WO2012148470A1 - Identifying seizures using heart rate decrease - Google Patents

Identifying seizures using heart rate decrease Download PDF

Info

Publication number
WO2012148470A1
WO2012148470A1 PCT/US2011/061624 US2011061624W WO2012148470A1 WO 2012148470 A1 WO2012148470 A1 WO 2012148470A1 US 2011061624 W US2011061624 W US 2011061624W WO 2012148470 A1 WO2012148470 A1 WO 2012148470A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
heart rate
decrease
heart
profile
Prior art date
Application number
PCT/US2011/061624
Other languages
French (fr)
Inventor
Wangcai Liao
Original Assignee
Cyberonics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyberonics, Inc. filed Critical Cyberonics, Inc.
Publication of WO2012148470A1 publication Critical patent/WO2012148470A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient

Definitions

  • the present disclosure relates generally to the field of seizure identification and more particularly to the field of identifying seizures by monitoring changes in heart rates.
  • Seizures are characterized by abnormal or excessive neural activity in the brain. Seizures may involve loss of consciousness or awareness, and result in falls, uncontrollable convulsions, etc. Significant injuries may result not only from the neuronal activity in the brain but also from the associated loss of motor function from falls or the inability of the patient to perceive and/or respond appropriately to potential danger or harm.
  • Such actions may include sending an alert signal to the patient or a caregiver, taking remedial action such as making the patient and/or the immediate environment safe (e.g., terminating operation of equipment, sitting or lying down, moving away from known hazards), initiating a treatment therapy, etc.
  • remedial action such as making the patient and/or the immediate environment safe (e.g., terminating operation of equipment, sitting or lying down, moving away from known hazards), initiating a treatment therapy, etc.
  • rapid detection is not possible or feasible, it is still desirable to be able to identify seizures after they have begun to allow a physician and/or caregiver to assess the patient's condition and determine whether existing therapies are effective or require modification and/or additional therapy modalities (for example, changing or adding additional drug therapies or adding a neurostimulation therapy).
  • Seizure detection algorithms have been proposed using a variety of body parameters, including brain waves (e.g., electroencephalogram or EEG signals), heart beats (e.g., electrocardiogram or EKG), and movements (e.g., triaxial accelerometer signals). See, e.g., US 5,928,272 and U.S. Application Serial No. 12/770,562, both of which are hereby incorporated by reference herein. Detection of seizures using heart data requires that the seizure detection algorithm distinguish— or attempt to distinguish— between pathological changes in the detected heart signal (which may indicate a seizure) and non-pathological changes that may be similar to pathological changes but involve normal physiological functioning.
  • EEG signals electroencephalogram or EEG signals
  • heart beats e.g., electrocardiogram or EKG
  • movements e.g., triaxial accelerometer signals
  • the patient's heart rate may increase both when a seizure event occurs and when the patient exercises, climbs stairs or performs other physiologically demanding acts.
  • state changes such as rising from a prone or sitting position to a standing position, such as in rising after a sleep period, may produce cardiac changes similar to seizure events.
  • seizure detection algorithms must distinguish between changes in heart rate due to a seizure and those due to exertional or positional/postural changes. Current algorithms fail to provide rapid and accurate detection. There is a need for improved algorithms that can more accurately distinguish between ictal and non-ictal heart rate changes.
  • a method for detecting a seizure event comprising receiving heart beat data versus time for a patient, detecting an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate, detecting a decrease in heart rate from the elevated heart rate, for a time interval occurring during said decrease in heart rate, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
  • a system for detecting a seizure event in a patient comprising one or more processors, one or more memory units coupled to the one or more processors, the system being configured to receive data of heart beat versus time, detect an increase in the heart rate from a baseline heart rate to an elevated heart rate, detect a decrease in heart rate from the elevated heart rate, for a time interval occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detect a seizure event in response to determining at least one of a) that a rate of decrease in heart rate is greater than a threshold rate of decrease, and b) that the rate of change in the rate of decrease is less than a threshold rate of change in a rate of decrease.
  • a computer program product embodied in a computer- operable medium, the computer program product comprising logic instructions, the logic instructions being effective to process data of heart rate (HR) versus time, and detect an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate, detect a decrease in heart rate from the elevated heart rate, for a time inteival occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detect a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
  • HR heart rate
  • a method for detecting a seizure event comprising receiving heart beat data versus time for a patient, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
  • a method for detecting a seizure event comprising receiving heart beat data versus time for a patient, detecting an increase in the heart rate of the patient from a baseline heart rate to an elevated heart rate, detecting a decrease in heart rate from the elevated rate to a first intermediate rate between the elevated rate and the baseline rate, and further detecting a decrease in heart rate to a second intermediate rate between the first intermediate rate and the baseline rate, determining at least one of a) a rate of decrease from said first intermediate rate to said second intermediate rate and b) a rate of change in a rate of decrease in heart rate from said first intermediate rate to said second intermediate rate, and detecting a seizure event in response to determining at least one of a) that the rate of decrease of heart rate from said first intermediate rate to said second intermediate rate is greater than a threshold rate of decrease and b) the rate of change in the rate of decrease from said first intermediate rate to said second intermediate rate is less than a threshold rate of change in a rate of decrease.
  • Figure 1 is a graph illustrating an example of heart rate versus time during a seizure, in accordance with some embodiments.
  • Figure 2 is a block diagram illustrating a system for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • Figure 3 is a block diagram illustrating an alternative system for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • Figure 4 is a diagram illustrating an example of obtaining heart beat data from a subject using electrocardiogram equipment, in accordance with some embodiments.
  • Figure 5 is a flow diagram illustrating a method for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • Figure 6 is a flow diagram illustrating an alternative method for detecting a seizure event using heart rate data, in accordance with some embodiments.
  • Figure 7 is a graph of heart rate versus time during an event such as a seizure that causes an increase from a baseline heart rate to an elevated heart rate followed by a decrease in the heart rate back toward the baseline heart rate, in accordance with some embodiments.
  • Figure 1 is a graph illustrating an example of heart rate versus time during a seizure, in accordance with some embodiments.
  • Graph 110 shows the rise of a subject's heart rate (HR) from a pre-ictal baseline HR to a peak HR (at point 140) following the onset of a seizure at time S 145.
  • Graph 110 also shows the decrease of a subject's heart rate (HR) from peak HR 140 to a post-ictal baseline HR (at point 150) following the end of a seizure.
  • the postictal baseline HR may be different from the pre-ictal baseline HR. Seizures are often characterized by an increase in HR from an initial or baseline HR to an elevated HR, followed by a decrease in HR from the elevated HR back toward the baseline HR.
  • the increase in HR may begin before, at, or shortly after the electrographic or clinical onset of the seizure, and the decrease in HR may begin at the time the seizure ends.
  • the baseline heart rate may be determined as a statistical measure of central tendency of HR during a desired time window, typically a window prior to an increase in HR associated with a seizure or exertional tachycardia.
  • the baseline HR may be a median, average or similar statistical measure of HR in a 500 second window.
  • a number-of-beats window may be used instead of a time window.
  • V arious forms of weighting may also be employed to determine the baseline HR, such as exponential forgetting.
  • FIG. 2 is a block diagram illustrating a system for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • heart rate data analyzer 210 is configured to receive and analyze heart rate data 225.
  • Heart rate data 225 may be a series of heart rate values at given points in time.
  • the heart rate data may be being received in real time or near real time from a subject or the heart rate data may be data that was previously recorded and is being received from a storage device.
  • heart rate data analyzer 210 is configured to analyze the data and identify seizure events that the subject may have suffered and/or is currently suffering. Heart rate data analyzer 210 is additionally configured to distinguish seizure events from nonpathologic events that may have similar effects on a subject's HR.
  • the functionality of heart rate data analyzer 210 may be implemented using one or more processors such as processor(s) 215 and one or more memory units coupled to the one or more processors such as memory unit(s) 220.
  • Heart rate data analyzer 210 may be configured to identify the offset of a seizure by examining the rate and/or profile with which the HR drops during the offset of the seizure as discussed here.
  • systems and methods are disclosed for detecting a seizure event by examining data of the heart rate (HR) versus time of a subject.
  • the subject's heart rate may be obtained in real time or near real time using various methods, including well- known electrocardiogram (ECG) processes.
  • ECG electrocardiogram
  • previously stored/recorded HR data may be provided to embodiments of the present invention for analysis.
  • heart rate data analyzer 210 may identify a seizure by identifying body signal changes associated with the end of the seizure.
  • Existing seizure detection algorithms focus on identifying the beginning of the seizure (i.e., onset of the ictal state from a non-ictal or pre-ictal state), typically as exemplified by a significant change in a body signal, such as an increase in HR from a baseline HR to an elevated HR.
  • Various attempts to distinguish ictal HR increases from non-ictal increases have been made, but prior art approaches have unacceptably high rates of false positives (i.e., detecting non- ictal changes as a seizure) and false negatives (i.e., failure to detect ictal changes).
  • the present invention involves identifying a seizure by changes associated with the end of a seizure (i.e., the ictal-to-post-ictal transition).
  • a seizure may be identified by determining one or more characteristics of a decrease in HR from an elevated HR back towards a baseline HR. More specifically, an episode of elevated heart rate followed by a return towards a baseline rate may be analyzed and classified as a seizure or as a non-seizure event (for example, exertional tachycardia associated with exercise or normal activity).
  • a time interval during a decrease in HR from an elevated HR is analyzed to determine one or more of a) a rate of decrease in HR or b) a rate of change of the rate of decrease in HR.
  • the rate of decrease may be determined from actual data or smoothed data (e.g., by fitting a higher order polynomials to one or more segments of actual data).
  • the rate of decrease may be compared to a threshold rate of decrease associated with a seizure event and/or a threshold rate of decrease associated with a non- seizure event.
  • the rate of change in a rate of decrease may be compared to a threshold rate of change of a rate of decrease associated with a seizure event and/or a threshold rate of change of a rate of decrease associated with a non-seizure event.
  • the event may be detected as a seizure event if the rate of decrease from an elevated heart rate back toward a baseline heart rate exceeds a threshold rate of decrease, or if the rate of change of a rate of decrease is less than a threshold rate of change of a rate of decrease.
  • the threshold rate of decrease and/or the threshold rate of change of the rate of decrease may be determined from nonpathologic rates of decrease and/or rates of change of rates of decrease from nonpathologic events that also result in patterns of increasing HR followed by decreasing HR.
  • Such nonpathologic events may include, for example, physical exertion during exercising, climbing or descending stairs, walking, or postural changes.
  • the threshold rate of decrease and/or the threshold rate of change of the rate of decrease may he determined from seizure events.
  • different thresholds may be established for different types of seizures, e.g., tonic-clonic seizures, complex partial, simple partial, etc. Thresholds may also be established that are patient-specific, i.e., determined from seizure events of the patient, or from aggregated patient data from multiple patients.
  • the rate of decrease in HR may correspond to an instantaneous or time-interval-specific (e.g., a 15-second moving window) slope of a graph of the HR versus time. This slope may be determined at a specific point(s) and/or for specific intervals during the decrease in HR from an elevated heart rate back towards a baseline heart rate.
  • HBA heart beat acceleration
  • HRD heart rate drop
  • the peak heart rate during a tachycardia event i.e., a heart rate increase above a baseline heart rate followed by a decrease toward the baseline rate
  • the baseline rate may be used to determine a peak-to-baseline (PTB) value that is useful for performing calculations according to certain embodiments.
  • PTB peak-to-baseline
  • one useful rate of decrease may be determined as the average slope (or average rate of decrease) from the peak to the given point.
  • short-term rates of decrease may be established for a short-term time window along the decreasing HR curve from peak to baseline. Short-term rates of decrease may be determined for a 5-second or 5-beat window, for example, or from the last two heart beats.
  • particular short-term rates of decrease may be useful to compare to later short-term rates of decrease. It has been appreciated by the present inventor that PTB decreases in heart rate for seizure events and non-seizure events differ qualitatively. In particular, decreases in HR for seizure events tend to maintain a relatively constant rate of decrease during most of the PTB decline. In non-seizure events, by contrast, rates of decrease tend to decline as the HR approaches the baseline HR. Thus, for seizure events the slope of the PTB heart rate curve tends to be relatively straight.
  • the slope of the PTB heart rate curve for non-seizure tachycardia episodes tends to flatten as the HR approaches the baseline heart rate, resulting in a HR curve that is "upwardly concave" near the baseline for non-seizure events.
  • a seizure end may be identified in response to determining that the HR drop at a specific point during the PTB transition is greater (in absolute value since during a heart rate decrease the slope is negative) than a seizure threshold value.
  • HRDs during PTB transitions in healthy subjects for nonpathologic events are smaller than HRDs during a corresponding time during a seizure event.
  • the threshold HRD may accordingly be chosen in order to maximize the accuracy of the seizure identification process.
  • Binary classification statistics may be used to maximize the accuracy of the detection by appropriately balancing the sensitivity and specificity of the identification process.
  • the HRD (the slope of the HR v. time graph) at a particular point may be computed numerically from the HR v. time data using well-known numerical computation techniques for calculating slope using numerical data.
  • average HRDs may be used over one or more intervals for identifying a seizure offset. Intervals may be chosen anywhere between a peak HR and the return towards a baseline HR, the peak HR being the highest HR value reached during the seizure or nonpathologic event, and the baseline HR being the HR of the subject prior to the tachycardia event under consideration (whether pathological or non-pathological). For example, a First Half HRD may be computed for an interval between the peak HR value and the HR that is halfway between the baseline HR and the peak HR.
  • a Middle Half HRD may be computed for an interval between the HR that is 25% of the way between the peak HR and the baseline HR and the HR that is 75% of the way between the peak HR and the baseline HR
  • a Second Half HRD may be computed for the interval between the HR that is 50% of the distance from peak-to-baseline, and the baseline HR itself.
  • a First Third HRD may be computed between the peak HR and the HR that is 1/3 of the way from the peak HR to the baseline HRD
  • a Final Third HRD may be computed between the HR that is 2/3 of the way from the peak HR to the baseline HR and the baseline HR itself.
  • Similar intervals may be constructed, and the HRD computed, depending upon the points in the decline from peak to baseline that provides a desirable level of discrimination between seizure and non-seizure events. More generally, in some embodiments, an average HRD over an interval from point A to point B may be computed by dividing the HR change from point A to point B by the time change from point A to point B.
  • the offset of a seizure may be identified in response to determining that the First Half HRD and Middle Half HRD are substantially equal.
  • the offset of the seizure may be identified in response to determining that the First Half HRD and the Middle Half HRD are within a certain percentage of each other. It should be noted that other appropriate intervals/average HRDs may be selected and used in various combinations to identify a seizure.
  • a seizure may be identified by comparing HRDs at one or more points and/or by comparing average HRDs over one or more intervals to HRDs threshold values.
  • the threshold HRD values may be determined by examining typical corresponding values of HRDs for seizure and nonpathologic events. For example, a seizure may be identified in response to determining that an average One Third HRD is above a certain threshold, which is determined by examining
  • a general profile of the HR versus time during a seizure offset may be determined and compared to known HR versus time profiles during seizures and nonpathologic events.
  • a seizure offset may be identified in response to determimng that there exists a substantial match between the determined profile and the known seizure profiles, or a substantial dissimilarity between the determined profile and one or more known nonpathologic profiles.
  • a seizure may be identified in response to determining that a seizure profile is substantially similar to a linear seizure profile and substantially dissimilar to a nonpathologic profile such as an asymptotically decreasing profile (for example, a decreasing exponential profile), a concave decreasing profile, etc.
  • a nonpathologic profile such as an asymptotically decreasing profile (for example, a decreasing exponential profile), a concave decreasing profile, etc.
  • FIG. 3 is a block diagram illustrating an alternative system for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • heart rate data analyzer 310 is configured to receive and analyze heart rate data 325.
  • Heart rate data 325 may be a series of heart rate values at given points in time.
  • the heart rate data may be received in real time or near real time from heart rate detection equipment connected to a subject, such as HR detector 330.
  • HR detector 330 in some embodiments may comprise electrocardiogram equipment, which is configured to couple to a subject's body in order to detect the subject's heart beat.
  • heart rate data analyzer 310 is configured to analyze the data and identify seizure events that the subject may have suffered and/or is currently suffering.
  • the functionality of heart rate data analyzer 310 may be implemented using one or more processors such as processor(s) 315 and one or more memory units coupled to the one or more processors such as memory unit(s) 320.
  • Heart rate data analyzer 310 may be configured to identify the offset of a seizure by examining the rate and generally the profile with which the HR drops during the offset of the seizure as discussed here.
  • Heart rate data analyzer 310 may also be coupled to human interface input device 335 and human interface output device 340.
  • Human interface input device 335 may be configured to provide a user of the system a means with which to input data into the system and with which to generally control various options. Accordingly, human interface input device 335 may be at least one of a computer keyboard, a touch screen, a microphone, a video camera, etc.
  • Human interface output device 340 may be configured to provide information to a user of the system visually, audibly, etc. Accordingly, human interface output device 340 may be at least one of a computer display, one or more audio speakers, haptic feedback device, etc. In some embodiments, human interface input device 335 and human interface output device may be combined into a single unit.
  • Figure 4 is a diagram illustrating an example of obtaining heart beat data from a subject using electrocardiogram equipment, in accordance with some embodiments.
  • System 400 may include, a heart beat sensor 440, a controller 455, and a computer 410.
  • heart beat and/or heart rate data may be collected by using an external or implanted heart beat sensor and related electronics (such as heart beat sensor 440), and a controller that may be wirelessly (or via wire) coupled to the sensor for detecting seizure events based upon the patient's heart signal, such as controller 455.
  • sensor 440 may comprise electrodes in an externally worn patch adhesively applied to a skin surface of patient 485.
  • sensor 440 may be implanted under the patient's skin.
  • the patch may include electronics for sensing and determining a heart beat signal (e.g., an ECG signal), such as an electrode, an amplifier and associated filters for processing the raw heart beat signal, an A/D converter, a digital signal processor, and in some embodiments, an RF transceiver wirelessly coupled to a separate controller unit, such as controller 455.
  • a heart beat signal e.g., an ECG signal
  • the controller unit may be part of the patch electronics.
  • the controller 455 may implement an algorithm for detection of seizure events based on the heart signal. It may comprise electronics and memory for performing computations of, e.g. H parameters such as median HR values for the first and second windows, determination of ratios and/or differences of the first and second HR measures, and determination of seizure onset and offset times according to the foregoing disclosure.
  • the controller 455 may include a display and an input/output device.
  • the controller 455 may comprise part of a handheld computer such as a PDA or smartphone, a cellphone, an iPod® or iPad®, etc.
  • sensor 440 may be placed on a body surface suitable for detection of heart signals. Electrical signals from the sensing electrodes may be then fed into patch electronics for filtering, amplification and A D conversion and other preprocessing, and creation of a time-of-beat sequence (e.g., an R-R interval data stream), which may then be transmitted to controller 455. Sensor 440 may be configured to perform various types of processing to the heart rate data, including filtering, determination of R- wave peaks, calculation of R-R intervals, etc.
  • the patch electronics may include the functions of controller 455, illustrated in Fig. 4 as separate from sesnor 440.
  • the time-of-beat sequence may be then provided to controller 455 for processing and determination of seizure onset and offset times and related seizure metrics.
  • Controller 455 may be configured to communicate with computer 10.
  • Computer 410 may be located in the same location or computer 410 may be located in a remote location from controller 455.
  • Computer 410 may be configured to further analyze the heart data, store the data, retransmit the data, etc.
  • Computer 410 may comprise a display for displaying information and results to one or more users as well as an input device from which input may be received by the one or more users.
  • controller 455 may be configured to perform various tasks such as calculating first and second HR measures, HR parameters, comparing HR parameters to appropriate thresholds, and determining of seizure onset and seizure end times, and other seizure metrics,
  • FIG 5 is a flow diagram illustrating a method for detecting a seizure event using heart beat data, in accordance with some embodiments.
  • the method illustrated in this figure may be performed by one or more of the systems illustrated in Figure 2, Figure 3, and Figure 4,
  • receiving heart beat data versus time for a patient is received.
  • an increase in the heart rate of a patient is detected from a baseline heart rate to an elevated heart rate.
  • a decrease in heart rate is detected from the elevated heart rate.
  • At block 525 for a time interval occurring during said decrease in heart rate, at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, is determined.
  • a seizure event is detected in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
  • detecting of the seizure event comprises determining the end of a seizure event.
  • the threshold rate of decrease or threshold rate of change of rate of decrease may in some embodiments be selected after examining previous such rates for seizures as well as nonpathologic events.
  • Figure 6 is a flow diagram illustrating an alternative method for detecting a seizure event using heart rate data, in accordance with some embodiments.
  • the method illustrated in this figure may be performed by one or more of the systems illustrated in Figure 2, Figure 3, and Figure 4.
  • data of heart rate (HR) versus time is provided.
  • the data may be provided in real time or near real time or the data may be retrieved from storage.
  • an HR drop rate or HRD (which corresponds to a slope of the HR versus time data) is determined at one or more points of the provided data.
  • an average HRD may be determined over an interval of the HRD versus time data/graph,
  • the threshold HBA may be chosen by examining previous seizure and nonpathologic HRDs.
  • decision 620 branches to the "no" branch, and processing returns to block 610 where additional data is received for processing. On the other hand, if the HRD is above the threshold HRD, decision 620 branches to the "yes" branch, and processing continues at block 625 ,
  • FIG. 625 the examined HRD is indicated as indicative of the end of a seizure, and thus a seizure event is identified. Subsequently, processing returns to block 610 where additional data is provided for processing.
  • Figure 7 is a graph of heart rate versus time during an event such as a seizure that causes an increase from a baseline heart rate to an elevated heart rate followed by a decrease in the heart rate back toward the baseline heart rate, in accordance with some embodiments.
  • Graph 710 shows the rise of a subject's heart rate (HR) from a baseline HR to a peak HR and then the fall of the HR back toward the baseline HR after some time for a typical seizure case and for a non-pathological case.
  • HR heart rate
  • Point 1 ⁇ 2 HR marks the HR value between the peak HR and the baseline HR
  • point 3/4 HR mai'ks the HR value that is 3/4 of the way from the peak HR to the baseline HR.
  • the non-pathological HR drop is indicated by the dotted line.
  • the slope of the graph i.e., HRD
  • the instantaneous slope may be computed at a point.
  • an average slope may be computed between two points.
  • the instantaneous slope may be computed at point 725 and corresponding point 730 for the non-pathological case.
  • the two slopes for the typical seizure case and the non-pathological case are illustrated by dashed lines 727 and 732 respectively.
  • an average slope may be computed between points 725 and 726 and between corresponding points 730 and 731 for the non-pathological case.
  • the two average slopes for the typical seizure case and the non-pathological case are illustrated by dashed lines 728 and 733 respectively.
  • a seizure may be identified in response to determining that the slope is below (or above in absolute value) a certain threshold value. As seen by the figure, typical seizure cases exhibit slopes that are smaller (or larger in absolute value) when compared to non-pathological cases as indicated by dashed lines representing these slopes.
  • a seizure may be identified in response to determining that the average HRDs in two intervals is substantially equal. For example, the average HRD may be computed and compared for two intervals by dividing the difference in HR by the difference in time at the beginning and end of the intervals.
  • the seizure is identified in response to determining that the HRDs for the two intervals are substantially equal, or differ by only a threshold slope difference.
  • a typical non-pathological case will exhibit a greater difference in the average slope between two different intervals.
  • the concavity of the graph may be computed for a certain interval and compared to certain threshold concavities.
  • typical seizure cases exhibit concavities that are typically larger compared to the concavities of non- pathological events.
  • the concavity may be computed by determining the second time derivative of the HR.
  • a seizure may be identified in response to determining that the concavity (average or at a given point) is higher than a threshold concavity value .

Abstract

Methods and systems for detecting a seizure event, including receiving heart beat data versus time for a patient, detecting an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate, detecting a decrease in heart rate from the elevated heart rate, for a time interval occurring during said decrease in heart rate, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.

Description

IDENTIFYING SEIZURES USING HEART RATE DECREASE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application relates to the following commonly assigned co-pending application entitled:
"Identifying Seizures Using Heart Data From Two or More Windows", U.S. Application Serial No. 13/093,613, filed April 25, 2011, Reference Number 1000.235.
TECHNICAL FIELD OF THE PRESENT DISCLOSURE
The present disclosure relates generally to the field of seizure identification and more particularly to the field of identifying seizures by monitoring changes in heart rates.
BACKGROUND OF THE PRESENT DISCLOSURE
Seizures are characterized by abnormal or excessive neural activity in the brain. Seizures may involve loss of consciousness or awareness, and result in falls, uncontrollable convulsions, etc. Significant injuries may result not only from the neuronal activity in the brain but also from the associated loss of motor function from falls or the inability of the patient to perceive and/or respond appropriately to potential danger or harm.
It is desirable to identify a seizure event as quickly as possible after the beginning of the seizure, to allow appropriate responsive action to be taken. Such actions may include sending an alert signal to the patient or a caregiver, taking remedial action such as making the patient and/or the immediate environment safe (e.g., terminating operation of equipment, sitting or lying down, moving away from known hazards), initiating a treatment therapy, etc. Where rapid detection is not possible or feasible, it is still desirable to be able to identify seizures after they have begun to allow a physician and/or caregiver to assess the patient's condition and determine whether existing therapies are effective or require modification and/or additional therapy modalities (for example, changing or adding additional drug therapies or adding a neurostimulation therapy). Seizure detection algorithms have been proposed using a variety of body parameters, including brain waves (e.g., electroencephalogram or EEG signals), heart beats (e.g., electrocardiogram or EKG), and movements (e.g., triaxial accelerometer signals). See, e.g., US 5,928,272 and U.S. Application Serial No. 12/770,562, both of which are hereby incorporated by reference herein. Detection of seizures using heart data requires that the seizure detection algorithm distinguish— or attempt to distinguish— between pathological changes in the detected heart signal (which may indicate a seizure) and non-pathological changes that may be similar to pathological changes but involve normal physiological functioning. For example, the patient's heart rate may increase both when a seizure event occurs and when the patient exercises, climbs stairs or performs other physiologically demanding acts. In some instances, state changes such as rising from a prone or sitting position to a standing position, such as in rising after a sleep period, may produce cardiac changes similar to seizure events. Thus, seizure detection algorithms must distinguish between changes in heart rate due to a seizure and those due to exertional or positional/postural changes. Current algorithms fail to provide rapid and accurate detection. There is a need for improved algorithms that can more accurately distinguish between ictal and non-ictal heart rate changes. There is also a need for algorithms that may provide an initial detection to allow early warning or therapeutic intervention, and which allows for continued signal analysis subsequent to the initial detection, and permitting the initial detection to be subsequently confirmed or rejected as a seizure based on the signal data acquired after the initial detection. The present invention addresses limitations associated with existing cardiac-based seizure detection algorithms.
SUMMARY
In one respect, disclosed is a method for detecting a seizure event, the method comprising receiving heart beat data versus time for a patient, detecting an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate, detecting a decrease in heart rate from the elevated heart rate, for a time interval occurring during said decrease in heart rate, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
In another respect, disclosed is a system for detecting a seizure event in a patient, the system comprising one or more processors, one or more memory units coupled to the one or more processors, the system being configured to receive data of heart beat versus time, detect an increase in the heart rate from a baseline heart rate to an elevated heart rate, detect a decrease in heart rate from the elevated heart rate, for a time interval occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detect a seizure event in response to determining at least one of a) that a rate of decrease in heart rate is greater than a threshold rate of decrease, and b) that the rate of change in the rate of decrease is less than a threshold rate of change in a rate of decrease.
In yet another respect, disclosed is a computer program product embodied in a computer- operable medium, the computer program product comprising logic instructions, the logic instructions being effective to process data of heart rate (HR) versus time, and detect an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate, detect a decrease in heart rate from the elevated heart rate, for a time inteival occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detect a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
In yet another respect, disclosed is a method for detecting a seizure event, the method comprising receiving heart beat data versus time for a patient, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
In yet another respect, disclosed is a method for detecting a seizure event, the method comprising receiving heart beat data versus time for a patient, detecting an increase in the heart rate of the patient from a baseline heart rate to an elevated heart rate, detecting a decrease in heart rate from the elevated rate to a first intermediate rate between the elevated rate and the baseline rate, and further detecting a decrease in heart rate to a second intermediate rate between the first intermediate rate and the baseline rate, determining at least one of a) a rate of decrease from said first intermediate rate to said second intermediate rate and b) a rate of change in a rate of decrease in heart rate from said first intermediate rate to said second intermediate rate, and detecting a seizure event in response to determining at least one of a) that the rate of decrease of heart rate from said first intermediate rate to said second intermediate rate is greater than a threshold rate of decrease and b) the rate of change in the rate of decrease from said first intermediate rate to said second intermediate rate is less than a threshold rate of change in a rate of decrease.
Numerous additional embodiments are also possible.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects and advantages of the present disclosure may become apparent upon reading the detailed description and upon reference to the accompanying drawings.
Figure 1 is a graph illustrating an example of heart rate versus time during a seizure, in accordance with some embodiments.
Figure 2 is a block diagram illustrating a system for detecting a seizure event using heart beat data, in accordance with some embodiments. Figure 3 is a block diagram illustrating an alternative system for detecting a seizure event using heart beat data, in accordance with some embodiments.
Figure 4 is a diagram illustrating an example of obtaining heart beat data from a subject using electrocardiogram equipment, in accordance with some embodiments. Figure 5 is a flow diagram illustrating a method for detecting a seizure event using heart beat data, in accordance with some embodiments.
Figure 6 is a flow diagram illustrating an alternative method for detecting a seizure event using heart rate data, in accordance with some embodiments.
Figure 7 is a graph of heart rate versus time during an event such as a seizure that causes an increase from a baseline heart rate to an elevated heart rate followed by a decrease in the heart rate back toward the baseline heart rate, in accordance with some embodiments.
While the present disclosure is subject to various modifications and alternative forms, specific embodiments of the claimed subject matter are shown by way of example in the drawings and the accompanying detailed description. The drawings and detailed description are not intended to limit the presently claimed subject matter to the particular embodiments. This disclosure is instead intended to cover all modifications, equivalents, and alternatives falling within the scope of the presently claimed subject matter.
DETAILED DESCRIPTION
One or more embodiments of the present claimed subject matter are described below. It should be noted that these and any other embodiments are exemplary and are intended to be illustrative of the claimed subject matter rather than limiting, While the present claimed subject matter is widely applicable to different types of systems, it is impossible to include all of the possible embodiments and contexts of the present claimed subject matter in this disclosure. Upon reading this disclosure, many alternative embodiments of the presently claimed subject matter will be apparent to persons of ordinary skill in the art.
The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed here may be implemented as
electronic/computer hardware, computer software, or combinations of the two. Various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware or software, or allocated in varying degrees to hardware and software respectively, may depend upon the particular application and imposed design constraints. The described functionality may be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the presently claimed subject matter.
Figure 1 is a graph illustrating an example of heart rate versus time during a seizure, in accordance with some embodiments. Graph 110 shows the rise of a subject's heart rate (HR) from a pre-ictal baseline HR to a peak HR (at point 140) following the onset of a seizure at time S 145. Graph 110 also shows the decrease of a subject's heart rate (HR) from peak HR 140 to a post-ictal baseline HR (at point 150) following the end of a seizure. For some patients, the postictal baseline HR may be different from the pre-ictal baseline HR. Seizures are often characterized by an increase in HR from an initial or baseline HR to an elevated HR, followed by a decrease in HR from the elevated HR back toward the baseline HR. The increase in HR may begin before, at, or shortly after the electrographic or clinical onset of the seizure, and the decrease in HR may begin at the time the seizure ends. The baseline heart rate may be determined as a statistical measure of central tendency of HR during a desired time window, typically a window prior to an increase in HR associated with a seizure or exertional tachycardia. In one nonlimiting example, the baseline HR may be a median, average or similar statistical measure of HR in a 500 second window. In another embodiment, a number-of-beats window may be used instead of a time window. V arious forms of weighting may also be employed to determine the baseline HR, such as exponential forgetting.
Figure 2 is a block diagram illustrating a system for detecting a seizure event using heart beat data, in accordance with some embodiments.
In some embodiments, heart rate data analyzer 210 is configured to receive and analyze heart rate data 225. Heart rate data 225 may be a series of heart rate values at given points in time. The heart rate data may be being received in real time or near real time from a subject or the heart rate data may be data that was previously recorded and is being received from a storage device.
In some embodiments, heart rate data analyzer 210 is configured to analyze the data and identify seizure events that the subject may have suffered and/or is currently suffering. Heart rate data analyzer 210 is additionally configured to distinguish seizure events from nonpathologic events that may have similar effects on a subject's HR. The functionality of heart rate data analyzer 210 may be implemented using one or more processors such as processor(s) 215 and one or more memory units coupled to the one or more processors such as memory unit(s) 220.
Heart rate data analyzer 210 may be configured to identify the offset of a seizure by examining the rate and/or profile with which the HR drops during the offset of the seizure as discussed here.
In some embodiments, systems and methods are disclosed for detecting a seizure event by examining data of the heart rate (HR) versus time of a subject. The subject's heart rate may be obtained in real time or near real time using various methods, including well- known electrocardiogram (ECG) processes. In alternative embodiments, previously stored/recorded HR data may be provided to embodiments of the present invention for analysis. In some embodiments, heart rate data analyzer 210 may identify a seizure by identifying body signal changes associated with the end of the seizure. Existing seizure detection algorithms focus on identifying the beginning of the seizure (i.e., onset of the ictal state from a non-ictal or pre-ictal state), typically as exemplified by a significant change in a body signal, such as an increase in HR from a baseline HR to an elevated HR. Various attempts to distinguish ictal HR increases from non-ictal increases have been made, but prior art approaches have unacceptably high rates of false positives (i.e., detecting non- ictal changes as a seizure) and false negatives (i.e., failure to detect ictal changes).
In contrast to prior art approaches, the present invention involves identifying a seizure by changes associated with the end of a seizure (i.e., the ictal-to-post-ictal transition).
Without being bound by theory, it is believed that changes associated with the end of a seizure may provide improved methods of distinguishing between ictal and non-ictal HR changes.
In some embodiments, a seizure may be identified by determining one or more characteristics of a decrease in HR from an elevated HR back towards a baseline HR. More specifically, an episode of elevated heart rate followed by a return towards a baseline rate may be analyzed and classified as a seizure or as a non-seizure event (for example, exertional tachycardia associated with exercise or normal activity).
In one embodiment, a time interval during a decrease in HR from an elevated HR is analyzed to determine one or more of a) a rate of decrease in HR or b) a rate of change of the rate of decrease in HR. The rate of decrease may be determined from actual data or smoothed data (e.g., by fitting a higher order polynomials to one or more segments of actual data). The rate of decrease may be compared to a threshold rate of decrease associated with a seizure event and/or a threshold rate of decrease associated with a non- seizure event. The rate of change in a rate of decrease may be compared to a threshold rate of change of a rate of decrease associated with a seizure event and/or a threshold rate of change of a rate of decrease associated with a non-seizure event. The event may be detected as a seizure event if the rate of decrease from an elevated heart rate back toward a baseline heart rate exceeds a threshold rate of decrease, or if the rate of change of a rate of decrease is less than a threshold rate of change of a rate of decrease.
In some embodiments, the threshold rate of decrease and/or the threshold rate of change of the rate of decrease may be determined from nonpathologic rates of decrease and/or rates of change of rates of decrease from nonpathologic events that also result in patterns of increasing HR followed by decreasing HR. Such nonpathologic events may include, for example, physical exertion during exercising, climbing or descending stairs, walking, or postural changes. In other embodiments, the threshold rate of decrease and/or the threshold rate of change of the rate of decrease may he determined from seizure events. In some embodiments, different thresholds may be established for different types of seizures, e.g., tonic-clonic seizures, complex partial, simple partial, etc. Thresholds may also be established that are patient-specific, i.e., determined from seizure events of the patient, or from aggregated patient data from multiple patients.
In some embodiments, the rate of decrease in HR (which will be referred to here equivalently as heart beat acceleration, HBA, heart rate drop or HRD), may correspond to an instantaneous or time-interval-specific (e.g., a 15-second moving window) slope of a graph of the HR versus time. This slope may be determined at a specific point(s) and/or for specific intervals during the decrease in HR from an elevated heart rate back towards a baseline heart rate. In one embodiment, the peak heart rate during a tachycardia event (i.e., a heart rate increase above a baseline heart rate followed by a decrease toward the baseline rate) and the baseline rate may be used to determine a peak-to-baseline (PTB) value that is useful for performing calculations according to certain embodiments. For a given point along the decreasing HR curve from the peak heart rate, one useful rate of decrease may be determined as the average slope (or average rate of decrease) from the peak to the given point. In other embodiments, short-term rates of decrease may be established for a short-term time window along the decreasing HR curve from peak to baseline. Short-term rates of decrease may be determined for a 5-second or 5-beat window, for example, or from the last two heart beats. In certain embodiments, particular short-term rates of decrease may be useful to compare to later short-term rates of decrease. It has been appreciated by the present inventor that PTB decreases in heart rate for seizure events and non-seizure events differ qualitatively. In particular, decreases in HR for seizure events tend to maintain a relatively constant rate of decrease during most of the PTB decline. In non-seizure events, by contrast, rates of decrease tend to decline as the HR approaches the baseline HR. Thus, for seizure events the slope of the PTB heart rate curve tends to be relatively straight. The slope of the PTB heart rate curve for non-seizure tachycardia episodes, on the other hand, tends to flatten as the HR approaches the baseline heart rate, resulting in a HR curve that is "upwardly concave" near the baseline for non-seizure events.
Because the differences in HR decline between seizure and non-seizure events is most prominent near the baseline, in some embodiments, rates of decline and/or rates of change of rates of decline are determined at rates below the rate halfway between the peak and the baseline heart rate. In some embodiments, a seizure end may be identified in response to determining that the HR drop at a specific point during the PTB transition is greater (in absolute value since during a heart rate decrease the slope is negative) than a seizure threshold value. In some embodiments, HRDs during PTB transitions in healthy subjects for nonpathologic events are smaller than HRDs during a corresponding time during a seizure event. The threshold HRD may accordingly be chosen in order to maximize the accuracy of the seizure identification process. Binary classification statistics may be used to maximize the accuracy of the detection by appropriately balancing the sensitivity and specificity of the identification process.
In some embodiments, the HRD (the slope of the HR v. time graph) at a particular point may be computed numerically from the HR v. time data using well-known numerical computation techniques for calculating slope using numerical data. In some embodiments, average HRDs may be used over one or more intervals for identifying a seizure offset. Intervals may be chosen anywhere between a peak HR and the return towards a baseline HR, the peak HR being the highest HR value reached during the seizure or nonpathologic event, and the baseline HR being the HR of the subject prior to the tachycardia event under consideration (whether pathological or non-pathological). For example, a First Half HRD may be computed for an interval between the peak HR value and the HR that is halfway between the baseline HR and the peak HR. Similarly, a Middle Half HRD may be computed for an interval between the HR that is 25% of the way between the peak HR and the baseline HR and the HR that is 75% of the way between the peak HR and the baseline HR, and a Second Half HRD may be computed for the interval between the HR that is 50% of the distance from peak-to-baseline, and the baseline HR itself. Similarly, a First Third HRD may be computed between the peak HR and the HR that is 1/3 of the way from the peak HR to the baseline HRD, and a Final Third HRD may be computed between the HR that is 2/3 of the way from the peak HR to the baseline HR and the baseline HR itself. Similar intervals may be constructed, and the HRD computed, depending upon the points in the decline from peak to baseline that provides a desirable level of discrimination between seizure and non-seizure events. More generally, in some embodiments, an average HRD over an interval from point A to point B may be computed by dividing the HR change from point A to point B by the time change from point A to point B.
In some embodiments, the offset of a seizure may be identified in response to determining that the First Half HRD and Middle Half HRD are substantially equal. For example, the offset of the seizure may be identified in response to determining that the First Half HRD and the Middle Half HRD are within a certain percentage of each other. It should be noted that other appropriate intervals/average HRDs may be selected and used in various combinations to identify a seizure.
In some embodiments, a seizure may be identified by comparing HRDs at one or more points and/or by comparing average HRDs over one or more intervals to HRDs threshold values. In some embodiments, the threshold HRD values may be determined by examining typical corresponding values of HRDs for seizure and nonpathologic events. For example, a seizure may be identified in response to determining that an average One Third HRD is above a certain threshold, which is determined by examining
corresponding One Third HRD values for typical seizures as well as nonpathologic events.
In some embodiments, a general profile of the HR versus time during a seizure offset may be determined and compared to known HR versus time profiles during seizures and nonpathologic events. In some embodiments, a seizure offset may be identified in response to determimng that there exists a substantial match between the determined profile and the known seizure profiles, or a substantial dissimilarity between the determined profile and one or more known nonpathologic profiles. In some
embodiments, a seizure may be identified in response to determining that a seizure profile is substantially similar to a linear seizure profile and substantially dissimilar to a nonpathologic profile such as an asymptotically decreasing profile (for example, a decreasing exponential profile), a concave decreasing profile, etc.
Figure 3 is a block diagram illustrating an alternative system for detecting a seizure event using heart beat data, in accordance with some embodiments.
In some embodiments, heart rate data analyzer 310 is configured to receive and analyze heart rate data 325. Heart rate data 325 may be a series of heart rate values at given points in time. The heart rate data may be received in real time or near real time from heart rate detection equipment connected to a subject, such as HR detector 330. HR detector 330, in some embodiments may comprise electrocardiogram equipment, which is configured to couple to a subject's body in order to detect the subject's heart beat. In some embodiments, heart rate data analyzer 310 is configured to analyze the data and identify seizure events that the subject may have suffered and/or is currently suffering. The functionality of heart rate data analyzer 310 may be implemented using one or more processors such as processor(s) 315 and one or more memory units coupled to the one or more processors such as memory unit(s) 320.
Heart rate data analyzer 310 may be configured to identify the offset of a seizure by examining the rate and generally the profile with which the HR drops during the offset of the seizure as discussed here.
Heart rate data analyzer 310 may also be coupled to human interface input device 335 and human interface output device 340. Human interface input device 335 may be configured to provide a user of the system a means with which to input data into the system and with which to generally control various options. Accordingly, human interface input device 335 may be at least one of a computer keyboard, a touch screen, a microphone, a video camera, etc.
Human interface output device 340 may be configured to provide information to a user of the system visually, audibly, etc. Accordingly, human interface output device 340 may be at least one of a computer display, one or more audio speakers, haptic feedback device, etc. In some embodiments, human interface input device 335 and human interface output device may be combined into a single unit.
Figure 4 is a diagram illustrating an example of obtaining heart beat data from a subject using electrocardiogram equipment, in accordance with some embodiments.
A particular embodiment of a system for monitoring heart beat data from a subject is shown in the Figure and generally designated 400. System 400 may include, a heart beat sensor 440, a controller 455, and a computer 410.
In some embodiments, heart beat and/or heart rate data may be collected by using an external or implanted heart beat sensor and related electronics (such as heart beat sensor 440), and a controller that may be wirelessly (or via wire) coupled to the sensor for detecting seizure events based upon the patient's heart signal, such as controller 455. In one embodiment, sensor 440 may comprise electrodes in an externally worn patch adhesively applied to a skin surface of patient 485. In some embodiments, sensor 440 may be implanted under the patient's skin. The patch may include electronics for sensing and determining a heart beat signal (e.g., an ECG signal), such as an electrode, an amplifier and associated filters for processing the raw heart beat signal, an A/D converter, a digital signal processor, and in some embodiments, an RF transceiver wirelessly coupled to a separate controller unit, such as controller 455. In some embodiments, the controller unit may be part of the patch electronics.
The controller 455 may implement an algorithm for detection of seizure events based on the heart signal. It may comprise electronics and memory for performing computations of, e.g. H parameters such as median HR values for the first and second windows, determination of ratios and/or differences of the first and second HR measures, and determination of seizure onset and offset times according to the foregoing disclosure. In some embodiments, the controller 455 may include a display and an input/output device. The controller 455 may comprise part of a handheld computer such as a PDA or smartphone, a cellphone, an iPod® or iPad®, etc.
In the example shown, sensor 440 may be placed on a body surface suitable for detection of heart signals. Electrical signals from the sensing electrodes may be then fed into patch electronics for filtering, amplification and A D conversion and other preprocessing, and creation of a time-of-beat sequence (e.g., an R-R interval data stream), which may then be transmitted to controller 455. Sensor 440 may be configured to perform various types of processing to the heart rate data, including filtering, determination of R- wave peaks, calculation of R-R intervals, etc. In some embodiments, the patch electronics may include the functions of controller 455, illustrated in Fig. 4 as separate from sesnor 440. The time-of-beat sequence may be then provided to controller 455 for processing and determination of seizure onset and offset times and related seizure metrics. Controller 455 may be configured to communicate with computer 10. Computer 410 may be located in the same location or computer 410 may be located in a remote location from controller 455. Computer 410 may be configured to further analyze the heart data, store the data, retransmit the data, etc. Computer 410 may comprise a display for displaying information and results to one or more users as well as an input device from which input may be received by the one or more users. In some embodiments, controller 455 may be configured to perform various tasks such as calculating first and second HR measures, HR parameters, comparing HR parameters to appropriate thresholds, and determining of seizure onset and seizure end times, and other seizure metrics,
Figure 5 is a flow diagram illustrating a method for detecting a seizure event using heart beat data, in accordance with some embodiments. In some embodiments, the method illustrated in this figure may be performed by one or more of the systems illustrated in Figure 2, Figure 3, and Figure 4,
At block 510, receiving heart beat data versus time for a patient is received.
At block 515, an increase in the heart rate of a patient is detected from a baseline heart rate to an elevated heart rate. At block 520, a decrease in heart rate is detected from the elevated heart rate.
At block 525, for a time interval occurring during said decrease in heart rate, at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, is determined.
At block 530, a seizure event is detected in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease. In some embodiments, detecting of the seizure event comprises determining the end of a seizure event. The threshold rate of decrease or threshold rate of change of rate of decrease may in some embodiments be selected after examining previous such rates for seizures as well as nonpathologic events.
Figure 6 is a flow diagram illustrating an alternative method for detecting a seizure event using heart rate data, in accordance with some embodiments. In some embodiments, the method illustrated in this figure may be performed by one or more of the systems illustrated in Figure 2, Figure 3, and Figure 4.
At block 610, data of heart rate (HR) versus time is provided. In some embodiments, the data may be provided in real time or near real time or the data may be retrieved from storage. At block 615, an HR drop rate or HRD (which corresponds to a slope of the HR versus time data) is determined at one or more points of the provided data. In some embodiments, instead of an HRD at a single point, an average HRD may be determined over an interval of the HRD versus time data/graph,
At decision 620, a determination is made as to whether the HRD is above a threshold HRD. In some embodiments, the threshold HBA may be chosen by examining previous seizure and nonpathologic HRDs.
If the HRD is not above the threshold HRD, decision 620 branches to the "no" branch, and processing returns to block 610 where additional data is received for processing. On the other hand, if the HRD is above the threshold HRD, decision 620 branches to the "yes" branch, and processing continues at block 625 ,
At block 625, the examined HRD is indicated as indicative of the end of a seizure, and thus a seizure event is identified. Subsequently, processing returns to block 610 where additional data is provided for processing. Figure 7 is a graph of heart rate versus time during an event such as a seizure that causes an increase from a baseline heart rate to an elevated heart rate followed by a decrease in the heart rate back toward the baseline heart rate, in accordance with some embodiments.
Graph 710 shows the rise of a subject's heart rate (HR) from a baseline HR to a peak HR and then the fall of the HR back toward the baseline HR after some time for a typical seizure case and for a non-pathological case. Point ½ HR marks the HR value between the peak HR and the baseline HR, and point 3/4 HR mai'ks the HR value that is 3/4 of the way from the peak HR to the baseline HR. In the figure, the non-pathological HR drop is indicated by the dotted line. In some embodiments, in order to determine whether the fall in the HR corresponds to the end of a seizure, the slope of the graph (i.e., HRD) may be computed. In some embodiments, the instantaneous slope may be computed at a point. In alternative embodiments, an average slope may be computed between two points.
For example, the instantaneous slope may be computed at point 725 and corresponding point 730 for the non-pathological case. The two slopes for the typical seizure case and the non-pathological case are illustrated by dashed lines 727 and 732 respectively.
Alternatively, an average slope may be computed between points 725 and 726 and between corresponding points 730 and 731 for the non-pathological case. The two average slopes for the typical seizure case and the non-pathological case are illustrated by dashed lines 728 and 733 respectively.
Regardless of the method used to compute the slope, a seizure may be identified in response to determining that the slope is below (or above in absolute value) a certain threshold value. As seen by the figure, typical seizure cases exhibit slopes that are smaller (or larger in absolute value) when compared to non-pathological cases as indicated by dashed lines representing these slopes. In alternative embodiments, a seizure may be identified in response to determining that the average HRDs in two intervals is substantially equal. For example, the average HRD may be computed and compared for two intervals by dividing the difference in HR by the difference in time at the beginning and end of the intervals. Then, as discussed here, the seizure is identified in response to determining that the HRDs for the two intervals are substantially equal, or differ by only a threshold slope difference. By comparison, a typical non-pathological case will exhibit a greater difference in the average slope between two different intervals.
Similarly, the concavity of the graph may be computed for a certain interval and compared to certain threshold concavities. As can be seen by the figure, typical seizure cases exhibit concavities that are typically larger compared to the concavities of non- pathological events. In some embodiments, the concavity may be computed by determining the second time derivative of the HR. Thus, a seizure may be identified in response to determining that the concavity (average or at a given point) is higher than a threshold concavity value .
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present claimed subject matter. Various
modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the claimed subject matter. Thus, the present claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed here.
The benefits and advantages that may be provided by the present claimed subject matter have been described above with regard to specific embodiments. These benefits and advantages, and any elements or limitations that may cause them to occur or to become more pronounced are not to be construed as critical, required, or essential features of any or all of the claims. As used here, the terms "comprises," "comprising," or any other variations thereof, are intended to be interpreted as non-exclusively including the elements or limitations which follow those terms. Accordingly, a system, method, or other embodiment that comprises a set of elements is not limited to only those elements and may include other elements not expressly listed or inherent to the claimed embodiment.
While the present claimed subject matter has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the claimed subject matter is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the present disclosure as detailed within the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method for detecting a seizure event, the method comprising:
receiving heart beat data versus time for a patient;
detecting an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate;
detecting a decrease in heart rate from the elevated heart rate;
for a time interval occurring during said decrease in heart rate, determining at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate; and
detecting a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
2. The method of claim 1, where at least one of a) the threshold rate of decrease and b) the threshold rate of change in the rate of decrease is determined based on nonpathologic rates of decrease of heart rate and nonpathologic rates of change in rates of decrease in heart rate.
3. The method of claim 1, further comprising a first intermediate heart rate between said elevated heart rate and said baseline heart rate and occurring during said decrease in heart rate from the elevated heart rate, where detecting the seizure event comprises determining at least one of a) a rate of decrease in heart rate at the first intermediate heart rate greater than a threshold rate of decrease, and b) a rate of change in a rate of decrease at the first intermediate heart rate less than a threshold rate of change in a rate of decrease.
4. The method of claim 3, wherein the first intermediate heart rate is a heart rate at least below a rate halfway between the elevated rate and the baseline rate. 5. The method of claim 1, further comprising:
determining an initial detection of a seizure event based upon the increase in heart rate; determining a profile of the decrease in heart rate; comparing the profile of decrease in heart rate to a Icnown profile of a seizure event decrease in heart rate; and
confirming the initial detection of the seizure event in response to determining that the profile of the decrease in heart rate is substantially similar to the Icnown profile of the seizure event decrease in heart rate.
6. The method of claim 5, further comprising:
comparing the profile of the decrease in heart rate to a known profile of a nonpatho logic decrease in heart rate;
confirming the detection of the seizure event in response to determining that the profile of the decrease in heart rate is substantially dissimilar to the laiown profile of the nonpathologic decrease in heart rate.
7. The method of claim 6, where the laiown profile of the seizure decrease in heart rate is substantially a linearly decreasing profile, and where the known profile of the nonpathologic decrease in heart rate is substantially at least one of: an asymptotically decreasing profile, an exponentially decreasing profile, and a concave decreasing profile.
8. The method of claim 1, further comprising:
determining a first average decreasing heart rate over a first time interval occurring during said decrease in heart rate;
determining a second average decreasing heart rate over a second time interval occurring during said decrease in heart rate, wherein said second time interval is different from said first time interval; and
confirming the detection of the seizure event in response to determining that the first average decreasing heart rate is substantially equal to the second average decreasing heart rate. 9. The method of claim 1, wherein the elevated rate is a rate at least one of 10 beats per minute (bpm) greater than the baseline rate and 10 percent greater than the baseline rate.
10. The method of claim 3, wherein the first intermediate heart rate is a rate at least one of 10 beats per minute (bpm) less than the elevated rate and 10 percent less than the elevated rate.
11. A system for detecting a seizure event in a patient, the system comprising:
one or more processors;
one or more memory units coupled to the one or more processors;
the system being configured to:
receive data of heart beat versus time;
detect an increase in the heart rate from a baseline heart rate to an elevated heart rate; detect a decrease in heart rate from the elevated heart rate
for a time interval occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate, and
detect a seizure event in response to determining at least one of a) that a rate of decrease in heart rate is greater than a threshold rate of decrease, and b) that the rate of change in the rate of decrease is less than a threshold rate of change in a rate of decrease.
12. The system of claim 11, further comprising a first intermediate heart rate and a second intermediate heart rate, wherein said first intermediate heart rate is a heart rate between said elevated heart rate and said baseline heart rate and occurring during said decrease in heart rate from the elevated heart rate, and wherein said second intermediate heart rate is a heart rate between said first intermediate heart rate and said baseline heart rate and occurring during said decrease in heart rate from the elevated heart rate , wherein the system being configured to identify the seizure event comprises the system being configured to detect the seizure event in response to determining at least one of a) that a rate of decrease in heart rate from said first intermediate heart rate to said second intermediate heart rate is greater than a threshold rate of decrease, and b) that a rate of change in a rate of decrease in heart rate from first intermediate heart rate to said second intermediate heart rate is less than a threshold rate of change in a rate of decrease.
13. The system of claim 11 , where the system is further configured to :
detennine a profile of the decrease in heart rate;
compare the profile of the decrease in heart rate to a known profile of a nonpathological decrease in heart rate; and confirm the detection of the seizure event in response to determining that the profile of the decrease in heart rate is substantially dissimilar to the known profile of the seizure event decrease in heart rate.
14. The system of claim 13, where the system is further configured to:
determine a profile of the decrease in heart rate;
compare the profile of the decrease in heart rate to a known profile of a seizure event decrease in heart rate;
confirm the detection of the seizure event in response to determining that the profile of the decrease in heart rate is substantially similar to the known profile of the seizure event decrease in heart rate.
15. The system of claim 14, where the known profile of the seizure event decrease in heart rate is substantially a linearly decreasing profile, and where the known profile of the nonpathologic decrease in heart rate is substantially at least one of: an asymptotically decreasing profile, an exponentially decreasing profile, and a concave decreasing profile.
16. The system of claim 11 , where the system is further configured to:
determine a first average decreasing heart rate over a first interval occurring during said decrease in heart rate;
determine a second average decreasing heart rate over a second interval occurring during said decrease in heart rate, wherein the second time interval is different from the first time interval; and
confirm the detection of the seizure event in response to determining that the first average decreasing heart rate is substantially equal to the second average decreasing heart rate. 17. A computer program product embodied in a computer-operable medium, the computer program product comprising logic instructions, the logic instructions being effective to:
process data of heart rate (HR) versus time; and
detect an increase in the heart rate of a patient from a baseline heart rate to an elevated heart rate;
detect a decrease in heart rate from the elevated heart rate; for a time interval occurring during said decrease in heart rate, determine at least one of a) a rate of decrease in heart rate and b) a rate of change in a rate of decrease in heart rate; and
detect a seizure event in response to determining at least one of a) a rate of decrease in heart rate greater than a threshold rate of decrease, and b) a rate of change in the rate of decrease less than a threshold rate of change in a rate of decrease.
1 . The product of claim 17, the logic instructions being further effective to:
receive heart beat data versus time for a patient;
detect an increase in the heart rate of the patient from a baseline heart rate to an elevated heart rate;
detect a decrease in heart rate from the elevated rate to a first intermediate rate between the elevated rate and the baseline rate, and further detecting a decrease in heart rate to a second intermediate rate between the first intermediate rate and the baseline rate;
determine at least one of a) a rate of decrease from said first intermediate rate to said second intermediate rate and b) a rate of change in a rate of decrease in heart rate from said first intermediate rate to said second intermediate rate; and
detect a seizure event in response to determining at least one of a) that the rate of decrease of heart rate from said first intermediate rate to said second intermediate rate is greater than a threshold rate of decrease and b) the rate of change in the rate of decrease from said first intermediate rate to said second intermediate rate is less than a threshold rate of change in a rate of decrease.
19. The product of claim 18, wherein said elevated heart rate is a rate at least a specified threshold above said baseline heart rate.
20. The product of claim 18, wherein at least one of said first and said second intermediate heart rates is a rate less than the rate halfway between said elevated heart rate and said baseline heart rate.
21. The product of claim 18, the logic instructions being further effective to:
detect a seizure event based on an increase in heart rate from a baseline heart rate to an intermediate elevated heart rate between the elevated heart rate and the baseline heart rate;
detect a seizure event in response to determining at least one of a) that the rate of decrease of heart rate from said first intermediate rate to said second intermediate rate is greater than a threshold rate of decrease and b) the rate of change in the rate of decrease from said first intermediate rate to said second intermediate rate is less than a threshold rate of change in a rate of decrease comprises confirming said detecting a seizure event based on an increase in heart rate.
PCT/US2011/061624 2011-04-25 2011-11-21 Identifying seizures using heart rate decrease WO2012148470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/093,475 US8725239B2 (en) 2011-04-25 2011-04-25 Identifying seizures using heart rate decrease
US13/093,475 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012148470A1 true WO2012148470A1 (en) 2012-11-01

Family

ID=45065984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/061624 WO2012148470A1 (en) 2011-04-25 2011-11-21 Identifying seizures using heart rate decrease

Country Status (2)

Country Link
US (2) US9498162B2 (en)
WO (1) WO2012148470A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130172774A1 (en) * 2011-07-01 2013-07-04 Neuropace, Inc. Systems and Methods for Assessing the Effectiveness of a Therapy Including a Drug Regimen Using an Implantable Medical Device
US8805484B2 (en) * 2011-08-01 2014-08-12 Case Western Reserve University System, apparatus and method for diagnosing seizures
US9849025B2 (en) 2012-09-07 2017-12-26 Yale University Brain cooling system
GB201411046D0 (en) * 2014-06-20 2014-08-06 Lothian Health Board Seizure detection
US20180001139A1 (en) * 2016-06-29 2018-01-04 Stephanie Moyerman Accelerated pattern recognition in action sports
WO2019195850A1 (en) * 2018-04-06 2019-10-10 Ivan Osorio Automated seizure detection, quantification, warning and therapy delivery using the slope of heart rate
WO2019212934A1 (en) * 2018-04-30 2019-11-07 Children's Medical Center Corporation Seizure detection using multiple biomedical signals
CN112957021B (en) * 2021-03-23 2023-01-10 贵州佳优康健科技有限责任公司 Heart rate health early warning system and implementation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity

Family Cites Families (491)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172459A (en) 1977-10-17 1979-10-30 Medtronic, Inc. Cardiac monitoring apparatus and monitor
US4197856A (en) 1978-04-10 1980-04-15 Northrop Robert B Ultrasonic respiration/convulsion monitoring apparatus and method for its use
IT1118131B (en) 1978-07-20 1986-02-24 Medtronic Inc IMPROVEMENT IN MULTI-MODE CARDIAC PACEMAKERS ADAPTABLE IMPLANTABLE
US4291699A (en) 1978-09-21 1981-09-29 Purdue Research Foundation Method of and apparatus for automatically detecting and treating ventricular fibrillation
US4320766A (en) 1979-03-13 1982-03-23 Instrumentarium Oy Apparatus in medicine for the monitoring and or recording of the body movements of a person on a bed, for instance of a patient
CA1215128A (en) 1982-12-08 1986-12-09 Pedro Molina-Negro Electric nerve stimulator device
US4867164A (en) 1983-09-14 1989-09-19 Jacob Zabara Neurocybernetic prosthesis
US4702254A (en) 1983-09-14 1987-10-27 Jacob Zabara Neurocybernetic prosthesis
US5025807A (en) 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4573481A (en) 1984-06-25 1986-03-04 Huntington Institute Of Applied Research Implantable electrode array
US4949721A (en) 1988-08-11 1990-08-21 Omron Tateisi Electronics Co. Transcutaneous electric nerve stimulater
US4920979A (en) 1988-10-12 1990-05-01 Huntington Medical Research Institute Bidirectional helical electrode for nerve stimulation
US4979511A (en) 1989-11-03 1990-12-25 Cyberonics, Inc. Strain relief tether for implantable electrode
US5179950A (en) 1989-11-13 1993-01-19 Cyberonics, Inc. Implanted apparatus having micro processor controlled current and voltage sources with reduced voltage levels when not providing stimulation
US5186170A (en) 1989-11-13 1993-02-16 Cyberonics, Inc. Simultaneous radio frequency and magnetic field microprocessor reset circuit
US5154172A (en) 1989-11-13 1992-10-13 Cyberonics, Inc. Constant current sources with programmable voltage source
US5235980A (en) 1989-11-13 1993-08-17 Cyberonics, Inc. Implanted apparatus disabling switching regulator operation to allow radio frequency signal reception
US5062169A (en) 1990-03-09 1991-11-05 Leggett & Platt, Incorporated Clinical bed
US5213568A (en) 1990-03-30 1993-05-25 Medtronic Inc. Activity controlled electrotransport drug delivery device
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
US5137020A (en) 1990-11-29 1992-08-11 Medtronic, Inc. Battery impedance measurement apparatus
AU645848B2 (en) 1991-01-15 1994-01-27 Pacesetter Ab A system and method for post-processing intracardiac signals
US5188104A (en) 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5263480A (en) 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5269302A (en) 1991-05-10 1993-12-14 Somatics, Inc. Electroconvulsive therapy apparatus and method for monitoring patient seizures
US5205285A (en) 1991-06-14 1993-04-27 Cyberonics, Inc. Voice suppression of vagal stimulation
US5194847A (en) 1991-07-29 1993-03-16 Texas A & M University System Apparatus and method for fiber optic intrusion sensing
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5231988A (en) 1991-08-09 1993-08-03 Cyberonics, Inc. Treatment of endocrine disorders by nerve stimulation
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5237991A (en) 1991-11-19 1993-08-24 Cyberonics, Inc. Implantable medical device with dummy load for pre-implant testing in sterile package and facilitating electrical lead connection
US5203326A (en) 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5313953A (en) 1992-01-14 1994-05-24 Incontrol, Inc. Implantable cardiac patient monitor
IT1259358B (en) 1992-03-26 1996-03-12 Sorin Biomedica Spa IMPLANTABLE DEVICE FOR DETECTION AND CONTROL OF THE SYMPATHIC-VAGAL TONE
US5330507A (en) 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5330515A (en) 1992-06-17 1994-07-19 Cyberonics, Inc. Treatment of pain by vagal afferent stimulation
WO1994000192A1 (en) 1992-06-30 1994-01-06 Medtronic, Inc. Method and apparatus for treatment of angina
US5243980A (en) 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5311876A (en) 1992-11-18 1994-05-17 The Johns Hopkins University Automatic detection of seizures using electroencephalographic signals
US5404877A (en) 1993-06-04 1995-04-11 Telectronics Pacing Systems, Inc. Leadless implantable sensor assembly and a cardiac emergency warning alarm
US5523742A (en) 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5513649A (en) 1994-03-22 1996-05-07 Sam Technology, Inc. Adaptive interference canceler for EEG movement and eye artifacts
US5645077A (en) 1994-06-16 1997-07-08 Massachusetts Institute Of Technology Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body
EP0688578B1 (en) 1994-06-24 1999-11-10 Pacesetter AB Arrhythmia detector
US6049273A (en) 1994-09-09 2000-04-11 Tattletale Portable Alarm, Inc. Cordless remote alarm transmission apparatus
US5522862A (en) 1994-09-21 1996-06-04 Medtronic, Inc. Method and apparatus for treating obstructive sleep apnea
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
AU5182396A (en) 1995-05-18 1996-11-29 Mark Johnson Motion sensor
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US5720771A (en) 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6944501B1 (en) 2000-04-05 2005-09-13 Neurospace, Inc. Neurostimulator involving stimulation strategies and process for using it
US6480743B1 (en) 2000-04-05 2002-11-12 Neuropace, Inc. System and method for adaptive brain stimulation
US6073048A (en) 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US5995868A (en) 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US6463328B1 (en) 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US5611350A (en) 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5743860A (en) 1996-03-20 1998-04-28 Lockheed Martin Energy Systems, Inc. Apparatus and method for epileptic seizure detection using non-linear techniques
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US5716377A (en) 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5683422A (en) 1996-04-25 1997-11-04 Medtronic, Inc. Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6628987B1 (en) 2000-09-26 2003-09-30 Medtronic, Inc. Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US6532388B1 (en) 1996-04-30 2003-03-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
US5713923A (en) 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US6104956A (en) 1996-05-31 2000-08-15 Board Of Trustees Of Southern Illinois University Methods of treating traumatic brain injury by vagus nerve stimulation
US5978972A (en) 1996-06-14 1999-11-09 Johns Hopkins University Helmet system including at least three accelerometers and mass memory and method for recording in real-time orthogonal acceleration data of a head
DE69734599T2 (en) 1996-07-11 2007-02-08 Medtronic, Inc., Minneapolis MINIMALLY INVASIVE IMPLANTABLE DEVICE FOR MONITORING PHYSIOLOGICAL PROCESSES
US5748113A (en) 1996-08-19 1998-05-05 Torch; William C. Method and apparatus for communication
USRE39539E1 (en) 1996-08-19 2007-04-03 Torch William C System and method for monitoring eye movement
US6163281A (en) 1996-08-19 2000-12-19 Torch; William C. System and method for communication using eye movement
US6246344B1 (en) 1996-08-19 2001-06-12 William C. Torch Method and apparatus for voluntary communication
US6542081B2 (en) 1996-08-19 2003-04-01 William C. Torch System and method for monitoring eye movement
US5905436A (en) 1996-10-24 1999-05-18 Gerontological Solutions, Inc. Situation-based monitoring system
US5800474A (en) 1996-11-01 1998-09-01 Medtronic, Inc. Method of controlling epilepsy by brain stimulation
US5690688A (en) 1996-11-12 1997-11-25 Pacesetter Ab Medical therapy apparatus which administers therapy adjusted to follow natural variability of the physiological function being controlled
US5808552A (en) 1996-11-25 1998-09-15 Hill-Rom, Inc. Patient detection system for a patient-support device
US7630757B2 (en) 1997-01-06 2009-12-08 Flint Hills Scientific Llc System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US5871517A (en) * 1997-01-15 1999-02-16 Somatics, Inc. Convulsive therapy apparatus to stimulate and monitor the extent of therapeutic value of the treatment
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US5942979A (en) 1997-04-07 1999-08-24 Luppino; Richard On guard vehicle safety warning system
US5861014A (en) 1997-04-30 1999-01-19 Medtronic, Inc. Method and apparatus for sensing a stimulating gastrointestinal tract on-demand
US6479523B1 (en) 1997-08-26 2002-11-12 Emory University Pharmacologic drug combination in vagal-induced asystole
US6248080B1 (en) 1997-09-03 2001-06-19 Medtronic, Inc. Intracranial monitoring and therapy delivery control device, system and method
US6931274B2 (en) 1997-09-23 2005-08-16 Tru-Test Corporation Limited Processing EEG signals to predict brain damage
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
US5916181A (en) 1997-10-24 1999-06-29 Creative Sports Designs, Inc. Head gear for detecting head motion and providing an indication of head movement
US6730047B2 (en) 1997-10-24 2004-05-04 Creative Sports Technologies, Inc. Head gear including a data augmentation unit for detecting head motion and providing feedback relating to the head motion
US6427086B1 (en) 1997-10-27 2002-07-30 Neuropace, Inc. Means and method for the intracranial placement of a neurostimulator
US6647296B2 (en) 1997-10-27 2003-11-11 Neuropace, Inc. Implantable apparatus for treating neurological disorders
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US6597954B1 (en) 1997-10-27 2003-07-22 Neuropace, Inc. System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes
US6459936B2 (en) 1997-10-27 2002-10-01 Neuropace, Inc. Methods for responsively treating neurological disorders
US6091992A (en) 1997-12-15 2000-07-18 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
US6221908B1 (en) 1998-03-12 2001-04-24 Scientific Learning Corporation System for stimulating brain plasticity
US6836685B1 (en) 1998-04-07 2004-12-28 William R. Fitz Nerve stimulation method and apparatus for pain relief
US6018682A (en) 1998-04-30 2000-01-25 Medtronic, Inc. Implantable seizure warning system
US6374140B1 (en) 1998-04-30 2002-04-16 Medtronic, Inc. Method and apparatus for treating seizure disorders by stimulating the olfactory senses
US6735474B1 (en) 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US7242984B2 (en) 1998-08-05 2007-07-10 Neurovista Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US7324851B1 (en) 1998-08-05 2008-01-29 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7277758B2 (en) 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
WO2000007497A1 (en) 1998-08-07 2000-02-17 Infinite Biomedical Technologies, Incorporated Implantable myocardial ischemia detection, indication and action technology
US6171239B1 (en) 1998-08-17 2001-01-09 Emory University Systems, methods, and devices for controlling external devices by signals derived directly from the nervous system
US6356788B2 (en) 1998-10-26 2002-03-12 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6208902B1 (en) 1998-10-26 2001-03-27 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator
US6269270B1 (en) 1998-10-26 2001-07-31 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of Dementia and Alzheimer's disease utilizing an implantable lead and external stimulator
US6611715B1 (en) 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US20030212440A1 (en) 2002-05-09 2003-11-13 Boveja Birinder R. Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US6668191B1 (en) 1998-10-26 2003-12-23 Birinder R. Boveja Apparatus and method for electrical stimulation adjunct (add-on) therapy of atrial fibrillation, inappropriate sinus tachycardia, and refractory hypertension with an external stimulator
US6615081B1 (en) 1998-10-26 2003-09-02 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of diabetes by neuromodulation with an external stimulator
US6205359B1 (en) 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US7076307B2 (en) 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US6505074B2 (en) 1998-10-26 2003-01-07 Birinder R. Boveja Method and apparatus for electrical stimulation adjunct (add-on) treatment of urinary incontinence and urological disorders using an external stimulator
US6366814B1 (en) 1998-10-26 2002-04-02 Birinder R. Boveja External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders
US6564102B1 (en) 1998-10-26 2003-05-13 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of coma and traumatic brain injury with neuromodulation using an external stimulator
US6253109B1 (en) 1998-11-05 2001-06-26 Medtronic Inc. System for optimized brain stimulation
US6272379B1 (en) 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6324421B1 (en) 1999-03-29 2001-11-27 Medtronic, Inc. Axis shift analysis of electrocardiogram signal parameters especially applicable for multivector analysis by implantable medical devices, and use of same
US6115630A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Determination of orientation of electrocardiogram signal in implantable medical devices
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
US6984993B2 (en) 1999-04-28 2006-01-10 Nexense Ltd. Method and apparatus for making high-precision measurements
US6190324B1 (en) 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6356784B1 (en) 1999-04-30 2002-03-12 Medtronic, Inc. Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
US6315740B1 (en) 1999-05-17 2001-11-13 Balbir Singh Seizure and movement monitoring apparatus
US7134996B2 (en) 1999-06-03 2006-11-14 Cardiac Intelligence Corporation System and method for collection and analysis of patient information for automated remote patient care
US6539263B1 (en) 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6167311A (en) 1999-06-14 2000-12-26 Electro Core Techniques, Llc Method of treating psychological disorders by brain stimulation within the thalamus
US6587719B1 (en) 1999-07-01 2003-07-01 Cyberonics, Inc. Treatment of obesity by bilateral vagus nerve stimulation
US6304775B1 (en) 1999-09-22 2001-10-16 Leonidas D. Iasemidis Seizure warning and prediction
US7346391B1 (en) 1999-10-12 2008-03-18 Flint Hills Scientific Llc Cerebral or organ interface system
US6560486B1 (en) 1999-10-12 2003-05-06 Ivan Osorio Bi-directional cerebral interface system
US6473644B1 (en) 1999-10-13 2002-10-29 Cyberonics, Inc. Method to enhance cardiac capillary growth in heart failure patients
US6628985B2 (en) 2000-12-18 2003-09-30 Cardiac Pacemakers, Inc. Data logging system for implantable medical device
US20030208212A1 (en) 1999-12-07 2003-11-06 Valerio Cigaina Removable gastric band
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7127370B2 (en) 2000-01-07 2006-10-24 Nocwatch International Inc. Attitude indicator and activity monitoring device
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6708064B2 (en) 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US6477404B1 (en) 2000-03-01 2002-11-05 Cardiac Pacemakers, Inc. System and method for detection of pacing pulses within ECG signals
US6473639B1 (en) 2000-03-02 2002-10-29 Neuropace, Inc. Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures
US6484132B1 (en) 2000-03-07 2002-11-19 Lockheed Martin Energy Research Corporation Condition assessment of nonlinear processes
US7831301B2 (en) 2001-03-16 2010-11-09 Medtronic, Inc. Heart failure monitor quicklook summary for patient management systems
EP1949851A3 (en) 2000-03-17 2010-05-26 Medtronic, Inc. Heart failure monitor quick look summary for patient management systems
US6768969B1 (en) 2000-04-03 2004-07-27 Flint Hills Scientific, L.L.C. Method, computer program, and system for automated real-time signal analysis for detection, quantification, and prediction of signal changes
US6466822B1 (en) 2000-04-05 2002-10-15 Neuropace, Inc. Multimodal neurostimulator and process of using it
US6361508B1 (en) 2000-04-20 2002-03-26 The United States Of America As Represented By The Secretary Of The Army Personal event monitor with linear omnidirectional response
US6610713B2 (en) 2000-05-23 2003-08-26 North Shore - Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
DE60018556T2 (en) 2000-07-11 2006-03-02 Sorin Biomedica Crm S.R.L., Saluggia Implantable pacemaker with automatic mode switching controlled by sympatho-vagal matching
US7146217B2 (en) 2000-07-13 2006-12-05 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient
US20040176831A1 (en) 2000-07-13 2004-09-09 Gliner Bradford Evan Apparatuses and systems for applying electrical stimulation to a patient
US20030125786A1 (en) 2000-07-13 2003-07-03 Gliner Bradford Evan Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021118A1 (en) 2000-07-13 2005-01-27 Chris Genau Apparatuses and systems for applying electrical stimulation to a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7236831B2 (en) 2000-07-13 2007-06-26 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7629890B2 (en) 2003-12-04 2009-12-08 Hoana Medical, Inc. System and methods for intelligent medical vigilance with bed exit detection
US7666151B2 (en) 2002-11-20 2010-02-23 Hoana Medical, Inc. Devices and methods for passive patient monitoring
US6738671B2 (en) 2000-10-26 2004-05-18 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
US6832114B1 (en) 2000-11-21 2004-12-14 Advanced Bionics Corporation Systems and methods for modulation of pancreatic endocrine secretion and treatment of diabetes
US7643655B2 (en) 2000-11-24 2010-01-05 Clever Sys, Inc. System and method for animal seizure detection and classification using video analysis
US6678413B1 (en) 2000-11-24 2004-01-13 Yiqing Liang System and method for object identification and behavior characterization using video analysis
US6594524B2 (en) 2000-12-12 2003-07-15 The Trustees Of The University Of Pennsylvania Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US6609025B2 (en) 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
US6788975B1 (en) 2001-01-30 2004-09-07 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
WO2002082970A2 (en) 2001-04-06 2002-10-24 The Research Foundation Of The City University Of New York Diagnosis and treatment of neural disease and injury using microvoltammetry
US7369897B2 (en) 2001-04-19 2008-05-06 Neuro And Cardiac Technologies, Llc Method and system of remotely controlling electrical pulses provided to nerve tissue(s) by an implanted stimulator system for neuromodulation therapies
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6671555B2 (en) 2001-04-27 2003-12-30 Medtronic, Inc. Closed loop neuromodulation for suppression of epileptic activity
US6656125B2 (en) 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
US6629990B2 (en) 2001-07-13 2003-10-07 Ad-Tech Medical Instrument Corp. Heat-removal method and apparatus for treatment of movement disorder episodes
US6622038B2 (en) 2001-07-28 2003-09-16 Cyberonics, Inc. Treatment of movement disorders by near-diaphragmatic nerve stimulation
US6622047B2 (en) 2001-07-28 2003-09-16 Cyberonics, Inc. Treatment of neuropsychiatric disorders by near-diaphragmatic nerve stimulation
US6622041B2 (en) 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20030040680A1 (en) 2001-08-23 2003-02-27 Clear View Scientific, Llc Eye blinking bio-feedback apparatus and method
US6760626B1 (en) 2001-08-29 2004-07-06 Birinder R. Boveja Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system
US6449512B1 (en) 2001-08-29 2002-09-10 Birinder R. Boveja Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system
US7494464B2 (en) 2001-09-21 2009-02-24 Alexander Rzesnitzek Monitoring system for monitoring the progress of neurological diseases
US6840904B2 (en) 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20030083716A1 (en) 2001-10-23 2003-05-01 Nicolelis Miguel A.L. Intelligent brain pacemaker for real-time monitoring and controlling of epileptic seizures
US6944489B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US20040030365A1 (en) 2001-11-30 2004-02-12 Leo Rubin Medical device to restore functions of a fibrillating heart by cardiac therapies remotely directed by a physician via two-way communication
US6985771B2 (en) 2002-01-22 2006-01-10 Angel Medical Systems, Inc. Rapid response system for the detection and treatment of cardiac events
WO2003063684A2 (en) 2002-01-25 2003-08-07 Intellipatch, Inc. Evaluation of a patient and prediction of chronic symptoms
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
WO2003066155A2 (en) 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Methods of affecting hypothalamic-related conditions
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US8391989B2 (en) 2002-12-18 2013-03-05 Cardiac Pacemakers, Inc. Advanced patient management for defining, identifying and using predetermined health-related events
US7983759B2 (en) 2002-12-18 2011-07-19 Cardiac Pacemakers, Inc. Advanced patient management for reporting multiple health-related parameters
US6957107B2 (en) 2002-03-13 2005-10-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
US7689276B2 (en) 2002-09-13 2010-03-30 Leptos Biomedical, Inc. Dynamic nerve stimulation for treatment of disorders
US7239912B2 (en) 2002-03-22 2007-07-03 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US20030195588A1 (en) 2002-04-16 2003-10-16 Neuropace, Inc. External ear canal interface for the treatment of neurological disorders
EP1356762A1 (en) 2002-04-22 2003-10-29 UbiCom Gesellschaft für Telekommunikation mbH Device for remote monitoring of body functions
US6825767B2 (en) 2002-05-08 2004-11-30 Charles Humbard Subscription system for monitoring user well being
US20060009815A1 (en) 2002-05-09 2006-01-12 Boveja Birinder R Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s)
US20060079936A1 (en) 2003-05-11 2006-04-13 Boveja Birinder R Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders
US7191012B2 (en) 2003-05-11 2007-03-13 Boveja Birinder R Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders
US20050165458A1 (en) 2002-05-09 2005-07-28 Boveja Birinder R. Method and system to provide therapy for depression using electroconvulsive therapy(ECT) and pulsed electrical stimulation to vagus nerve(s)
US20050154426A1 (en) 2002-05-09 2005-07-14 Boveja Birinder R. Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation
US6850601B2 (en) 2002-05-22 2005-02-01 Sentinel Vision, Inc. Condition detection and notification systems and methods
US7277761B2 (en) 2002-06-12 2007-10-02 Pacesetter, Inc. Vagal stimulation for improving cardiac function in heart failure or CHF patients
US7292890B2 (en) 2002-06-20 2007-11-06 Advanced Bionics Corporation Vagus nerve stimulation via unidirectional propagation of action potentials
US6934585B1 (en) 2002-06-21 2005-08-23 Pacesetter, Inc. System and method for far-field R-wave detection
US20030236474A1 (en) 2002-06-24 2003-12-25 Balbir Singh Seizure and movement monitoring
US7139677B2 (en) 2002-07-12 2006-11-21 Ut-Battelle, Llc Methods for consistent forewarning of critical events across multiple data channels
US6934580B1 (en) 2002-07-20 2005-08-23 Flint Hills Scientific, L.L.C. Stimulation methodologies and apparatus for control of brain states
US7006859B1 (en) 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US6763256B2 (en) 2002-08-16 2004-07-13 Optical Sensors, Inc. Pulse oximeter
US6879850B2 (en) 2002-08-16 2005-04-12 Optical Sensors Incorporated Pulse oximeter with motion detection
US7263467B2 (en) 2002-09-30 2007-08-28 University Of Florida Research Foundation Inc. Multi-dimensional multi-parameter time series processing for seizure warning and prediction
JP2005537115A (en) 2002-08-27 2005-12-08 ユニバーシティ オブ フロリダ Optimization of multidimensional time series processing for seizure warning and seizure prediction
US8509897B2 (en) 2002-09-19 2013-08-13 Cardiac Pacemakers, Inc. Morphology-based diagnostic monitoring of electrograms by implantable cardiac device
EP1579608A4 (en) 2002-10-11 2012-09-05 Flint Hills Scient Llc Method, computer program, and system for intrinsic timescale decomposition, filtering, and automated analysis of signals of arbitrary origin or timescale
ATE489031T1 (en) 2002-10-11 2010-12-15 Flint Hills Scient Llc MULTIMODAL SYSTEM FOR DETECTING AND CONTROLLING CHANGES IN THE STATE OF THE BRAIN
US7204833B1 (en) 2002-10-11 2007-04-17 Flint Hills Scientific Llc Multi-modal system for detection and control of changes in brain state
EP1558121A4 (en) 2002-10-15 2008-10-15 Medtronic Inc Signal quality monitoring and control for a medical device system
ATE449561T1 (en) 2002-10-15 2009-12-15 Medtronic Inc PHASE SHIFT OF NEUROLOGICAL SIGNALS IN A MEDICAL DEVICE SYSTEM
WO2004036372A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Scoring of sensed neurological signals for use with a medical device system
US8543214B2 (en) 2002-10-15 2013-09-24 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
WO2004036370A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Channel-selective blanking for a medical device system
US7933646B2 (en) 2002-10-15 2011-04-26 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
AU2003286451A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Signal quality monitoring and control for a medical device system
US20040138647A1 (en) 2002-10-15 2004-07-15 Medtronic, Inc. Cycle mode providing redundant back-up to ensure termination of treatment therapy in a medical device system
EP1583464B1 (en) 2002-10-15 2014-04-09 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
EP1558130A4 (en) 2002-10-15 2009-01-28 Medtronic Inc Screening techniques for management of a nervous system disorder
EP1629341A4 (en) 2002-10-15 2008-10-15 Medtronic Inc Multi-modal operation of a medical device system
AU2003285889A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Control of treatment therapy during start-up and during operation of a medical device system
AU2003287159A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
AU2003295943A1 (en) 2002-11-21 2004-06-18 General Hospital Corporation Apparatus and method for ascertaining and recording electrophysiological signals
US7302298B2 (en) 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
WO2004052449A1 (en) 2002-12-09 2004-06-24 Northstar Neuroscience, Inc. Methods for treating neurological language disorders
US7076288B2 (en) 2003-01-29 2006-07-11 Vicor Technologies, Inc. Method and system for detecting and/or predicting biological anomalies
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
US7613515B2 (en) 2003-02-03 2009-11-03 Enteromedics Inc. High frequency vagal blockage therapy
US20040172084A1 (en) 2003-02-03 2004-09-02 Knudson Mark B. Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US7844338B2 (en) 2003-02-03 2010-11-30 Enteromedics Inc. High frequency obesity treatment
US7035684B2 (en) 2003-02-26 2006-04-25 Medtronic, Inc. Method and apparatus for monitoring heart function in a subcutaneously implanted device
US20040199212A1 (en) 2003-04-01 2004-10-07 Fischell David R. External patient alerting system for implantable devices
US7228167B2 (en) 2003-04-10 2007-06-05 Mayo Foundation For Medical Education Method and apparatus for detecting vagus nerve stimulation
US20040215244A1 (en) 2003-04-23 2004-10-28 Marcovecchio Alan F. Processing pulse signal in conjunction with ECG signal to detect pulse in external defibrillation
EP1620166A4 (en) 2003-04-24 2013-01-02 Advanced Neuromodulation Sys Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US20040225335A1 (en) 2003-05-08 2004-11-11 Whitehurst Todd K. Treatment of Huntington's disease by brain stimulation
US20050187590A1 (en) 2003-05-11 2005-08-25 Boveja Birinder R. Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s)
US20060074450A1 (en) 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US7444184B2 (en) 2003-05-11 2008-10-28 Neuro And Cardial Technologies, Llc Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US20040249302A1 (en) 2003-06-09 2004-12-09 Cyberkinetics, Inc. Methods and systems for processing of brain signals
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
CA2432810A1 (en) 2003-06-19 2004-12-19 Andres M. Lozano Method of treating depression, mood disorders and anxiety disorders by brian infusion
WO2005007120A2 (en) 2003-07-18 2005-01-27 The Johns Hopkins University System and method for treating nausea and vomiting by vagus nerve stimulation
US7999857B2 (en) 2003-07-25 2011-08-16 Stresscam Operations and Systems Ltd. Voice, lip-reading, face and emotion stress analysis, fuzzy logic intelligent camera system
US20050022606A1 (en) 2003-07-31 2005-02-03 Partin Dale L. Method for monitoring respiration and heart rate using a fluid-filled bladder
US20050049515A1 (en) 2003-07-31 2005-03-03 Dale Julian Misczynski Electrode belt for acquisition, processing and transmission of cardiac (ECG) signals
WO2005011805A2 (en) 2003-08-01 2005-02-10 Northstar Neuroscience, Inc. Apparatus and methods for applying neural stimulation to a patient
US7263405B2 (en) 2003-08-27 2007-08-28 Neuro And Cardiac Technologies Llc System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities
EP2319410A1 (en) 2003-09-12 2011-05-11 BodyMedia, Inc. Apparatus for measuring heart related parameters
US8396565B2 (en) 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US7974671B2 (en) 2003-09-19 2011-07-05 Hitachi Medical Corporation Living body information signal processing system combining living body optical measurement apparatus and brain wave measurement apparatus and probe device used for the same
US20050075702A1 (en) 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US7418292B2 (en) 2003-10-01 2008-08-26 Medtronic, Inc. Device and method for attenuating an immune response
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US20050131467A1 (en) 2003-11-02 2005-06-16 Boveja Birinder R. Method and apparatus for electrical stimulation therapy for at least one of atrial fibrillation, congestive heart failure, inappropriate sinus tachycardia, and refractory hypertension
US7389144B1 (en) 2003-11-07 2008-06-17 Flint Hills Scientific Llc Medical device failure detection and warning system
US20050107716A1 (en) 2003-11-14 2005-05-19 Media Lab Europe Methods and apparatus for positioning and retrieving information from a plurality of brain activity sensors
US7104947B2 (en) 2003-11-17 2006-09-12 Neuronetics, Inc. Determining stimulation levels for transcranial magnetic stimulation
US9050469B1 (en) * 2003-11-26 2015-06-09 Flint Hills Scientific, Llc Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
WO2005053788A1 (en) 2003-12-01 2005-06-16 Medtronic, Inc. Method and system for vagal nerve stimulation with multi-site cardiac pacing
CA2548231A1 (en) 2003-12-04 2005-06-23 Hoana Medical, Inc. Intelligent medical vigilance system
US20050124901A1 (en) 2003-12-05 2005-06-09 Misczynski Dale J. Method and apparatus for electrophysiological and hemodynamic real-time assessment of cardiovascular fitness of a user
CA2454184A1 (en) 2003-12-23 2005-06-23 Andres M. Lozano Method and apparatus for treating neurological disorders by electrical stimulation of the brain
US7783349B2 (en) 2006-04-10 2010-08-24 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US7295881B2 (en) 2003-12-29 2007-11-13 Biocontrol Medical Ltd. Nerve-branch-specific action-potential activation, inhibition, and monitoring
US20050148895A1 (en) 2004-01-06 2005-07-07 Misczynski Dale J. Method and apparatus for ECG derived sleep monitoring of a user
US7254439B2 (en) 2004-01-06 2007-08-07 Monebo Technologies, Inc. Method and system for contactless evaluation of fatigue of an operator
US7164941B2 (en) 2004-01-06 2007-01-16 Dale Julian Misczynski Method and system for contactless monitoring and evaluation of sleep states of a user
EP1786315A4 (en) 2004-02-05 2010-03-03 Earlysense Ltd Techniques for prediction and monitoring of respiration-manifested clinical episodes
US7314451B2 (en) 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
US7433732B1 (en) 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
US20050203366A1 (en) 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US7792583B2 (en) 2004-03-16 2010-09-07 Medtronic, Inc. Collecting posture information to evaluate therapy
US7717848B2 (en) 2004-03-16 2010-05-18 Medtronic, Inc. Collecting sleep quality information via a medical device
US7491181B2 (en) 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7330760B2 (en) 2004-03-16 2008-02-12 Medtronic, Inc. Collecting posture information to evaluate therapy
US20050209512A1 (en) 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US7395113B2 (en) 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
CN102068237A (en) 2004-04-01 2011-05-25 威廉·C·托奇 Controllers and Methods for Monitoring Eye Movement, System and Method for Controlling Calculation Device
WO2005098428A2 (en) 2004-04-07 2005-10-20 Marinus Pharmaceuticals, Inc. Method and system for screening compounds for muscular and/or neurological activity in animals
WO2005102449A1 (en) 2004-04-14 2005-11-03 Medtronic, Inc. Collecting posture and activity information to evaluate therapy
EP1740267A4 (en) 2004-04-28 2008-06-25 Transoma Medical Inc Implantable medical devices and related methods
US7324850B2 (en) 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
US7640063B2 (en) 2004-05-04 2009-12-29 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the cerebellar pathways
EP1804904A2 (en) 2004-05-04 2007-07-11 The Cleveland Clinic Foundation Methods of treating neurological conditions by neuromodulation of interhemispheric fibers
WO2005107854A2 (en) 2004-05-04 2005-11-17 The Cleveland Clinic Foundation Corpus callosum neuromodulation assembly
US7601115B2 (en) 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
US7209786B2 (en) 2004-06-10 2007-04-24 Cardiac Pacemakers, Inc. Method and apparatus for optimization of cardiac resynchronization therapy using heart sounds
IL164991A0 (en) 2004-06-10 2005-12-18 Nexense Ltd High-sensitivity sensors, sensor assemblies, and sensor apparatus for sensing various parameters
US7706866B2 (en) 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US7664551B2 (en) * 2004-07-07 2010-02-16 Medtronic Transneuronix, Inc. Treatment of the autonomic nervous system
US20050154425A1 (en) 2004-08-19 2005-07-14 Boveja Birinder R. Method and system to provide therapy for neuropsychiatric disorders and cognitive impairments using gradient magnetic pulses to the brain and pulsed electrical stimulation to vagus nerve(s)
US7274298B2 (en) 2004-09-27 2007-09-25 Siemens Communications, Inc. Intelligent interactive baby calmer using modern phone technology
US8244355B2 (en) 2004-10-29 2012-08-14 Medtronic, Inc. Method and apparatus to provide diagnostic index and therapy regulated by subject's autonomic nervous system
US7672733B2 (en) 2004-10-29 2010-03-02 Medtronic, Inc. Methods and apparatus for sensing cardiac activity via neurological stimulation therapy system or medical electrical lead
EP1827217B1 (en) 2004-11-02 2010-08-11 Medtronic, Inc. Techniques for data reporting in an implantable medical device
US20060106430A1 (en) 2004-11-12 2006-05-18 Brad Fowler Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods
US8108038B2 (en) 2004-12-17 2012-01-31 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain activity
US8214035B2 (en) * 2004-12-17 2012-07-03 Medtronic, Inc. System and method for utilizing brain state information to modulate cardiac therapy
DE602005026054D1 (en) 2004-12-17 2011-03-03 Medtronic Inc SYSTEM FOR MONITORING OR TREATING DISEASES OF THE NERVOUS SYSTEM
US8108046B2 (en) 2004-12-17 2012-01-31 Medtronic, Inc. System and method for using cardiac events to trigger therapy for treating nervous system disorders
US8112148B2 (en) 2004-12-17 2012-02-07 Medtronic, Inc. System and method for monitoring cardiac signal activity in patients with nervous system disorders
US20070239230A1 (en) * 2004-12-17 2007-10-11 Medtronic, Inc. System and method for regulating cardiac triggered therapy to the brain
US8209019B2 (en) * 2004-12-17 2012-06-26 Medtronic, Inc. System and method for utilizing brain state information to modulate cardiac therapy
US8209009B2 (en) 2004-12-17 2012-06-26 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain stimulation
US8112153B2 (en) 2004-12-17 2012-02-07 Medtronic, Inc. System and method for monitoring or treating nervous system disorders
US7353063B2 (en) 2004-12-22 2008-04-01 Cardiac Pacemakers, Inc. Generating and communicating web content from within an implantable medical device
US7894903B2 (en) 2005-03-24 2011-02-22 Michael Sasha John Systems and methods for treating disorders of the central nervous system by modulation of brain networks
US8600521B2 (en) 2005-01-27 2013-12-03 Cyberonics, Inc. Implantable medical device having multiple electrode/sensor capability and stimulation based on sensed intrinsic activity
US20060173493A1 (en) 2005-01-28 2006-08-03 Cyberonics, Inc. Multi-phasic signal for stimulation by an implantable device
US7454245B2 (en) 2005-01-28 2008-11-18 Cyberonics, Inc. Trained and adaptive response in a neurostimulator
US20060173522A1 (en) 2005-01-31 2006-08-03 Medtronic, Inc. Anchoring of a medical device component adjacent a dura of the brain or spinal cord
US7801743B2 (en) 2005-02-11 2010-09-21 Avaya Inc. Use of location awareness of establish communications with a target clinician in a healthcare environment
US20060212097A1 (en) 2005-02-24 2006-09-21 Vijay Varadan Method and device for treatment of medical conditions and monitoring physical movements
AU2006218642A1 (en) 2005-03-01 2006-09-08 Advanced Neuromodulation Systems, Inc. Method of treating depression, mood disorders and anxiety disorders using neuromodulation
US20080275327A1 (en) 2005-03-09 2008-11-06 Susanne Holm Faarbaek Three-Dimensional Adhesive Device Having a Microelectronic System Embedded Therein
US8112154B2 (en) 2005-04-13 2012-02-07 The Cleveland Clinic Foundation Systems and methods for neuromodulation using pre-recorded waveforms
US20090048500A1 (en) 2005-04-20 2009-02-19 Respimetrix, Inc. Method for using a non-invasive cardiac and respiratory monitoring system
US7640057B2 (en) 2005-04-25 2009-12-29 Cardiac Pacemakers, Inc. Methods of providing neural markers for sensed autonomic nervous system activity
US20060241725A1 (en) 2005-04-25 2006-10-26 Imad Libbus Method and apparatus for simultaneously presenting cardiac and neural signals
US7389147B2 (en) 2005-04-29 2008-06-17 Medtronic, Inc. Therapy delivery mode selection
US7827011B2 (en) 2005-05-03 2010-11-02 Aware, Inc. Method and system for real-time signal classification
US7561923B2 (en) 2005-05-09 2009-07-14 Cardiac Pacemakers, Inc. Method and apparatus for controlling autonomic balance using neural stimulation
US8021299B2 (en) 2005-06-01 2011-09-20 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
GB2427692A (en) 2005-06-27 2007-01-03 Intelligent Sensors Plc Non-contact life signs detector
US20070027497A1 (en) 2005-07-27 2007-02-01 Cyberonics, Inc. Nerve stimulation for treatment of syncope
US9504394B2 (en) 2005-07-28 2016-11-29 The General Hospital Corporation Electro-optical system, apparatus, and method for ambulatory monitoring
US20070027486A1 (en) 2005-07-29 2007-02-01 Cyberonics, Inc. Medical devices for enhancing intrinsic neural activity
US7532935B2 (en) 2005-07-29 2009-05-12 Cyberonics, Inc. Selective neurostimulation for treating mood disorders
US7499752B2 (en) 2005-07-29 2009-03-03 Cyberonics, Inc. Selective nerve stimulation for the treatment of eating disorders
US7565132B2 (en) 2005-08-17 2009-07-21 Mourad Ben Ayed Portable health monitoring system
US9089713B2 (en) 2005-08-31 2015-07-28 Michael Sasha John Methods and systems for semi-automatic adjustment of medical monitoring and treatment
US20070055320A1 (en) 2005-09-07 2007-03-08 Northstar Neuroscience, Inc. Methods for treating temporal lobe epilepsy, associated neurological disorders, and other patient functions
US8109891B2 (en) 2005-09-19 2012-02-07 Biolert Ltd Device and method for detecting an epileptic event
US8165682B2 (en) 2005-09-29 2012-04-24 Uchicago Argonne, Llc Surface acoustic wave probe implant for predicting epileptic seizures
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US7420472B2 (en) 2005-10-16 2008-09-02 Bao Tran Patient monitoring apparatus
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US20070088403A1 (en) 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation
US7555344B2 (en) 2005-10-28 2009-06-30 Cyberonics, Inc. Selective neurostimulation for treating epilepsy
US7657307B2 (en) * 2005-10-31 2010-02-02 Medtronic, Inc. Method of and apparatus for classifying arrhythmias using scatter plot analysis
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
WO2007066343A2 (en) 2005-12-08 2007-06-14 Dan Furman Implantable biosensor assembly and health monitoring system
FI120716B (en) 2005-12-20 2010-02-15 Smart Valley Software Oy A method for measuring and analyzing the movements of a human or animal using audio signals
EP1965696A2 (en) 2005-12-20 2008-09-10 Koninklijke Philips Electronics N.V. Device for detecting and warning of a medical condition
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US7606622B2 (en) 2006-01-24 2009-10-20 Cardiac Pacemakers, Inc. Method and device for detecting and treating depression
US7974697B2 (en) 2006-01-26 2011-07-05 Cyberonics, Inc. Medical imaging feedback for an implantable medical device
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
US20070179558A1 (en) 2006-01-30 2007-08-02 Gliner Bradford E Systems and methods for varying electromagnetic and adjunctive neural therapies
CN102512148A (en) 2006-03-06 2012-06-27 森赛奥泰克公司 Ultra wideband monitoring systems and antennas
US8209018B2 (en) 2006-03-10 2012-06-26 Medtronic, Inc. Probabilistic neurological disorder treatment
ES2538726T3 (en) 2006-03-29 2015-06-23 Dignity Health Vagus nerve stimulation system
US8917716B2 (en) 2006-04-17 2014-12-23 Muse Green Investments LLC Mesh network telephone system
US20070249953A1 (en) 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US8165683B2 (en) 2006-04-21 2012-04-24 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US20080269835A1 (en) 2006-04-21 2008-10-30 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US20070249956A1 (en) 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7761145B2 (en) 2006-04-21 2010-07-20 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7610083B2 (en) 2006-04-27 2009-10-27 Medtronic, Inc. Method and system for loop recording with overlapping events
US7764988B2 (en) 2006-04-27 2010-07-27 Medtronic, Inc. Flexible memory management scheme for loop recording in an implantable device
US7856272B2 (en) 2006-04-28 2010-12-21 Flint Hills Scientific, L.L.C. Implantable interface for a medical device system
US7539532B2 (en) 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
NL1031958C2 (en) 2006-06-07 2007-12-10 Hobo Heeze B V Personal monitoring system for real-time signaling of epilepsy attacks.
US9820658B2 (en) 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
WO2008016679A2 (en) 2006-08-02 2008-02-07 24Eight Llc Wireless detection and alarm system for monitoring human falls and entries into swimming pools by using three dimensional acceleration and wireless link energy data method and apparatus
US20080103548A1 (en) 2006-08-02 2008-05-01 Northstar Neuroscience, Inc. Methods for treating neurological disorders, including neuropsychiatric and neuropsychological disorders, and associated systems
US7801603B2 (en) 2006-09-01 2010-09-21 Cardiac Pacemakers, Inc. Method and apparatus for optimizing vagal nerve stimulation using laryngeal activity
US20080077028A1 (en) 2006-09-27 2008-03-27 Biotronic Crm Patent Personal health monitoring and care system
ATE467821T1 (en) 2006-09-28 2010-05-15 Medtronic Inc CAPACITIVE INTERFACE CIRCUIT FOR A LOW POWER SENSOR SYSTEM
US20080081958A1 (en) 2006-09-28 2008-04-03 Medtronic, Inc. Implantable medical device with sensor self-test feature
US7797046B2 (en) 2006-10-11 2010-09-14 Cardiac Pacemakers, Inc. Percutaneous neurostimulator for modulating cardiovascular function
WO2008051463A2 (en) 2006-10-19 2008-05-02 The Regents Of The University Of California Neurological stimulation and analysis
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8096954B2 (en) 2006-11-29 2012-01-17 Cardiac Pacemakers, Inc. Adaptive sampling of heart sounds
US7747318B2 (en) 2006-12-07 2010-06-29 Neuropace, Inc. Functional ferrule
US20080139870A1 (en) 2006-12-12 2008-06-12 Northstar Neuroscience, Inc. Systems and methods for treating patient hypertonicity
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US9913593B2 (en) 2006-12-27 2018-03-13 Cyberonics, Inc. Low power device with variable scheduling
US20080161712A1 (en) 2006-12-27 2008-07-03 Kent Leyde Low Power Device With Contingent Scheduling
US7965833B2 (en) 2007-01-09 2011-06-21 Ronen Meir Febrile convulsion alarm
US20080183097A1 (en) 2007-01-25 2008-07-31 Leyde Kent W Methods and Systems for Measuring a Subject's Susceptibility to a Seizure
EP2126785A2 (en) 2007-01-25 2009-12-02 NeuroVista Corporation Systems and methods for identifying a contra-ictal condition in a subject
US8075499B2 (en) 2007-05-18 2011-12-13 Vaidhi Nathan Abnormal motion detector and monitor
US7385443B1 (en) 2007-01-31 2008-06-10 Medtronic, Inc. Chopper-stabilized instrumentation amplifier
JP4886550B2 (en) 2007-02-28 2012-02-29 株式会社タニタ Biological information acquisition device
US7996076B2 (en) 2007-04-02 2011-08-09 The Regents Of The University Of Michigan Automated polysomnographic assessment for rapid eye movement sleep behavior disorder
US7822481B2 (en) 2007-04-30 2010-10-26 Medtronic, Inc. Therapy adjustment
US7769464B2 (en) 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US20080269579A1 (en) 2007-04-30 2008-10-30 Mark Schiebler System for Monitoring Changes in an Environmental Condition of a Wearer of a Removable Apparatus
WO2008135985A1 (en) 2007-05-02 2008-11-13 Earlysense Ltd Monitoring, predicting and treating clinical episodes
US8103351B2 (en) 2007-05-07 2012-01-24 Medtronic, Inc. Therapy control using relative motion between sensors
US8788055B2 (en) 2007-05-07 2014-07-22 Medtronic, Inc. Multi-location posture sensing
US20080281550A1 (en) 2007-05-11 2008-11-13 Wicab, Inc. Systems and methods for characterizing balance function
US7801618B2 (en) 2007-06-22 2010-09-21 Neuropace, Inc. Auto adjusting system for brain tissue stimulator
FR2919406B1 (en) 2007-07-23 2009-10-23 Commissariat Energie Atomique METHOD AND DEVICE FOR RECOGNIZING THE POSITION OR MOVEMENT OF A DEVICE OR LIVING.
US8027737B2 (en) 2007-08-01 2011-09-27 Intelect Medical, Inc. Lead extension with input capabilities
US20110230730A1 (en) 2007-08-03 2011-09-22 University Of Virginia Patent Foundation Method, System and Computer Program Product for Limb Movement Analysis for Diagnosis of Convulsions
US20090040052A1 (en) 2007-08-06 2009-02-12 Jeffry Michael Cameron Assistance alert method and device
US8764653B2 (en) 2007-08-22 2014-07-01 Bozena Kaminska Apparatus for signal detection, processing and communication
US8926509B2 (en) 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
US20090060287A1 (en) 2007-09-05 2009-03-05 Hyde Roderick A Physiological condition measuring device
US7935076B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Activity sensing techniques for an infusion pump system
US20090076349A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent Multi-Sensor Device with Implantable Device Communication Capabilities
EP2207590A1 (en) 2007-09-26 2010-07-21 Medtronic, INC. Therapy program selection
US7714757B2 (en) 2007-09-26 2010-05-11 Medtronic, Inc. Chopper-stabilized analog-to-digital converter
US8260425B2 (en) 2007-10-12 2012-09-04 Intelect Medical, Inc. Deep brain stimulation system with inputs
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
US8615299B2 (en) 2007-10-24 2013-12-24 Medtronic, Inc. Remote titration of therapy delivered by an implantable medical device
US9723987B2 (en) 2007-10-24 2017-08-08 Medtronic, Inc. Remote calibration of an implantable patient sensor
GB0724971D0 (en) 2007-12-21 2008-01-30 Dupleix As Monitoring method and apparatus
US8571643B2 (en) * 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
WO2009134478A1 (en) 2008-04-29 2009-11-05 Medtronic, Inc. Therapy program modification
US8773269B2 (en) 2008-06-27 2014-07-08 Neal T. RICHARDSON Autonomous fall monitor
US9440084B2 (en) 2008-07-11 2016-09-13 Medtronic, Inc. Programming posture responsive therapy
US8219206B2 (en) 2008-07-11 2012-07-10 Medtronic, Inc. Dwell time adjustments for posture state-responsive therapy
US20100023348A1 (en) 2008-07-22 2010-01-28 International Business Machines Corporation Remotely taking real-time programmatic actions responsive to health metrics received from worn health monitoring devices
US20100056878A1 (en) 2008-08-28 2010-03-04 Partin Dale L Indirectly coupled personal monitor for obtaining at least one physiological parameter of a subject
US8502679B2 (en) 2008-10-08 2013-08-06 The Board Of Regents Of The University Of Texas System Noninvasive motion and respiration monitoring system
US8417344B2 (en) 2008-10-24 2013-04-09 Cyberonics, Inc. Dynamic cranial nerve stimulation based on brain state determination from cardiac data
US20110172545A1 (en) 2008-10-29 2011-07-14 Gregory Zlatko Grudic Active Physical Perturbations to Enhance Intelligent Medical Monitoring
US20100121214A1 (en) 2008-11-11 2010-05-13 Medtronic, Inc. Seizure disorder evaluation based on intracranial pressure and patient motion
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US20100217533A1 (en) 2009-02-23 2010-08-26 Laburnum Networks, Inc. Identifying a Type of Motion of an Object
US20100228103A1 (en) 2009-03-05 2010-09-09 Pacesetter, Inc. Multifaceted implantable syncope monitor - mism
US10020075B2 (en) 2009-03-24 2018-07-10 Leaf Healthcare, Inc. Systems and methods for monitoring and/or managing patient orientation using a dynamically adjusted relief period
US8140143B2 (en) 2009-04-16 2012-03-20 Massachusetts Institute Of Technology Washable wearable biosensor
US8827912B2 (en) * 2009-04-24 2014-09-09 Cyberonics, Inc. Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters
US8172759B2 (en) * 2009-04-24 2012-05-08 Cyberonics, Inc. Methods and systems for detecting epileptic events using nonlinear analysis parameters
US9026223B2 (en) 2009-04-30 2015-05-05 Medtronic, Inc. Therapy system including multiple posture sensors
US20100280336A1 (en) 2009-04-30 2010-11-04 Medtronic, Inc. Anxiety disorder monitoring
EP2429644B1 (en) 2009-04-30 2017-05-31 Medtronic, Inc. Patient state detection based on support vector machine based algorithm
US20100286567A1 (en) 2009-05-06 2010-11-11 Andrew Wolfe Elderly fall detection
US8956294B2 (en) 2009-05-20 2015-02-17 Sotera Wireless, Inc. Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
US8374701B2 (en) 2009-07-28 2013-02-12 The Invention Science Fund I, Llc Stimulating a nervous system component of a mammal in response to contactlessly acquired information
US8740807B2 (en) 2009-09-14 2014-06-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US8172777B2 (en) 2009-09-14 2012-05-08 Empire Technology Development Llc Sensor-based health monitoring system
US8670833B2 (en) 2009-12-04 2014-03-11 Boston Scientific Neuromodulation Corporation Methods and apparatus for using sensors with a deep brain stimulation system
US9717439B2 (en) 2010-03-31 2017-08-01 Medtronic, Inc. Patient data display
US8348841B2 (en) 2010-04-09 2013-01-08 The Board Of Trustees Of The University Of Arkansas Wireless nanotechnology based system for diagnosis of neurological and physiological disorders
US8562536B2 (en) * 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8831732B2 (en) * 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8649871B2 (en) * 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
US20110270117A1 (en) 2010-05-03 2011-11-03 GLKK, Inc. Remote continuous seizure monitor and alarm
US8790264B2 (en) 2010-05-27 2014-07-29 Biomedical Acoustics Research Company Vibro-acoustic detection of cardiac conditions
US8951192B2 (en) 2010-06-15 2015-02-10 Flint Hills Scientific, Llc Systems approach to disease state and health assessment
US9089267B2 (en) 2010-06-18 2015-07-28 Cardiac Pacemakers, Inc. Methods and apparatus for adjusting neurostimulation intensity using evoked responses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SMITH P E M ET AL: "Profiles of instant heart rate during partial seizures", ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, ELSEVIER, vol. 72, no. 3, 1 March 1989 (1989-03-01), pages 207 - 217, XP024288980, ISSN: 0013-4694, [retrieved on 19890301], DOI: 10.1016/0013-4694(89)90245-9 *
VAN ELMPT ET AL: "A model of heart rate changes to detect seizures in severe epilepsy", SEIZURE, BAILLIERE TINDALL, LONDON, GB, vol. 15, no. 6, 1 September 2006 (2006-09-01), pages 366 - 375, XP005596582, ISSN: 1059-1311, DOI: 10.1016/J.SEIZURE.2006.03.005 *

Also Published As

Publication number Publication date
US8725239B2 (en) 2014-05-13
US20120271181A1 (en) 2012-10-25
US9498162B2 (en) 2016-11-22
US20120271182A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US8725239B2 (en) Identifying seizures using heart rate decrease
JP6567728B2 (en) How to predict patient survival
EP2944251B1 (en) Method, apparatus and computer-readable medium for confidence level determination of ambulatory hr algorithm based on a three-way rhythm classifier
CN103596493B (en) Pressure measuring device and method
US8795173B2 (en) Methods and apparatus for assessment of atypical brain activity
US9801553B2 (en) System, method, and computer program product for the real-time mobile evaluation of physiological stress
JP6077138B2 (en) Detection of sleep apnea using respiratory signals
De Cooman et al. Online automated seizure detection in temporal lobe epilepsy patients using single-lead ECG
US20190261881A1 (en) Biomarkers for Determining Susceptibility to SUDEP
EP2730216B1 (en) Biosignal transmitter, biosignal receiver, and biosignal transmitting method
US9706938B2 (en) System and method to determine premature ventricular contraction (PVC) type and burden
EP2802256A2 (en) Atrial fibrillation classification using power measurement
US10966616B2 (en) Assessing system and method for characterizing resting heart rate of a subject
US11744524B2 (en) Statistical display method for physiological parameter of monitoring apparatus, and monitoring apparatus
US20120277816A1 (en) Adjusting neighborhood widths of candidate heart beats according to previous heart beat statistics
US8805484B2 (en) System, apparatus and method for diagnosing seizures
US20150282723A1 (en) Device and Method for Detecting and Signalling a Stress State of a Person
EP3133977B1 (en) Detecting seizures based on heartbeat data
Simjanoska et al. ECG-derived Blood Pressure Classification using Complexity Analysis-based Machine Learning.
US11179046B2 (en) Method and system for detection of atrial fibrillation
CN113164055A (en) Mobile monitoring equipment and physiological signal adjusting and processing method
KR101034886B1 (en) System and method for determining drowsy state using alteration in period of heart rate variability
CN210494064U (en) Dynamic electrocardio, respiration and motion monitoring equipment
TWI837364B (en) Heartbeat analyzing method and heartbeat analyzing system
US20230263402A1 (en) Processing device and method of hemodynamic analysis for detecting a syndrome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11790715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11790715

Country of ref document: EP

Kind code of ref document: A1