skill in the set has at least one associated task, so that all subsequent data processing, from which they are determined The characteristics of interest and the levels of work are fully individualized for the selected skill and the specific moment of operation. Preferably, the processing methods are adapted to calculate an artifact correction filter from one or more of the electroencephalograms measured during the calibration phase. Said artifact correction filter is, therefore, adapted to each user, and applying said filter in real time on the phase electroencephalograms Training allows you to eliminate the part of the signal not coming from neural sources and take advantage of a greater amount of information for training. The filter can also be applied to one of several of the calibration electroencephalograms to clean the signal prior to the determination of the characteristics of interest and the target work levels. Preferably, the artifact correction filter is generated by independent component analysis.
Preferentemente, el tratamiento de datos para determinar las características de interés y sus niveles de trabajo objetivo de los encefalogramas de calibración se realiza sobre un subconjunto de sensores. Dicho subconjunto de sensores puede ser un subconjunto predeterminado, dependiente de la habilidad cognitiva seleccionada, o bien ser seleccionado en esta fase de entre todos los sensores disponibles. Preferably, the data processing to determine the characteristics of interest and their target work levels of the calibration encephalograms is performed on a subset of sensors. Said subset of sensors can be a predetermined subset, dependent on the selected cognitive ability, or be selected in this phase from among all available sensors.
- Una fase de entrenamiento, en la que se registra una sucesión de electroencefalogramas. En tiempo real los métodos de procesado eliminan los artefactos de los electroencefalogramas usando el filtro de corrección de artefactos para determinar el nivel de trabajo actual de las características de interés. El nivel de trabajo actual es comparado con los niveles de trabajo objetivo, y el resultado de dicha comparación se presenta al usuario en cualquier modalidad de estimulación sensorial a través de la interfaz. Con esta información, el usuario puede aprender a modular los niveles de trabajo para llevarlos a niveles más óptimos, lo cual se manifestará en mejoras en la habilidad cognitiva elegida. Preferentemente, el tratamiento de datos para calcular los niveles de trabajo de los encefalogramas de entrenamiento se realiza sobre un subconjunto de sensores, determinado en la fase de calibración. - A training phase, in which a succession of electroencephalograms is recorded. Real-time processing methods eliminate electroencephalogram artifacts using the artifact correction filter to determine the current level of work of the characteristics of interest. The current work level is compared to the target work levels, and the result of such comparison is presented to the user in any modality of sensory stimulation through the interface. With this information, the user can learn to modulate the work levels to take them to more optimal levels, which will manifest in improvements in the chosen cognitive ability. Preferably, the data processing to calculate the work levels of the training encephalograms is performed on a subset of sensors, determined in the calibration phase.
- Preferentemente, los elementos del sistema están adaptados para realizar una fase de validación posterior a la fase de entrenamiento, en la que se mide al menos un electroencefalograma que es comparado por los métodos de procesado con uno o varios de los electroencefalogramas de la fase de calibración para cuantificar así la mejora en la habilidad cognitiva lograda gracias al uso del sistema. Más preferentemente, la fase de validación comprende medir al menos un electroencefalograma durante un estado de reposo, y un electroencefalograma durante una realización de la misma tarea empleada durante la fase de calibración. También preferentemente, el filtro de corrección de artefactos se aplica sobre dichos electroencefalogramas de calibración y de validación. La cuantificación de la mejora se realiza por lo tanto comparando la variación de los electroencefalogramas entre el estado de reposo y la tarea activa, antes y después del entrenamiento. En un segundo aspecto de la presente invención se presenta un método de entrenamiento cognitivo mediante neuromodulacion que comprende los siguientes pasos: - Preferably, the system elements are adapted to carry out a validation phase after the training phase, in which at least one electroencephalogram is measured which is compared by the processing methods with one or more of the electroencephalograms of the phase of calibration to quantify the improvement in cognitive ability achieved through the use of the system. More preferably, the validation phase It comprises measuring at least one electroencephalogram during a resting state, and an electroencephalogram during an accomplishment of the same task used during the calibration phase. Also preferably, the artifact correction filter is applied on said calibration and validation electroencephalograms. The quantification of the improvement is therefore carried out by comparing the variation of the electroencephalograms between the resting state and the active task, before and after training. In a second aspect of the present invention a method of cognitive training by neuromodulation is presented comprising the following steps:
- Recibir un comando del usuario mediante el cual selecciona un entrenamiento de al menos una habilidad cognitiva, preferentemente elegida de entre un conjunto de habilidades cognitivas disponibles para su entrenamiento mostradas al usuario a través de la interfaz. - Receive a command from the user through which you select a training of at least one cognitive ability, preferably chosen from a set of cognitive skills available for your training shown to the user through the interface.
- Mostrar a través de la interfaz al menos una tarea de calibración asociada a la al menos una habilidad cuyo entrenamiento se ha seleccionado.- Show through the interface at least one calibration task associated with the at least one skill whose training has been selected.
Preferentemente se realiza una tarea en estado de reposo, y una tarea activa o juego relacionado con la habilidad cognitiva seleccionada. Estas tareas de calibración permiten observar en los electroencefalogramas las características de interés relacionadas con la habilidad elegida. Preferably a task is performed at rest, and an active task or game related to the selected cognitive ability. These calibration tasks allow to observe in the electroencephalograms the characteristics of interest related to the chosen skill.
- Medir los electroencefalogramas de calibración durante la ejecución de dichas tareas de calibración. - Measure the calibration electroencephalograms during the execution of said calibration tasks.
- Preferentemente, calcular un filtro de corrección de artefactos sobre uno o varios de los electroencefalogramas de calibración. Más preferentemente, el filtro se calcula mediante análisis de componentes independientes, y se aplica posteriormente a los electroencefalogramas de calibración para eliminar los artefactos antes de realizar los pasos posteriores. Seleccionar unas características o parámetros de interés a partir de los electroencefalogramas de calibración, preferentemente tomados tanto en estado de reposo como durante la ejecución de la tarea activa o juego. Dichas características de interés se obtienen mediante un tratamiento de señal que determina las diferencias entre el estado de reposo y la tarea activa, relacionada con la habilidad cognitiva seleccionada. Preferentemente, el tratamiento de señal comprende un tratamiento tiempo- frecuencia de los electroencefalogramas, y un análisis para caracterizar las diferencias entre el resultado del tratamiento sobre dichos electroencefalogramas, pudiendo ser dicho análisis de carácter estadístico. - Preferably, calculate an artifact correction filter on one or more of the calibration electroencephalograms. More preferably, the filter is calculated by independent component analysis, and is subsequently applied to the calibration electroencephalograms to remove the artifacts before performing subsequent steps. Select characteristics or parameters of interest from the calibration electroencephalograms, preferably taken both at rest and during the execution of the active task or game. These characteristics of interest are obtained by means of a signal treatment that determines the differences between the state of rest and the active task, related to the selected cognitive ability. Preferably, the signal treatment comprises a time-frequency treatment of the electroencephalograms, and an analysis to characterize the differences between the result of the treatment on said electroencephalograms, said analysis being statistical in nature.
Parametrizar los niveles de trabajo de las características de interés en los electroencefalogramas de calibración, y determinar los niveles de trabajo objetivo para dichas características de interés. Los niveles de trabajo objetivo se determinan de manera particularizada para cada habilidad cognitiva a partir de un nivel de trabajo medio. Por ejemplo, una habilidad cognitiva puede requerir incrementar el nivel de trabajo con respecto al nivel medio, por lo que los niveles de trabajo objetivo es el conjunto de valores que está por encima del nivel de trabajo medio. Por el contrario, otra habilidad puede requerir decrementar el nivel de trabajo con respecto al nivel medio, por lo que los niveles de trabajo objetivo es el conjunto de valores que está por debajo del nivel de trabajo medio. En una opción preferente, se determinan además unos niveles de trabajo superiores e inferiores que permiten establecer una escala acotada durante la etapa de entrenamiento. El tratamiento de señal para determinar el nivel de trabajo medio, superior, e inferior, comprende cualquier conjunto de operaciones matemáticas aplicadas sobre el nivel de trabajo de cada característica, o un subconjunto de ellas, medidas sobre uno o varios de los electroencefalogramas de calibración. Parameterize the work levels of the characteristics of interest in the calibration electroencephalograms, and determine the target work levels for those characteristics of interest. The levels of objective work are determined in a particular way for each cognitive ability from an average level of work. For example, a cognitive ability may require increasing the level of work with respect to the average level, so that the levels of objective work is the set of values that is above the average level of work. On the contrary, another skill may require decreasing the level of work with respect to the average level, so that the levels of objective work is the set of values that is below the average level of work. In a preferred option, higher and lower levels of work are also determined that allow establishing a bounded scale during the training stage. The signal processing to determine the average, upper, and lower level of work comprises any set of mathematical operations applied to the level of work of each characteristic, or a subset of them, measured on one or more of the calibration electroencephalograms.
Medir un conjunto de electroencefalogramas de entrenamiento durante una fase de entrenamiento. Preferentemente, se aplica sobre dichos electroencefalogramas de entrenamiento el filtro de corrección de artefactos en tiempo real, habiendo sido dicho filtro calculado previamente en la fase de calibración. Measure a set of training electroencephalograms during a training phase. Preferably, the real-time artifact correction filter is applied to said training electroencephalograms, said filter having been previously calculated in the phase. Calibration
Calcular en tiempo real sobre el conjunto de electroencefalogramas de entrenamiento, previamente filtrados los artefactos según el paso anterior, el nivel de trabajo de las características de interés. El tratamiento de señal para determinar el nivel de trabajo de las características de interés comprende cualquier conjunto de operaciones matemáticas aplicadas sobre el nivel de trabajo de cada característica, o un subconjunto de ellas. Notar que este tratamiento matemático puede ser el mismo aplicado para determinar el nivel de trabajo medio (o superior, o inferior) en la fase de calibración, o distinto. Preferentemente, el tratamiento de datos para calcular los niveles de trabajo de los encefalogramas de entrenamiento se realiza sobre un subconjunto de sensores. Dicho subconjunto de sensores se escoge en la fase de calibración de entre todos los sensores disponibles.  Calculate in real time on the set of training electroencephalograms, previously filtered the devices according to the previous step, the level of work of the characteristics of interest. The signal processing to determine the level of work of the characteristics of interest comprises any set of mathematical operations applied to the level of work of each characteristic, or a subset of them. Note that this mathematical treatment may be the same applied to determine the average (or higher, or lower) level of work in the calibration phase, or different. Preferably, the data processing to calculate the work levels of the training encephalograms is performed on a subset of sensors. Said subset of sensors is chosen in the calibration phase from among all available sensors.
Calcular en tiempo real los valores de retroalimentación que relacionan el nivel de trabajo de las características de interés de los electroencefalogramas de entrenamiento con respecto a los niveles de trabajo objetivo. Los niveles de trabajo objetivo son calculados previamente en la fase de calibración. Calculate in real time the feedback values that relate the work level of the characteristics of interest of the training electroencephalograms with respect to the target work levels. The target work levels are previously calculated in the calibration phase.
Presentar al usuario en cualquier forma de estimulación sensorial una representación de los valores de retroalimentación calculados, permitiendo a dicho usuario conocer el estado de las características de interés y así aprender a modular el nivel de trabajo de dichas características para alcanzar niveles de trabajo objetivo. Present to the user in any form of sensory stimulation a representation of the calculated feedback values, allowing said user to know the status of the characteristics of interest and thus learn to modulate the level of work of said characteristics to reach objective work levels.
Preferentemente, tras la finalización del entrenamiento, el método comprende una fase de validación en la que se mide uno o más electroencefalogramas de validación, y se compara el nivel de trabajo final con el nivel de trabajo inicial, obtenido en la fase de calibración. Más preferentemente, la fase de validación comprende medir electroencefalogramas en dos etapas, una de reposo y una en la que el usuario repite la misma tarea de la fase de calibración. También preferentemente, el método comprende aplicar el filtro de corrección de artefactos sobre dichos encefalogramas de calibración y de validación. La cuantificación de la mejora se realiza por lo tanto comparando la variación de los electroencefalogramas entre el estado de reposo y la tarea activa, antes y después del entrenamiento. Preferably, after completion of the training, the method comprises a validation phase in which one or more validation electroencephalograms are measured, and the final work level is compared with the initial work level, obtained in the calibration phase. More preferably, the validation phase comprises measuring electroencephalograms in two stages, one at rest and one in which the user repeats the same task of the calibration phase. Also preferably, the method comprises applying the correction filter of artifacts on said calibration and validation encephalograms. The quantification of the improvement is therefore carried out by comparing the variation of the electroencephalograms between the resting state and the active task, before and after training.
Preferentemente, el paso de seleccionar las características de interés se realiza con un tratamiento de señal que permite comparar electroencefalogramas en los que el usuario está en estado de reposo, con electroencefalogramas en los que el usuario está realizando una tarea activa o juego. La combinación de estas tareas permite observar el cambio de reposo a activación del cerebro (en el que interviene la habilidad cognitiva) reflejado en las características de la señal con el fin de permitir una selección optimizada de dichas características. Esta estrategia supone una mejora cualitativa tanto en la selección de las características de interés como en la parametrización de sus niveles de trabajo objetivo, dado que ambas estrategias están individualizadas por usuario y momento de utilización del dispositivo, y pueden extenderse a cualquier habilidad cognitiva. Preferably, the step of selecting the characteristics of interest is carried out with a signal treatment that allows comparing electroencephalograms in which the user is at rest, with electroencephalograms in which the user is performing an active task or game. The combination of these tasks allows to observe the change from rest to activation of the brain (in which the cognitive ability intervenes) reflected in the characteristics of the signal in order to allow an optimized selection of these characteristics. This strategy implies a qualitative improvement both in the selection of the characteristics of interest and in the parameterization of their target work levels, given that both strategies are individualized by user and time of use of the device, and can be extended to any cognitive ability.
En un tercer aspecto de la presente invención se presenta un programa de ordenador que comprende medios de código de programa de ordenador adaptados para implementar el método descrito, al ejecutarse en un ordenador, un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable. El sistema, método, y programa de ordenador descrito, proporcionan por lo tanto una herramienta de entrenamiento mediante neuromodulacion que se adapta perfectamente a cada usuario y situación de entrenamiento, y que permite el entrenamiento de habilidades cognitivas particulares, sin requerir la presencia de un profesional médico. Ésta y otras ventajas de la invención serán aparentes a la luz de la descripción detallada de la misma. In a third aspect of the present invention there is presented a computer program comprising computer program code means adapted to implement the described method, when running on a computer, a digital signal processor, an application-specific integrated circuit , a microprocessor, a microcontroller or any other form of programmable hardware. The system, method, and computer program described, therefore provide a training tool through neuromodulation that adapts perfectly to each user and training situation, and that allows the training of particular cognitive skills, without requiring the presence of a professional doctor. This and other advantages of the invention will be apparent in light of the detailed description thereof.
Descripción de las figuras Description of the figures
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, y para complementar esta descripción, se acompañan como parte integrante de la misma las siguientes figuras, cuyo carácter es ilustrativo y no limitativo: In order to help a better understanding of the characteristics of the In accordance with a preferred example of practical implementation thereof, and to complement this description, the following figures are attached as an integral part thereof, the character of which is illustrative and not limiting:
La Figura 1 muestra un esquema de los elementos de la invención de acuerdo con una realización preferente de la misma, así como la información transmitida entre ellos y con un usuario del sistema. La Figura 2 presenta las fases de una sesión de entrenamiento de ejemplo en la que se aplica el método y sistema de la invención, así como los distintos electroencefalogramas medidos durante dichas fases. Figure 1 shows a diagram of the elements of the invention according to a preferred embodiment thereof, as well as the information transmitted between them and with a user of the system. Figure 2 presents the phases of an example training session in which the method and system of the invention is applied, as well as the different electroencephalograms measured during said phases.
La Figura 3 muestra un esquema de los pasos realizados por los medios de procesado durante la fase de entrenamiento de acuerdo con una implementación particular del método de la invención. Figure 3 shows a diagram of the steps performed by the processing means during the training phase according to a particular implementation of the method of the invention.
Realización preferente de la invención En este texto, el término "comprende" y sus derivaciones (como "comprendiendo", etc.) no deben entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como excluyentes de la posibilidad de que lo que se describe y define pueda incluir más elementos, etapas, etc. Nótese que la invención no requiere la presencia de personal médico, pudiendo bien ser controlado en su totalidad por el usuario, o bien ser dirigido por otras personas, sin que dichas personas requieran ningún tipo de formación médica. Preferred Embodiment of the Invention In this text, the term "comprises" and its derivations (such as "comprising", etc.) should not be construed in an exclusive sense, that is, these terms should not be construed as excluding the possibility that that is described and defined may include more elements, stages, etc. Note that the invention does not require the presence of medical personnel, being able to be fully controlled by the user, or directed by other people, without such persons requiring any type of medical training.
Nótese también que, a lo largo de todo el texto, la nomenclatura "electroencefalograma de calibración", "electroencefalograma de entrenamiento", yNote also that, throughout the text, the nomenclature "calibration electroencephalogram", "training electroencephalogram", and
"electroencefalograma de validación" hace referencia a la fase de uso de la invención durante la cual son medidos, con el fin de facilitar la comprensión del texto. Todos estos electroencefalogramas se miden por lo tanto de la misma manera, y representan el mismo tipo de información, medida durante distintos momentos de una sesión típica de uso de la invención. "validation electroencephalogram" refers to the phase of use of the invention during which they are measured, in order to facilitate the understanding of the text. All these electroencephalograms are therefore measured in the same way, and represent the same type of information, measured during different moments of a typical session of use of the invention.
En la figura 1 se observa un esquema de una realización particular del sistema de la invención, el cuál implementa a su vez una realización particular del método de la invención. En la figura se muestra asimismo un usuario (1 ), que realiza un entrenamiento cognitivo utilizando la invención. El sistema comprende unos sensores (2) que miden electroencefalogramas (EEG) (3) del usuario (1 ), y envían la señal eléctrica resultante a unos medios de procesado (4). Durante el entrenamiento de habilidades cognitivas, los medios de procesado (4), siguiendo los pasos que se describen a continuación, generan un valor de retroalimentaciónA diagram of a particular embodiment of the system of the invention is shown in Figure 1, which in turn implements a particular embodiment of the method of the invention. The figure also shows a user (1), who performs cognitive training using the invention. The system comprises sensors (2) that measure electroencephalograms (EEG) (3) of the user (1), and send the resulting electrical signal to processing means (4). During the training of cognitive skills, the processing means (4), following the steps described below, generate a feedback value
(5) que es transmitido al usuario (1 ) a través de un estímulo (7) generado por una interfaz (6). A su vez la interfaz (6), recibe comandos (8) del usuario (1 ). (5) that is transmitted to the user (1) through a stimulus (7) generated by an interface (6). In turn, the interface (6) receives commands (8) from the user (1).
Los sensores (2) pueden ser cualquier sensor conocido en el estado de la técnica capaz de proporcionar una señal relativa al electroencefalograma (3) del usuario. En una implementación particular, se contempla el uso de un gorro de electroencefalog rafia con 19 sensores, adaptados para ser dispuestos sobre el cuero cabelludo del usuario según el sistema internacional 10/20. Los sensores se distribuyen sobre las zonas prefrontal, frontal, central, parietal y occipital. En concreto se emplean las posiciones FP1 , FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, 01 , y 02. Asimismo se utilizan dos sensores adicionales. El primer sensor adicional se coloca en la zona prefrontal (posición FPz) para registrar la señal correspondiente a potencial tierra del usuario. El segundo sensor adicional se coloca en un lóbulo de una oreja para registrar una señal contra la que se miden los 19 sensores, llamado potencial de referencia en el campo de la electrónica. La señal adquirida por cada sensor es filtrada, amplificada, y finalmente digitalizada.The sensors (2) can be any sensor known in the state of the art capable of providing a signal relative to the user's electroencephalogram (3). In a particular implementation, the use of a raffia electroencephalog cap with 19 sensors, adapted to be arranged on the user's scalp according to the international 10/20 system, is contemplated. The sensors are distributed over the prefrontal, frontal, central, parietal and occipital areas. Specifically, positions FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, 01, and 02 are used. Two sensors are also used. additional. The first additional sensor is placed in the prefrontal zone (FPz position) to record the signal corresponding to the user's potential ground. The second additional sensor is placed in an earlobe to record a signal against which the 19 sensors are measured, called the reference potential in the electronics field. The signal acquired by each sensor is filtered, amplified, and finally digitized.
Como resultado se obtiene el electroencefalograma del usuario filtrado en el rango de frecuencias de 0.5 Hz a 60 Hz, amplificado y digitalizado a una frecuencia de muestreo de 256 muestras por segundo. Obviamente, otras disposiciones de sensores, así como otros rangos de filtrado y frecuencias de muestreo pueden ser utilizados dentro del alcance de la invención tal y como ha sido reivindicada. As a result, the electroencephalogram of the user filtered in the frequency range of 0.5 Hz to 60 Hz is obtained, amplified and digitized at a sampling frequency of 256 samples per second. Obviously, other sensor arrangements, as well as other filtering ranges and sampling frequencies can be used within the scope of the invention as claimed.
Los medios de procesado (4) pueden ser implementados en cualquier dispositivo hardware programable, ya sea en un ordenador, un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador, o cualquier otro. En consecuencia, el sistema puede ser tanto fijo como portátil, pudiendo implementarse, por ejemplo, en un teléfono o en otros dispositivos portátiles adaptados para recibir la señal de los sensores (2). Asimismo, la interfaz (6) puede ser cualquier tipo de interfaz capaz de transmitir información al usuario y recibir instrucciones de la misma. La transmisión de información puede ser por lo tanto visual, auditiva, somatosensorial o cualquier combinación de las anteriores. La recepción de comandos puede realizarse a través de botones, pantallas táctiles, reconocimiento de voz, o cualquier otro medio conocido de interacción con un usuario. The processing means (4) can be implemented in any programmable hardware device, whether in a computer, a digital signal processor, an application-specific integrated circuit, a microprocessor, a microcontroller, or any other. Consequently, the system can be both fixed and portable, and can be implemented, for example, in a telephone or other portable devices adapted to receive the signal from the sensors (2). Also, the interface (6) can be any type of interface capable of transmitting information to the user and receiving instructions from it. The transmission of information can therefore be visual, auditory, somatosensory or any combination of the foregoing. The reception of commands can be done through buttons, touch screens, voice recognition, or any other known means of interaction with a user.
En particular, una de las opciones para transmitir al usuario (1 ) los valores de retroalimentación (5), es establecer una escala que asigna distintos colores a distintos valores de retroalimentación (5), y mostrar el correspondiente color en una pantalla de la interfaz (6). In particular, one of the options to transmit to the user (1) the feedback values (5), is to establish a scale that assigns different colors to different feedback values (5), and display the corresponding color on an interface screen (6).
Previamente a cada sesión de entrenamiento, el sistema recibe del usuario (1 ) a través de la interfaz (6) un comando (8) mediante el cual, el usuario (1 ) selecciona la habilidad cognitiva que desea entrenar durante dicha sesión. La habilidad cognitiva se selecciona de entre un conjunto de opciones proporcionadas por el sistema, teniendo cada una de las habilidades cognitivas una o más tareas o juegos predeterminados, los cuales permiten caracterizar la respuesta neuronal del usuario ante un problema que activa las características involucradas en esa habilidad cognitiva. Nótese que dichas tareas o juegos se utilizan exclusivamente durante la fase de calibración que se explica a continuación, y no durante la fase de entrenamiento, en la que se desarrolla la neuromodulación. Esto permite un aprendizaje "a la carta", en el que es el usuario el que decide qué habilidades cognitivas quiere desarrollar, en lugar de realizar un entrenamiento genérico y poco eficiente. La figura 2 muestra las distintas fases de un ejemplo de una sesión de utilización de la invención, una vez se ha seleccionado la habilidad cognitiva a entrenar durante dicha sesión. En la figura se muestran asimismo los electroencefalogramas (3) que se miden durante cada una de dichas fases, y que permiten ejecutar los pasos del método realizados por los medios de procesado (4). La sesión comienza con una fase de calibración (9) que permite calcular los parámetros requeridos por el sistema. A continuación, el grueso de la sesión está ocupado por la fase de entrenamiento (10), en la que el usuario recibe en tiempo real estímulos (7) que representan los valores de retroalimentación (5) y puede por tanto aprender a modular su actividad cerebral. Finalmente, el proceso concluye con una fase de validación (1 1 ) en la que se evalúan los progresos del usuario (1 ). Prior to each training session, the system receives from the user (1) through the interface (6) a command (8) by which, the user (1) selects the cognitive ability that he wishes to train during said session. The cognitive ability is selected from a set of options provided by the system, each of the cognitive skills having one or more predetermined tasks or games, which allow characterizing the user's neuronal response to a problem that activates the characteristics involved in that cognitive ability Note that these tasks or games are used exclusively during the calibration phase explained below, and not during the training phase, in which the neuromodulation takes place. This allows "a la carte" learning, in which it is the user who decides what cognitive skills he wants to develop, instead of performing a generic and inefficient training. Figure 2 shows the different phases of an example of a session of use of the invention, once the cognitive ability to train during said session has been selected. The figure also shows the electroencephalograms (3) that are measured during each of said phases, and which allow the steps of the method performed by the processing means (4) to be executed. The session begins with a calibration phase (9) that allows to calculate the parameters required by the system. Next, the bulk of the session is occupied by the training phase (10), in which the user receives in real time stimuli (7) that represent the feedback values (5) and can therefore learn to modulate their activity cerebral. Finally, the process concludes with a validation phase (1 1) in which the user's progress (1) is evaluated.
La fase de calibración (9) comprende la ejecución de dos tareas bien diferenciadas. En primer lugar, una tarea de reposo (12), en la que el usuario no realiza ninguna actividad relacionada con la habilidad cognitiva a entrenar, sino que debe permanecer durante unos minutos en estado de reposo con los ojos cerrados. Durante este estado de reposo se mide un electroencefalograma de calibración en reposo (14'). A continuación, ejecuta una tarea activa (13), en el que el usuario realiza una tarea activa en la que interviene la habilidad cognitiva seleccionada previamente por el usuario, siguiendo las instrucciones proporcionadas a través de la interfaz (6). Durante esta tarea activa (13), se mide un electroencefalograma de calibración en activación (14). Por ejemplo, en el caso de la habilidad cognitiva denominada memoria de trabajo, la tarea activa puede consistir en la observación continuada de un elemento en el que hay que contar los cambios graduales de color en una interfaz visual (6), lo cual permite apreciar la diferencia entre ambos electroencefalogramas. En el caso particular de la memoria de trabajo, esta diferencia es principalmente observada como una desincronización de los ritmos cerebrales alpha en la zona parieto-occipital del cuero cabelludo, considerados factores clave en la memoria de trabajo. The calibration phase (9) comprises the execution of two well differentiated tasks. First, a rest task (12), in which the user does not perform any activity related to the cognitive ability to train, but must remain for a few minutes in a state of rest with eyes closed. During this resting state, a resting calibration electroencephalogram (14 ') is measured. Next, it executes an active task (13), in which the user performs an active task in which the cognitive ability previously selected by the user intervenes, following the instructions provided through the interface (6). During this active task (13), an activation calibration electroencephalogram is measured (14). For example, in the case of the cognitive ability called working memory, the active task may consist of the continuous observation of an element in which the gradual changes of color in a visual interface must be counted (6), which allows to appreciate the difference between both electroencephalograms. In the particular case of working memory, this difference is mainly observed as a desynchronization of alpha brain rhythms in the parieto-occipital area of the scalp, considered key factors in working memory.
El electroencefalograma de calibración en activación (14) y el electroencefalograma de calibración en reposo (14') se utilizan para calibrar un filtro de corrección de artefactos (18) que elimina de la señal la actividad originada por fuentes no neurales como por ejemplo movimientos oculares y musculares del usuario, así como a errores de sensado e interferencias. Una vez calibrado el filtro de corrección de artefactos (18), el propio filtro se aplica sobre los electroencefalogramas de calibración antes de su análisis. Nótese que de esta manera, se consigue una corrección de artefactos particularizada para el usuario concreto, para la habilidad cognitiva seleccionada y momento de uso de la tecnología. Esta corrección de artefactos también es usada en tiempo real para limpiar la señal durante la fase de entrenamiento. En particular, se aplica una técnica de separación ciega de fuentes, como el análisis de componentes independientes (ICA). A partir de los electroencefalogramas de calibración (14, 14'), filtrados mediante el filtro de corrección de artefactos (18), se determinan las diferencias entre la tarea de reposo (12) y la tarea activa (13). A partir de dichas diferencias, se determinan las características o parámetros de interés asociadas a la habilidad cognitiva seleccionada, así como los niveles de trabajo objetivo para dichas características de interés. En particular, estudios de neurociencia relacionan incrementos en la actividad (o potencia) en la parte superior de la banda alpha en las zonas parieto- occipitales con mejoras en la memoria de trabajo. Por tanto, las características de interés como sus niveles de trabajo se miden sobre los sensores colocados en la zona parieto-occipital del cuero cabelludo, más en concreto en los sensores P3, Pz, P4, 01 y 02, denominados sensores de entrenamiento, sobre los cuales se buscan las diferencias entre los estados de reposo y activación. The activation calibration electroencephalogram (14) and the resting calibration electroencephalogram (14 ') are used to calibrate an artifact correction filter (18) that eliminates from the signal activity caused by non-neural sources such as eye movements and muscle of the user, as well as sensing errors and interference. Once the artifact correction filter (18) has been calibrated, the filter itself is applied to the calibration electroencephalograms before analysis. Note that in this way, a particular artifact correction is achieved for the specific user, for the selected cognitive ability and time of use of the technology. This correction of Artifacts are also used in real time to clear the signal during the training phase. In particular, a blind source separation technique is applied, such as independent component analysis (ICA). From the calibration electroencephalograms (14, 14 '), filtered by the artifact correction filter (18), the differences between the resting task (12) and the active task (13) are determined. From these differences, the characteristics or parameters of interest associated with the selected cognitive ability are determined, as well as the levels of objective work for said characteristics of interest. In particular, neuroscience studies relate increases in activity (or potency) in the upper part of the alpha band in parieto-occipital areas with improvements in working memory. Therefore, the characteristics of interest and their work levels are measured on the sensors placed in the parieto-occipital area of the scalp, more specifically in the sensors P3, Pz, P4, 01 and 02, called training sensors, on which are looking for the differences between the states of rest and activation.
En detalle, para cada sensor de entrenamiento se calcula el espectro de potencia de los electroencefalogramas de reposo y de la tarea activa, previamente filtrados de artefactos, y se identifica la banda de frecuencia relacionada con la máxima desincronización (entre el electroencefalograma en reposo y el electroencefalograma en activación) en un intervalo de frecuencia [f¡nf, fsup] = [5, 15] Hz. A continuación, por cada sensor de entrenamiento se determina la banda de frecuencia de interés como el rango [fm, fn], siendo fm la frecuencia máxima de desincronización, y fn el primer valor con desincronización menor que un umbral, siendo que fn es mayor que fm, y estando fm y fn contenidas dentro del intervalo [f¡nf, fsup]. En esta implementación particular, la potencia en la banda de frecuencia [fm, fn] para cada sensor de entrenamiento son las características de interés. El nivel de trabajo de una característica de interés es su valor de potencia instantáneo. Los niveles de trabajo objetivo se determinan como el conjunto de valores que superen un nivel de trabajo medio, el cual es usado como referencia durante el entrenamiento. Dicho nivel de trabajo medio se determina como la potencia en la banda de frecuencia [fm, fn], calculada para el electroencefalograma de la tarea activa y promediada para los sensores de entrenamiento. También se calculan los límites inferior y superior del nivel de trabajo de forma que dicho intervalo cubra el 95% de valores de la distribución de potencias en dicha banda de interés en el electroencefalograma de la tarea activa. Nótese que en el caso de otra habilidad cognitiva, se contempla utilizar cualquier otra característica de interés que diferencia los electroencefalogramas de calibración en activación (14) y el electroencefalograma de calibración en reposo (14'). Dicha característica de interés puede ser cualquier parámetro resultante de la comparación de los electroencefalogramas en los dos estados de calibración, ya sea en el dominio temporal, frecuencial, o una combinación de ambos dominios.In detail, for each training sensor, the power spectrum of the resting electroencephalograms and the active task, previously filtered from artifacts, is calculated and the frequency band related to maximum desynchronization is identified (between the resting electroencephalogram and the activated electroencephalogram) in a frequency range [f¡ nf , f sup ] = [5, 15] Hz. Next, for each training sensor the frequency band of interest is determined as the range [f m , f n ], where f m is the maximum desynchronization frequency, and f n the first value with synchronization less than a threshold, where f n is greater than f m , and f m and f n are contained within the interval [f¡ nf , f sup ]. In this particular implementation, the power in the frequency band [f m , f n ] for each training sensor are the characteristics of interest. The level of work of a characteristic of interest is its instantaneous power value. The target work levels are determined as the set of values that exceed an average work level, which is used as a reference during training. Said average work level is determined as the power in the frequency band [f m , f n ], calculated for the electroencephalogram of the active task and averaged for the training sensors. They are also calculated lower and upper limits of the work level so that said interval covers 95% of power distribution values in said band of interest in the electroencephalogram of the active task. Note that in the case of another cognitive ability, it is contemplated to use any other characteristic of interest that differentiates the activation calibration electroencephalograms (14) and the resting calibration electroencephalogram (14 '). Said characteristic of interest can be any parameter resulting from the comparison of the electroencephalograms in the two calibration states, whether in the time domain, frequency, or a combination of both domains.
Asimismo dichos parámetros pueden ser estáticos, estadísticos, o considerar evoluciones temporales de la señal bajo análisis. Preferentemente, dichos parámetros se individualizan para cada sensor empleado en la medida del electroencefalograma, aunque también se contempla utilizar una medida promediada de los mismos, dentro del alcance de la presente invención. Likewise, said parameters can be static, statistical, or consider temporal evolutions of the signal under analysis. Preferably, said parameters are individualized for each sensor used in the measurement of the electroencephalogram, although it is also contemplated to use an average measurement thereof, within the scope of the present invention.
Los sensores sobre los que se realiza la determinación de las características de interés, así como la posterior medida de los electroencefalogramas de entrenamiento (15), pueden ser un subconjunto predeterminado, dependiente de la habilidad cognitiva seleccionada, o bien ser seleccionados como parte del propio proceso de determinación de las características de interés como aquellos sensores en los que aparecen las mayores diferencias entre los electroencefalogramas de calibración en activación (14) y el electroencefalograma de calibración en reposo (14'). The sensors on which the determination of the characteristics of interest is made, as well as the subsequent measurement of the training electroencephalograms (15), can be a predetermined subset, depending on the selected cognitive ability, or be selected as part of the own process of determining the characteristics of interest such as those sensors in which the greatest differences appear between the activation calibration electroencephalograms (14) and the resting calibration electroencephalogram (14 ').
A través de este proceso de calibración, se consigue que la invención esté individualizada para cada usuario y para cada habilidad cognitiva, así como para cada momento en el que se realice el entrenamiento, incluyendo cualquier variación producida por el estado de los sensores o del propio usuario. Through this calibration process, it is achieved that the invention is individualized for each user and for each cognitive ability, as well as for each moment in which the training is carried out, including any variation produced by the state of the sensors or the sensor itself. Username.
Una vez concluida la fase de calibración (9), se pasa a la fase de entrenamiento (10). La fase de entrenamiento (10) comprende un conjunto de ejecuciones o ensayos, pudiendo ser tanto el número como la duración de dichos ensayos configurable por parte del usuario. Un ejemplo típico constaría de 5 ensayos de 5 minutos de duración cada uno. Once the calibration phase (9) is completed, the training phase (10) is passed. The training phase (10) comprises a set of executions or trials, and the number and duration of said tests can be configurable by the user. A typical example would consist of 5 trials of 5 minutes each.
El esquema de los pasos y elementos de la fase de entrenamiento (10) implementados en los medios de procesado (4) se muestra en la figura 3. El objetivo de la fase de entrenamiento es proporcionar valores de retroalimentaciónThe scheme of the steps and elements of the training phase (10) implemented in the processing means (4) is shown in Figure 3. The objective of the training phase is to provide feedback values
(5) en tiempo real a partir de los electroencefalogramas de entrenamiento (15), que representan la relación entre el nivel de trabajo actual de las características de interés de los electroencefalogramas de entrenamiento (15) y los niveles de trabajo objetivo. Para ello parte de unos parámetros de calibración (17), obtenidos durante la fase de calibración (9). Dichos parámetros de calibración (17) comprenden los parámetros calculados para el filtro de corrección de artefactos (18), las características de interés seleccionadas (potencia en una banda de frecuencia determinada para cada sensor de entrenamiento), y los niveles de trabajo objetivo (potencia de dichas características promediada para los sensores de entrenamiento en el electroencefalograma de calibración en activación) que sirven de referencia para el cálculo de los valores de retroalimentación (5). Dichos niveles de trabajo objetivo comprenden además un límite superior e inferior para poder establecer una escala acotada durante el entrenamiento. Durante la fase de entrenamiento (10), los electroencefalogramas de entrenamiento(5) in real time from the training electroencephalograms (15), which represent the relationship between the current work level of the characteristics of interest of the training electroencephalograms (15) and the target work levels. For this part of some calibration parameters (17), obtained during the calibration phase (9). Said calibration parameters (17) comprise the parameters calculated for the artifact correction filter (18), the selected characteristics of interest (power in a given frequency band for each training sensor), and the target work levels (power of these characteristics averaged for the training sensors in the activation calibration electroencephalogram) that serve as a reference for the calculation of the feedback values (5). These levels of objective work also include an upper and lower limit to establish a bounded scale during training. During the training phase (10), the training electroencephalograms
(15) pasan primero por el filtro de corrección de artefactos (18) para eliminar los artefactos de la señal. A continuación, la señal filtrada llega a unos medios de cálculo (19) que determinan el nivel de trabajo de las características de interés del electroencefalograma para cada uno de los sensores de entrenamiento. Estos niveles de trabajo son promediados para los sensores de entrenamiento, y el valor resultante sirve de entrada a un comparador (20) que determina el valor de retroalimentación (5) como la diferencia entre ese valor y el nivel de trabajo medio calculado durante la calibración. El uso conjunto del nivel de trabajo medio, con los límites superior e inferior, permite obtener un valor de retroalimentación normalizado en el intervalo [-1 , 1 ], de manera que valores positivos indican niveles de trabajo objetivo, siendo más óptimo cuanto mayor es el valor, mientras que valores negativos indican que el usuario no está en niveles de trabajo objetivo para su actividad cerebral. Los valores de retroalimentación (5) son proporcionados al usuario (1 ) en tiempo real, lo que le permite aprender a modular de manera adecuada su actividad cerebral, lo que lleva asociada una mejora en la habilidad cognitiva seleccionada. Estos valores de retroalimentación (5) se presentan al usuario (1 ) a través de estímulos (7) generados por la interfaz (6). En este caso concreto, los estímulos consisten en un cuadrado dibujado sobre la interfaz (6) que cambia de color de acuerdo al valor de retroalimentación (5). En detalle, valores de retroalimentación en el intervalo [0, 1 ] (retroalimentación positiva) se corresponden con una escala cromática del color gris al color rojo, aumentando progresivamente su saturación. Valores de retroalimentación en el intervalo [0, -1 ] (retroalimentación negativa) se corresponden con una escala cromática del color gris al color azul, aumentando progresivamente su saturación. Por tanto, el objetivo del usuario (1 ) es conseguir que el estímulo (7) se muestre de color rojo, y a mayor saturación mejor. Opcionalmente, el sistema puede proporcionar al usuario (1 ), a través de la interfaz (6), indicaciones de cómo lograr esta modulación. (15) first pass through the artifact correction filter (18) to eliminate the artifacts from the signal. Next, the filtered signal reaches calculation means (19) that determine the level of work of the characteristics of interest of the electroencephalogram for each of the training sensors. These work levels are averaged for training sensors, and the resulting value serves as input to a comparator (20) that determines the feedback value (5) as the difference between that value and the average work level calculated during calibration . The joint use of the average work level, with the upper and lower limits, allows to obtain a standardized feedback value in the interval [-1, 1], so that positive values indicate target work levels, being more optimal the higher it is the value, while negative values indicate that the user is not at levels of objective work for their brain activity. The feedback values (5) are provided to the user (1) in real time, which allows him to learn to adequately modulate his brain activity, which leads to an improvement in the selected cognitive ability. These feedback values (5) are presented to the user (1) through stimuli (7) generated by the interface (6). In this specific case, the stimuli consist of a square drawn on the interface (6) that changes color according to the feedback value (5). In detail, feedback values in the interval [0, 1] (positive feedback) correspond to a color scale from gray to red, gradually increasing its saturation. Feedback values in the interval [0, -1] (negative feedback) correspond to a color scale from gray to blue, gradually increasing its saturation. Therefore, the objective of the user (1) is to ensure that the stimulus (7) is shown in red, and better saturation. Optionally, the system can provide the user (1), through the interface (6), with instructions on how to achieve this modulation.
Finalmente, el proceso termina con una fase de validación (1 1 ), en la que se miden electroencefalogramas de validación (16, 16') para determinar la mejora de la habilidad cognitiva experimentada por el usuario. Preferentemente, se mide un primer electroencefalograma de validación (16) durante una segunda iteración del estado de reposo (12'); y un segundo electroencefalograma de validación (16') durante una segunda iteración de la misma tarea activa (13') utilizada durante la fase de calibración (9). En esta fase se repiten los procesos de selección de las características de interés y de parametrización de sus niveles de trabajo objetivo realizados en la fase de calibración (9), y se comparan con los resultados obtenidos en dicha fase de calibración (9), lo cual permite cuantificar la evolución y progreso causado por el entrenamiento en los niveles de trabajo de las características de interés. Sobre los electroencefalogramas de validación (16, 16') también se aplica el filtro de corrección de artefactos. Finally, the process ends with a validation phase (1 1), in which validation electroencephalograms (16, 16 ') are measured to determine the improvement of the cognitive ability experienced by the user. Preferably, a first validation electroencephalogram (16) is measured during a second iteration of the resting state (12 '); and a second validation electroencephalogram (16 ') during a second iteration of the same active task (13') used during the calibration phase (9). In this phase the processes of selection of the characteristics of interest and parameterization of their target work levels performed in the calibration phase (9) are repeated, and compared with the results obtained in said calibration phase (9), which allows quantifying the evolution and progress caused by training in the work levels of the characteristics of interest. The artifact correction filter is also applied to the validation electroencephalograms (16, 16 ').
A la vista de esta descripción y figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada. In view of this description and figures, the person skilled in the art may understand that the invention has been described according to some preferred embodiments thereof, but that multiple variations can be introduced in said preferred embodiments, without departing from the object of the invention such and as claimed.

Claims

REIVINDICACIONES Sistema de entrenamiento cognitivo de un usuario (1 ) mediante neuromodulación que comprende:  CLAIMS A user's cognitive training system (1) through neuromodulation comprising:
- sensores (2) adaptados para medir al menos un electroencefalograma de calibración (14) durante una fase de calibración (9), y una pluralidad de electroencefalogramas de entrenamiento (15) durante una fase de entrenamiento (10), siendo la fase de entrenamiento (10) posterior a la fase de calibración (9); - sensors (2) adapted to measure at least one calibration electroencephalogram (14) during a calibration phase (9), and a plurality of training electroencephalograms (15) during a training phase (10), the training phase being (10) after the calibration phase (9);
- medios de procesado (4) adaptados para localizar al menos una característica de interés en el al menos un electroencefalograma de calibración (14) que caracteriza una actividad cerebral a entrenar, determinar un nivel de referencia a partir de información de la al menos una característica de interés medida para el menos un electroencefalograma de calibración (14), y calcular una relación (5) entre el nivel de referencia y la al menos una característica de interés en la pluralidad de electroencefalogramas de entrenamiento (15); - processing means (4) adapted to locate at least one characteristic of interest in the at least one calibration electroencephalogram (14) that characterizes a brain activity to be trained, determining a reference level from information of the at least one characteristic of interest measured for at least one calibration electroencephalogram (14), and calculate a relationship (5) between the reference level and the at least one characteristic of interest in the plurality of training electroencephalograms (15);
- y una interfaz (6) adaptada para recibir comandos (8) del usuario (1 ) y transmitir información (7) al usuario (1 ), comprendiendo dicha información (7) la relación (5) calculada; caracterizado porque los medios de procesado (4) también están adaptados para, durante la fase de calibración (9): - and an interface (6) adapted to receive commands (8) from the user (1) and transmit information (7) to the user (1), said information (7) comprising the calculated ratio (5); characterized in that the processing means (4) are also adapted for, during the calibration phase (9):
- recibir a través de la interfaz (6) un comando (8) del usuario (1 ) seleccionando un entrenamiento de al menos una habilidad cognitiva; - receive through the interface (6) a command (8) from the user (1) selecting a training of at least one cognitive ability;
- mostrar a través de la interfaz (6) una tarea (13) para ser ejecutada por el usuario asociada a la habilidad cognitiva cuyo entrenamiento es seleccionado por el comando (8); - y localizar la al menos una característica de interés asociada a la habilidad cognitiva cuyo entrenamiento es seleccionado por el comando (8), y determinar el nivel de referencia, a partir de al menos un electroencefalograma de calibración (14) medido durante la realización de dicha tarea (13). - show through the interface (6) a task (13) to be executed by the user associated with the cognitive ability whose training is selected by the command (8); - and locate the at least one characteristic of interest associated with the cognitive ability whose training is selected by the command (8), and determine the reference level, from at least one calibration electroencephalogram (14) measured during the performance of said task (13).
2. Sistema según la reivindicación 1 caracterizado porque el comando (8) del usuario (1 ) que los medios de procesado (4) están adaptados para recibir, es un comando que selecciona una habilidad cognitiva de entre un conjunto de habilidades cognitivas disponibles; porque cada habilidad cognitiva del conjunto tiene al menos una tarea (13) asociada; y porque los medios de procesado (4) están adaptados para localizar la al menos una característica de interés para cada habilidad del conjunto a través de la tarea (13) asociada a cada habilidad del conjunto. 2. System according to claim 1 characterized in that the command (8) of the user (1) that the processing means (4) are adapted to receive, is a command that selects a cognitive ability from a set of available cognitive skills; because each cognitive ability of the set has at least one associated task (13); and because the processing means (4) are adapted to locate the at least one characteristic of interest for each skill of the set through the task (13) associated with each skill of the set.
3. Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque los medios de procesado (4) están adaptados para, durante la fase de calibración (9), localizar la al menos una característica de interés, y determinar el nivel de referencia, a partir de unas diferencias entre al menos un primer electroencefalograma de calibración (14) medido durante la realización de la tarea (13) asociada a la habilidad cognitiva cuyo entrenamiento es seleccionado por el comando (8), y al menos un segundo electroencefalograma de calibración (14') medido durante un estado de reposo (12). 3. System according to any of the preceding claims characterized in that the processing means (4) are adapted to, during the calibration phase (9), locate the at least one characteristic of interest, and determine the reference level, from differences between at least a first calibration electroencephalogram (14) measured during the task (13) associated with the cognitive ability whose training is selected by the command (8), and at least a second calibration electroencephalogram (14 ' ) measured during a resting state (12).
4. Sistema según al reivindicación 3 caracterizado porque la al menos una característica de interés que los medios de procesado están adaptados para localizar es al menos un parámetro estático, dinámico, y/o estadístico que diferencia el primer electroencefalograma de calibración (14) y el segundo electroencefalograma de calibración (14') en un dominio temporal, frecuencial, y/o tiempo-frecuencia. 4. System according to claim 3 characterized in that the at least one characteristic of interest that the processing means are adapted to locate is at least one static, dynamic, and / or statistical parameter that differentiates the first calibration electroencephalogram (14) and the Second calibration electroencephalogram (14 ') in a temporal, frequency, and / or time-frequency domain.
5. Sistema según cualquiera de las reivindicaciones 3 y 4 caracterizado porque las características de interés que los medios de procesado están adaptados para localizar son al menos una potencia medida entre unas frecuencias inicial y final de un rango de frecuencias. 5. System according to any of claims 3 and 4 characterized in that the characteristics of interest that the processing means are adapted to locate are at least one power measured between initial and final frequencies of a frequency range.
6. Sistema según la reivindicación 5 caracterizado porque el rango de frecuencias en el que se mide la potencia es una banda alfa superior. 6. System according to claim 5 characterized in that the frequency range in which the power is measured is a higher alpha band.
7. Sistema según cualquiera de las reivindicaciones 3 a 6, caracterizado porque la al menos una característica de interés se localiza individualmente para cada sensor utilizado en la medida de los electroencefalogramas de calibración (14, 14'). System according to any one of claims 3 to 6, characterized in that the at least one characteristic of interest is located individually for each sensor used in the measurement of the calibration electroencephalograms (14, 14 ').
8. Sistema según la reivindicación 7 caracterizado porque la al menos una característica de interés en los electroencefalogramas de entrenamiento (15) es medida para un subconjunto de sensores, siendo dicho subconjunto de sensores seleccionado durante la fase de calibración (9). System according to claim 7 characterized in that the at least one characteristic of interest in the training electroencephalograms (15) is measured for a subset of sensors, said subset of sensors being selected during the calibration phase (9).
9. Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque los medios de procesado (4) están adaptados para: 9. System according to any of the preceding claims characterized in that the processing means (4) are adapted to:
- durante la fase de calibración (9), generar un filtro de corrección de artefactos (18), siendo dicho filtro de corrección de artefactos (18) generado en función de al menos un electroencefalograma de calibración (14) medido durante la fase de calibración; - during the calibration phase (9), generating an artifact correction filter (18), said artifact correction filter (18) being generated based on at least one calibration electroencephalogram (14) measured during the calibration phase ;
- durante la fase de entrenamiento (10), aplicar el filtro de corrección de artefactos (18) generado a la pluralidad de electroencefalogramas de entrenamiento (15). - during the training phase (10), apply the generated artifact correction filter (18) to the plurality of training electroencephalograms (15).
10. Sistema según la reivindicación 9 caracterizado porque los medios de procesado (4) están adaptados para generar el filtro de corrección de artefactos (18) mediante análisis de componentes independientes. 10. System according to claim 9 characterized in that the processing means (4) are adapted to generate the artifact correction filter (18) by independent component analysis.
1 1 . Sistema según cualquiera de las reivindicaciones 9 y 10 caracterizado porque los medios de procesado (4) están adaptados para aplicar el filtro de corrección de artefactos (18) sobre el al menos un electroencefalograma de calibración (14) previamente a la localización de la al menos una característica de interés. eleven . System according to any of claims 9 and 10 characterized in that the processing means (4) are adapted to apply the filter of correction of artifacts (18) on the at least one calibration electroencephalogram (14) prior to the location of the at least one characteristic of interest.
12. Sistema según cualquiera de las reivindicaciones anteriores caracterizado porque los medios de procesado (4) están adaptados para medir a través de los sensores (1 ) al menos un electroencefalograma de validación (16) durante una fase de validación (1 1 ), siendo la fase de validación (1 1 ) posterior a la fase de entrenamiento (10); y para calcular una evolución resultante del uso del sistema mediante la comparación del al menos un electroencefalograma de calibración (14) y del al menos un electroencefalograma de validación (16). 12. System according to any of the preceding claims characterized in that the processing means (4) are adapted to measure through the sensors (1) at least one validation electroencephalogram (16) during a validation phase (1 1), being the validation phase (1 1) after the training phase (10); and to calculate an evolution resulting from the use of the system by comparing at least one calibration electroencephalogram (14) and at least one validation electroencephalogram (16).
13. Sistema según la reivindicación 12 y cualquiera de las reivindicaciones 9 a 1 1 , caracterizado porque los medios de procesado (4) están adaptados para aplicar el filtro de corrección de artefactos (18) sobre el al menos un electroencefalograma de validación (16). 13. System according to claim 12 and any of claims 9 to 1, characterized in that the processing means (4) are adapted to apply the artifact correction filter (18) on the at least one validation electroencephalogram (16) .
14. Sistema según cualquiera de las reivindicaciones 12 a 13 y cualquiera de las reivindicaciones 3 a 1 1 caracterizado porque los medios de procesado están adaptados para medir en la fase de validación al menos un primer electroencefalograma de validación (16) medido durante una segunda realización de la tarea (13') asociada a la habilidad cognitiva, y al menos un segundo electroencefalograma de validación (16') medido durante un segundo estado de reposo (12'), y para calcular la evolución resultante mediante la comparación del primer electroencefalograma de validación (16) y el segundo electroencefalograma de validación (16') con el primer electroencefalograma de calibración (14) y el segundo electroencefalograma de calibración (14'). 14. System according to any of claims 12 to 13 and any of claims 3 to 1 1 characterized in that the processing means are adapted to measure at least one first validation electroencephalogram (16) measured during a second embodiment in the validation phase of the task (13 ') associated with cognitive ability, and at least a second validation electroencephalogram (16') measured during a second resting state (12 '), and to calculate the resulting evolution by comparing the first electroencephalogram of validation (16) and the second validation electroencephalogram (16 ') with the first calibration electroencephalogram (14) and the second calibration electroencephalogram (14').
15. Método de entrenamiento cognitivo de un usuario (1 ) mediante neuromodulación que comprende: 15. Method of cognitive training of a user (1) by neuromodulation comprising:
- medir al menos un electroencefalograma de calibración (14) durante una fase de calibración (9), y una pluralidad de electroencefalogramas de entrenamiento (15) durante una fase de entrenamiento (10), siendo la fase de entrenamiento (10) posterior a la fase de calibración (9); - measure at least one calibration electroencephalogram (14) during a calibration phase (9), and a plurality of training electroencephalograms (15) during a training phase (10), the training phase (10) being subsequent to the calibration phase (9);
- localizar al menos una característica de interés que caracteriza una actividad cerebral a entrenar, a partir del al menos un electroencefalograma de calibración (14); - locate at least one characteristic of interest that characterizes a brain activity to be trained, from at least one calibration electroencephalogram (14);
- determinar un nivel de referencia a partir de información de la al menos una característica de interés medidas para el menos un electroencefalograma de calibración (14); - determine a reference level from information of the at least one characteristic of interest measured for at least one calibration electroencephalogram (14);
- calcular una relación (5) entre el nivel de referencia y la al menos una característica de interés en la pluralidad de electroencefalogramas de entrenamiento (15); - calculate a relationship (5) between the reference level and the at least one characteristic of interest in the plurality of training electroencephalograms (15);
- recibir comandos (8) del usuario (1 ); - receive commands (8) from the user (1);
- y transmitir información (7) al usuario (1 ), comprendiendo dicha información la relación (5) calculada; caracterizado porque el método comprende además, durante la fase de calibración (9): - and transmit information (7) to the user (1), said information comprising the calculated ratio (5); characterized in that the method further comprises, during the calibration phase (9):
- recibir un comando (8) del usuario (1 ) seleccionando un entrenamiento de al menos una habilidad cognitiva; - receive a command (8) from the user (1) selecting a training of at least one cognitive ability;
- mostrar a través de la interfaz (6) una tarea (13) para ser ejecutada por el usuario asociada a la habilidad cognitiva cuyo entrenamiento es seleccionado en el comando (8); y porque los pasos de localizar la al menos una característica de interés, y de determinar el nivel de referencia, se realizan a partir de al menos un electroencefalograma de calibración (14) medido durante la realización de dicha tarea (13). - show through the interface (6) a task (13) to be executed by the user associated with the cognitive ability whose training is selected in the command (8); and because the steps of locating the at least one characteristic of interest, and determining the reference level, are performed from at least one calibration electroencephalogram (14) measured during the performance of said task (13).
16. Método según la reivindicación 15 caracterizado porque el comando (8) del usuario (1 ) es un comando que selecciona una habilidad cognitiva de entre un conjunto de habilidades cognitivas disponibles; porque cada habilidad cognitiva del conjunto tiene al menos una tarea (13) asociada; y porque el paso de localizar la al menos una característica de interés de manera se realiza para cada habilidad del conjunto a través de la tarea (13) asociada a cada habilidad del conjunto. 16. Method according to claim 15 characterized in that the user command (8) (1) is a command that selects a cognitive ability from a set of available cognitive skills; because each cognitive ability of the set has at least one associated task (13); and because the step of locating the at least one characteristic of interest in a manner is performed for each skill of the set through the task (13) associated with each skill of the set.
17. Método según cualquiera de las reivindicaciones 15 y 16 caracterizado porque los pasos de localizar la al menos una característica de interés, y de determinar el nivel de referencia, se realizan determinando unas diferencias entre al menos un primer electroencefalograma de calibración (14) medido durante la realización de la tarea (13) asociada a la habilidad cognitiva cuyo entrenamiento es seleccionado por el comando (8); y al menos un segundo electroencefalograma de calibración (14') medido durante un estado de reposo (12). 17. Method according to any of claims 15 and 16 characterized in that the steps of locating the at least one characteristic of interest, and determining the reference level, are performed by determining differences between at least a first calibration electroencephalogram (14) measured during the completion of the task (13) associated with the cognitive ability whose training is selected by the command (8); and at least a second calibration electroencephalogram (14 ') measured during a resting state (12).
18. Método según la reivindicación 17 caracterizado porque la al menos una característica es al menos un parámetro estático, dinámico, y/o estadístico que diferencia el primer electroencefalograma de calibración (14) y el segundo electroencefalograma de calibración (14') en un dominio temporal, frecuencial, y/o tiempo-frecuencia. 18. Method according to claim 17 characterized in that the at least one characteristic is at least one static, dynamic, and / or statistical parameter that differentiates the first calibration electroencephalogram (14) and the second calibration electroencephalogram (14 ') in a domain temporal, frequency, and / or time-frequency.
19. Método según la reivindicación 18 caracterizado porque las características de interés comprenden una potencia medida entre unas frecuencias inicial y final de un rango de frecuencias. 19. Method according to claim 18 characterized in that the characteristics of interest comprise a power measured between initial and final frequencies of a frequency range.
20. Método según la reivindicación 19 caracterizado porque el rango de frecuencias en el que se mide la potencia es una banda alfa superior. 20. Method according to claim 19 characterized in that the frequency range in which the power is measured is a higher alpha band.
21 . Método según cualquiera de las reivindicaciones 17 a 20, caracterizado porque la al menos una característica de interés se localiza individualmente para cada sensor utilizado en la medida de los electroencefalogramas de calibración (14, 14'). twenty-one . Method according to any of claims 17 to 20, characterized in that the at least one characteristic of interest is located individually for each sensor used in the measurement of the calibration electroencephalograms (14, 14 ').
22. Método según la reivindicación 21 caracterizado porque la al menos una característica de interés en los electroencefalogramas de entrenamiento (15) se mide para un subconjunto de sensores, siendo dicho subconjunto de sensores seleccionado durante la fase de calibración (9). 22. Method according to claim 21, characterized in that the at least one characteristic of interest in the training electroencephalograms (15) is measured for a subset of sensors, said subset of sensors being selected during the calibration phase (9).
23. Método según cualquiera de las reivindicaciones 15 a 21 caracterizado porque comprende además: 23. Method according to any of claims 15 to 21 characterized in that it further comprises:
- durante la fase de calibración (9), generar un filtro de corrección de artefactos (18), siendo dicho filtro de corrección de artefactos (18) generado en función de al menos un electroencefalograma de calibración (14) medido durante la realización de la tarea (13) asociada a la habilidad cognitiva seleccionada; - during the calibration phase (9), generating an artifact correction filter (18), said artifact correction filter (18) being generated based on at least one calibration electroencephalogram (14) measured during the performance of the task (13) associated with the selected cognitive ability;
- durante la fase de entrenamiento (10), aplicar el filtro de corrección de artefactos (18) generado a la pluralidad de electroencefalogramas de entrenamiento (15). - during the training phase (10), apply the generated artifact correction filter (18) to the plurality of training electroencephalograms (15).
24. Método según la reivindicación 23 caracterizado porque el filtro de corrección de artefactos (18) se genera mediante análisis de componentes independientes. 24. Method according to claim 23, characterized in that the artifact correction filter (18) is generated by independent component analysis.
25. Método según cualquiera de las reivindicaciones 23 y 24 caracterizado porque comprende además aplicar el filtro de corrección de artefactos (18) sobre el al menos un electroencefalograma de calibración (14) previamente a la localización de la al menos una característica de interés. 25. Method according to any of claims 23 and 24 characterized in that it further comprises applying the artifact correction filter (18) on the at least one calibration electroencephalogram (14) prior to the location of the at least one characteristic of interest.
26. Método según cualquiera de las reivindicaciones 15 a 25 caracterizado porque comprende además medir al menos un electroencefalograma de validación (16) durante una fase de validación (1 1 ), siendo la fase de validación (1 1 ) posterior a la fase de entrenamiento (10); y calcular una evolución resultante del uso del sistema mediante la comparación del al menos un electroencefalograma de calibración (14) y del al menos un electroencefalograma de validación (16). 26. Method according to any of claims 15 to 25 characterized in that it further comprises measuring at least one validation electroencephalogram (16) during a validation phase (1 1), the validation phase (1 1) being subsequent to the training phase (10); and calculate a evolution resulting from the use of the system by comparing at least one calibration electroencephalogram (14) and at least one validation electroencephalogram (16).
27. Método según la reivindicación 26 y cualquiera de las reivindicaciones 23 a27. Method according to claim 26 and any of claims 23 a
25, caracterizado porque comprende además aplicar el filtro de corrección de artefactos (18) sobre el al menos un encefalograma de validación (16). 25, characterized in that it further comprises applying the artifact correction filter (18) on the at least one validation encephalogram (16).
28. Sistema según cualquiera de las reivindicaciones 26 a 27 y cualquiera de las reivindicaciones 17 a 25 caracterizado porque comprende además medir en la fase de validación al menos un primer electroencefalograma de validación (16) medido durante una segunda realización de la tarea (13') asociada a la habilidad cognitiva, y al menos un segundo electroencefalograma de validación (16') medido durante un segundo estado de reposo (12'), y para calcular la evolución resultante mediante la comparación del primer electroencefalograma de validación (16) y el segundo electroencefalograma de validación (16') con el primer electroencefalograma de calibración (14) y el segundo electroencefalograma de calibración (14'). 28. System according to any of claims 26 to 27 and any one of claims 17 to 25 characterized in that it further comprises measuring at least one first validation electroencephalogram (16) measured during a second task completion (13 ' ) associated with cognitive ability, and at least a second validation electroencephalogram (16 ') measured during a second resting state (12'), and to calculate the resulting evolution by comparing the first validation electroencephalogram (16) and the second validation electroencephalogram (16 ') with the first calibration electroencephalogram (14) and the second calibration electroencephalogram (14').
29. Programa de ordenador que comprende medios de código de programa de ordenador adaptados para realizar las etapas del método de acuerdo con cualquiera de las reivindicaciones 15 a 28, cuando el mencionado programa se ejecuta en un ordenador, un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware. 29. Computer program comprising computer program code means adapted to perform the steps of the method according to any of claims 15 to 28, when said program is executed on a computer, a digital signal processor, a application-specific integrated circuit, a microprocessor, a microcontroller or any other form of hardware.
PCT/ES2013/070781 2012-11-12 2013-11-11 Neuromodulation-based cognitive training system and method WO2014072564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231719A ES2467515B1 (en) 2012-11-12 2012-11-12 SYSTEM AND METHOD OF COGNITIVE TRAINING THROUGH NEUROMODULATION
ESP201231719 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014072564A1 true WO2014072564A1 (en) 2014-05-15

Family

ID=50684110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070781 WO2014072564A1 (en) 2012-11-12 2013-11-11 Neuromodulation-based cognitive training system and method

Country Status (2)

Country Link
ES (1) ES2467515B1 (en)
WO (1) WO2014072564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3698712A4 (en) * 2017-10-20 2020-10-14 Panasonic Corporation Brain wave assessment system, brain wave assessment method, program, and non-transient recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062680A1 (en) * 2007-09-04 2009-03-05 Brain Train Artifact detection and correction system for electroencephalograph neurofeedback training methodology
US20090069707A1 (en) * 2007-09-06 2009-03-12 Sandford Joseph A Method to improve neurofeedback training using a reinforcement system of computerized game-like cognitive or entertainment-based training activities
US20100016753A1 (en) * 2008-07-18 2010-01-21 Firlik Katrina S Systems and Methods for Portable Neurofeedback
US20100094156A1 (en) * 2008-10-13 2010-04-15 Collura Thomas F System and Method for Biofeedback Administration
US20120100514A1 (en) * 2009-04-06 2012-04-26 Stichting Katholieke Universiteit, Radboud Universiteit Nijmegen Method and system for training of perceptual skills using neurofeedback

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062680A1 (en) * 2007-09-04 2009-03-05 Brain Train Artifact detection and correction system for electroencephalograph neurofeedback training methodology
US20090069707A1 (en) * 2007-09-06 2009-03-12 Sandford Joseph A Method to improve neurofeedback training using a reinforcement system of computerized game-like cognitive or entertainment-based training activities
US20100016753A1 (en) * 2008-07-18 2010-01-21 Firlik Katrina S Systems and Methods for Portable Neurofeedback
US20100094156A1 (en) * 2008-10-13 2010-04-15 Collura Thomas F System and Method for Biofeedback Administration
US20120100514A1 (en) * 2009-04-06 2012-04-26 Stichting Katholieke Universiteit, Radboud Universiteit Nijmegen Method and system for training of perceptual skills using neurofeedback

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ESCOLANO ET AL.: "Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects", ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY, August 2012 (2012-08-01), pages 4643 - 4647 *
ESCOLANO ET AL.: "EEG-based Upper Alpha Neurofeedback Training improves working memory performance", ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, EMBC,2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE, August 2011 (2011-08-01), pages 2327 - 2330 *
NAN YAN ET AL.: "Designing a brain-computer interface device for neurofeedback using virtual environments", JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, vol. 28, no. 3, September 2008 (2008-09-01), pages 167 - 172 *
VERNON D ET AL.: "Alpha Neurofeedback training for Performance Enhancement: Reviewing the Methodology", JOURNAL OF NEUROTHERAPY, vol. 13, no. 4, October 2009 (2009-10-01), pages 214 - 227 *
ZOEFEL B ET AL.: "Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance", NEUROIMAGE, vol. 54, no. 2, 15 January 2011 (2011-01-15), pages 1427 - 1431 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3698712A4 (en) * 2017-10-20 2020-10-14 Panasonic Corporation Brain wave assessment system, brain wave assessment method, program, and non-transient recording medium
JPWO2019078325A1 (en) * 2017-10-20 2020-12-17 パナソニック株式会社 EEG determination system, EEG determination method, program, and non-temporary recording medium

Also Published As

Publication number Publication date
ES2467515B1 (en) 2015-04-29
ES2467515A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
Cheng et al. Sensorimotor rhythm neurofeedback enhances golf putting performance
Zich et al. Wireless EEG with individualized channel layout enables efficient motor imagery training
Cui et al. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics
EP1818016B1 (en) Biofunction diagnosis device, biofunction diagnosis method, bioprobe, bioprobe wearing tool, bioprobe support tool, and bioprobe wearing assisting tool
Seo et al. Use of imperceptible wrist vibration to modulate sensorimotor cortical activity
Cuypers et al. Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: a multimodal TMS-MRS study
Khan et al. Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation
Eken et al. Association of fine motor loss and allodynia in fibromyalgia: An fNIRS study
Collinger et al. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury
US20140012152A1 (en) Method of Decreasing Sensory Latency
Akatsuka et al. Acute aerobic exercise influences the inhibitory process in the go/no-go task in humans
Pedroso et al. Effects of physical exercise on the P300 of elderly with Alzheimer’s disease
Kiefer et al. Train the brain: novel electroencephalography data indicate links between motor learning and brain adaptations
Bowyer et al. Presurgical functional mapping with magnetoencephalography
Chen et al. Beta-range corticomuscular coupling reflects asymmetries in hand movement
Stawicki et al. Evaluation of suitable frequency differences in SSVEP-based BCIs
Liu et al. Fractal dimension based neurofeedback training to improve cognitive abilities
ES2467515B1 (en) SYSTEM AND METHOD OF COGNITIVE TRAINING THROUGH NEUROMODULATION
Kaur et al. Virtual reality, visual cliffs, and movement disorders
Arpin et al. Movement-related somatosensory activity is altered in patients with multiple sclerosis
Soekadar et al. Clinical brain-machine interfaces
Chen et al. The use of a brain computer interface remote control to navigate a recreational device
Han et al. Cortical activation patterns of electrical pain stimulation using fNIRS
Cockx et al. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction
Cockx et al. Functional near-infrared spectroscopy is sensitive to leg activity in the primary motor cortex, but requires rigorous correction for systemic fluctuations induced by movements.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853479

Country of ref document: EP

Kind code of ref document: A1