WO2014058172A1 - Device for selectively injecting liquid into reaction vessel and biosensor including same - Google Patents

Device for selectively injecting liquid into reaction vessel and biosensor including same Download PDF

Info

Publication number
WO2014058172A1
WO2014058172A1 PCT/KR2013/008802 KR2013008802W WO2014058172A1 WO 2014058172 A1 WO2014058172 A1 WO 2014058172A1 KR 2013008802 W KR2013008802 W KR 2013008802W WO 2014058172 A1 WO2014058172 A1 WO 2014058172A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
liquid
flow path
motion device
syringe
Prior art date
Application number
PCT/KR2013/008802
Other languages
French (fr)
Korean (ko)
Inventor
이재훈
Original Assignee
디지탈 지노믹스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디지탈 지노믹스(주) filed Critical 디지탈 지노믹스(주)
Publication of WO2014058172A1 publication Critical patent/WO2014058172A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0644Valves, specific forms thereof with moving parts rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a device for selectively injecting a liquid into a reaction vessel and to a biosensor comprising the same, and more particularly, to selectively and several liquids to be reacted to a reaction vessel in which a biological, biochemical or chemical reaction is carried out.
  • An apparatus for sequentially injecting and a biosensor comprising the same.
  • the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped
  • a biosensor such as DNA analysis device
  • An apparatus for injecting and a biosensor comprising the same.
  • Biosensors are devices that can analyze gene information and protein information in large quantities and automatically, or can analyze the presence and function of bioactive substances relatively simply and quickly. Such biosensors are actively applied in various fields such as gene and protein research, medicine, agriculture, food, environment and chemical industry.
  • Such biosensors include a microfluidics chip, a so-called biochip, which checks for the presence and / or reaction of a bioactive substance in a sample to be tested, and includes a substance to be tested (eg, DNA, RNA, peptide). It is a device for analyzing the reaction pattern of the various bioactive substances in the biochip while flowing a liquid sample containing a (), protein, etc.) to the reaction vessel containing the biochip.
  • a biosensor detects a change in electrical characteristics according to a reaction of a bioactive substance in a reaction vessel and detects the presence and / or reaction of the bioactive substance by sensing an electrode installed in the biochip.
  • the new technology is being improved in connection with the biosensor as described above, and in the biosensor field to which the present invention belongs, as in other technical fields, continuous improvement of the technology is required.
  • a technique for efficiently injecting a reaction solution, a test target liquid sample, and the like into a reaction vessel having a biochip embedded therein according to a reaction sequence is also a demand for improvement of a technique for efficiently injecting a reaction solution, a test target liquid sample, and the like into a reaction vessel having a biochip embedded therein according to a reaction sequence.
  • Korean Patent Laid-Open Publication No. 10-2011-0075448 discloses a sample inlet for injecting a liquid sample into a reaction space formed between an upper substrate and a lower substrate, and a sample charging portion filled with a liquid sample injected through the sample inlet. And a sample outlet for discharging the reaction solution after completion of the reaction.
  • Korean Patent Laid-Open No. 10-2012-0056442 discloses a sample inlet, a sample reaction part, a sample discharge part, a first microfluidic channel connecting a sample inlet part and a sample reaction part into which a biological sample is injected, and a sample reaction part.
  • a reaction chamber comprising a second microfluidic channel connecting a sample outlet is disclosed.
  • the prior art as described above is only configured to inject a liquid sample into the reaction chamber containing the biochip through the microchannel and to discharge the reaction solution from the reaction chamber containing the biochip through the microchannel after completion of the reaction. have. Therefore, in the prior art, when it is necessary to inject various reaction solutions and the liquid sample to be tested into the reaction chamber in which the biochip is built according to the reaction sequence, the reaction solution and the liquid sample are exchanged before and after the reaction and manually injected into the reaction chamber. There was a inconvenience that the reaction solution and the liquid sample could not be efficiently injected in accordance with the reaction sequence.
  • the technique of the applicant's Republic of Korea Patent Publication No. 10-2009-0101764 is to fill the fluid with a large dielectric constant in the reaction chamber before the reaction, during the reaction to remove the fluid having a large dielectric constant in the reaction chamber and the reaction solution and The process of filling the sample to be detected and the process of removing the reaction solution and refilling the fluid having a high dielectric constant after the completion of the reaction must be performed. There is an urgent need for the development of a device capable of injecting efficiently.
  • the present invention is an object of the present invention to solve the problems of the conventional biosensor, specifically, the method of injecting the reaction solution and the liquid sample, the reaction target in the reaction vessel in which the biological, biochemical or chemical reaction is performed It is an object of the present invention to provide a device for selectively and sequentially injecting various liquids and a biosensor including the same.
  • the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped
  • An object of the present invention is to provide a device for injecting and a biosensor including the same.
  • a connecting passage formed through the inside of the housing along a longitudinal direction in a central axis spaced apart from the plurality of inflow passages by a predetermined distance and connected to the plurality of flow passages;
  • connection groove inserted into the connection passage and rotatably coupled to the housing, the connection groove selecting and communicating with one of the plurality of flow paths in accordance with rotation about the central axis, and communicating with the connection groove and the reaction vessel.
  • a flow path selecting means having a discharge port for discharging the liquid introduced through the selected one flow path and the connection groove into the reaction vessel.
  • the apparatus for selectively injecting liquid into the reaction vessel of an embodiment of the present invention may further include a plurality of syringes each inserted into the plurality of inflow passages and containing the liquid.
  • the liquid in the syringe flows through an injection hole formed in front of the syringe as the piston moves forward, and the injection hole communicates with the flow path formed in the housing.
  • the plurality of inflow passages may be formed radially around the connection passage. For example, five inflow passages may be formed radially, and each inflow passage may form an angle of 72 ° with respect to an adjacent inflow passage.
  • the present invention is not limited thereto, and various numbers of inflow passages may be applicable, and the angle may also be modified.
  • the flow path selection means is a cylindrical body portion of the rear open, the coupling groove is formed in the periphery while being coupled to the front of the body portion And the discharge port includes a head portion formed at the tip.
  • the device for selectively injecting liquid into the reaction vessel of an embodiment of the present invention further comprises a horizontal reciprocating motion device and a rotary motion device, the horizontal reciprocating motion device according to the operation of the horizontal reciprocating motion device and the rotary motion device And the rotating shaft and the piston shaft connected to the rotary motion device repeats the horizontal movement and rotation operation.
  • connection groove formed in the connection groove is rotated by a predetermined angle to select one of the plurality of flow paths so that the connection groove and the selected flow path communicate with each other.
  • the piston shaft is positioned in a syringe inserted into an inflow passage communicating with the selected flow path by the rotation of the predetermined angle, and the piston shaft moves the piston of the syringe by an additional horizontal movement of the horizontal reciprocating device.
  • the pushing operation is performed to flow the liquid in the syringe through the inlet, and the flowing liquid is discharged into the reaction vessel from the outlet of the flow path selecting means through the selected flow path and the connecting groove.
  • the present invention can selectively and sequentially inject various liquids to be reacted into a reaction vessel in which a biological, biochemical or chemical reaction is performed by repeating the horizontal movement and rotation operations as described above. Will be.
  • the plurality of flow passages are preferably formed in a radially branched form from the connecting passage.
  • the plurality of radially branched flow passages are configured to communicate with each of the plurality of inflow passages so that the liquid introduced from each inflow passage flows in.
  • five flow paths can be formed radially branched, and each flow path can form an angle of 72 ° with respect to an adjacent flow path.
  • the present invention is not limited thereto, and various numbers of flow paths are applicable, and the angle thereof may also be modified.
  • the housing can be bonded to the reaction vessel by ultrasonic welding to maintain the airtight therebetween.
  • a coupling plate having a through hole through which liquid flows may be inserted between the housing and the reaction vessel.
  • the reaction vessel is formed with an inlet for the liquid inlet and an outlet for the liquid outlet, the valve means for opening and closing the inlet and the outlet Can be provided.
  • the valve means includes a protruding valve corresponding to the inlet and the outlet and formed of an elastic material. The protruding valve is pressed by pressure when the blocking shaft connected to the vertical reciprocating device descends to close the inlet and the outlet while being pressed by pressure, and when the blocking shaft is raised to release the pressure, the valve is in the original position by the elastic restoring force. Return to to open the inlet and the outlet.
  • the biosensor of the present invention is characterized by having a device for selectively injecting a liquid into the reaction vessel as described above.
  • the present invention can selectively and sequentially inject several liquids to be reacted into a reaction vessel in which a biological, biochemical or chemical reaction is performed.
  • the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped Can be injected by
  • the reaction solution and the liquid sample are exchanged before and after the reaction and manually injected into the reaction chamber.
  • FIG. 1 is a schematic diagram of a biosensor equipped with a device for selectively injecting liquid into a reaction vessel according to one embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of an apparatus for selectively injecting a liquid into a reaction vessel according to an embodiment of the present invention, and a reaction vessel.
  • FIG 3 is a cross-sectional view in which a device for selectively injecting a liquid into a reaction vessel according to an embodiment of the present invention is combined with the reaction vessel.
  • 4 to 10 is a state diagram of the use of the device for selectively injecting liquid into the reaction vessel according to an embodiment of the present invention.
  • FIG. 11 is a view showing a device for selectively injecting a liquid into the reaction vessel according to an embodiment of the present invention in the direction A of FIG. 2, with a syringe and a flow path selecting means inserted therein.
  • FIG. 12 is a view showing a device for selectively injecting a liquid into the reaction vessel according to an embodiment of the present invention in the direction B of Figure 2, a perspective view before the syringe and the flow path selection means is installed.
  • the biosensor 100 includes an apparatus 10 for selectively injecting a liquid into the reaction vessel of the present invention, and a reaction vessel 20 coupled to one side of the apparatus 10 of the present invention.
  • the rotary motion device 30 and the horizontal reciprocating motion device 40 are included as main components.
  • the rotary motion device 30 is driven by the rotary motor 36 to perform the rotary motion
  • the horizontal reciprocating motion device 40 is driven by the linear motor 44 to perform horizontal reciprocating motion (ie, forward movement and backward movement). Guided by this horizontal reciprocating motion guide 42.
  • the rotary shaft 32 and the piston shaft 34 connected to the horizontal reciprocation motion device 40 and the rotary motion device 30 are connected.
  • various liquids M to be reacted to the reaction vessel 20 can be selectively and sequentially injected in the reaction order as will be described later.
  • the rotation direction, the rotation angle, etc. of the rotary motor 36 and the rotary motion device 30 may be controlled by a known sensor device such as a position sensor and a limit sensor and a controller connected thereto, and the linear motor 44 may be connected with the linear motor 44.
  • the first forward movement, additional forward movement, backward movement, horizontal movement distance, etc. of the horizontal reciprocating motion device 40 is also controllable by a known sensor device such as a position sensor and a limit sensor and a control unit connected thereto.
  • the apparatus 10 for selectively injecting liquid into the reaction vessel of one embodiment of the present invention is largely coupled to one side of the reaction vessel 20 ( 11) and a flow path selecting means 12 inserted into the connecting passage 14 formed through the housing 11 along the longitudinal direction and rotatably coupled to the housing 11.
  • the housing 11 includes a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e into which liquid is injected, and a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e, respectively.
  • the flow paths 146a, 146b, 146c, 146d, and 146e are provided (refer FIG. 11 and FIG. 12).
  • a connection passage 14 is formed through the inside of the housing 11, and the connection passage 14 is a center spaced apart from a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e by a predetermined distance. It is formed through the inside of the housing 11 along the longitudinal direction in the axis and is connected to the plurality of flow paths 146a, 146b, 146c, 146d, 146e (see FIGS. 2, 11 and 12).
  • the flow path selecting means 12 is inserted into the connection path 14 and rotatably coupled to the housing 11.
  • Flow path selecting means 12 is one of a plurality of flow paths (146a, 146b, 146c, 146d, 146e) according to the rotation about the central axis of the housing 11 (see, for example, 146a: FIGS. 3 and 11).
  • the liquid flowed through the connection groove 124 and the connection groove 124 and the connection groove 124 and the reaction vessel 20 and selectively flows through the selected flow path (146a) and the connection groove 124 to selectively communicate with the reaction vessel ( 20) an outlet 122 for discharging into the chamber is formed (see FIG. 3).
  • the flow path selection means 12 is composed of a cylindrical body portion 126 of the rear open, and a head portion 120 coupled to the front of the body portion 126.
  • the connection groove 124 is formed in the peripheral portion of the head 120 and the discharge port 122 is formed at the front end (see Fig. 2).
  • an outlet packing member 128 is provided between the outlet 122 and the reaction vessel 20 to prevent the liquid from leaking when the liquid discharged from the outlet 122 enters the reaction vessel 20.
  • the device 10 for selectively injecting the liquid into the reaction vessel of one embodiment of the present invention is a plurality of syringes 16 are respectively inserted into the plurality of inflow passages (15a, 15b, 15c, 15d, 15e) and accommodated in the liquid ) (See FIGS. 2, 11 and 12).
  • the plurality of syringes 16 is composed of a body portion (164a, 164b, 164c, 164d, 164e), injection holes (166a, 166b, 166c, 166d, 166e) and the locking jaw (168a, 168b, 168c, 168d, 168e)
  • the locking jaws 168a, 168b, 168c, 168d, and 168e of each syringe Engaged in the stepped portion of the inflow passage (15a, 15b, 15c, 15d, 15e) to prevent the syringe 16 from being separated from the housing 11 (see Figs.
  • packing members 162a, 162b, 162c, 162d, and 162e are inserted between the injection holes 166a, 166b, 166c, 166d, and 166e and the corresponding flow paths 146a, 146b, 146c, 146d, and 146e. It is possible to reliably prevent leakage of liquid flowing out of the inlet and flowing into the flow path.
  • each inlet 166a, 166b, 166c, 166d, 166e is in communication with each corresponding flow path 146a, 146b, 146c, 146d, 146e formed in the housing 11 (see FIG. 11).
  • the piston 17 is hermetically inserted into the syringe 16 to reciprocate.
  • the piston body 172 is guided and moved by the inner surface of the syringe 16 and is hermetically inserted into the piston body 172. Consisting of a finish 174 to be joined (see FIGS. 2 and 3).
  • the piston shaft 34 which will be described later, comes into contact with the finishing portion 174 of the piston 17 so that the piston 17 moves forward.
  • the plurality of inflow passage may be formed radially around the connection passage 14, preferably may be formed on a concentric circle.
  • the connection passage 14 preferably may be formed on a concentric circle.
  • five inflow passages 15a, 15b, 15c, 15d, and 15e may be formed radially, and each inflow passage may have an angle of 72 ° with respect to an adjacent inflow passage. Can be formed.
  • the present invention is not limited thereto, and various numbers of inflow passages may be applicable, and the angle may also be modified.
  • the plurality of flow paths (146a, 146b, 146c, 146d, 146e) is also preferably formed in a radially branched form from the connecting passage (14).
  • Each of these radially branched flow paths 146a, 146b, 146c, 146d, 146e is in communication with each corresponding inflow path 15a, 15b, 15c, 15d, 15e to each inflow path 15a, 15b.
  • 15c, 15d, 15e are configured to flow in (see FIGS. 11 and 12). For example, as shown in FIG.
  • five flow paths 146a, 146b, 146c, 146d, 146e can be formed radially branched, with each flow path being 72 ° relative to an adjacent flow path. It can form the angle of.
  • the present invention is not limited thereto, and various numbers of flow paths are applicable, and the angle thereof may also be modified.
  • the housing 11 can be bonded to one side of the reaction vessel 20 by ultrasonic welding to maintain the airtight therebetween.
  • the coupling plate 25 having the through hole 252 is inserted and installed between the housing 11 and the reaction vessel 20 to facilitate the bonding of the housing 11 and the reaction vessel 20.
  • the rotary motion device 30 is driven by the rotary motor 36 to perform the rotary motion
  • the horizontal reciprocating motion device 40 is driven by the linear motor 44 to perform the horizontal reciprocating motion ( That is, forward movement and backward movement) are guided by the horizontal reciprocating motion guide 42.
  • the rotary shaft 32 and the piston shaft 34 connected to the horizontal reciprocation motion device 40 and the rotary motion device 30 are connected. The horizontal movement and rotation movements are repeated together.
  • connection groove 124 formed in the head portion 120 of the flow path selecting means 12 is rotated by a predetermined angle of the rotary motion device 30 driven by the rotation motor 36.
  • the connection groove 124 and the selected flow path 146a may be rotated by 72 ° to select one of the plurality of flow paths 146a, 146b, 146c, 146d, and 146e, for example, 146a. Communicating. As such, a state in which the connecting groove and one selected flow path communicate with each other is illustrated in FIG. 11.
  • connection groove 124 and the selected flow path 146a communicate with each other at position 1 of FIG. 11.
  • the piston shaft 32 connected to the rotary motion device 30 by a predetermined angle (for example, 72 °) of the rotary motion device 30 as described above is connected to the selected flow path (146a) and
  • the piston shaft 34 is positioned on the rear side of the syringe body portion 164a inserted into the inflow passage 15a communicating therewith and by the horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44.
  • the flow path of the liquid flowing in this way is indicated by the symbol "F" in FIG. 3.
  • the present invention can selectively and sequentially inject various liquids to be reacted into the reaction vessel 20 in the reaction order as the horizontal movement and rotation operations as described above are repeated.
  • the rotary motion device 30 is rotated in the clockwise direction by the driving of the rotary motor 36, the rotating shaft 32 and the linked shaft 32 in the order of 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5 of FIG.
  • the flow path selecting means 12 is rotated so that the connecting groove 124 sequentially selects the flow path (146a ⁇ 146b ⁇ 146c ⁇ 146d ⁇ 146e), and the piston shaft 34 is also interlocked and rotates clockwise. After that, it is possible to sequentially inject several liquids to be reacted by horizontal reciprocating movement.
  • the reaction vessel 20 into which the liquid is injected is largely configured by combining the upper case 22, the valve means 24, the case body 26, and the lower case 21.
  • the chip cover support plate 272 is inserted and coupled between the case body 26 and the periphery of the lower case 21, and the chip cover 271 formed to be stepped downward from the chip cover support plate 272 is provided with a biochip 28. It is positioned on the biochip 28 at a minute spacing S (see FIG. 4).
  • the case body 26 of the reaction vessel 20 has an inlet 26a through which liquid flows in and an outlet 26b through which liquid flows out.
  • a chip cover inlet 27a and a chip also exist in the chip cover 271.
  • a lid outlet 27b is formed.
  • the liquid introduced into the reaction vessel 20 passes through the inlet 26a and the chip cover inlet 27a to penetrate into the microcavity between the chip cover 271 and the biochip 28.
  • a valve means 24 for opening and closing the inlet 26a and the outlet 26b is provided on the case body 26.
  • the valve means 24 includes protruding valves 24a and 24b which correspond to the inlet 26a and the outlet 26b and are made of an elastic material, for example, silicon.
  • the protruding valves 24a and 24b close the inlet 26a and the outlet 26b while being pressed by the pressure when the blocking shafts 52 and 56 connected to the vertical reciprocating device 50 descend and apply pressure. When the blocking shafts 52 and 56 rise and the pressure is released, the inlet 26a and the outlet 26b are opened by the elastic restoring force (see FIGS. 2 and 4 to 10).
  • the components constituting the device 10 for selectively injecting liquid into the reaction vessel of the present invention is preferably composed of a synthetic resin, for example, may be composed of polyethylene resin.
  • a synthetic resin for example, may be composed of polyethylene resin.
  • the present invention is not limited thereto, and various materials known in the art may be applied.
  • FIGS. 4 to 10 The operation of the apparatus 10 for selectively injecting liquid into the reaction vessel of the embodiment of the present invention configured as described above will be described with reference to FIGS. 4 to 10.
  • FIG. 5 to FIG. 10 a repetitive description of reference numerals is omitted, and some of the reference numerals are omitted for convenience of illustration. Reference numerals omitted in FIGS. 5 to 10 refer to FIG. 4.
  • the rotation shaft 32 and the piston shaft 34 are just before the horizontal movement and rotation operation are performed, and the vertical reciprocating motion device 50 is a reaction vessel 20 for vertical movement of a short vertical movement distance. It is moving near and waiting.
  • the shock absorbing springs 54 and 58 of the vertical reciprocating device 50 absorb vibrations or minute shocks applied to the vertical reciprocating device 50 to prevent unwanted movement of the blocking shafts 52 and 56.
  • the connecting groove 124 formed in the head portion 120 of the flow path selecting means 12 is directed to the position 5 of FIG. Therefore, the flow path 146a is not in communication with the connecting groove 124 and is blocked by the head portion 120 of the flow path selecting means 12.
  • the rotation shaft 32 is hermetically inserted into the open rear of the trunk portion 126 of the flow path selecting means 12 by the horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44.
  • the piston shaft 34 moves forward in conjunction with the horizontal movement of the horizontal reciprocating motion device 40, but is located close to the rear of the syringe barrel portion 164e installed in the inflow passage 15e. (Corresponding to position 5 in FIG. 11)
  • the axial direction is inconsistent with the syringe body portion 164a installed in the inflow passage 15a.
  • the rotary shaft 32 is rotated by a clockwise rotation (indicated by "C” in the drawing) of a predetermined angle (for example, 72 °) of the rotary motion device 30 by driving the rotary motor 36.
  • a predetermined angle for example, 72 °
  • the piston shaft 34 rotate together, and the flow path selecting means 12 in which the rotary shaft 32 is hermetically inserted also rotates along the rotary shaft 32.
  • Step 1 flow path 146a selection step see FIG.
  • the connecting groove 124 formed in the head portion 120 of the flow path selecting means 12 also rotates according to the clockwise rotation of the flow path selecting means 12. Is rotated by. At this time, the connecting groove 124 is directed to position 1 of FIG. Therefore, the connecting groove 124 is selectively in communication with the flow path 146a and is also in communication with the inlet 166a of the syringe.
  • the piston shaft 32 is located close to the rear of the syringe body portion 164a installed in the inlet passage 15a communicating with the selected flow passage 146a, and the syringe barrel
  • the portion 164a is in a state where the axial direction coincides.
  • the rotating shaft 32 advances to an extra space in the trunk portion 126 of the flow path selecting means 12 in accordance with the additional forward movement of the rotating shaft 32 and the piston shaft 34 as described above. It is a state fully inserted in the longitudinal direction of 126.
  • the piston shaft 34 pushes the finish portion 174 of the piston 17, which is inserted into the rear surface of the syringe barrel portion 164a, to push the liquid M in the syringe through the inlet 166a.
  • the discharged liquid M is discharged through the flow passage 146a selected in step (B) and the connection groove 124 communicating with the selected flow passage 146a. ) Into the reaction vessel 20.
  • the liquid M introduced into the reaction vessel 20 through the flow path of the liquid denoted by "F" in FIG. 7 passes through the inlet 26a and the chip cover inlet 27a, and the chip cover 271 and the biochip. It penetrates into the microcavity between 28.
  • the liquid M is filled in the space 28b between the electrode forming portions 28a of the biochip 28 and is ready to perform a biological, biochemical or chemical reaction on the biochip 28.
  • the rotary shaft 32 and the piston shaft 34 retreat in the D 'direction by the horizontal movement in the reverse direction of the horizontal reciprocating motion device 40 driven by the linear motor 44. At this time, the retreat distance in the D 'direction is the same as the advance distance in the D direction.
  • the rotary shaft 32 and the piston shaft 34 are retracted, so that the piston shaft 34 exits from the syringe body portion 164a and is located close to the rear surface of the syringe body portion 164a, and the rotary shaft 32 is only partially.
  • the state inserted in the trunk portion 126 of this flow passage selecting means 12 is shown.
  • valve means 24 blocks the inlet 26a and the outlet 26b. That is, as described above, when the blocking shafts 52 and 56 connected to the vertical reciprocating motion device 50 descend and apply pressure to the protruding valves 24a and 24b made of an elastic material, the protruding valves 24a and 24b It is pressed downward by the applied pressure and closes the inlet 26a and the outlet 26b while contacting the inlet 26a and the outlet 26b.
  • the blocking shafts 52 and 56 connected to the vertical reciprocating motion device 50 rise in the E 'direction. At this time, the rising distance in the E 'direction is the same as the falling distance in the E direction. Then, the rotary shaft 32 and the clockwise rotation (indicated by "C" in the figure) of the predetermined angle (for example, 72 °) of the rotary motion device 30 by the drive of the additional rotary motor 36 and The flow path selection means 12 in which the piston shaft 34 rotates together and the rotary shaft 32 is hermetically inserted also rotates along the rotary shaft 32.
  • connection groove 124 faces the position 2 of FIG. 11. Therefore, the connection groove 124 is selectively in communication with the flow path 146b and also in communication with the inlet 166b of the syringe. Further, by the additional clockwise rotation as described above, the piston shaft 32 is positioned in close proximity to the rear of the syringe body portion 164b installed in the inflow passage 15b communicating with the selected flow passage 146b. The trunk portion 164b is in a state where the axial direction coincides.

Abstract

The device for selectively injecting a liquid into a reaction vessel, according to the present invention, comprises: a housing which is connected to the reaction vessel and which has a plurality of inflow passages, through which the liquid is injected, and a plurality of flow paths, which correspond to and communicate with the plurality of inflow passages, respectively; a connection passage which is connected to the plurality of flow paths and which is formed through the inner portion of the housing along the lengthwise direction from the central axis which is separated by a predetermined distance from the plurality of inflow passages; and a flow path selection means including a connection groove, which is incorporated inside the connection passage and connected to the housing in a rotatable manner, and which communicates with one of the plurality of flow paths selected in response to a rotation with respect to the central axis, and an outlet which communicates with the connection groove and the reaction vessel and which discharges the liquid flowing in through the selected flow path and the connection groove into the reaction vessel.

Description

반응 용기 내로 액체를 선택적으로 주입하는 장치 및 이를 포함하는 바이오 센서Apparatus for selectively injecting liquid into the reaction vessel and biosensor comprising the same
본 발명은 반응 용기 내로 액체를 선택적으로 주입하는 장치 및 이를 포함하는 바이오 센서에 관한 것으로서, 보다 상세하게는 생물학적, 생화학적 또는 화학적 반응이 수행되는 반응 용기에 반응대상이 되는 여러 액체를 선택적으로 그리고 순차적으로 주입하기 위한 장치 및 이를 포함하는 바이오 센서에 관한 것이다.The present invention relates to a device for selectively injecting a liquid into a reaction vessel and to a biosensor comprising the same, and more particularly, to selectively and several liquids to be reacted to a reaction vessel in which a biological, biochemical or chemical reaction is carried out. An apparatus for sequentially injecting and a biosensor comprising the same.
구체적으로, 본 발명은 DNA 분석장치와 같은 바이오 센서에 구비되는 바이오 칩이 내장된 반응용기에 여러 액체, 예를 들어 탈이온수, 반응용액 및 검사대상 액체 시료 등을 반응 순서에 따라 선택적으로 그리고 순차적으로 주입하기 위한 장치 및 이를 포함하는 바이오 센서에 관한 것이다.Specifically, the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped An apparatus for injecting and a biosensor comprising the same.
바이오 센서는 유전자 정보 및 단백질 정보를 대량으로 그리고 자동화하여 분석할 수 있거나, 생리활성물질의 존재여부 및 기능을 비교적 간단하고 신속하게 분석할 수 있는 장치이다. 이러한 바이오 센서는 유전자 및 단백질 연구분야, 의약분야, 농업, 식품, 환경 및 화학산업 등 다양한 분야에서 응용이 활발하게 이루어지고 있다. Biosensors are devices that can analyze gene information and protein information in large quantities and automatically, or can analyze the presence and function of bioactive substances relatively simply and quickly. Such biosensors are actively applied in various fields such as gene and protein research, medicine, agriculture, food, environment and chemical industry.
이러한 바이오 센서에는 검사대상 시료 내의 생리활성물질의 존재여부 및/반응여부를 체크하는 마이크로플루이딕스 칩(microfluidics chip), 소위 바이오 칩이 구비되는데, 검사대상물질(예를 들어, DNA, RNA, 펩타이드, 단백질 등)을 포함하는 액체 시료를 바이오 칩이 내장된 반응 용기로 흘려보내면서 바이오 칩에서의 각종 생리활성물질의 반응양상을 분석하는 장치이다. 이러한 바이오 센서는 반응 용기 내의 생리활성물질의 반응에 따른 전기적 특성의 변화를 바이오 칩 내에 설치된 전극이 감지하여 생리활성물질의 존재여부 및/또는 반응여부를 검출한다.Such biosensors include a microfluidics chip, a so-called biochip, which checks for the presence and / or reaction of a bioactive substance in a sample to be tested, and includes a substance to be tested (eg, DNA, RNA, peptide). It is a device for analyzing the reaction pattern of the various bioactive substances in the biochip while flowing a liquid sample containing a (), protein, etc.) to the reaction vessel containing the biochip. Such a biosensor detects a change in electrical characteristics according to a reaction of a bioactive substance in a reaction vessel and detects the presence and / or reaction of the bioactive substance by sensing an electrode installed in the biochip.
전술한 바와 같은 바이오 센서와 관련하여 새로운 기술의 개량이 이루어지고 있는데, 다른 기술분야와 마찬가지로 본 발명이 속하는 바이오 센서 분야에서도 끊임없는 기술의 개선이 요구되고 있다. 예를 들어, 바이오 칩이 내장된 반응 용기로 반응용액 및 검사대상 액체 시료 등을 반응순서에 따라 효율적으로 주입하는 기술의 개선도 요구되고 있다. The new technology is being improved in connection with the biosensor as described above, and in the biosensor field to which the present invention belongs, as in other technical fields, continuous improvement of the technology is required. For example, there is also a demand for improvement of a technique for efficiently injecting a reaction solution, a test target liquid sample, and the like into a reaction vessel having a biochip embedded therein according to a reaction sequence.
이와 관련하여, 대한민국 공개특허공보 제10-2011-0075448호는 상부기판과 하부기판 사이에 형성된 반응 공간에 액체 시료를 주입하기 위한 시료 유입구, 상기 시료 유입구를 통해 주입된 액체 시료가 충전되는 시료충전부 및 반응 종료 후 반응 용액을 배출하는 시료 배출구로 구성된 반응 챔버를 개시하고 있다. 또한, 대한민국 공개특허공보 제10-2012-0056442호에서는 생체 시료가 주입되는 시료 유입부, 시료 반응부, 시료 배출부, 시료 유입부와 시료 반응부를 연결하는 제1 미세유체채널 그리고 시료 반응부와 시료 배출부를 연결하는 제2 미세유체채널로 구성된 반응 챔버를 개시하고 있다.In this regard, Korean Patent Laid-Open Publication No. 10-2011-0075448 discloses a sample inlet for injecting a liquid sample into a reaction space formed between an upper substrate and a lower substrate, and a sample charging portion filled with a liquid sample injected through the sample inlet. And a sample outlet for discharging the reaction solution after completion of the reaction. In addition, Korean Patent Laid-Open No. 10-2012-0056442 discloses a sample inlet, a sample reaction part, a sample discharge part, a first microfluidic channel connecting a sample inlet part and a sample reaction part into which a biological sample is injected, and a sample reaction part. A reaction chamber comprising a second microfluidic channel connecting a sample outlet is disclosed.
그러나, 상기와 같은 종래기술들은 액체 시료를 미세 채널을 통해 바이오 칩이 내장된 반응 챔버로 주입하고 반응 종료 후에는 바이오 칩이 내장된 반응 챔버로부터 반응 용액을 미세 채널을 통해 배출하는 구성으로만 되어 있다. 따라서, 종래기술들은 다양한 반응용액 및 검사대상 액체 시료를 반응순서에 따라 바이오 칩이 내장된 반응 챔버로 주입할 필요가 있는 경우에는 반응 전후에 반응용액 및 액체 시료를 교환하여 수작업으로 반응챔버로 주입해야 하는 불편이 있어 반응용액 및 액체 시료를 반응순서에 따라 효율적으로 주입할 수 없는 한계가 있었다. However, the prior art as described above is only configured to inject a liquid sample into the reaction chamber containing the biochip through the microchannel and to discharge the reaction solution from the reaction chamber containing the biochip through the microchannel after completion of the reaction. have. Therefore, in the prior art, when it is necessary to inject various reaction solutions and the liquid sample to be tested into the reaction chamber in which the biochip is built according to the reaction sequence, the reaction solution and the liquid sample are exchanged before and after the reaction and manually injected into the reaction chamber. There was a inconvenience that the reaction solution and the liquid sample could not be efficiently injected in accordance with the reaction sequence.
특히, 본 출원인의 대한민국 공개특허공보 제10-2009-0101764호의 기술은 반응 전에는 반응 챔버 내에 유전상수가 큰 유체를 채워 넣는 과정, 반응시에는 반응 챔버에서 유전상수가 큰 유체를 제거하고 반응용액 및 검출대상시료를 채워넣는 과정, 그리고 반응 완료 후에는 반응용액을 제거하고 유전상수가 큰 유체를 다시 채워 넣은 과정의 수행이 반드시 필요하므로 반응 순서에 따라 탈이온수, 반응용액 및 검사대상이 되는 액체 시료를 효율적으로 주입할 수 있는 장치의 개발이 절실히 요구된다.In particular, the technique of the applicant's Republic of Korea Patent Publication No. 10-2009-0101764 is to fill the fluid with a large dielectric constant in the reaction chamber before the reaction, during the reaction to remove the fluid having a large dielectric constant in the reaction chamber and the reaction solution and The process of filling the sample to be detected and the process of removing the reaction solution and refilling the fluid having a high dielectric constant after the completion of the reaction must be performed. There is an urgent need for the development of a device capable of injecting efficiently.
따라서, 종래의 반응 용기 내로 반응 용액 및 액체 시료를 주입하는 방법과 바이오 센서는 개선되어야 할 문제점이 있었다.Therefore, there is a problem that the conventional method and the biosensor for injecting the reaction solution and liquid sample into the reaction vessel has to be improved.
따라서, 본 발명은 상기한 종래 바이오 센서, 구체적으로 반응 용액 및 액체시료를 주입하는 방법의 문제점을 해결하는데 그 목적이 있는 발명으로서, 생물학적, 생화학적 또는 화학적 반응이 수행되는 반응 용기에 반응대상이 되는 여러 액체를 선택적으로 그리고 순차적으로 주입하기 위한 장치 및 이를 포함하는 바이오 센서를 제공하는데 그 목적이 있다.Accordingly, the present invention is an object of the present invention to solve the problems of the conventional biosensor, specifically, the method of injecting the reaction solution and the liquid sample, the reaction target in the reaction vessel in which the biological, biochemical or chemical reaction is performed It is an object of the present invention to provide a device for selectively and sequentially injecting various liquids and a biosensor including the same.
구체적으로, 본 발명은 DNA 분석장치와 같은 바이오 센서에 구비되는 바이오 칩이 내장된 반응용기에 여러 액체, 예를 들어 탈이온수, 반응용액 및 검사대상 액체 시료 등을 반응 순서에 따라 선택적으로 그리고 순차적으로 주입하기 위한 장치 및 이를 포함하는 바이오 센서를 제공하는데 그 목적이 있다.Specifically, the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped An object of the present invention is to provide a device for injecting and a biosensor including the same.
상기 목적을 달성하기 위한 본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치는,An apparatus for selectively injecting a liquid into the reaction vessel of an embodiment of the present invention for achieving the above object,
액체가 주입되는 복수개의 유입통로와, 상기 복수개의 유입통로와 각각 대응하여 연통되는 복수개의 유동로가 형성되고, 상기 반응 용기에 결합되는 하우징과,A plurality of inflow passages through which liquid is injected, a plurality of flow passages corresponding to the plurality of inflow passages, respectively, and connected to the reaction vessel;
상기 복수개의 유입통로로부터 미리 결정된 거리 만큼 이격된 중심축에서 길이방향을 따라 상기 하우징 내부를 관통하여 형성되고 상기 복수개의 유동로와 연결되는 연결통로와,A connecting passage formed through the inside of the housing along a longitudinal direction in a central axis spaced apart from the plurality of inflow passages by a predetermined distance and connected to the plurality of flow passages;
상기 연결통로 내로 삽입 설치되어 상기 하우징과 회전가능하게 결합되고, 상기 중심축에 대한 회전에 따라 상기 복수개의 유동로 중 하나를 선택하여 연통되는 연결홈과, 상기 연결홈 및 상기 반응 용기와 연통되어 상기 선택된 하나의 유동로 및 상기 연결홈을 통해 유입된 액체를 상기 반응 용기 내로 배출하는 배출구가 형성된 유동로 선택수단을 포함한다. A connection groove inserted into the connection passage and rotatably coupled to the housing, the connection groove selecting and communicating with one of the plurality of flow paths in accordance with rotation about the central axis, and communicating with the connection groove and the reaction vessel. And a flow path selecting means having a discharge port for discharging the liquid introduced through the selected one flow path and the connection groove into the reaction vessel.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치는, 상기 복수개의 유입통로에 각각 삽입설치되고 액체가 수용된 복수개의 시린지를 더 포함할 수 있다. 상기 시린지 내의 액체는 시린지 후방에 설치된 피스톤의 전진에 따라 시린지 전방에 형성된 주입구를 통해 유동되며, 상기 주입구는 상기 하우징에 형성된 유동로와 연통된다. 또한, 상기 복수개의 유입통로는 상기 연결통로를 중심으로 방사상으로 형성될 수 있다. 예를 들어, 5개의 유입통로가 방사상으로 형성될 수 있으며, 각각의 유입통로는 인접하는 유입통로에 대해 72°의 각도를 형성할 수 있다. 그러나, 본 발명은 이에 제한되는 것이 아니며, 다양한 개수의 유입통로가 적용가능하며 그 각도 또한 변형이 가능함은 물론이다. The apparatus for selectively injecting liquid into the reaction vessel of an embodiment of the present invention may further include a plurality of syringes each inserted into the plurality of inflow passages and containing the liquid. The liquid in the syringe flows through an injection hole formed in front of the syringe as the piston moves forward, and the injection hole communicates with the flow path formed in the housing. In addition, the plurality of inflow passages may be formed radially around the connection passage. For example, five inflow passages may be formed radially, and each inflow passage may form an angle of 72 ° with respect to an adjacent inflow passage. However, the present invention is not limited thereto, and various numbers of inflow passages may be applicable, and the angle may also be modified.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치에 있어서, 상기 유동로 선택수단은 후방이 개방된 실린더 형태의 몸통부와, 상기 몸통부의 전방에 결합되면서 상기 연결홈이 주변부에 형성되고 상기 배출구가 선단에 형성된 헤드부를 포함한다.In the apparatus for selectively injecting liquid into the reaction vessel of an embodiment of the present invention, the flow path selection means is a cylindrical body portion of the rear open, the coupling groove is formed in the periphery while being coupled to the front of the body portion And the discharge port includes a head portion formed at the tip.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치는, 수평왕복운동장치와 회전운동장치를 더 포함하고, 상기 수평왕복운동장치와 상기 회전운동장치의 동작에 따라 상기 수평왕복운동장치와 상기 회전운동장치에 연결된 회전축 및 피스톤축이 함께 수평이동 및 회전 동작을 반복한다. The device for selectively injecting liquid into the reaction vessel of an embodiment of the present invention further comprises a horizontal reciprocating motion device and a rotary motion device, the horizontal reciprocating motion device according to the operation of the horizontal reciprocating motion device and the rotary motion device And the rotating shaft and the piston shaft connected to the rotary motion device repeats the horizontal movement and rotation operation.
상기 수평왕복운동장치의 수평이동에 의해 상기 회전축은 상기 유동로 선택수단의 몸통부의 개방된 후방에 삽입된 후 상기 회전운동장치의 회전에 의해 상기 회전축 및 이와 연동되는 상기 유동로 선택수단의 헤드부에 형성된 연결홈이 미리 결정된 각도 만큼 회전되어 상기 복수개의 유동로 중 하나를 선택함으로써 상기 연결홈과 상기 선택된 유동로가 연통된다. By the horizontal movement of the horizontal reciprocating motion device is inserted into the open rear of the body portion of the flow path selection means and the head portion of the flow path selection means that is interlocked with the rotation shaft by the rotation of the rotary motion device The connection groove formed in the connection groove is rotated by a predetermined angle to select one of the plurality of flow paths so that the connection groove and the selected flow path communicate with each other.
한편, 상기 미리 결정된 각도 만큼의 회전에 의해 상기 피스톤축은 상기 선택된 유동로와 연통되는 유입통로에 삽입 설치된 시린지에 위치하게 되고 상기 수평왕복운동장치의 추가적인 수평이동에 의해 상기 피스톤축은 상기 시린지의 피스톤을 미는 동작을 수행하여 상기 시린지 내의 액체를 상기 주입구를 통해 유동시키고 유동되는 액체는 상기 선택된 유동로 및 상기 연결홈을 통해 상기 유동로 선택수단의 배출구로부터 상기 반응 용기 내로 배출된다. Meanwhile, the piston shaft is positioned in a syringe inserted into an inflow passage communicating with the selected flow path by the rotation of the predetermined angle, and the piston shaft moves the piston of the syringe by an additional horizontal movement of the horizontal reciprocating device. The pushing operation is performed to flow the liquid in the syringe through the inlet, and the flowing liquid is discharged into the reaction vessel from the outlet of the flow path selecting means through the selected flow path and the connecting groove.
따라서, 본 발명은 상기와 같은 수평이동 및 회전 동작을 반복함에 따라 생물학적, 생화학적 또는 화학적 반응이 수행되는 반응 용기에 반응대상이 되는 여러 액체를 반응 순서에 따라 선택적으로 그리고 순차적으로 주입할 수 있게 되는 것이다. Accordingly, the present invention can selectively and sequentially inject various liquids to be reacted into a reaction vessel in which a biological, biochemical or chemical reaction is performed by repeating the horizontal movement and rotation operations as described above. Will be.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치에 있어서, 상기 복수개의 유동로는 상기 연결통로로부터 방사상으로 분지된 형태로 형성되는 것이 바람직하다. 이와 같이 방사상으로 분지된 복수개의 유동로는 상기 복수개의 유입통로에 각각 연통되어 각각의 유입통로로부터 유입된 액체가 흘러들어오도록 구성된다. 예를 들어, 5개의 유동로가 방사상으로 분지되어 형성될 수 있고, 각각의 유동로는 인접하는 유동로에 대해 72°의 각도를 형성할 수 있다. 그러나, 본 발명은 이에 제한되는 것이 아니며, 다양한 개수의 유동로가 적용가능하며 그 각도 또한 변형이 가능함은 물론이다. In the apparatus for selectively injecting liquid into the reaction vessel of an embodiment of the present invention, the plurality of flow passages are preferably formed in a radially branched form from the connecting passage. The plurality of radially branched flow passages are configured to communicate with each of the plurality of inflow passages so that the liquid introduced from each inflow passage flows in. For example, five flow paths can be formed radially branched, and each flow path can form an angle of 72 ° with respect to an adjacent flow path. However, the present invention is not limited thereto, and various numbers of flow paths are applicable, and the angle thereof may also be modified.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치에 있어서, 상기 하우징은 상기 반응 용기에 초음파 용접에 의해 접합되어 이들 사이의 기밀을 유지할 수 있다. 추가적으로, 상기 하우징과 상기 반응 용기 사이에는 액체가 유동하는 관통홀이 형성된 결합판이 삽입되어 설치될 수 있다. In the device for selectively injecting liquid into the reaction vessel of an embodiment of the present invention, the housing can be bonded to the reaction vessel by ultrasonic welding to maintain the airtight therebetween. In addition, a coupling plate having a through hole through which liquid flows may be inserted between the housing and the reaction vessel.
본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치에 있어서, 상기 반응 용기에는 액체가 유입되는 유입구와 액체가 유출되는 유출구가 형성되어 있으며, 상기 유입구와 상기 유출구를 개폐하는 밸브수단이 제공될 수 있다. 상기 밸브 수단은 상기 유입구와 상기 유출구에 대응되어 위치하고 탄성재질로 구성된 돌출형 밸브를 포함한다. 상기 돌출형 밸브는 수직왕복운동장치에 연결된 차단축이 하강하여 압력을 가하면 압력에 의해 눌려지면서 상기 유입구와 상기 유출구를 폐쇄하는 한편, 상기 차단축이 상승하여 압력이 해제되면 탄성 복원력에 의해 원래 위치로 복귀하여 상기 유입구와 상기 유출구를 개방하게 된다.In the device for selectively injecting liquid into the reaction vessel of an embodiment of the present invention, the reaction vessel is formed with an inlet for the liquid inlet and an outlet for the liquid outlet, the valve means for opening and closing the inlet and the outlet Can be provided. The valve means includes a protruding valve corresponding to the inlet and the outlet and formed of an elastic material. The protruding valve is pressed by pressure when the blocking shaft connected to the vertical reciprocating device descends to close the inlet and the outlet while being pressed by pressure, and when the blocking shaft is raised to release the pressure, the valve is in the original position by the elastic restoring force. Return to to open the inlet and the outlet.
또한, 본 발명의 바이오 센서는 전술한 바와 같은 반응 용기 내로 액체를 선택적으로 주입하는 장치를 구비하는 것을 특징으로 한다.In addition, the biosensor of the present invention is characterized by having a device for selectively injecting a liquid into the reaction vessel as described above.
상기한 바와 같은 구성을 갖는 본 발명에 따르면, 본 발명은 생물학적, 생화학적 또는 화학적 반응이 수행되는 반응 용기에 반응대상이 되는 여러 액체를 선택적으로 그리고 순차적으로 주입할 수 있다. 구체적으로, 본 발명은 DNA 분석장치와 같은 바이오 센서에 구비되는 바이오 칩이 내장된 반응용기에 여러 액체, 예를 들어 탈이온수, 반응용액 및 검사대상 액체 시료 등을 반응 순서에 따라 선택적으로 그리고 순차적으로 주입할 수 있다. According to the present invention having the above-described configuration, the present invention can selectively and sequentially inject several liquids to be reacted into a reaction vessel in which a biological, biochemical or chemical reaction is performed. Specifically, the present invention is to selectively and sequentially a plurality of liquids, for example, deionized water, reaction solution and the liquid sample to be tested in the reaction vessel in which the biochip embedded in the biosensor, such as DNA analysis device is equipped Can be injected by
따라서, 본 발명은 다양한 반응용액 및 검사대상 액체 시료를 반응순서에 따라 바이오 칩이 내장된 반응 챔버로 주입할 필요가 있는 경우, 반응 전후에 반응용액 및 액체 시료를 교환하여 수작업으로 반응 챔버로 주입해야 하는 불편을 제거하고 반응용액 및 액체 시료를 반응순서에 따라 효율적으로 주입할 수 있는 장점이 있다.Therefore, in the present invention, when it is necessary to inject various reaction solutions and the liquid sample to be tested into the reaction chamber in which the biochip is embedded according to the reaction sequence, the reaction solution and the liquid sample are exchanged before and after the reaction and manually injected into the reaction chamber. There is an advantage that can be efficiently injected in accordance with the reaction sequence to remove the inconvenience and must be in accordance with the reaction sequence.
도 1은 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치가 설치된 바이오 센서의 개략도이다.1 is a schematic diagram of a biosensor equipped with a device for selectively injecting liquid into a reaction vessel according to one embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치와, 반응 용기의 분해사시도이다.2 is an exploded perspective view of an apparatus for selectively injecting a liquid into a reaction vessel according to an embodiment of the present invention, and a reaction vessel.
도 3은 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치가 반응 용기와 결합된 결합단면도이다.3 is a cross-sectional view in which a device for selectively injecting a liquid into a reaction vessel according to an embodiment of the present invention is combined with the reaction vessel.
도 4 내지 도 10은 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치의 사용상태도이다.4 to 10 is a state diagram of the use of the device for selectively injecting liquid into the reaction vessel according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치를 도 2의 A 방향에서 투시한 도면으로서, 시린지와 유동로 선택수단이 삽입 설치된 상태에서 투시한 도면이다.11 is a view showing a device for selectively injecting a liquid into the reaction vessel according to an embodiment of the present invention in the direction A of FIG. 2, with a syringe and a flow path selecting means inserted therein.
도 12는 본 발명의 일실시예에 따른 반응 용기 내로 액체를 선택적으로 주입하는 장치를 도 2의 B 방향에서 투시한 도면으로서, 시린지와 유동로 선택수단이 설치되기 전 상태에서 투시한 도면이다.12 is a view showing a device for selectively injecting a liquid into the reaction vessel according to an embodiment of the present invention in the direction B of Figure 2, a perspective view before the syringe and the flow path selection means is installed.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하면 다음과 같다. 본 발명의 하기 실시예는 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예로부터 본 발명이 속하는 기술분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리범위에 속하는 것으로 해석된다. 본 발명에 인용된 참고문헌은 본 발명에 참고로서 통합된다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. The following examples of the present invention are not intended to limit or limit the scope of the present invention only to embody the present invention. From the detailed description and examples of the present invention, those skilled in the art to which the present invention pertains can easily be interpreted as belonging to the scope of the present invention. References cited in the present invention are incorporated herein by reference.
도 1에 도시된 바와 같이, 바이오 센서(100)는 본 발명의 반응 용기 내로 액체를 선택적으로 주입하는 장치(10)와, 본 발명의 장치(10)의 일측에 결합된 반응 용기(20)와, 회전운동장치(30)와, 수평왕복운동장치(40)를 주요 구성요소로서 포함하고 있다. 회전운동장치(30)는 회전모터(36)에 의해 구동되어 회전운동을 하고, 수평왕복운동장치(40)는 리니어모터(44)에 의해 구동되어 수평왕복이동(즉, 전진 이동 및 후진 이동)이 수평왕복운동 가이드(42)에 의해 안내된다. 이와 같은 수평왕복운동장치(40)와 회전운동장치(30)의 동작에 따라, 수평왕복운동장치(40) 및 회전운동장치(30)에 연계되어 연결된 회전축(32) 및 피스톤축(34)이 함께 수평이동 및 회전 동작을 반복함으로써, 후술하는 바와 같이 반응 용기(20)에 반응대상이 되는 여러 액체(M)를 반응 순서에 따라 선택적으로 그리고 순차적으로 주입할 수 있게 된다. As shown in FIG. 1, the biosensor 100 includes an apparatus 10 for selectively injecting a liquid into the reaction vessel of the present invention, and a reaction vessel 20 coupled to one side of the apparatus 10 of the present invention. The rotary motion device 30 and the horizontal reciprocating motion device 40 are included as main components. The rotary motion device 30 is driven by the rotary motor 36 to perform the rotary motion, and the horizontal reciprocating motion device 40 is driven by the linear motor 44 to perform horizontal reciprocating motion (ie, forward movement and backward movement). Guided by this horizontal reciprocating motion guide 42. According to the operation of the horizontal reciprocating motion device 40 and the rotary motion device 30 as described above, the rotary shaft 32 and the piston shaft 34 connected to the horizontal reciprocation motion device 40 and the rotary motion device 30 are connected. By repeating the horizontal movement and rotation operation together, various liquids M to be reacted to the reaction vessel 20 can be selectively and sequentially injected in the reaction order as will be described later.
한편, 이하에서는 바이오 센서(100)를 구성하는 당업계에 공지된 구성요소들에 대해서는 설명의 편의상 그 상세한 설명을 생략한다. 예를 들어, 회전모터(36) 및 회전운동장치(30)의 회전 방향, 회전 각도 등은 위치센서 및 리미트 센서와 같은 공지의 센서장치와 이와 연결된 제어부에 의해 제어가능하고 리니어모터(44)와 수평왕복운동장치(40)의 1차 전진 이동, 추가적인 전진 이동, 후진 이동, 수평이동 거리 등도 위치센서 및 리미트 센서와 같은 공지의 센서장치와 이와 연결된 제어부에 의해 제어가능한 것임을 본 발명이 속하는 기술분야의 당업자라면 용이하게 이해할 것이다.Meanwhile, hereinafter, detailed descriptions of components that are known in the art constituting the biosensor 100 will be omitted for convenience of description. For example, the rotation direction, the rotation angle, etc. of the rotary motor 36 and the rotary motion device 30 may be controlled by a known sensor device such as a position sensor and a limit sensor and a controller connected thereto, and the linear motor 44 may be connected with the linear motor 44. The first forward movement, additional forward movement, backward movement, horizontal movement distance, etc. of the horizontal reciprocating motion device 40 is also controllable by a known sensor device such as a position sensor and a limit sensor and a control unit connected thereto. Those skilled in the art will readily understand.
도 2, 도 3, 도 11 및 도 12에 도시된 바와 같이, 본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치(10)는 크게 반응 용기(20)의 일측에 결합되는 하우징(11)과, 길이방향을 따라 하우징(11) 내부를 관통하여 형성된 연결통로(14) 내로 삽입 설치되어 하우징(11)과 회전가능하게 결합되는 유동로 선택수단(12)으로 구성된다. 2, 3, 11 and 12, the apparatus 10 for selectively injecting liquid into the reaction vessel of one embodiment of the present invention is largely coupled to one side of the reaction vessel 20 ( 11) and a flow path selecting means 12 inserted into the connecting passage 14 formed through the housing 11 along the longitudinal direction and rotatably coupled to the housing 11.
상기 하우징(11)은 액체가 주입되는 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)와, 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)와 각각 대응하여 연통되는 복수개의 유동로(146a, 146b, 146c, 146d, 146e)를 구비하고 있다(도 11 및 도 12 참조). 또한, 상기 하우징(11) 내부를 관통하여 연결통로(14)가 형성되어 있는데, 연결통로(14)는 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)로부터 미리 결정된 거리 만큼 이격된 중심축에서 길이방향을 따라 하우징(11) 내부를 관통하여 형성되어 있고 복수개의 유동로(146a, 146b, 146c, 146d, 146e)와 연결되어 있다(도 2, 도 11 및 도 12 참조).The housing 11 includes a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e into which liquid is injected, and a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e, respectively. The flow paths 146a, 146b, 146c, 146d, and 146e are provided (refer FIG. 11 and FIG. 12). In addition, a connection passage 14 is formed through the inside of the housing 11, and the connection passage 14 is a center spaced apart from a plurality of inflow passages 15a, 15b, 15c, 15d, and 15e by a predetermined distance. It is formed through the inside of the housing 11 along the longitudinal direction in the axis and is connected to the plurality of flow paths 146a, 146b, 146c, 146d, 146e (see FIGS. 2, 11 and 12).
상기 유동로 선택수단(12)은 연결통로(14) 내로 삽입 설치되어 하우징(11)과 회전가능하게 결합된다. 유동로 선택수단(12)은 하우징(11)의 중심축에 대한 회전에 따라 복수개의 유동로(146a, 146b, 146c, 146d, 146e) 중 하나(예를 들어, 146a: 도 3 및 도 11 참조)와 선택적으로 연통되는 연결홈(124)과, 연결홈(124) 및 반응용기(20)와 연통되어 선택된 하나의 유동로(146a) 및 연결홈(124)을 통해 유입된 액체를 반응 용기(20) 내로 배출하는 배출구(122)가 형성되어 있다(도 3 참조). 또한, 유동로 선택수단(12)은 후방이 개방된 실린더 형태의 몸통부(126)와, 몸통부(126)의 전방에 결합된 헤드부(120)로 구성된다. 이때, 헤드부(120)의 주변부에는 연결홈(124)이 형성되고 선단에는 배출구(122)가 형성된다(도 2 참조). 추가로, 배출구(122)로부터 배출된 액체가 반응 용기(20)로 유입될 때 액체가 새는 것을 방지하기 위한 배출구 패킹 부재(128)가 배출구(122)와 반응 용기(20) 사이에 제공된다. The flow path selecting means 12 is inserted into the connection path 14 and rotatably coupled to the housing 11. Flow path selecting means 12 is one of a plurality of flow paths (146a, 146b, 146c, 146d, 146e) according to the rotation about the central axis of the housing 11 (see, for example, 146a: FIGS. 3 and 11). The liquid flowed through the connection groove 124 and the connection groove 124 and the connection groove 124 and the reaction vessel 20 and selectively flows through the selected flow path (146a) and the connection groove 124 to selectively communicate with the reaction vessel ( 20) an outlet 122 for discharging into the chamber is formed (see FIG. 3). In addition, the flow path selection means 12 is composed of a cylindrical body portion 126 of the rear open, and a head portion 120 coupled to the front of the body portion 126. At this time, the connection groove 124 is formed in the peripheral portion of the head 120 and the discharge port 122 is formed at the front end (see Fig. 2). In addition, an outlet packing member 128 is provided between the outlet 122 and the reaction vessel 20 to prevent the liquid from leaking when the liquid discharged from the outlet 122 enters the reaction vessel 20.
또한, 본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치(10)는 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)에 각각 삽입설치되고 액체가 수용된 복수개의 시린지(16)를 더 포함한다(도 2, 도 11 및 도 12 참조). 복수개의 시린지(16)는 몸통부(164a, 164b, 164c, 164d, 164e), 주입구(166a, 166b, 166c, 166d, 166e) 및 걸림턱(168a, 168b, 168c, 168d, 168e)으로 구성되며, 복수개의 시린지(16)가 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)에 각각 대응하여 삽입설치되면 각각의 시린지의 걸림턱(168a, 168b, 168c, 168d, 168e)은 각각의 유입통로(15a, 15b, 15c, 15d, 15e)의 단턱부에 걸려서 결합되어 시린지(16)가 하우징(11)으로부터 이탈되는 것을 방지하게 된다(도 2 및 도 3 참조). 또한, 주입구(166a, 166b, 166c, 166d, 166e)와 이에 대응하는 유동로(146a, 146b, 146c, 146d, 146e) 사이에 패킹 부재(162a, 162b, 162c, 162d, 162e)가 삽입 설치되어 주입구로부터 유출되어 유동로로 유입되는 액체가 새는 것을 확실하게 방지할 수 있다. In addition, the device 10 for selectively injecting the liquid into the reaction vessel of one embodiment of the present invention is a plurality of syringes 16 are respectively inserted into the plurality of inflow passages (15a, 15b, 15c, 15d, 15e) and accommodated in the liquid ) (See FIGS. 2, 11 and 12). The plurality of syringes 16 is composed of a body portion (164a, 164b, 164c, 164d, 164e), injection holes (166a, 166b, 166c, 166d, 166e) and the locking jaw (168a, 168b, 168c, 168d, 168e) When the plurality of syringes 16 are inserted and installed corresponding to the plurality of inflow passages 15a, 15b, 15c, 15d, and 15e, respectively, the locking jaws 168a, 168b, 168c, 168d, and 168e of each syringe Engaged in the stepped portion of the inflow passage (15a, 15b, 15c, 15d, 15e) to prevent the syringe 16 from being separated from the housing 11 (see Figs. 2 and 3). In addition, packing members 162a, 162b, 162c, 162d, and 162e are inserted between the injection holes 166a, 166b, 166c, 166d, and 166e and the corresponding flow paths 146a, 146b, 146c, 146d, and 146e. It is possible to reliably prevent leakage of liquid flowing out of the inlet and flowing into the flow path.
각각의 시린지(16) 내의 액체는 각각의 시린지 후방에 설치된 각각의 피스톤(17)의 전진에 따라 각각의 시린지 전방에 형성된 각각의 주입구(166a, 166b, 166c, 166d, 166e)를 통해 유동되며, 각각의 주입구(166a, 166b, 166c, 166d, 166e)는 하우징(11)에 형성된 각각의 대응하는 유동로(146a, 146b, 146c, 146d, 146e)와 연통된다(도 11 참조). 피스톤(17)은 시린지(16) 내부에 기밀하게 삽입되어 왕복운동을 하게 되는데, 시린지(16) 내부면에 의해 안내되며 이동하게 되는 피스톤 몸체(172)와, 피스톤 몸체(172) 내에 기밀하게 삽입결합되는 마감부(174)로 구성된다(도 2 및 도 3 참조). 피스톤(17)의 마감부(174)에 후술하는 피스톤축(34)이 접촉하여 밀게 됨으로써 피스톤(17)은 전진이동하게 된다. The liquid in each syringe 16 flows through each inlet 166a, 166b, 166c, 166d, 166e formed in front of each syringe in accordance with the advancement of each piston 17 installed behind each syringe, Each inlet 166a, 166b, 166c, 166d, 166e is in communication with each corresponding flow path 146a, 146b, 146c, 146d, 146e formed in the housing 11 (see FIG. 11). The piston 17 is hermetically inserted into the syringe 16 to reciprocate. The piston body 172 is guided and moved by the inner surface of the syringe 16 and is hermetically inserted into the piston body 172. Consisting of a finish 174 to be joined (see FIGS. 2 and 3). The piston shaft 34, which will be described later, comes into contact with the finishing portion 174 of the piston 17 so that the piston 17 moves forward.
한편, 복수개의 유입통로(15a, 15b, 15c, 15d, 15e)는 연결통로(14)를 중심으로 방사상으로 형성될 수 있으며, 바람직하게는 동심원 상에 형성될 수 있다. 예를 들어, 도 12에 도시된 바와 같이 5개의 유입통로(15a, 15b, 15c, 15d, 15e)가 방사상으로 형성될 수 있으며, 각각의 유입통로는 인접하는 유입통로에 대해 72°의 각도를 형성할 수 있다. 그러나, 본 발명은 이에 제한되는 것이 아니며, 다양한 개수의 유입통로가 적용가능하며 그 각도 또한 변형이 가능함은 물론이다. On the other hand, the plurality of inflow passage (15a, 15b, 15c, 15d, 15e) may be formed radially around the connection passage 14, preferably may be formed on a concentric circle. For example, as illustrated in FIG. 12, five inflow passages 15a, 15b, 15c, 15d, and 15e may be formed radially, and each inflow passage may have an angle of 72 ° with respect to an adjacent inflow passage. Can be formed. However, the present invention is not limited thereto, and various numbers of inflow passages may be applicable, and the angle may also be modified.
또한, 복수개의 유동로(146a, 146b, 146c, 146d, 146e) 역시 연결통로(14)로부터 방사상으로 분지된 형태로 형성되는 것이 바람직하다. 이와 같이 방사상으로 분지된 각각의 유동로(146a, 146b, 146c, 146d, 146e)는 각각의 대응하는 유입통로(15a, 15b, 15c, 15d, 15e)에 연통되어 각각의 유입통로(15a, 15b, 15c, 15d, 15e)로부터 유입된 액체가 흘러들어오도록 구성된다(도 11 및 도 12 참조). 예를 들어, 도 11에 도시된 바와 같이, 5개의 유동로(146a, 146b, 146c, 146d, 146e)가 방사상으로 분지되어 형성될 수 있고, 각각의 유동로는 인접하는 유동로에 대해 72°의 각도를 형성할 수 있다. 그러나, 본 발명은 이에 제한되는 것이 아니며, 다양한 개수의 유동로가 적용가능하며 그 각도 또한 변형이 가능함은 물론이다. In addition, the plurality of flow paths (146a, 146b, 146c, 146d, 146e) is also preferably formed in a radially branched form from the connecting passage (14). Each of these radially branched flow paths 146a, 146b, 146c, 146d, 146e is in communication with each corresponding inflow path 15a, 15b, 15c, 15d, 15e to each inflow path 15a, 15b. , 15c, 15d, 15e are configured to flow in (see FIGS. 11 and 12). For example, as shown in FIG. 11, five flow paths 146a, 146b, 146c, 146d, 146e can be formed radially branched, with each flow path being 72 ° relative to an adjacent flow path. It can form the angle of. However, the present invention is not limited thereto, and various numbers of flow paths are applicable, and the angle thereof may also be modified.
도 2 및 도 3에 도시된 바와 같이, 하우징(11)은 반응 용기(20)의 일측에 초음파 용접에 의해 접합되어 이들 사이의 기밀을 유지할 수 있다. 추가적으로, 하우징(11)과 반응 용기(20) 사이에는 관통홀(252)이 형성된 결합판(25)이 삽입되어 설치됨으로써 하우징(11)과 반응 용기(20)의 접합을 용이하게 할 수 있다. As shown in Figures 2 and 3, the housing 11 can be bonded to one side of the reaction vessel 20 by ultrasonic welding to maintain the airtight therebetween. In addition, the coupling plate 25 having the through hole 252 is inserted and installed between the housing 11 and the reaction vessel 20 to facilitate the bonding of the housing 11 and the reaction vessel 20.
도 1에 도시된 바와 같이, 회전운동장치(30)는 회전모터(36)에 의해 구동되어 회전운동을 하고, 수평왕복운동장치(40)는 리니어모터(44)에 의해 구동되어 수평왕복이동(즉, 전진 이동 및 후진 이동)이 수평왕복운동 가이드(42)에 의해 안내된다. 이와 같은 수평왕복운동장치(40)와 회전운동장치(30)의 동작에 따라, 수평왕복운동장치(40) 및 회전운동장치(30)에 연계되어 연결된 회전축(32) 및 피스톤축(34)이 함께 수평이동 및 회전 동작을 반복하게 된다.As shown in FIG. 1, the rotary motion device 30 is driven by the rotary motor 36 to perform the rotary motion, and the horizontal reciprocating motion device 40 is driven by the linear motor 44 to perform the horizontal reciprocating motion ( That is, forward movement and backward movement) are guided by the horizontal reciprocating motion guide 42. According to the operation of the horizontal reciprocating motion device 40 and the rotary motion device 30 as described above, the rotary shaft 32 and the piston shaft 34 connected to the horizontal reciprocation motion device 40 and the rotary motion device 30 are connected. The horizontal movement and rotation movements are repeated together.
구체적으로, 리니어모터(44)의 구동에 의한 수평왕복운동장치(40)의 수평이동에 의해 회전축(32)이 유동로 선택수단(12)의 몸통부(126)의 개방된 후방에 삽입된 후, 회전모터(36)의 구동에 의한 회전운동장치(30)의 미리 결정된 각도 만큼의 회전에 의해 유동로 선택수단(12)의 헤드부(120)에 형성된 연결홈(124)이 미리 결정된 각도(예를 들어, 72°) 만큼 회전되어 복수개의 유동로(146a, 146b, 146c, 146d, 146e) 중 하나(예를 들어, 146a)를 선택하여 연결홈(124)과 선택된 유동로(146a)가 연통된다. 이와 같이 연결홈과 하나의 선택된 유동로가 연통된 상태가 도 11에 도시되어 있다. 도 11의 ①번 위치에서 연결홈(124)과 선택된 유동로(146a)가 연통되어 있음을 알 수 있다. 한편, 전술한 바와 같은 회전운동장치(30)의 미리 결정된 각도(예를 들어, 72°) 만큼의 회전에 의해 회전운동장치(30)에 연결된 피스톤축(32)은 선택된 유동로(146a)와 연통되는 유입통로(15a)에 삽입 설치된 시린지 몸통부(164a)의 후면에 위치하게 되고 리니어모터(44)의 구동에 의한 수평왕복운동장치(40)의 추가적인 수평이동에 의해 피스톤축(34)은 시린지 몸통부(164a)의 후면에 삽입되어 위치하는 피스톤(17)의 마감부(174)를 미는 동작을 수행하여 시린지 내의 액체를 주입구(166a)를 통해 유출시키고 유출된 액체는 선택된 유동로(146a) 및 연결홈(124)을 통해 유동로 선택수단(12)의 배출구(122)로부터 반응 용기(20) 내로 배출된다. 이와 같은 방식으로 유동되는 액체의 유동 경로가 도 3에서 기호 "F"로서 표시되어 있다.Specifically, after the rotary shaft 32 is inserted into the open rear of the trunk portion 126 of the flow path selecting means 12 by the horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44. The connection groove 124 formed in the head portion 120 of the flow path selecting means 12 is rotated by a predetermined angle of the rotary motion device 30 driven by the rotation motor 36. For example, the connection groove 124 and the selected flow path 146a may be rotated by 72 ° to select one of the plurality of flow paths 146a, 146b, 146c, 146d, and 146e, for example, 146a. Communicating. As such, a state in which the connecting groove and one selected flow path communicate with each other is illustrated in FIG. 11. It can be seen that the connection groove 124 and the selected flow path 146a communicate with each other at position ① of FIG. 11. On the other hand, the piston shaft 32 connected to the rotary motion device 30 by a predetermined angle (for example, 72 °) of the rotary motion device 30 as described above is connected to the selected flow path (146a) and The piston shaft 34 is positioned on the rear side of the syringe body portion 164a inserted into the inflow passage 15a communicating therewith and by the horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44. Pushing the finish portion 174 of the piston 17, which is inserted into the back of the syringe barrel 164a, flows the liquid in the syringe through the inlet 166a, and the spilled liquid is selected flow path 146a. And into the reaction vessel 20 from the outlet 122 of the flow path selection means 12 through the coupling groove 124. The flow path of the liquid flowing in this way is indicated by the symbol "F" in FIG. 3.
따라서, 본 발명은 전술한 바와 같은 수평이동 및 회전 동작을 반복함에 따라 반응 용기(20)에 반응대상이 되는 여러 액체를 반응 순서에 따라 선택적으로 그리고 순차적으로 주입할 수 있다. 예를 들어, 회전모터(36)의 구동에 의해 회전운동장치(30)가 시계방향으로 회전하게 되면, 도 11의 ①→②→③→④→⑤의 순서로 회전축(32)과 이에 연동된 유동로 선택수단(12)이 회전하게 되어 연결홈(124)이 유동로를 순차적으로 선택하게 되고(146a→146b→146c→146d→146e), 이때 피스톤축(34)도 연동되어 시계방향으로 회전한 후 수평왕복이동에 의해 반응대상이 되는 여러 액체를 순차적으로 주입할 수 있게 된다. 반면에, 회전모터(36)의 구동에 의해 회전운동장치(30)가 반시계방향으로 회전하게 되면, 도 11의 ①→⑤→④→③→②의 순서로 회전축(32)과 이에 연동된 유동로 선택수단(12)이 회전하게 되어 연결홈(124)이 유동로를 역순으로 선택하게 되고(146a→146e→146d→146c→146b), 이때 피스톤축(34)도 연동되어 반시계 방향으로 회전한 후 수평왕복이동에 의해 반응대상이 되는 여러 액체를 역순으로 주입할 수 있게 된다. Accordingly, the present invention can selectively and sequentially inject various liquids to be reacted into the reaction vessel 20 in the reaction order as the horizontal movement and rotation operations as described above are repeated. For example, when the rotary motion device 30 is rotated in the clockwise direction by the driving of the rotary motor 36, the rotating shaft 32 and the linked shaft 32 in the order of ① → ② → ③ → ④ → ⑤ of FIG. The flow path selecting means 12 is rotated so that the connecting groove 124 sequentially selects the flow path (146a → 146b → 146c → 146d → 146e), and the piston shaft 34 is also interlocked and rotates clockwise. After that, it is possible to sequentially inject several liquids to be reacted by horizontal reciprocating movement. On the other hand, when the rotary motion device 30 is rotated in the counterclockwise direction by the drive of the rotary motor 36, the rotating shaft 32 and the interlocking movement with the rotary shaft 32 in the order of ① → ⑤ → ④ → ③ → ② of FIG. The flow path selecting means 12 is rotated so that the connecting groove 124 selects the flow path in the reverse order (146a → 146e → 146d → 146c → 146b), and the piston shaft 34 is also interlocked in the counterclockwise direction. After rotation, the horizontal reciprocating movement allows the various liquids to be reacted to be injected in the reverse order.
다음으로, 도 2에 도시된 바와 같이, 액체가 주입되는 반응 용기(20)는 크게 상부케이스(22), 밸브수단(24), 케이스 몸체(26) 및 하부케이스(21)가 결합되어 구성된다. 케이스 몸체(26)와 하부케이스(21)의 주변부 사이에서 칩덮개 지지판(272)이 끼워져 결합되고, 칩덮개 지지판(272)으로부터 아래로 단차지게 형성된 칩덮개(271)는 바이오 칩(28)과 미세한 간격(S)을 두고 바이오 칩(28) 위에 위치한다(도 4 참조).Next, as shown in FIG. 2, the reaction vessel 20 into which the liquid is injected is largely configured by combining the upper case 22, the valve means 24, the case body 26, and the lower case 21. . The chip cover support plate 272 is inserted and coupled between the case body 26 and the periphery of the lower case 21, and the chip cover 271 formed to be stepped downward from the chip cover support plate 272 is provided with a biochip 28. It is positioned on the biochip 28 at a minute spacing S (see FIG. 4).
반응 용기(20)의 케이스 몸체(26)에는 액체가 유입되는 유입구(26a)와 액체가 유출되는 유출구(26b)가 형성되어 있으며 이에 대응하여 칩덮개(271)에도 칩덮개 유입구(27a)와 칩덮개 유출구(27b)가 형성되어 있다. 반응 용기(20) 내로 유입된 액체는 유입구(26a) 및 칩덮개 유입구(27a)를 통과하여 칩덮개(271)와 바이오 칩(28) 사이의 미세 공간에 스며들게 된다. The case body 26 of the reaction vessel 20 has an inlet 26a through which liquid flows in and an outlet 26b through which liquid flows out. Correspondingly, a chip cover inlet 27a and a chip also exist in the chip cover 271. A lid outlet 27b is formed. The liquid introduced into the reaction vessel 20 passes through the inlet 26a and the chip cover inlet 27a to penetrate into the microcavity between the chip cover 271 and the biochip 28.
액체가 바이오 칩(28) 상으로 유입되면 바이오 칩(28) 상에서의 생물학적, 생화학적 또는 화학적 반응이 안정적으로 수행되도록 유입구(26a)와 유출구(26b)를 차단할 필요가 있다. 이를 위해 유입구(26a)와 유출구(26b)를 개폐하는 밸브수단(24)이 케이스 몸체(26) 상에 위치하여 제공된다. 밸브수단(24)은 유입구(26a)와 유출구(26b)에 대응되어 위치하고 탄성재질, 예를 들어 실리콘 재질로 구성된 돌출형 밸브(24a, 24b)를 포함한다. 돌출형 밸브(24a, 24b)는 수직왕복운동장치(50)에 연결된 차단축(52, 56)이 하강하여 압력을 가하면 압력에 의해 눌려지면서 유입구(26a)와 유출구(26b)를 폐쇄하는 한편, 차단축(52, 56)이 상승하여 압력이 해제되면 탄성 복원력에 의해 원래 위치로 복귀하여 유입구(26a)와 유출구(26b)를 개방하게 된다(도 2 및 도 4-도 10 참조).When liquid enters the biochip 28, it is necessary to block the inlet 26a and the outlet 26b so that biological, biochemical or chemical reactions on the biochip 28 can be stably performed. For this purpose, a valve means 24 for opening and closing the inlet 26a and the outlet 26b is provided on the case body 26. The valve means 24 includes protruding valves 24a and 24b which correspond to the inlet 26a and the outlet 26b and are made of an elastic material, for example, silicon. The protruding valves 24a and 24b close the inlet 26a and the outlet 26b while being pressed by the pressure when the blocking shafts 52 and 56 connected to the vertical reciprocating device 50 descend and apply pressure. When the blocking shafts 52 and 56 rise and the pressure is released, the inlet 26a and the outlet 26b are opened by the elastic restoring force (see FIGS. 2 and 4 to 10).
한편, 본 발명의 반응 용기 내로 액체를 선택적으로 주입하는 장치(10)를 구성하는 부품들은 합성수지로 구성되는 것이 바람직하며, 예를 들어 폴리에틸렌 수지로 구성될 수 있다. 그러나, 본 발명은 이에 제한되는 것이 아니며 당업계에 알려진 다양한 재질이 적용가능함은 물론이다.On the other hand, the components constituting the device 10 for selectively injecting liquid into the reaction vessel of the present invention is preferably composed of a synthetic resin, for example, may be composed of polyethylene resin. However, the present invention is not limited thereto, and various materials known in the art may be applied.
상기한 바와 같이 구성된 본 발명의 일실시예의 반응 용기 내로 액체를 선택적으로 주입하는 장치(10)의 작동을 도 4 내지 도 10을 참조하여 설명하면 다음과 같다. 도 5 내지 도 10에서는 도면부호의 반복기재를 피하고 도시의 편의상 일부 도면부호의 부기를 생략하였다. 도 5 내지 도 10에서 생략된 도면부호는 도 4를 참조한다.The operation of the apparatus 10 for selectively injecting liquid into the reaction vessel of the embodiment of the present invention configured as described above will be described with reference to FIGS. 4 to 10. In FIG. 5 to FIG. 10, a repetitive description of reference numerals is omitted, and some of the reference numerals are omitted for convenience of illustration. Reference numerals omitted in FIGS. 5 to 10 refer to FIG. 4.
(A) 유동로 선택 전 준비단계: 도 4 및 도 5 참조(A) Preparation step before selecting the flow path: see FIGS. 4 and 5
도 4에서 회전축(32) 및 피스톤축(34)은 수평이동 및 회전 동작이 수행되기 바로 직전의 상태이며, 수직왕복운동장치(50)는 짧은 수직 이동 거리의 상하 운동을 위해 반응 용기(20)에 근접 이동하여 대기하고 있는 상태이다. 수직왕복운동장치(50)의 완충 스프링(54, 58)은 수직왕복운동장치(50)에 가해지는 진동 내지는 미세한 충격을 흡수하여 원하지 않는 차단축(52, 56)의 상하이동을 방지한다. 이때, 유동로 선택수단(12)의 헤드부(120)에 형성된 연결홈(124)은 도 11의 ⑤번 위치를 향하고 있다. 따라서, 유동로(146a)는 연결홈(124)과 연통되어 있지 않고 유동로 선택수단(12)의 헤드부(120)에 의해 차단되어 있는 상태이다. In FIG. 4, the rotation shaft 32 and the piston shaft 34 are just before the horizontal movement and rotation operation are performed, and the vertical reciprocating motion device 50 is a reaction vessel 20 for vertical movement of a short vertical movement distance. It is moving near and waiting. The shock absorbing springs 54 and 58 of the vertical reciprocating device 50 absorb vibrations or minute shocks applied to the vertical reciprocating device 50 to prevent unwanted movement of the blocking shafts 52 and 56. At this time, the connecting groove 124 formed in the head portion 120 of the flow path selecting means 12 is directed to the position ⑤ of FIG. Therefore, the flow path 146a is not in communication with the connecting groove 124 and is blocked by the head portion 120 of the flow path selecting means 12.
도 5에서 회전축(32)은 리니어모터(44)의 구동에 의한 수평왕복운동장치(40)의 수평이동에 의해 유동로 선택수단(12)의 몸통부(126)의 개방된 후방에 기밀하게 삽입된 상태이고, 피스톤축(34)은 수평왕복운동장치(40)의 수평이동에 연동되어 전진 이동한 상태이지만, 유입통로(15e)에 삽입 설치된 시린지 몸통부(164e)의 후면에 근접하여 위치하고 있어(도 11의 ⑤번 위치 해당) 유입통로(15a)에 삽입 설치된 시린지 몸통부(164a)와는 축방향이 불일치한 상태이다. In FIG. 5, the rotation shaft 32 is hermetically inserted into the open rear of the trunk portion 126 of the flow path selecting means 12 by the horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44. And the piston shaft 34 moves forward in conjunction with the horizontal movement of the horizontal reciprocating motion device 40, but is located close to the rear of the syringe barrel portion 164e installed in the inflow passage 15e. (Corresponding to position ⑤ in FIG. 11) The axial direction is inconsistent with the syringe body portion 164a installed in the inflow passage 15a.
다음 동작으로, 회전모터(36)의 구동에 의한 회전운동장치(30)의 미리 결정된 각도(예를 들어, 72°)의 시계방향 회전(도면에서 "C"로 표시)에 의해 회전축(32)과 피스톤축(34)이 함께 회전하고 회전축(32)이 기밀하게 삽입된 유동로 선택수단(12)도 회전축(32)을 따라 회전한다.In the next operation, the rotary shaft 32 is rotated by a clockwise rotation (indicated by "C" in the drawing) of a predetermined angle (for example, 72 °) of the rotary motion device 30 by driving the rotary motor 36. And the piston shaft 34 rotate together, and the flow path selecting means 12 in which the rotary shaft 32 is hermetically inserted also rotates along the rotary shaft 32.
(B) ①번 위치 유동로(146a) 선택 단계: 도 6 참조(B) Stepflow path 146a selection step: see FIG.
전술한 바와 같이, 유동로 선택수단(12)의 시계방향 회전에 따라 유동로 선택수단(12)의 헤드부(120)에 형성된 연결홈(124)도 미리 결정된 각도(예를 들어, 72°) 만큼 회전된다. 이때, 연결홈(124)은 도 11의 ①번 위치를 향하게 된다. 따라서, 연결홈(124)은 유동로(146a)와 선택적으로 연통되고 시린지의 주입구(166a)와도 연통된 상태가 된다. As described above, the connecting groove 124 formed in the head portion 120 of the flow path selecting means 12 also rotates according to the clockwise rotation of the flow path selecting means 12. Is rotated by. At this time, the connecting groove 124 is directed to position ① of FIG. Therefore, the connecting groove 124 is selectively in communication with the flow path 146a and is also in communication with the inlet 166a of the syringe.
그리고, 전술한 바와 같은 시계방향 회전에 의해 피스톤축(32)은 선택된 유동로(146a)와 연통되는 유입통로(15a)에 삽입 설치된 시린지 몸통부(164a)의 후면에 근접하여 위치하게 되고 시린지 몸통부(164a)와는 축방향이 일치한 상태가 된다. And, by the clockwise rotation as described above, the piston shaft 32 is located close to the rear of the syringe body portion 164a installed in the inlet passage 15a communicating with the selected flow passage 146a, and the syringe barrel The portion 164a is in a state where the axial direction coincides.
다음 동작으로, 리니어모터(44)의 구동에 의한 수평왕복운동장치(40)의 추가적인 수평이동에 의해 회전축(32)과 피스톤축(34)은 D 방향으로 추가로 전진한다.In the next operation, the rotary shaft 32 and the piston shaft 34 are further advanced in the D direction by the additional horizontal movement of the horizontal reciprocating motion device 40 driven by the linear motor 44.
(C) 반응 용기 내로 액체 주입 단계: 도 7 및 도 8 참조(C) liquid injection into the reaction vessel: see FIGS. 7 and 8
도 7에서 회전축(32)은 전술한 바와 같은 회전축(32)과 피스톤축(34)의 추가적인 전진 이동에 따라 유동로 선택수단(12)의 몸통부(126) 내의 여분의 공간까지 전진하여 몸통부(126)의 길이방향으로 완전히 삽입된 상태가 된다. 또한, 피스톤축(34)은 시린지 몸통부(164a)의 후면에 삽입되어 위치하는 피스톤(17)의 마감부(174)를 미는 동작을 수행하여 시린지 내의 액체(M)를 주입구(166a)를 통해 유출시키고, 유출된 액체(M)는 (B) 단계에서 선택된 유동로(146a) 및 이러한 선택된 유동로(146a)와 연통되는 연결홈(124)을 통해 유동로 선택수단(12)의 배출구(122)로부터 반응 용기(20) 내로 유입된다. In FIG. 7, the rotating shaft 32 advances to an extra space in the trunk portion 126 of the flow path selecting means 12 in accordance with the additional forward movement of the rotating shaft 32 and the piston shaft 34 as described above. It is a state fully inserted in the longitudinal direction of 126. In addition, the piston shaft 34 pushes the finish portion 174 of the piston 17, which is inserted into the rear surface of the syringe barrel portion 164a, to push the liquid M in the syringe through the inlet 166a. The discharged liquid M is discharged through the flow passage 146a selected in step (B) and the connection groove 124 communicating with the selected flow passage 146a. ) Into the reaction vessel 20.
도 7의 "F"로 표시되는 액체의 유동 경로를 통해 반응 용기(20) 내로 유입된 액체(M)는 유입구(26a) 및 칩덮개 유입구(27a)를 통과하여 칩덮개(271)와 바이오 칩(28) 사이의 미세 공간에 스며들게 된다. 액체(M)는 바이오 칩(28)의 전극 형성부(28a) 사이의 공간(28b)에 채워지고 바이오 칩(28) 상에서의 생물학적, 생화학적 또는 화학적 반응을 수행할 준비가 된다. The liquid M introduced into the reaction vessel 20 through the flow path of the liquid denoted by "F" in FIG. 7 passes through the inlet 26a and the chip cover inlet 27a, and the chip cover 271 and the biochip. It penetrates into the microcavity between 28. The liquid M is filled in the space 28b between the electrode forming portions 28a of the biochip 28 and is ready to perform a biological, biochemical or chemical reaction on the biochip 28.
그리고, 리니어모터(44)의 구동에 의한 수평왕복운동장치(40)의 역방향의 수평이동에 의해 회전축(32)과 피스톤축(34)은 D' 방향으로 후퇴한다. 이때, D' 방향의 후퇴 거리는 D 방향의 전진 거리와 동일하다. 도 8에는 회전축(32)과 피스톤축(34)이 후퇴함으로써 피스톤축(34)은 시린지 몸통부(164a)로부터 빠져 나와 시린지 몸통부(164a)의 후면에 근접하여 위치하고, 회전축(32)은 일부만이 유동로 선택수단(12)의 몸통부(126) 내에 삽입된 상태가 도시되어 있다.Then, the rotary shaft 32 and the piston shaft 34 retreat in the D 'direction by the horizontal movement in the reverse direction of the horizontal reciprocating motion device 40 driven by the linear motor 44. At this time, the retreat distance in the D 'direction is the same as the advance distance in the D direction. In FIG. 8, the rotary shaft 32 and the piston shaft 34 are retracted, so that the piston shaft 34 exits from the syringe body portion 164a and is located close to the rear surface of the syringe body portion 164a, and the rotary shaft 32 is only partially. The state inserted in the trunk portion 126 of this flow passage selecting means 12 is shown.
다음 동작으로, 수직왕복운동장치(50)에 연결된 차단축(52, 56)이 E 방향으로 하강한다. In the next operation, the blocking shafts 52 and 56 connected to the vertical reciprocating motion device 50 descend in the E direction.
(D) 반응 용기의 유입구 및 유출구 차단 단계: 도 9 참조(D) Inlet and outlet blocking steps of the reaction vessel: see FIG. 9
도 9에서 밸브수단(24)은 유입구(26a)와 유출구(26b)를 차단한 상태이다. 즉, 전술한 바와 같이 수직왕복운동장치(50)에 연결된 차단축(52, 56)이 하강하여 탄성재질로 구성된 돌출형 밸브(24a, 24b)에 압력을 가하면 돌출형 밸브(24a, 24b)는 가해진 압력에 의해 하방으로 눌려지고 유입구(26a)와 유출구(26b)와 접촉하면서 유입구(26a)와 유출구(26b)를 폐쇄하게 된다.In FIG. 9, the valve means 24 blocks the inlet 26a and the outlet 26b. That is, as described above, when the blocking shafts 52 and 56 connected to the vertical reciprocating motion device 50 descend and apply pressure to the protruding valves 24a and 24b made of an elastic material, the protruding valves 24a and 24b It is pressed downward by the applied pressure and closes the inlet 26a and the outlet 26b while contacting the inlet 26a and the outlet 26b.
반응 용기(20)의 유입구(26a)와 유출구(26b)가 폐쇄됨으로써 바이오 칩(28) 상으로 유입된 액체(M) 외에는 다른 이물질이 반응 용기(20) 내로 유입될 수 없고, 이에 따라 바이오 칩(28) 상에서의 생물학적, 생화학적 또는 화학적 반응이 안정적으로 수행될 수 있다. As the inlet 26a and the outlet 26b of the reaction vessel 20 are closed, foreign matter other than the liquid M introduced onto the biochip 28 cannot be introduced into the reaction vessel 20, so that the biochip Biological, biochemical or chemical reactions on (28) can be carried out stably.
반응 용기(20) 내의 1차 반응이 완료되면, 다음 동작으로서 수직왕복운동장치(50)에 연결된 차단축(52, 56)이 E' 방향으로 상승한다. 이때, E' 방향의 상승 거리는 E 방향의 하강 거리와 동일하다. 그리고, 추가적인 회전모터(36)의 구동에 의한 회전운동장치(30)의 미리 결정된 각도(예를 들어, 72°)의 시계방향 회전(도면에서 "C"로 표시)에 의해 회전축(32)과 피스톤축(34)이 함께 회전하고 회전축(32)이 기밀하게 삽입된 유동로 선택수단(12)도 회전축(32)을 따라 회전한다.When the first reaction in the reaction vessel 20 is completed, as the next operation, the blocking shafts 52 and 56 connected to the vertical reciprocating motion device 50 rise in the E 'direction. At this time, the rising distance in the E 'direction is the same as the falling distance in the E direction. Then, the rotary shaft 32 and the clockwise rotation (indicated by "C" in the figure) of the predetermined angle (for example, 72 °) of the rotary motion device 30 by the drive of the additional rotary motor 36 and The flow path selection means 12 in which the piston shaft 34 rotates together and the rotary shaft 32 is hermetically inserted also rotates along the rotary shaft 32.
(E) ②번 위치 유동로(146b) 선택 단계: 도 10 참조(E) Selecting step 2 flow path 146b step: see FIG.
도 10에서는 연결홈(124)은 도 11의 ②번 위치를 향하게 된다. 따라서, 연결홈(124)은 유동로(146b)와 선택적으로 연통되고 시린지의 주입구(166b)와도 연통된 상태가 된다. 그리고, 전술한 바와 같은 추가적인 시계방향 회전에 의해 피스톤축(32)은 선택된 유동로(146b)와 연통되는 유입통로(15b)에 삽입 설치된 시린지 몸통부(164b)의 후면에 근접하여 위치하게 되고 시린지 몸통부(164b)와는 축방향이 일치한 상태가 된다. In FIG. 10, the connecting groove 124 faces the position ② of FIG. 11. Therefore, the connection groove 124 is selectively in communication with the flow path 146b and also in communication with the inlet 166b of the syringe. Further, by the additional clockwise rotation as described above, the piston shaft 32 is positioned in close proximity to the rear of the syringe body portion 164b installed in the inflow passage 15b communicating with the selected flow passage 146b. The trunk portion 164b is in a state where the axial direction coincides.
그리고 나서, 상기 (C) 단계 및 (D) 단계를 반복한다. 이와 같은 반복 과정을 통해 도 11의 ②→③→④→⑤의 순서로 회전축(32)과 이에 연동된 유동로 선택수단(12)이 회전하게 되어 연결홈(124)이 유동로를 순차적으로 선택하게 되고(146b→146c→146d→146e), 이때 피스톤축(34)도 연동되어 회전한 후 수평왕복이동에 의해 반응대상이 되는 여러 액체를 순차적으로 주입할 수 있게 된다. Then, the steps (C) and (D) are repeated. Through this repeating process, the rotating shaft 32 and the flow path selecting means 12 linked thereto rotate in the order of ② → ③ → ④ → ⑤ of FIG. 11 so that the connecting groove 124 sequentially selects the flow path. (146b → 146c → 146d → 146e), the piston shaft 34 also rotates in conjunction with the horizontal reciprocating movement to be able to inject several liquids to be reacted sequentially.
이상 본 발명을 상기 실시예를 들어 설명하였으나, 본 발명은 이에 제한되는 것이 아니다. 당업자라면 본 발명의 취지 및 범위를 벗어나지 않고 수정, 변경을 할 수 있으며 이러한 수정과 변경 또한 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described with reference to the above embodiments, the present invention is not limited thereto. Those skilled in the art can make modifications and changes without departing from the spirit and scope of the present invention, and it will be appreciated that such modifications and changes also belong to the present invention.

Claims (10)

  1. 반응 용기 내로 액체를 선택적으로 주입하는 장치에 있어서,An apparatus for selectively injecting liquid into a reaction vessel,
    액체가 주입되는 복수개의 유입통로와, 상기 복수개의 유입통로와 각각 대응하여 연통되는 복수개의 유동로가 형성되고, 상기 반응 용기에 결합되는 하우징과,A plurality of inflow passages through which liquid is injected, a plurality of flow passages corresponding to the plurality of inflow passages, respectively, and connected to the reaction vessel;
    상기 복수개의 유입통로로부터 미리 결정된 거리 만큼 이격된 중심축에서 길이방향을 따라 상기 하우징 내부를 관통하여 형성되고 상기 복수개의 유동로와 연결되는 연결통로와,A connecting passage formed through the inside of the housing along a longitudinal direction in a central axis spaced apart from the plurality of inflow passages by a predetermined distance and connected to the plurality of flow passages;
    상기 연결통로 내로 삽입 설치되어 상기 하우징과 회전가능하게 결합되고, 상기 중심축에 대한 회전에 따라 상기 복수개의 유동로 중 하나를 선택하여 연통되는 연결홈과, 상기 연결홈 및 상기 반응 용기와 연통되어 상기 선택된 하나의 유동로 및 상기 연결홈을 통해 유입된 액체를 상기 반응 용기 내로 배출하는 배출구가 형성된 유동로 선택수단을 포함하는, 반응 용기 내로 액체를 선택적으로 주입하는 장치.A connection groove inserted into the connection passage to be rotatably coupled to the housing, the connection groove being selected to communicate with one of the plurality of flow paths in accordance with rotation about the central axis, and communicating with the connection groove and the reaction vessel. And a flow path selection means having a discharge port configured to discharge the liquid introduced through the selected one flow path and the connecting groove into the reaction vessel.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수개의 유입통로에 각각 삽입설치되고 액체가 수용된 복수개의 시린지를 더 포함하는, 반응 용기 내로 액체를 선택적으로 주입하는 장치.And a plurality of syringes each inserted into the plurality of inflow passages and containing a liquid therein, wherein the liquid is selectively injected into the reaction vessel.
  3. 제2항에 있어서,The method of claim 2,
    상기 시린지 내의 액체는 시린지 후방에 설치된 피스톤의 전진에 따라 시린지 전방에 형성된 주입구를 통해 유동되며, 상기 주입구는 상기 하우징에 형성된 유동로와 연통되는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치. The liquid in the syringe flows through an injection hole formed in front of the syringe in accordance with the advancement of the piston installed behind the syringe, the injection hole is a device for selectively injecting liquid into the reaction vessel, characterized in that in communication with the flow path formed in the housing .
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 복수개의 유입통로는 상기 연결통로를 중심으로 방사상으로 형성되고, 상기 복수개의 유동로는 상기 연결통로로부터 방사상으로 분지된 형태로 형성되며, 상기 방사상으로 분지된 복수개의 유동로는 상기 복수개의 유입통로에 각각 연통되는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치.The plurality of inflow passages are formed radially around the connection passage, and the plurality of flow passages are formed radially branched from the connection passages, and the plurality of radially branched flow passages are the plurality of inflow passages. A device for selectively injecting liquid into the reaction vessel, each in communication with the passage.
  5. 제3항에 있어서,The method of claim 3,
    상기 유동로 선택수단은 후방이 개방된 실린더 형태의 몸통부와, 상기 몸통부의 전방에 결합되면서 상기 연결홈이 주변부에 형성되고 상기 배출구가 선단에 형성된 헤드부를 포함하는, 반응 용기 내로 액체를 선택적으로 주입하는 장치.The flow path selecting means includes a body portion of a cylindrical shape with a rear opening, and a head portion coupled to the front of the body portion, the connecting groove being formed at the periphery portion and the outlet portion being at the tip portion. Injecting device.
  6. 제5항에 있어서,The method of claim 5,
    수평왕복운동장치와 회전운동장치를 더 포함하고, 상기 수평왕복운동장치와 상기 회전운동장치의 동작에 따라 상기 수평왕복운동장치와 상기 회전운동장치에 연결된 회전축 및 피스톤축이 함께 수평이동 및 회전 동작을 수행하는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치. Further comprising a horizontal reciprocating motion device and a rotary motion device, the horizontal reciprocating motion device and the rotary shaft and the piston shaft connected to the horizontal reciprocating motion device and the rotary motion device in accordance with the operation of the horizontal reciprocating motion device and the rotational motion device together A device for selectively injecting liquid into the reaction vessel, characterized in that performing.
  7. 제6항에 있어서,The method of claim 6,
    상기 수평왕복운동장치의 수평이동에 의해 상기 회전축이 상기 유동로 선택수단의 몸통부의 개방된 후방에 삽입되고, 상기 회전운동장치의 회전에 의해 상기 회전축 및 이와 연동된 유동로 선택수단의 헤드부에 형성된 연결홈이 미리 결정된 각도 만큼 회전되어 상기 복수개의 유동로 중 하나를 선택함으로써 상기 연결홈과 상기 선택된 유동로가 연통되는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치.By the horizontal movement of the horizontal reciprocating motion device is inserted into the open rear of the body portion of the flow path selection means, the rotating shaft and the head portion of the flow path selection means interlocked with the rotation motion device by the rotation And the connection groove is in communication with the selected flow path by selecting one of the plurality of flow paths by rotating the connection groove formed by a predetermined angle.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 미리 결정된 각도 만큼의 회전에 의해 상기 피스톤축은 상기 선택된 유동로와 연통되는 유입통로에 삽입 설치된 시린지에 위치하게 되고 상기 수평왕복운동장치의 추가적인 수평이동에 의해 상기 피스톤축은 상기 시린지의 피스톤을 미는 동작을 수행하여 상기 시린지 내의 액체를 상기 주입구를 통해 유동시키고 유동되는 액체는 상기 선택된 유동로 및 상기 연결홈을 통해 상기 유동로 선택수단의 배출구로부터 상기 반응 용기 내로 배출되는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치. The piston shaft is positioned in a syringe inserted into an inflow passage communicating with the selected flow path by the rotation of the predetermined angle, and the piston shaft pushes the piston of the syringe by an additional horizontal movement of the horizontal reciprocating device. Liquid into the reaction vessel by flowing the liquid in the syringe through the inlet and discharged from the outlet of the flow path selection means to the reaction vessel through the selected flow path and the connecting groove. Device for selectively injecting.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 반응 용기에는 액체가 유입되는 유입구와 액체가 유출되는 유출구가 형성되어 있으며, 상기 유입구와 상기 유출구에 대응되어 위치하고 탄성재질로 구성된 돌출형 밸브를 포함하되, 상기 돌출형 밸브에 압력을 가하면 상기 돌출형 밸브가 압력에 의해 눌려지면서 상기 유입구와 상기 유출구를 폐쇄하고, 상기 돌출형 밸브에 가해진 압력이 해제되면 상기 돌출형 밸브의 탄성 복원력에 의해 원래 위치로 복귀하여 상기 유입구와 상기 유출구를 개방하는 것을 특징으로 하는 반응 용기 내로 액체를 선택적으로 주입하는 장치. The reaction vessel includes an inlet through which liquid flows in and an outlet through which liquid flows out, and includes a protruding valve corresponding to the inlet and the outlet and formed of an elastic material. When the valve is pressed by the pressure to close the inlet and the outlet, when the pressure applied to the protruding valve is released to return to the original position by the elastic restoring force of the protruding valve to open the inlet and the outlet A device for selectively injecting liquid into a reaction vessel characterized in that.
  10. 제1항에 정의된 반응 용기 내로 액체를 선택적으로 주입하는 장치를 구비하는 바이오 센서.A biosensor comprising a device for selectively injecting liquid into a reaction vessel as defined in claim 1.
PCT/KR2013/008802 2012-10-09 2013-10-02 Device for selectively injecting liquid into reaction vessel and biosensor including same WO2014058172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0112107 2012-10-09
KR1020120112107A KR101414048B1 (en) 2012-10-09 2012-10-09 Device for injecting liquid selectively into reaction chamber and biosensor comprising the same

Publications (1)

Publication Number Publication Date
WO2014058172A1 true WO2014058172A1 (en) 2014-04-17

Family

ID=50477596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008802 WO2014058172A1 (en) 2012-10-09 2013-10-02 Device for selectively injecting liquid into reaction vessel and biosensor including same

Country Status (2)

Country Link
KR (1) KR101414048B1 (en)
WO (1) WO2014058172A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741639B1 (en) 2016-01-28 2017-06-01 (주)바이오필리아 Separating and analyzing kit for genetic and biologic substance
EP3401013A1 (en) 2017-05-12 2018-11-14 Universitat de Barcelona Devices and methods for multiplexing liquid in biosensor micro-chambers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190616B1 (en) * 1997-09-11 2001-02-20 Molecular Dynamics, Inc. Capillary valve, connector, and router
US20030158674A1 (en) * 2002-01-09 2003-08-21 Michael Powell Systen and process for microfluidics-based automated chemistry
KR100449188B1 (en) * 2002-01-28 2004-09-18 (주)백년기술 Microbatch Chemical Analyzer
KR20110068576A (en) * 2009-12-16 2011-06-22 주식회사 서린바이오사이언스 Novel virus detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190616B1 (en) * 1997-09-11 2001-02-20 Molecular Dynamics, Inc. Capillary valve, connector, and router
US6551839B2 (en) * 1997-09-11 2003-04-22 Amersham Biosciences Corp. Method of merging chemical reactants in capillary tubes
US20030158674A1 (en) * 2002-01-09 2003-08-21 Michael Powell Systen and process for microfluidics-based automated chemistry
KR100449188B1 (en) * 2002-01-28 2004-09-18 (주)백년기술 Microbatch Chemical Analyzer
KR20110068576A (en) * 2009-12-16 2011-06-22 주식회사 서린바이오사이언스 Novel virus detection system

Also Published As

Publication number Publication date
KR20140045852A (en) 2014-04-17
KR101414048B1 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US10436781B2 (en) Point-of-care diagnostic cartridge having a digital micro-fluidic testing substrate
JP6008890B2 (en) Fluid control processing system
US9550184B2 (en) Reactor plate and reaction processing method
US20130273548A1 (en) Sample preparation and loading module
CN109738632B (en) Multi-index microfluidic chip and application method thereof
RU2682097C2 (en) Reagent carrier unit, adapter and method for handling a reagent carrier unit
CN113430096A (en) Totally enclosed sample processing and detection device
CN112538414A (en) Full-sealed intelligent nucleic acid extraction device with micro-fluidic structure
CN112980650A (en) Vertical micro-fluidic chip and method for nucleic acid extraction
CN112871230A (en) Vertical micro-fluidic chip for nucleic acid amplification
WO2014058172A1 (en) Device for selectively injecting liquid into reaction vessel and biosensor including same
EP3999235A1 (en) A liquid handling and processing tool for analyzing a biological sample
CN114806802A (en) Reagent cartridge, detection device and detection method
CN113667582A (en) Nucleic acid detection device and nucleic acid detection method
CN113174323A (en) Microfluidic PCR chip and PCR detection method
CN214553637U (en) Vertical micro-fluidic chip for extracting and amplifying nucleic acid
CN214599114U (en) Vertical micro-fluidic chip for nucleic acid amplification
CN214571848U (en) Vertical micro-fluidic chip that nucleic acid drawed usefulness
CN112958173B (en) Microfluidic kit
CN215947294U (en) Loop-mediated isothermal amplification chip
KR101703992B1 (en) Catridge for sample preparation and collected acid analysis
CN113667598A (en) Nucleic acid detection device and nucleic acid detection method
CN216738284U (en) Loop-mediated isothermal amplification chip
CN214571952U (en) Vertical micro-fluidic core and rotary piston thereof
CN214612492U (en) Vertical micro-fluidic chip and rotary piston thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846150

Country of ref document: EP

Kind code of ref document: A1