WO2012147456A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2012147456A1
WO2012147456A1 PCT/JP2012/058858 JP2012058858W WO2012147456A1 WO 2012147456 A1 WO2012147456 A1 WO 2012147456A1 JP 2012058858 W JP2012058858 W JP 2012058858W WO 2012147456 A1 WO2012147456 A1 WO 2012147456A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gate electrode
mosfet
drain
semiconductor device
Prior art date
Application number
PCT/JP2012/058858
Other languages
French (fr)
Japanese (ja)
Inventor
智之 疋田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147456A1 publication Critical patent/WO2012147456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • H01L27/0738Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors in combination with resistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device, and more particularly, to an SGGMOS (Source-Gate-GND-Metal-Oxide-Semiconductor-Transistor) type ESD (Electro-Static Discharge) protection element for preventing a current such as an electrostatic surge from flowing into a semiconductor integrated circuit device. .
  • SGGMOS Source-Gate-GND-Metal-Oxide-Semiconductor-Transistor
  • ESD Electro-Static Discharge
  • a semiconductor integrated circuit IC includes an ESD protection element for protecting the semiconductor integrated circuit from external noise such as electrostatic surge.
  • the so-called “off transistor”, which is used by grounding the source and gate of a transistor, can clamp a surge current at a lower voltage than when a diode is used by snapback operation. Widely adopted.
  • Patent Document 1 a non-silicide region where no silicide is formed is provided in a region adjacent to the electrode portion of the drain region, and a resistance due to a diffusion layer is formed in the non-silicide region.
  • a silicide block forming step it is necessary to add a silicide block forming step in order to form the non-silicide region.
  • an object of the present invention is to realize a semiconductor device capable of improving the ESD discharge capability without increasing the number of special processes and dedicated masks for ESD countermeasures.
  • a semiconductor device provides: A first region where a first MOSFET is formed; A first ESD protection element formed by connecting a first protection resistance circuit to the first MOSFET is formed on the first region,
  • the first MOSFET is: A first gate electrode formed on the first well via a first gate insulating film; and A first source region and a first drain region having a conductivity type opposite to that of the first well formed on a surface layer of the first well so as to face each other with the first gate electrode interposed therebetween;
  • the first protective resistance circuit includes: A first gate electrode formed through the first gate insulating film; Two first resistance drain regions having a conductivity type opposite to that of the first well formed to be separated from each other in a surface layer of the first well so as to face each other with the first gate electrode interposed therebetween; A drift region having the same conductivity type as the first resistance drain region and having a lower concentration than the first resistance drain region;
  • a first feature is that the drift region is formed below the first gate electrode so as to be electrical
  • the first MOSFET further includes:
  • the first MOSFET has the same conductivity type as the first source region and the first drain region, and includes a drift region having a lower concentration than the first source region and the first drain region,
  • the drift region of the first MOSFET extends from the first source region of the first MOSFET toward the lower side of the first gate electrode, and the first drain of the first MOSFET.
  • a drain-side drift region extending downward from the region toward the lower side of the first gate electrode is separated and formed across the first well below the first gate electrode of the first MOSFET, It is preferable that the drain side drift region of the first MOSFET constituting the first ESD protection element is connected to the drift region of the first protection resistance circuit.
  • the first gate electrode of the first MOSFET and the first gate electrode of the first protective resistance circuit are made of polysilicon. preferable.
  • the semiconductor device of the first feature further includes a silicide layer formed on an upper surface of the first gate electrode of the first protective resistance circuit, and a silicide layer formed on an upper surface of the first resistance drain region.
  • the first protective resistance circuit may be electrically isolated through an insulating film formed along a side wall of the first gate electrode.
  • the semiconductor device further includes a second region in which a second MOSFET having a lower withstand voltage than the first MOSFET is formed, A second ESD protection element formed by connecting a second protection resistance circuit to the second MOSFET is formed on the second region,
  • the second MOSFET is: A second gate electrode formed on the second well via a second gate insulating film; and A second source region and a second drain region having a conductivity type opposite to that of the second well formed on a surface layer of the second well so as to face each other with the second gate electrode interposed therebetween;
  • the second protective resistance circuit is: A second gate electrode formed through the second gate insulating film; Two second resistance drain regions having a conductivity type opposite to that of the second well formed to be separated from each other in a surface layer of the second well so as to face each other across the second gate electrode; and A second drift region having the same conductivity type as the second resistance drain region and having a lower concentration than the second resistance drain region;
  • the second feature is that the second drift region is formed below the second
  • the second gate electrode is made of polysilicon
  • the silicide layer formed on the upper surface of the second gate electrode of the second protection resistance circuit includes the silicide layer formed on the upper surface of the second resistance drain region, and the second layer of the second protection resistance circuit.
  • a structure in which the gate electrode is electrically isolated through an insulating film formed along the side wall of the gate electrode can be employed.
  • the semiconductor device according to the second feature is further characterized in that, in the second MOSFET, the semiconductor device is electrically connected to either the second source region or the second drain region, and extends downward from the second gate electrode.
  • an LDD region having the same conductivity type as the second source region and the second drain region and having a lower concentration than the second source region and the second drain region is preferably formed.
  • the semiconductor device is further configured to be electrically connected to any one of the first source region and the first drain region in the first MOSFET and extend downward from the first gate electrode.
  • an LDD region having the same conductivity type as the first source region and the first drain region and having a lower concentration than the first source region and the first drain region is preferably formed.
  • a dummy gate pattern is formed in a region where the protective resistance circuit is formed, and a resistance drift region is formed immediately below the dummy gate pattern. Has been. Therefore, the protective resistance circuit has a dummy gate electrode on the drift region.
  • the ESD element according to the present invention is configured by connecting a MOSFET and the protection resistance circuit in series, and the protection resistance circuit forms a drift region that connects a resistance drain region (corresponding to a source region and a drain region). Except for this, it has the same structure as the MOSFET.
  • the dummy gate electrode of the protective resistance circuit and the insulating film formed on the sidewall of the dummy gate electrode function as a silicide block. That's what it meant.
  • the formation of the dummy gate pattern for forming the dummy gate electrode of the protective resistance circuit is the same as the formation of the MOSFET gate pattern, and the formation of the drift region for resistance is the same as the formation of the drift region of the high voltage MOSFET. Therefore, the ESD protection element can be formed without increasing the number of manufacturing steps.
  • the present invention can be applied to an integrated circuit including both a high breakdown voltage MOSFET and a low breakdown voltage MOSFET, thereby increasing the number of manufacturing steps. Therefore, it is possible to form both the high withstand voltage ESD element and the low withstand voltage ESD element.
  • the low breakdown voltage MOSFET may be a MOSFET having an LDD region. In this case, the LDD region is also formed in the protective resistance circuit in the low breakdown voltage ESD element, but the operation as a resistance circuit is not affected.
  • 1 is a cross-sectional view schematically showing the structure of a semiconductor device according to an embodiment of the present invention.
  • 1 is a cross-sectional view schematically showing the structure of a semiconductor device according to an embodiment of the present invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
  • FIGS. 1 and 2 are cross-sectional views schematically showing the device structure of the device 1 of the present invention. Note that, in the cross-sectional views shown in FIGS. 1 and 2, the main parts are appropriately emphasized, and the dimensional ratios of the respective components on the drawings do not necessarily match the actual dimensional ratios. The same applies to the cross-sectional views shown below.
  • the device 100 of the present invention includes a first region in which a first MOSFET (high-voltage MOSFET: hereinafter referred to as “HV transistor” as appropriate) that operates in response to a first power supply voltage is formed,
  • the first region has a second region in which a second MOSFET (low-voltage MOSFET: hereinafter referred to as “LV transistor” as appropriate) that operates in response to a second power source voltage lower than the power source voltage is formed.
  • a first ESD protection element (HV protection element) for high withstand voltage formed by connecting a first protection resistance circuit to the first MOSFET is provided with a second protection for the second MOSFET on the second region.
  • a low withstand voltage second ESD protection element (LV protection element) is formed by connecting a resistance circuit.
  • FIG. 1 is a cross-sectional view of the device structure of an ESD protection element (HV protection element and LV protection element) provided in the device 100 of the present invention
  • FIG. 2 shows a MOSFET (HV transistor, Cross-sectional views of device structures of LV transistors) are shown.
  • HV protection element and LV protection element HV protection element and LV protection element
  • MOSFET HV transistor, Cross-sectional views of device structures of LV transistors
  • P-type wells 2 and 3 are formed on a P-type substrate 1
  • an HV protection element 21 is formed on the well 2
  • an LV protection element 22 is formed on the well 3.
  • the HV protection element 21 and the LV protection element 22 are separated by an element isolation film (STI) 4.
  • STI element isolation film
  • P-type wells 2 and 3 are formed on a P-type substrate 1
  • an HV transistor 23 is formed on the well 2
  • an LV transistor 24 is formed on the well 3.
  • the HV transistor 23 and the LV transistor 24 are separated by an element isolation film (STI) 4.
  • STI element isolation film
  • the HV transistor 23 is opposed to each other with the gate electrode (first gate electrode) 8a formed on the well 2 via the gate insulating film (first gate insulating film) 6 and the gate electrode 8a interposed therebetween.
  • the N-channel MOSFET is provided with an N + type high concentration source region (first source region) 11a and an N + type high concentration drain region (first drain region) 11b formed in the surface layer of the well 2.
  • an N ⁇ type drift region 5 (5a, 5b) is formed at a deeper position than the high concentration source / drain regions 11a, 11b so as to cover the high concentration source region 11a and the high concentration drain region 11b.
  • the drift regions 5a and 5b are formed so as to extend downward from the gate electrode 8a, respectively, but are separately formed via the P-type well 2 existing below the gate electrode 8a.
  • a sidewall insulating film 10a is formed along the sidewall of the gate electrode 8a.
  • the sidewall insulating film 10a is made of, for example, a silicon oxide film or a nitride film.
  • the LV transistor 24 is opposed to each other with a gate electrode (second gate electrode) 8c formed on the well 3 via a gate insulating film (second gate insulating film) 7 and the gate electrode 8c interposed therebetween.
  • the N-channel MOSFET is provided with an N + type high concentration source region (second source region) 11c and an N + type high concentration drain region (second drain region) 11d formed in the surface layer of the well 3.
  • an N ⁇ type LDD (Lightly Doped Drain) region 9 is electrically connected to either the high concentration source region 11c or the high concentration drain region 11d and extends toward the gate electrode 8c.
  • a sidewall insulating film 10c is formed along the sidewall of the gate electrode 8c.
  • the sidewall insulating film 10c is made of, for example, a silicon oxide film or a nitride film.
  • Contact plugs 14 penetrating the interlayer insulating film 13 are formed on the upper surfaces of the high concentration source region 11a and the high concentration drain region 11b of the HV transistor 23 and on the upper surface of the high concentration source region 11c and the high concentration drain region 11d of the LV transistor 24.
  • a silicide layer 12 is formed for reducing the contact resistance with the metal wiring 15 and facilitating electrical connection with the metal wiring 15.
  • the silicide layer 12 is also formed on the upper surfaces of the gate electrodes 8a and 8c made of polysilicon.
  • the silicide layer formed on the upper surface of the gate electrode 8a and the silicide layers formed on the upper surfaces of the respective high concentration source regions and high concentration drain regions 11a and 11b are electrically connected by the sidewall insulating film 10a and the interlayer insulating film 13.
  • the silicide layer formed on the upper surface of the gate electrode 8c and the silicide layer formed on the upper surfaces of the high-concentration source regions and the high-concentration drain regions 11c and 11d are separated by the sidewall insulating film 10c and the interlayer insulating film 13. Electrically separated.
  • the HV protection element 21 connects the protection resistance circuit 25 to the high concentration drain region 11 b of the HV transistor 23, and the LV protection element 22 connects the protection resistance circuit 25 to the high concentration drain region 11 d of the LV transistor 24. Configured.
  • the protective resistance circuit 25 includes both the N + type drain region (first resistance drain region) 16 formed so that the drift region 5 (5c) is opposed to the surface layer of the well 2 with the gate electrode 8b interposed therebetween. It has the same structure as the HV transistor 23 except that it is formed so as to be electrically connected.
  • each of the two drain regions 16 formed separately corresponds to the high-concentration source region 11a and the high-concentration drain region 11b in the HV transistor 23.
  • the drift region 5c is integrally formed so as to overlap the drift region 5b of the adjacent HV transistor 23.
  • One of the drain regions 16 of the protective resistance circuit 25 is connected to the high-concentration drain region 11b of the HV transistor 23, and the other drain region 16 of the protective resistance circuit 25 is connected to the metal wiring 15 through the contact plug 14.
  • the protective resistance circuit 25 is configured such that the two drain regions 16 that are separately formed are electrically connected to each other by the same conductivity type (N-type) drift region 5c, so that there is no P-type channel region. It does not operate as a transistor and operates as a resistor.
  • the gate electrode 8b is formed as a dummy electrode for blocking the formation of silicide, and no voltage is actually applied thereto. It is possible to change the resistance value of the protective resistance circuit 25 by adjusting the width L between the source and drain of the gate electrode 8b.
  • the protective resistance circuit 26 has the same structure as the LV transistor 24.
  • each of the N + type drain regions (second resistance drain regions) 17 separately formed so as to face each other on the surface layer of the well 3 with the gate electrode 8d interposed therebetween is the high concentration source region 11c in the LV transistor 24. This corresponds to the high concentration drain region 11d.
  • an N ⁇ type drift region (second drift region) 5 d that is electrically connected to both the drain region 17 is formed below the gate electrode 8 d and deeper than the drain region 17.
  • One of the drain regions 17 of the protective resistance circuit 26 is connected to the high concentration drain region 11 d of the LV transistor 24, and the other drain region 17 of the protective resistance circuit 26 is connected to the metal wiring 15 through the contact plug 14.
  • the protective resistance circuit 26 operates as a resistance by electrically connecting the two drain regions 17 that are separately formed by the drift region 5d of the same conductivity type.
  • the gate electrode 8d is formed as a dummy electrode for blocking the formation of silicide, and no voltage is actually applied.
  • the resistance value of the protective resistance circuit 26 can be changed by adjusting the width L between the source and drain of the gate electrode 8d.
  • silicide layers 12 are formed on the upper surfaces of the gate electrodes 8b and 8d made of polysilicon and the upper surfaces of the drain regions 16 and 17, respectively.
  • the silicide layer formed on the upper surface of the gate electrode 8b is electrically separated by the silicide layer formed on each upper surface of the drain region 16, the sidewall insulating film 10b, and the interlayer insulating film 13, and the gate electrode 8d
  • the silicide layer formed on the upper surface is electrically separated by the silicide layer formed on each upper surface of the drain region 17, the sidewall insulating film 10 d and the interlayer insulating film 13. For this reason, the current flows between the separated drain regions 16 via the drift region 5c, or flows between the separated drain regions 17 via the drift region 5d, so that the drift regions 5c and 5d are resistant to each other. Function as.
  • an N ⁇ type LDD region is formed in the drift region 5d, but this does not affect the operation as a resistance circuit. .
  • FIGS. 3 to 10 are process cross-sectional views schematically showing an embodiment of a method for manufacturing an ESD protection element (HV protection element 21 and LV protection element 22) of the device 1 of the present invention, corresponding to FIG. It is.
  • the manufacturing method of the individual transistors (HV transistor 23 and LV transistor 24) formed in the first and second regions is formed in the HV protection element 21 of FIG.
  • the manufacturing method is the same as that of the HV transistor 23 and the LV transistor 24 formed in the LV protection element 22 of FIG. 1, and is shown as a part of the steps shown in FIGS. Omit.
  • a P-type well (first well) 2 is formed in a first region where an HV transistor 23 and a protective resistance circuit 25 are formed on a P-type substrate 1 by a known semiconductor process technique.
  • a P-type well (second well) 3 is formed in the second region where the LV transistor 24 and the protective resistance circuit 26 are formed.
  • an element isolation film (STI) 4 is formed in a predetermined region in the wells 2 and 3.
  • a sacrificial oxide film is formed on the upper surfaces of the wells 2 and 3.
  • an N-type impurity for example, arsenic (As) or phosphorus (P)
  • a resist pattern 32 having an opening in a predetermined region by a known semiconductor process technique.
  • Ion implantation is performed to form N ⁇ type low-concentration drift regions 5a and 5b in the formation region of the HV transistor 23 in the first region and drift regions 5c in the formation region of the protective resistance circuit 25 in the well 2, respectively.
  • an N ⁇ type low concentration drift region 5 d is also formed in the well 3 in the formation region of the protective resistance circuit 26 on the second region.
  • the first gate insulating film 6 is formed on the first region and the second gate insulating film 7 is formed on the second region by a known semiconductor process technique. Formed by oxidation.
  • the first gate insulating film 6 is thicker than the second gate insulating film 7.
  • a resist pattern 33 having an opening in a predetermined region is used to expose the polysilicon exposed in the opening. Silicon is removed and a gate pattern is formed. Thereby, the gate electrodes 8a to 8d are separately formed.
  • the resist pattern 34 and the gate electrodes 8b and 8d on the second region are masked.
  • the N ⁇ type LDD region 9 is formed in the formation region of the LV transistor 23 in the second region by ion implantation of an N type impurity (for example, phosphorus (P) or arsenic (As)).
  • an N type impurity for example, phosphorus (P) or arsenic (As)
  • the LDD region is also formed in the formation region of the protective resistance circuit 26 in the second region.
  • an insulating film 10 (here, a silicon nitride film) is deposited on the entire surface by a known semiconductor process technique, and the gate insulating film 6, The insulating film 10 is removed until 7 is exposed. Further, the gate oxide film 6 is removed until the N ⁇ type drift regions 5a to 5d in the surface layer of the well 2 are exposed, and the gate oxide film 7 is removed until the N ⁇ type LDD region 9 in the surface layer of the well 3 is exposed. Thereby, the sidewall insulating films 10a to 10d are left on both side walls of the gate electrodes 8a to 8d.
  • N-type impurities for example, phosphorus (P) or arsenic (As) are formed by a known semiconductor process technique using the gate electrodes 8a to 8d and the sidewall insulating films 10a to 10d as a mask.
  • N + type high concentration first source region 11a and first drain region 11b are formed in the formation region of HV transistor 23 on the first region, and N + type high concentration second source region 11c.
  • the second drain region 11d is formed in the formation region of the LV transistor 24 on the second region.
  • drain regions 16 and 17 are also formed in the formation region of the protective resistance circuit 25 on the first region and the formation region of the protective resistance circuit 26 on the second region, respectively.
  • metal titanium (Ti) is reacted on the surfaces of the source and drain regions 11a to 11d and the drain regions 16 and 17 of the protection resistance circuits by a known semiconductor process technique.
  • the silicide layer 12 is formed.
  • the silicide layer 12 is also formed on the upper surfaces of the gate electrodes 8a to 8d.
  • the unreacted titanium on the sidewall insulating film 10 and the element isolation film (STI) 4 is selectively removed by wet processing.
  • a contact plug 14 that penetrates the interlayer insulating film 13 and a metal wiring 15 on the contact plug 14 are formed by a known semiconductor process technique.
  • the inventive device 100 shown is manufactured.
  • the difference between the HV transistor 23 and the protection resistance circuit 25 in the HV protection element 21 and the difference between the LV transistor 24 and the protection resistance circuit 26 in the LV protection element 22 are as follows.
  • the drain regions 16 of the protective resistance circuit corresponding to the source region 11a and the drain region 11b in FIG. 5 are connected through the drift region 5c of the same conductivity type, and the source region 11c and the drain region 11d in the LV transistor 24 It can be seen that the drain regions 17 of the protection resistance circuit corresponding to the above are connected via the drift region 5d of the same conductivity type, and it is not necessary to add any manufacturing process in forming the protection element. Therefore, the device 100 of the present invention has a structure capable of improving the ESD discharge capability without increasing the number of special processes and dedicated masks for ESD countermeasures.
  • the present invention has been described by taking the ESD protection element having the SGGNMOS structure as an example.
  • the SGGPMOS structure even in the case of the SGGPMOS structure, it can be easily realized by reversing the conductivity type of the impurities constituting each semiconductor region. Needless to say.
  • the protective resistance circuits 25 and 26 in the SGGPMOS structure are configured by including a P ⁇ type drift region in the P channel MOSFET constituting the HV transistor 23 or the LV transistor 24.
  • the present invention relates to the structure of the ESD protection element, the size (depth and area) of each semiconductor region, the impurity concentration, and the material constituting the element are not limited at all.
  • a material for the gate electrodes 8a to 8d refractory metal can be used in addition to polysilicon.
  • the gate insulating films 6 and 7 a high-k material may be used in addition to the thermal oxide film and the CVD oxide film, and the metal constituting the silicide may be any of cobalt, nickel, etc. in addition to titanium.
  • the effect of the present invention can be obtained.
  • the said embodiment has the 1st area
  • the ESD protection element of the present invention is provided even when the device includes only the first region in which the high voltage transistor is formed or only the second region in which the low voltage transistor is formed. It can be set as the structure provided.
  • the present invention can be used for a semiconductor device, and in particular, can be used for a semiconductor integrated circuit device including an ESD protection element.

Abstract

Disclosed is a semiconductor device with which ESD discharge capability can be improved without increasing the number of special steps or special masks as ESD countermeasures. A high withstand-voltage ESD protective element (21) comprising an HV transistor (23) of MOSFET structure and a protective resistance circuit (25), and a low withstand-voltage ESD protective element (22) comprising an LV transistor (24) of MOSFET structure and a protective resistance circuit (26), are formed in prescribed regions on a substrate. In the protective resistance circuit (25 (26)), resistance drift regions (16 (17)) are separately formed on the surface layer of a well (2 (3)) in a mutually opposed manner on either side of a gate electrode (8b (8d)), and both of the resistance drift regions (16 (17)) have the same structure as the HV transistor (23) (LV transistor (24)) apart from being electrically connected by low-concentration drift regions (5c (5d)) of the same conductivity type.

Description

半導体装置Semiconductor device
 本発明は、半導体装置に関し、特に、半導体集積回路装置に静電サージなどの電流が流れ込むのを防ぐためのSGGMOS(Source Gate GND Metal Oxide Semiconductor Transistor)型のESD(Electro-Static Discharge)保護素子に関する。 The present invention relates to a semiconductor device, and more particularly, to an SGGMOS (Source-Gate-GND-Metal-Oxide-Semiconductor-Transistor) type ESD (Electro-Static Discharge) protection element for preventing a current such as an electrostatic surge from flowing into a semiconductor integrated circuit device. .
 一般に、半導体集積回路ICは、静電サージなどの外部ノイズから半導体集積回路を保護するためのESD保護素子を備えている。 Generally, a semiconductor integrated circuit IC includes an ESD protection element for protecting the semiconductor integrated circuit from external noise such as electrostatic surge.
 なかでも、SGGMOS型のESD保護素子として、トランジスタのソースとゲートを接地して使用する、所謂「オフトランジスタ」は、スナップバック動作により、ダイオードを用いる場合よりも低電圧にサージ電流をクランプできることから、広く採用されている。 In particular, as an SGGMOS type ESD protection element, the so-called “off transistor”, which is used by grounding the source and gate of a transistor, can clamp a surge current at a lower voltage than when a diode is used by snapback operation. Widely adopted.
 当該オフトランジスタ型の保護素子では、サージ電流が入ってくるドレイン領域に保護抵抗を配置し、保護素子自体の破壊を防ぐ措置がとられている。 In the off-transistor type protection element, measures are taken to prevent destruction of the protection element itself by arranging a protection resistor in the drain region where surge current enters.
 具体的には、特許文献1に示されているように、ドレイン領域の電極部と隣接する領域にシリサイドが形成されない非シリサイド領域を設け、当該非シリサイド領域において拡散層による抵抗を形成する。ただし、当該非シリサイド領域を形成するために、シリサイドブロック形成工程を追加する必要が生じる。 Specifically, as shown in Patent Document 1, a non-silicide region where no silicide is formed is provided in a region adjacent to the electrode portion of the drain region, and a resistance due to a diffusion layer is formed in the non-silicide region. However, it is necessary to add a silicide block forming step in order to form the non-silicide region.
特開2009-158621号公報JP 2009-158621 A
 上述の通り、特許文献1に示すESD保護素子では、非シリサイド領域を形成するために、シリサイドブロックの形成工程を追加する必要があり、製造工程が複雑になるとともに、必要となるマスク数が増え、製造コスト高となる。 As described above, in the ESD protection element disclosed in Patent Document 1, it is necessary to add a silicide block forming process in order to form a non-silicide region, which complicates the manufacturing process and increases the number of masks required. , Manufacturing costs are high.
 上述の状況を鑑み、本発明は、ESD対策のための特別な工程や専用マスクを増やすことなく、ESD放電能力の向上を図る事が可能な半導体装置を実現することをその目的とする。 In view of the above situation, an object of the present invention is to realize a semiconductor device capable of improving the ESD discharge capability without increasing the number of special processes and dedicated masks for ESD countermeasures.
 上記目的を達成するための本発明に係る半導体装置は、
 第1のMOSFETが形成される第1領域を有し、
 前記第1領域上に、前記第1のMOSFETに第1の保護抵抗回路を接続してなる第1ESD保護素子が形成され、
 前記第1のMOSFETは、
 第1ウェル上に、第1ゲート絶縁膜を介して形成された第1ゲート電極、及び、
 前記第1ゲート電極を挟んで互いに対向するように前記第1ウェルの表層に形成される前記第1ウェルと逆導電型の第1ソース領域及び第1ドレイン領域を備え、
 前記第1の保護抵抗回路は、
 前記第1ゲート絶縁膜を介して形成された第1ゲート電極、
 前記第1ゲート電極を挟んで互いに対向するように前記第1ウェルの表層に分離形成される前記第1ウェルと逆導電型の二つの第1抵抗ドレイン領域、及び、
 前記第1抵抗ドレイン領域と同導電型であって当該第1抵抗ドレイン領域より低濃度のドリフト領域を備え、
 前記ドリフト領域が、前記第1抵抗ドレイン領域の双方と電気的に接続するように、前記第1ゲート電極下方に形成されていることを第1の特徴とする。
In order to achieve the above object, a semiconductor device according to the present invention provides:
A first region where a first MOSFET is formed;
A first ESD protection element formed by connecting a first protection resistance circuit to the first MOSFET is formed on the first region,
The first MOSFET is:
A first gate electrode formed on the first well via a first gate insulating film; and
A first source region and a first drain region having a conductivity type opposite to that of the first well formed on a surface layer of the first well so as to face each other with the first gate electrode interposed therebetween;
The first protective resistance circuit includes:
A first gate electrode formed through the first gate insulating film;
Two first resistance drain regions having a conductivity type opposite to that of the first well formed to be separated from each other in a surface layer of the first well so as to face each other with the first gate electrode interposed therebetween;
A drift region having the same conductivity type as the first resistance drain region and having a lower concentration than the first resistance drain region;
A first feature is that the drift region is formed below the first gate electrode so as to be electrically connected to both of the first resistance drain region.
 上記第1の特徴の半導体装置は、更に、前記第1のMOSFETは、
 前記第1のMOSFETの前記第1ソース領域及び前記第1ドレイン領域と同導電型であって当該第1ソース領域及び当該第1ドレイン領域より低濃度のドリフト領域を備え、
 前記第1のMOSFETの前記ドリフト領域が、前記第1のMOSFETの前記第1ソース領域から前記第1ゲート電極下方に向かって延伸するソース側ドリフト領域と、前記第1のMOSFETの前記第1ドレイン領域から前記第1ゲート電極下方に向かって延伸するドレイン側ドリフト領域に、前記第1のMOSFETの前記第1ゲート電極下方の前記第1ウェルを挟んで分離形成され、
 前記第1ESD保護素子を構成する前記第1のMOSFETの前記ドレイン側ドリフト領域が、前記第1の保護抵抗回路の前記ドリフト領域と接続していることが好ましい。
In the semiconductor device according to the first feature, the first MOSFET further includes:
The first MOSFET has the same conductivity type as the first source region and the first drain region, and includes a drift region having a lower concentration than the first source region and the first drain region,
The drift region of the first MOSFET extends from the first source region of the first MOSFET toward the lower side of the first gate electrode, and the first drain of the first MOSFET. A drain-side drift region extending downward from the region toward the lower side of the first gate electrode is separated and formed across the first well below the first gate electrode of the first MOSFET,
It is preferable that the drain side drift region of the first MOSFET constituting the first ESD protection element is connected to the drift region of the first protection resistance circuit.
 上記第1の特徴の半導体装置は、更に、前記第1のMOSFETの前記第1ゲート電極、及び、前記第1の保護抵抗回路の前記第1ゲート電極が、ポリシリコンで構成されていることが好ましい。 In the semiconductor device having the first feature, the first gate electrode of the first MOSFET and the first gate electrode of the first protective resistance circuit are made of polysilicon. preferable.
 上記第1の特徴の半導体装置は、更に、前記第1の保護抵抗回路の前記第1ゲート電極の上面に形成されたシリサイド層が、前記第1抵抗ドレイン領域の上面に形成されたシリサイド層と、前記第1の保護抵抗回路の前記第1ゲート電極の側壁に沿って形成される絶縁膜を介して電気的に分離されている構成とすることができる。 The semiconductor device of the first feature further includes a silicide layer formed on an upper surface of the first gate electrode of the first protective resistance circuit, and a silicide layer formed on an upper surface of the first resistance drain region. The first protective resistance circuit may be electrically isolated through an insulating film formed along a side wall of the first gate electrode.
 上記第1の特徴の半導体装置は、更に、前記第1のMOSFETより低耐圧の第2のMOSFETが形成される第2領域を有し、
 前記第2領域上に、前記第2のMOSFETに第2の保護抵抗回路を接続してなる第2ESD保護素子が形成され、
 前記第2のMOSFETは、
 第2ウェル上に、第2ゲート絶縁膜を介して形成された第2ゲート電極、及び、
 前記第2ゲート電極を挟んで互いに対向するように前記第2ウェルの表層に形成される前記第2ウェルと逆導電型の第2ソース領域及び第2ドレイン領域を備え、
 前記第2の保護抵抗回路は、
 前記第2ゲート絶縁膜を介して形成された第2ゲート電極、
 前記第2ゲート電極を挟んで互いに対向するように前記第2ウェルの表層に分離形成される前記第2ウェルと逆導電型の二つの第2抵抗ドレイン領域、及び、
 前記第2抵抗ドレイン領域と同導電型であって当該第2抵抗ドレイン領域より低濃度の第2のドリフト領域を備え、
 前記第2のドリフト領域が、前記第2抵抗ドレイン領域の双方と電気的に接続するように、前記第2ゲート電極下方に形成されていることを第2の特徴とする。
The semiconductor device according to the first feature further includes a second region in which a second MOSFET having a lower withstand voltage than the first MOSFET is formed,
A second ESD protection element formed by connecting a second protection resistance circuit to the second MOSFET is formed on the second region,
The second MOSFET is:
A second gate electrode formed on the second well via a second gate insulating film; and
A second source region and a second drain region having a conductivity type opposite to that of the second well formed on a surface layer of the second well so as to face each other with the second gate electrode interposed therebetween;
The second protective resistance circuit is:
A second gate electrode formed through the second gate insulating film;
Two second resistance drain regions having a conductivity type opposite to that of the second well formed to be separated from each other in a surface layer of the second well so as to face each other across the second gate electrode; and
A second drift region having the same conductivity type as the second resistance drain region and having a lower concentration than the second resistance drain region;
The second feature is that the second drift region is formed below the second gate electrode so as to be electrically connected to both the second resistance drain region.
 上記第2の特徴の半導体装置は、更に、前記第2ゲート電極が、ポリシリコンで構成され、
 前記第2の保護抵抗回路の前記第2ゲート電極の上面に形成されたシリサイド層が、前記第2抵抗ドレイン領域の上面に形成されたシリサイド層と、前記第2の保護抵抗回路の前記第2ゲート電極の側壁に沿って形成される絶縁膜を介して電気的に分離されている構成とすることができる。
In the semiconductor device of the second feature, the second gate electrode is made of polysilicon,
The silicide layer formed on the upper surface of the second gate electrode of the second protection resistance circuit includes the silicide layer formed on the upper surface of the second resistance drain region, and the second layer of the second protection resistance circuit. A structure in which the gate electrode is electrically isolated through an insulating film formed along the side wall of the gate electrode can be employed.
 上記第2の特徴の半導体装置は、更に、前記第2のMOSFETにおいて、前記第2ソース領域及び前記第2ドレイン領域の何れかと電気的に接続し、前記第2ゲート電極の下方に向って延伸する、当該第2ソース領域及び当該第2ドレイン領域と同導電型であって当該第2ソース領域及び当該第2ドレイン領域より低濃度のLDD領域が形成されていることが好ましい。 The semiconductor device according to the second feature is further characterized in that, in the second MOSFET, the semiconductor device is electrically connected to either the second source region or the second drain region, and extends downward from the second gate electrode. Preferably, an LDD region having the same conductivity type as the second source region and the second drain region and having a lower concentration than the second source region and the second drain region is preferably formed.
 上記第1の特徴の半導体装置は、更に、前記第1のMOSFETにおいて、前記第1ソース領域及び前記第1ドレイン領域の何れかと電気的に接続し、前記第1ゲート電極の下方に向って延伸する、当該第1ソース領域及び当該第1ドレイン領域と同導電型であって当該第1ソース領域及び当該第1ドレイン領域より低濃度のLDD領域が形成されていることが好ましい。 The semiconductor device according to the first feature is further configured to be electrically connected to any one of the first source region and the first drain region in the first MOSFET and extend downward from the first gate electrode. Preferably, an LDD region having the same conductivity type as the first source region and the first drain region and having a lower concentration than the first source region and the first drain region is preferably formed.
 上記第1または第2の特徴の本発明に係る半導体装置によれば、保護抵抗回路が形成される領域にダミーのゲートパターンが形成され、当該ダミーゲートパターン直下に、抵抗用のドリフト領域が形成されている。従って、保護抵抗回路は、ドリフト領域上にダミーのゲート電極を有してなる。 According to the semiconductor device of the first or second feature of the present invention, a dummy gate pattern is formed in a region where the protective resistance circuit is formed, and a resistance drift region is formed immediately below the dummy gate pattern. Has been. Therefore, the protective resistance circuit has a dummy gate electrode on the drift region.
 本発明におけるESD素子は、MOSFETと当該保護抵抗回路を直列に接続して構成されるが、当該保護抵抗回路が、抵抗ドレイン領域(ソース領域とドレイン領域に相当)間を接続するドリフト領域が形成されていることを除いて、MOSFETと同一の構造となっている。 The ESD element according to the present invention is configured by connecting a MOSFET and the protection resistance circuit in series, and the protection resistance circuit forms a drift region that connects a resistance drain region (corresponding to a source region and a drain region). Except for this, it has the same structure as the MOSFET.
 即ち、本発明は、保護抵抗回路の形成に際し、別途シリサイドブロックを設ける代わりに、保護抵抗回路の当該ダミーゲート電極、及び、当該ダミーゲート電極の側壁に形成される絶縁膜をシリサイドブロックとして機能させることとしたものである。 That is, according to the present invention, when forming the protective resistance circuit, instead of providing a separate silicide block, the dummy gate electrode of the protective resistance circuit and the insulating film formed on the sidewall of the dummy gate electrode function as a silicide block. That's what it meant.
 保護抵抗回路のダミーゲート電極を形成するためのダミーゲートパターンの形成は、MOSFETのゲートパターン形成と同一工程で、抵抗用のドリフト領域の形成は、高耐圧用MOSFETのドリフト領域の形成と同一工程で実施することができるため、製造工程を増加させることなく、ESD保護素子を形成することが可能になる。 The formation of the dummy gate pattern for forming the dummy gate electrode of the protective resistance circuit is the same as the formation of the MOSFET gate pattern, and the formation of the drift region for resistance is the same as the formation of the drift region of the high voltage MOSFET. Therefore, the ESD protection element can be formed without increasing the number of manufacturing steps.
 更に、上記第2の特徴の本発明に係る半導体装置によれば、高耐圧用MOSFETと低耐圧用MOSFETの両方を備える集積回路に対して本発明を適用することができ、製造工程を増加させることなく、高耐圧用ESD素子と低耐圧用ESD素子の両方を形成することが可能になる。このとき、低耐圧用MOSFETがLDD領域を有するMOSFETであってもよい。この場合、低耐圧用ESD素子内の保護抵抗回路にもLDD領域が形成されるが、抵抗回路としての動作に影響を与えない。 Furthermore, according to the semiconductor device according to the second aspect of the present invention, the present invention can be applied to an integrated circuit including both a high breakdown voltage MOSFET and a low breakdown voltage MOSFET, thereby increasing the number of manufacturing steps. Therefore, it is possible to form both the high withstand voltage ESD element and the low withstand voltage ESD element. At this time, the low breakdown voltage MOSFET may be a MOSFET having an LDD region. In this case, the LDD region is also formed in the protective resistance circuit in the low breakdown voltage ESD element, but the operation as a resistance circuit is not affected.
本発明の一実施形態に係る半導体装置の構造を模式的に示す断面図。1 is a cross-sectional view schematically showing the structure of a semiconductor device according to an embodiment of the present invention. 本発明の一実施形態に係る半導体装置の構造を模式的に示す断面図。1 is a cross-sectional view schematically showing the structure of a semiconductor device according to an embodiment of the present invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を模式的に示す工程断面図。Process sectional drawing which shows typically the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
 〈第1実施形態〉
 本発明の一実施形態に係る半導体装置(以降、適宜「本発明装置100」と称す)及び、その製造方法について以下に、詳細に説明する。図1及び図2は本発明装置1のデバイス構造を模式的に示す断面図である。尚、図1及び図2に示される断面図では、適宜、要部が強調して示されており、図面上の各構成部分の寸法比と実際の寸法比とは必ずしも一致するものではない。これは以降に示す断面図について同様とする。
<First Embodiment>
A semiconductor device according to an embodiment of the present invention (hereinafter referred to as “the present invention device 100” as appropriate) and a manufacturing method thereof will be described in detail below. 1 and 2 are cross-sectional views schematically showing the device structure of the device 1 of the present invention. Note that, in the cross-sectional views shown in FIGS. 1 and 2, the main parts are appropriately emphasized, and the dimensional ratios of the respective components on the drawings do not necessarily match the actual dimensional ratios. The same applies to the cross-sectional views shown below.
 本発明装置100は、第1の電源電圧に対応して動作する第1のMOSFET(高耐圧用MOSFET:以降、適宜「HVトランジスタ」と称す)が形成される第1領域と、当該第1の電源電圧より低い第2の電源電圧に対応して動作する第2のMOSFET(低耐圧用MOSFET:以降、適宜「LVトランジスタ」と称す)が形成される第2領域を有し、当該第1領域上に、第1のMOSFETに第1の保護抵抗回路を接続してなる高耐圧用の第1ESD保護素子(HV保護素子)が、当該第2領域上に、第2のMOSFETに第2の保護抵抗回路を接続してなる低耐圧用の第2ESD保護素子(LV保護素子)が形成される。 The device 100 of the present invention includes a first region in which a first MOSFET (high-voltage MOSFET: hereinafter referred to as “HV transistor” as appropriate) that operates in response to a first power supply voltage is formed, The first region has a second region in which a second MOSFET (low-voltage MOSFET: hereinafter referred to as “LV transistor” as appropriate) that operates in response to a second power source voltage lower than the power source voltage is formed. Further, a first ESD protection element (HV protection element) for high withstand voltage formed by connecting a first protection resistance circuit to the first MOSFET is provided with a second protection for the second MOSFET on the second region. A low withstand voltage second ESD protection element (LV protection element) is formed by connecting a resistance circuit.
 図1に本発明装置100に設けられたESD保護素子(HV保護素子、及び、LV保護素子)のデバイス構造の断面図を、図2に本発明装置100内に形成されるMOSFET(HVトランジスタ、及び、LVトランジスタ)のデバイス構造の断面図を、夫々示す。尚、本実施形態では、本発明がSGGNMOS構造を有するESD保護素子に適用される場合を例として示すが、本発明はこれに限られるものではない。 FIG. 1 is a cross-sectional view of the device structure of an ESD protection element (HV protection element and LV protection element) provided in the device 100 of the present invention, and FIG. 2 shows a MOSFET (HV transistor, Cross-sectional views of device structures of LV transistors) are shown. In the present embodiment, the case where the present invention is applied to an ESD protection element having an SGGNMOS structure is shown as an example, but the present invention is not limited to this.
 図1において、P型の基板1上に、P型のウェル2及び3が形成され、ウェル2上にHV保護素子21が、ウェル3上にLV保護素子22が、夫々形成されている。そして、当該HV保護素子21とLV保護素子22は、素子分離膜(STI)4により素子分離がされている。尚、図1において、説明の都合上、HV保護素子21とLV保護素子22が隣接して形成されているが、実際の集積回路においては、HV保護素子21とLV保護素子22が隣接して形成されることはない。 In FIG. 1, P-type wells 2 and 3 are formed on a P-type substrate 1, an HV protection element 21 is formed on the well 2, and an LV protection element 22 is formed on the well 3. The HV protection element 21 and the LV protection element 22 are separated by an element isolation film (STI) 4. In FIG. 1, for convenience of explanation, the HV protection element 21 and the LV protection element 22 are formed adjacent to each other. However, in an actual integrated circuit, the HV protection element 21 and the LV protection element 22 are adjacent to each other. Never formed.
 図2において、P型の基板1上に、P型のウェル2及び3が形成され、ウェル2上にHVトランジスタ23が、ウェル3上にLVトランジスタ24が、夫々形成されている。HVトランジスタ23とLVトランジスタ24は、素子分離膜(STI)4により素子分離がされている。 2, P-type wells 2 and 3 are formed on a P-type substrate 1, an HV transistor 23 is formed on the well 2, and an LV transistor 24 is formed on the well 3. The HV transistor 23 and the LV transistor 24 are separated by an element isolation film (STI) 4.
 HVトランジスタ23は、ウェル2上に、ゲート絶縁膜(第1のゲート絶縁膜)6を介して形成されたゲート電極(第1ゲート電極)8a、及び、当該ゲート電極8aを挟んで互いに対向するようにウェル2の表層に形成されるN+型の高濃度ソース領域(第1のソース領域)11aとN+型の高濃度ドレイン領域(第1のドレイン領域)11bを備えたNチャネルMOSFETである。更に、高濃度ソース領域11aと高濃度ドレイン領域11bを覆うように、N-型のドリフト領域5(5a,5b)が、当該高濃度ソース及びドレイン領域11a、11bより深い位置に形成されている。当該ドリフト領域5a、5bは、夫々、ゲート電極8aの下方に向かって延伸するように形成されるが、ゲート電極8aの下方に存在するP型のウェル2を介して分離形成されている。また、ゲート電極8aの側壁に沿って、側壁絶縁膜10aが形成されている。当該側壁絶縁膜10aは、例えば、シリコン酸化膜、または、窒化膜で構成される。 The HV transistor 23 is opposed to each other with the gate electrode (first gate electrode) 8a formed on the well 2 via the gate insulating film (first gate insulating film) 6 and the gate electrode 8a interposed therebetween. Thus, the N-channel MOSFET is provided with an N + type high concentration source region (first source region) 11a and an N + type high concentration drain region (first drain region) 11b formed in the surface layer of the well 2. Further, an N− type drift region 5 (5a, 5b) is formed at a deeper position than the high concentration source / drain regions 11a, 11b so as to cover the high concentration source region 11a and the high concentration drain region 11b. . The drift regions 5a and 5b are formed so as to extend downward from the gate electrode 8a, respectively, but are separately formed via the P-type well 2 existing below the gate electrode 8a. A sidewall insulating film 10a is formed along the sidewall of the gate electrode 8a. The sidewall insulating film 10a is made of, for example, a silicon oxide film or a nitride film.
 LVトランジスタ24は、ウェル3上に、ゲート絶縁膜(第2のゲート絶縁膜)7を介して形成されたゲート電極(第2ゲート電極)8c、及び、当該ゲート電極8cを挟んで互いに対向するようにウェル3の表層に形成されるN+型の高濃度ソース領域(第2のソース領域)11cとN+型の高濃度ドレイン領域(第2のドレイン領域)11dを備えたNチャネルMOSFETである。更に、N-型のLDD(Lightly Doped Drain)領域9が、高濃度ソース領域11cと高濃度ドレイン領域11dの何れかと電気的に接続し、且つ、ゲート電極8cに向かって延伸している。また、ゲート電極8cの側壁に沿って、側壁絶縁膜10cが形成されている。当該側壁絶縁膜10cは、例えば、シリコン酸化膜、または、窒化膜で構成される。 The LV transistor 24 is opposed to each other with a gate electrode (second gate electrode) 8c formed on the well 3 via a gate insulating film (second gate insulating film) 7 and the gate electrode 8c interposed therebetween. Thus, the N-channel MOSFET is provided with an N + type high concentration source region (second source region) 11c and an N + type high concentration drain region (second drain region) 11d formed in the surface layer of the well 3. Further, an N− type LDD (Lightly Doped Drain) region 9 is electrically connected to either the high concentration source region 11c or the high concentration drain region 11d and extends toward the gate electrode 8c. A sidewall insulating film 10c is formed along the sidewall of the gate electrode 8c. The sidewall insulating film 10c is made of, for example, a silicon oxide film or a nitride film.
 HVトランジスタ23の高濃度ソース領域11aと高濃度ドレイン領域11bの上面、及び、LVトランジスタ24の高濃度ソース領域11cと高濃度ドレイン領域11dの上面には、層間絶縁膜13を貫通するコンタクトプラグ14との接触抵抗を低減し、金属配線15との電気的接続を容易とするためのシリサイド層12が形成されている。同様に、ポリシリコンで構成されたゲート電極8a、8cの上面にもシリサイド層12が形成されている。しかしながら、ゲート電極8aの上面に形成されるシリサイド層と、各高濃度ソース領域および高濃度ドレイン領域11a、11b上面に形成されるシリサイド層とは、側壁絶縁膜10aと層間絶縁膜13により電気的に分離され、ゲート電極8cの上面に形成されるシリサイド層と、各高濃度ソース領域および高濃度ドレイン領域11c、11d上面に形成されるシリサイド層とは、側壁絶縁膜10cと層間絶縁膜13により電気的に分離されている。 Contact plugs 14 penetrating the interlayer insulating film 13 are formed on the upper surfaces of the high concentration source region 11a and the high concentration drain region 11b of the HV transistor 23 and on the upper surface of the high concentration source region 11c and the high concentration drain region 11d of the LV transistor 24. A silicide layer 12 is formed for reducing the contact resistance with the metal wiring 15 and facilitating electrical connection with the metal wiring 15. Similarly, the silicide layer 12 is also formed on the upper surfaces of the gate electrodes 8a and 8c made of polysilicon. However, the silicide layer formed on the upper surface of the gate electrode 8a and the silicide layers formed on the upper surfaces of the respective high concentration source regions and high concentration drain regions 11a and 11b are electrically connected by the sidewall insulating film 10a and the interlayer insulating film 13. The silicide layer formed on the upper surface of the gate electrode 8c and the silicide layer formed on the upper surfaces of the high-concentration source regions and the high- concentration drain regions 11c and 11d are separated by the sidewall insulating film 10c and the interlayer insulating film 13. Electrically separated.
 図1に戻って、HV保護素子21はHVトランジスタ23の高濃度ドレイン領域11bに保護抵抗回路25を接続し、LV保護素子22はLVトランジスタ24の高濃度ドレイン領域11dに保護抵抗回路25を接続して構成される。 Returning to FIG. 1, the HV protection element 21 connects the protection resistance circuit 25 to the high concentration drain region 11 b of the HV transistor 23, and the LV protection element 22 connects the protection resistance circuit 25 to the high concentration drain region 11 d of the LV transistor 24. Configured.
 保護抵抗回路25は、ドリフト領域5(5c)が、ゲート電極8bを挟んでウェル2の表層に互いに対向するように分離形成されたN+型のドレイン領域(第1抵抗ドレイン領域)16の双方と電気的に接続するように形成されることを除き、HVトランジスタ23と同一の構造である。ここで、分離形成された二つの当該ドレイン領域16の夫々が、HVトランジスタ23における高濃度ソース領域11aと高濃度ドレイン領域11bに対応する。また、ドリフト領域5cは、本実施形態では、隣接するHVトランジスタ23のドリフト領域5bと重なり合うように一体形成されている。保護抵抗回路25のドレイン領域16の一方がHVトランジスタ23の高濃度ドレイン領域11bと接続し、保護抵抗回路25のドレイン領域16の他方がコンタクトプラグ14を介して金属配線15と接続している。 The protective resistance circuit 25 includes both the N + type drain region (first resistance drain region) 16 formed so that the drift region 5 (5c) is opposed to the surface layer of the well 2 with the gate electrode 8b interposed therebetween. It has the same structure as the HV transistor 23 except that it is formed so as to be electrically connected. Here, each of the two drain regions 16 formed separately corresponds to the high-concentration source region 11a and the high-concentration drain region 11b in the HV transistor 23. In the present embodiment, the drift region 5c is integrally formed so as to overlap the drift region 5b of the adjacent HV transistor 23. One of the drain regions 16 of the protective resistance circuit 25 is connected to the high-concentration drain region 11b of the HV transistor 23, and the other drain region 16 of the protective resistance circuit 25 is connected to the metal wiring 15 through the contact plug 14.
 これにより、保護抵抗回路25は、分離形成された二つのドレイン領域16同士が同導電型(N型)のドリフト領域5cにより電気的に接続されることで、P型のチャネル領域が存在しないためトランジスタ動作をすることはなく、抵抗として動作する。また、ゲート電極8bは、シリサイド形成をブロックするためのダミー電極として形成されるもので、実際に電圧が印加されるものではない。ゲート電極8bのソース-ドレイン間の幅Lを調整することで、保護抵抗回路25の抵抗値を変更することが可能である。 As a result, the protective resistance circuit 25 is configured such that the two drain regions 16 that are separately formed are electrically connected to each other by the same conductivity type (N-type) drift region 5c, so that there is no P-type channel region. It does not operate as a transistor and operates as a resistor. The gate electrode 8b is formed as a dummy electrode for blocking the formation of silicide, and no voltage is actually applied thereto. It is possible to change the resistance value of the protective resistance circuit 25 by adjusting the width L between the source and drain of the gate electrode 8b.
 一方、保護抵抗回路26は、LVトランジスタ24と同一の構造を有してなる。ここで、ゲート電極8dを挟んでウェル3の表層に互いに対向するように分離形成されたN+型のドレイン領域(第2抵抗ドレイン領域)17の夫々が、LVトランジスタ24における高濃度ソース領域11cと高濃度ドレイン領域11dに対応する。更に、当該ドレイン領域17の双方と電気的に接続するN-型のドリフト領域(第2のドリフト領域)5dが、ゲート電極8dの下方、当該ドレイン領域17よりも深い位置に形成されている。保護抵抗回路26のドレイン領域17の一方がLVトランジスタ24の高濃度ドレイン領域11dと接続し、保護抵抗回路26のドレイン領域17の他方がコンタクトプラグ14を介して金属配線15と接続している。 On the other hand, the protective resistance circuit 26 has the same structure as the LV transistor 24. Here, each of the N + type drain regions (second resistance drain regions) 17 separately formed so as to face each other on the surface layer of the well 3 with the gate electrode 8d interposed therebetween is the high concentration source region 11c in the LV transistor 24. This corresponds to the high concentration drain region 11d. Further, an N − type drift region (second drift region) 5 d that is electrically connected to both the drain region 17 is formed below the gate electrode 8 d and deeper than the drain region 17. One of the drain regions 17 of the protective resistance circuit 26 is connected to the high concentration drain region 11 d of the LV transistor 24, and the other drain region 17 of the protective resistance circuit 26 is connected to the metal wiring 15 through the contact plug 14.
 これにより、保護抵抗回路26は、分離形成された二つのドレイン領域17同士が同導電型のドリフト領域5dにより電気的に接続されることで、抵抗として動作する。また、ゲート電極8dは、シリサイド形成をブロックするためのダミー電極として形成されるもので、実際に電圧が印加されるものではない。ゲート電極8dのソース-ドレイン間の幅Lを調整することで、保護抵抗回路26の抵抗値を変更することが可能である。 Thereby, the protective resistance circuit 26 operates as a resistance by electrically connecting the two drain regions 17 that are separately formed by the drift region 5d of the same conductivity type. The gate electrode 8d is formed as a dummy electrode for blocking the formation of silicide, and no voltage is actually applied. The resistance value of the protective resistance circuit 26 can be changed by adjusting the width L between the source and drain of the gate electrode 8d.
 上記保護抵抗回路25と26共に、ポリシリコンで構成されたゲート電極8b、8dの上面、およびドレイン領域16、17の上面にはシリサイド層12が形成されている。しかしながら、ゲート電極8bの上面に形成されるシリサイド層は、ドレイン領域16の夫々の上面に形成されるシリサイド層と、側壁絶縁膜10bと層間絶縁膜13により電気的に分離され、ゲート電極8dの上面に形成されるシリサイド層は、ドレイン領域17の夫々の上面に形成されるシリサイド層と、側壁絶縁膜10dと層間絶縁膜13により電気的に分離されている。このため、電流は、分離形成されたドレイン領域16間をドリフト領域5cを介して流れ、或いは分離形成されたドレイン領域17間をドリフト領域5dを介して流れることで、ドリフト領域5c、5dが抵抗として機能する。 In both the protective resistance circuits 25 and 26, silicide layers 12 are formed on the upper surfaces of the gate electrodes 8b and 8d made of polysilicon and the upper surfaces of the drain regions 16 and 17, respectively. However, the silicide layer formed on the upper surface of the gate electrode 8b is electrically separated by the silicide layer formed on each upper surface of the drain region 16, the sidewall insulating film 10b, and the interlayer insulating film 13, and the gate electrode 8d The silicide layer formed on the upper surface is electrically separated by the silicide layer formed on each upper surface of the drain region 17, the sidewall insulating film 10 d and the interlayer insulating film 13. For this reason, the current flows between the separated drain regions 16 via the drift region 5c, or flows between the separated drain regions 17 via the drift region 5d, so that the drift regions 5c and 5d are resistant to each other. Function as.
 尚、低耐圧側の保護抵抗回路26にも、LVトランジスタ24と同様、N-型のLDD領域がドリフト領域5d内に形成されているが、これが抵抗回路としての動作に影響を与えることはない。 In the protective resistance circuit 26 on the low breakdown voltage side, as in the LV transistor 24, an N− type LDD region is formed in the drift region 5d, but this does not affect the operation as a resistance circuit. .
 以下に、本発明装置100の製造方法につき、図面を参照して詳細に説明する。 Hereinafter, the manufacturing method of the device 100 of the present invention will be described in detail with reference to the drawings.
 図3~図10は、図1に対応して、本発明装置1のESD保護素子(HV保護素子21、及び、LV保護素子22)の製造方法の一実施形態を模式的に示す工程断面図である。尚、図2に対応して、第1及び第2領域に形成される個々のトランジスタ(HVトランジスタ23、及び、LVトランジスタ24)の製造方法については、図1のHV保護素子21内に形成されるHVトランジスタ23、及び、図1のLV保護素子22内に形成されるLVトランジスタ24の製造方法と同様であり、図3~図10に示す工程の一部として示されているため、説明を割愛する。 3 to 10 are process cross-sectional views schematically showing an embodiment of a method for manufacturing an ESD protection element (HV protection element 21 and LV protection element 22) of the device 1 of the present invention, corresponding to FIG. It is. Incidentally, corresponding to FIG. 2, the manufacturing method of the individual transistors (HV transistor 23 and LV transistor 24) formed in the first and second regions is formed in the HV protection element 21 of FIG. The manufacturing method is the same as that of the HV transistor 23 and the LV transistor 24 formed in the LV protection element 22 of FIG. 1, and is shown as a part of the steps shown in FIGS. Omit.
 先ず、図3に示すように、公知の半導体プロセス技術により、P型の基板1上に、HVトランジスタ23及び保護抵抗回路25が形成される第1領域にP型のウェル(第1ウェル)2を形成し、LVトランジスタ24及び保護抵抗回路26が形成される第2領域にP型のウェル(第2ウェル)3を形成する。その後、当該ウェル2と3内の所定の領域に素子分離膜(STI)4を形成する。このとき、ウェル2と3の上面には犠牲酸化膜が形成されている。 First, as shown in FIG. 3, a P-type well (first well) 2 is formed in a first region where an HV transistor 23 and a protective resistance circuit 25 are formed on a P-type substrate 1 by a known semiconductor process technique. And a P-type well (second well) 3 is formed in the second region where the LV transistor 24 and the protective resistance circuit 26 are formed. Thereafter, an element isolation film (STI) 4 is formed in a predetermined region in the wells 2 and 3. At this time, a sacrificial oxide film is formed on the upper surfaces of the wells 2 and 3.
 次に、図4に示すように、公知の半導体プロセス技術により、所定の領域に開口部を有するレジストパターン32を用いて、N型の不純物(例えば、砒素(As)或いはリン(P))のイオン注入を行い、第1領域のHVトランジスタ23の形成領域にN-型の低濃度のドリフト領域5a、5bを、保護抵抗回路25の形成領域にドリフト領域5cを、夫々ウェル2内に形成する。このとき、第2領域上の保護抵抗回路26の形成領域にも、N-型の低濃度のドリフト領域5dをウェル3内に形成しておく。 Next, as shown in FIG. 4, an N-type impurity (for example, arsenic (As) or phosphorus (P)) is formed using a resist pattern 32 having an opening in a predetermined region by a known semiconductor process technique. Ion implantation is performed to form N− type low- concentration drift regions 5a and 5b in the formation region of the HV transistor 23 in the first region and drift regions 5c in the formation region of the protective resistance circuit 25 in the well 2, respectively. . At this time, an N− type low concentration drift region 5 d is also formed in the well 3 in the formation region of the protective resistance circuit 26 on the second region.
 次に、図5に示すように、公知の半導体プロセス技術により、第1の領域上に第1のゲート絶縁膜6を、第2の領域上に第2のゲート絶縁膜7を、夫々、熱酸化により形成する。ここで、第1のゲート絶縁膜6は、第2のゲート絶縁膜7よりも厚膜とする。 Next, as shown in FIG. 5, the first gate insulating film 6 is formed on the first region and the second gate insulating film 7 is formed on the second region by a known semiconductor process technique. Formed by oxidation. Here, the first gate insulating film 6 is thicker than the second gate insulating film 7.
 次に、図6に示すように、公知の半導体プロセス技術により、ゲート電極材料としてポリシリコンを全面に堆積後、所定の領域に開口部を有するレジストパターン33を用いて当該開口部に露出するポリシリコンを取り除き、ゲートパターンを形成する。これにより、各ゲート電極8a~8dが分離形成される。 Next, as shown in FIG. 6, after a polysilicon is deposited on the entire surface as a gate electrode material by a known semiconductor process technique, a resist pattern 33 having an opening in a predetermined region is used to expose the polysilicon exposed in the opening. Silicon is removed and a gate pattern is formed. Thereby, the gate electrodes 8a to 8d are separately formed.
 次に、図7に示すように、公知の半導体プロセス技術により、第1領域の全面を覆うレジストパターン34を形成後、当該レジストパターン34、及び、第2領域上のゲート電極8b、8dをマスクとして、N型の不純物(例えば、リン(P)或いは砒素(As))のイオン注入により、第2領域のLVトランジスタ23の形成領域にN-型のLDD領域9を形成する。このとき、第2領域の保護抵抗回路26の形成領域にも、当該LDD領域が形成される。 Next, as shown in FIG. 7, after a resist pattern 34 covering the entire surface of the first region is formed by a known semiconductor process technique, the resist pattern 34 and the gate electrodes 8b and 8d on the second region are masked. As described above, the N− type LDD region 9 is formed in the formation region of the LV transistor 23 in the second region by ion implantation of an N type impurity (for example, phosphorus (P) or arsenic (As)). At this time, the LDD region is also formed in the formation region of the protective resistance circuit 26 in the second region.
 次に、図8に示すように、レジストパターン34を除去した後、公知の半導体プロセス技術により、絶縁膜10(ここでは、シリコン窒化膜)を全面に堆積し、エッチバックによりゲート絶縁膜6、7が露出するまで当該絶縁膜10を除去する。更に、ウェル2表層のN-型のドリフト領域5a~5dが露出するまでゲート酸化膜6を除去し、ウェル3表層のN-型のLDD領域9が露出するまでゲート酸化膜7を除去する。これにより、各ゲート電極8a~8dの両側壁に側壁絶縁膜10a~10dを残存させる。 Next, as shown in FIG. 8, after removing the resist pattern 34, an insulating film 10 (here, a silicon nitride film) is deposited on the entire surface by a known semiconductor process technique, and the gate insulating film 6, The insulating film 10 is removed until 7 is exposed. Further, the gate oxide film 6 is removed until the N − type drift regions 5a to 5d in the surface layer of the well 2 are exposed, and the gate oxide film 7 is removed until the N − type LDD region 9 in the surface layer of the well 3 is exposed. Thereby, the sidewall insulating films 10a to 10d are left on both side walls of the gate electrodes 8a to 8d.
 次に、図9に示すように、公知の半導体プロセス技術により、ゲート電極8a~8d及び側壁絶縁膜10a~10dをマスクとして、N型の不純物(例えば、リン(P)或いは砒素(As))のイオン注入により、N+型の高濃度の第1のソース領域11a及び第1のドレイン領域11bを第1領域上のHVトランジスタ23の形成領域に、N+型の高濃度の第2のソース領域11c及び第2のドレイン領域11dを第2領域上のLVトランジスタ24の形成領域に形成する。このとき、第1領域上の保護抵抗回路25の形成領域、及び、第2領域上の保護抵抗回路26の形成領域にも、ドレイン領域16と17が、夫々、形成される。 Next, as shown in FIG. 9, N-type impurities (for example, phosphorus (P) or arsenic (As)) are formed by a known semiconductor process technique using the gate electrodes 8a to 8d and the sidewall insulating films 10a to 10d as a mask. N + type high concentration first source region 11a and first drain region 11b are formed in the formation region of HV transistor 23 on the first region, and N + type high concentration second source region 11c. The second drain region 11d is formed in the formation region of the LV transistor 24 on the second region. At this time, drain regions 16 and 17 are also formed in the formation region of the protective resistance circuit 25 on the first region and the formation region of the protective resistance circuit 26 on the second region, respectively.
 次に、図10に示すように、公知の半導体プロセス技術により、例えば金属チタン(Ti)を各ソース領域およびドレイン領域11a~11d、及び、各保護抵抗回路のドレイン領域16と17の表面において反応させ、シリサイド層12を形成する。このとき、ゲート電極8a~8dの上面にもシリサイド層12が形成される。尚、側壁絶縁膜10と素子分離膜(STI)4上の未反応チタンは、ウェット処理により、選択的に除去する。 Next, as shown in FIG. 10, for example, metal titanium (Ti) is reacted on the surfaces of the source and drain regions 11a to 11d and the drain regions 16 and 17 of the protection resistance circuits by a known semiconductor process technique. Thus, the silicide layer 12 is formed. At this time, the silicide layer 12 is also formed on the upper surfaces of the gate electrodes 8a to 8d. The unreacted titanium on the sidewall insulating film 10 and the element isolation film (STI) 4 is selectively removed by wet processing.
 更に、層間絶縁膜13を堆積後、公知の半導体プロセス技術により、当該層間絶縁膜13を貫通するコンタクトプラグ14、当該コンタクトプラグ14上に金属配線15を形成することで、図1及び図2に示す本発明装置100が製造される。 Further, after depositing the interlayer insulating film 13, a contact plug 14 that penetrates the interlayer insulating film 13 and a metal wiring 15 on the contact plug 14 are formed by a known semiconductor process technique. The inventive device 100 shown is manufactured.
 以上説明したように、HV保護素子21におけるHVトランジスタ23と保護抵抗回路25との相違点、及び、LV保護素子22におけるLVトランジスタ24と保護抵抗回路26との相違点は、夫々、HVトランジスタ23におけるソース領域11aとドレイン領域11bに対応する保護抵抗回路のドレイン領域16同士が、同導電型のドリフト領域5cを介して接続されている点、及び、LVトランジスタ24におけるソース領域11cとドレイン領域11dに対応する保護抵抗回路のドレイン領域17同士が、同導電型のドリフト領域5dを介して接続されている点であり、保護素子の形成にあたって何ら製造工程を追加する必要がないことが分かる。従って、本発明装置100は、ESD対策のための特別な工程や専用マスクを増やすことなく、ESD放電能力の向上を図る事が可能な構造となっている。 As described above, the difference between the HV transistor 23 and the protection resistance circuit 25 in the HV protection element 21 and the difference between the LV transistor 24 and the protection resistance circuit 26 in the LV protection element 22 are as follows. The drain regions 16 of the protective resistance circuit corresponding to the source region 11a and the drain region 11b in FIG. 5 are connected through the drift region 5c of the same conductivity type, and the source region 11c and the drain region 11d in the LV transistor 24 It can be seen that the drain regions 17 of the protection resistance circuit corresponding to the above are connected via the drift region 5d of the same conductivity type, and it is not necessary to add any manufacturing process in forming the protection element. Therefore, the device 100 of the present invention has a structure capable of improving the ESD discharge capability without increasing the number of special processes and dedicated masks for ESD countermeasures.
 尚、上記実施形態ではSGGNMOS構造のESD保護素子を例として本発明を説明したが、SGGPMOS構造の場合についても、各半導体領域を構成する不純物の導電型を逆にすれば、容易に実現できることは言うまでもない。このとき、SGGPMOS構造における保護抵抗回路25、26は、HVトランジスタ23或いはLVトランジスタ24を構成するPチャネルMOSFETにP-型のドリフト領域を備えて構成される。 In the above embodiment, the present invention has been described by taking the ESD protection element having the SGGNMOS structure as an example. However, even in the case of the SGGPMOS structure, it can be easily realized by reversing the conductivity type of the impurities constituting each semiconductor region. Needless to say. At this time, the protective resistance circuits 25 and 26 in the SGGPMOS structure are configured by including a P− type drift region in the P channel MOSFET constituting the HV transistor 23 or the LV transistor 24.
 また、本発明はESD保護素子の構造に関するものであるが、各半導体領域の大きさ(深さや面積)、不純物濃度、並びに当該素子を構成する材料について何ら限定されるものではない。例えば、ゲート電極8a~8dの材料としては、ポリシリコンの他、高融点金属を用いることができる。ゲート絶縁膜6、7についても、熱酸化膜、CVD酸化膜の他、high-k材料を用いても構わないし、シリサイドを構成する金属についても、チタンの他、コバルト、ニッケル等、何れであっても本発明の効果が得られる。 Further, although the present invention relates to the structure of the ESD protection element, the size (depth and area) of each semiconductor region, the impurity concentration, and the material constituting the element are not limited at all. For example, as a material for the gate electrodes 8a to 8d, refractory metal can be used in addition to polysilicon. As for the gate insulating films 6 and 7, a high-k material may be used in addition to the thermal oxide film and the CVD oxide film, and the metal constituting the silicide may be any of cobalt, nickel, etc. in addition to titanium. However, the effect of the present invention can be obtained.
 また、上記実施形態では、同一基板上に高耐圧トランジスタが形成される第1領域と、低耐圧トランジスタが形成される第2領域を有し、当該第1領域及び第2領域の双方においてESD保護素子を備える構成であるが、高耐圧トランジスタが形成される第1領域のみを備える場合、あるいは低耐圧トランジスタが形成される第2領域のみを備える場合であっても、本発明のESD保護素子を備えた構成とすることができる。 Moreover, in the said embodiment, it has the 1st area | region where a high voltage transistor is formed on the same board | substrate, and the 2nd area | region where a low voltage transistor is formed, and ESD protection in both the said 1st area | region and 2nd area | region The ESD protection element of the present invention is provided even when the device includes only the first region in which the high voltage transistor is formed or only the second region in which the low voltage transistor is formed. It can be set as the structure provided.
 本発明は、半導体装置に利用可能であり、特に、ESD保護素子を備える半導体集積回路装置に利用することができる。 The present invention can be used for a semiconductor device, and in particular, can be used for a semiconductor integrated circuit device including an ESD protection element.
1:   P基板
2、3: Pウェル
4:   素子分離膜(STI)
5a~5d: ドリフト領域
6:   第1のゲート絶縁膜(高耐圧用)
7:   第2のゲート絶縁膜(低耐圧用)
8a~8d: ゲート電極
9:   LDD領域
10a~10d: 側壁絶縁膜
11a: 第1のソース領域(高濃度ソース領域)
11b: 第1のドレイン領域(高濃度ドレイン領域)
11c: 第2のソース領域(高濃度ソース領域)
11d: 第2のドレイン領域(高濃度ドレイン領域)
12:  シリサイド層
13:  層間絶縁膜
14:  コンタクトプラグ
15:  金属配線
16:  第1抵抗ドレイン領域
17:  第2抵抗ドレイン領域
21:  HV保護素子(高耐圧用の第1のESD保護素子)
22:  LV保護素子(低耐圧用の第2のESD保護素子)
23:  HVトランジスタ(高耐圧の第1のMOSFET)
24:  LVトランジスタ(低耐圧の第2のMOSFET)
25:  第1の保護抵抗回路
26:  第2の保護抵抗回路
31:  犠牲酸化膜
32~34: レジストパターン
100: 本発明の一実施形態に係る半導体装置(本発明装置)
1: P substrate 2, 3: P well 4: Element isolation film (STI)
5a to 5d: Drift region 6: First gate insulating film (for high breakdown voltage)
7: Second gate insulating film (for low breakdown voltage)
8a to 8d: Gate electrode 9: LDD regions 10a to 10d: Side wall insulating film 11a: First source region (high concentration source region)
11b: First drain region (high concentration drain region)
11c: Second source region (high concentration source region)
11d: second drain region (high concentration drain region)
12: Silicide layer 13: Interlayer insulating film 14: Contact plug 15: Metal wiring 16: First resistance drain region 17: Second resistance drain region 21: HV protection element (first ESD protection element for high withstand voltage)
22: LV protection element (second ESD protection element for low withstand voltage)
23: HV transistor (first MOSFET with high breakdown voltage)
24: LV transistor (low-voltage second MOSFET)
25: first protection resistor circuit 26: second protection resistor circuit 31: sacrificial oxide films 32 to 34: resist pattern 100: semiconductor device according to one embodiment of the present invention (device of the present invention)

Claims (8)

  1.  第1のMOSFETが形成される第1領域を有する半導体装置において、
     前記第1領域上に、前記第1のMOSFETに第1の保護抵抗回路を接続してなる第1ESD保護素子が形成され、
     前記第1のMOSFETは、
     第1ウェル上に、第1ゲート絶縁膜を介して形成された第1ゲート電極、及び、前記第1ゲート電極を挟んで互いに対向するように前記第1ウェルの表層に分離形成される前記第1ウェルと逆導電型の第1ソース領域及び第1ドレイン領域を備え、
     前記第1の保護抵抗回路は、
     前記第1ゲート絶縁膜を介して形成された第1ゲート電極、
     前記第1ゲート電極を挟んで互いに対向するように前記第1ウェルの表層に分離形成される前記第1ウェルと逆導電型の二つの第1抵抗ドレイン領域、及び、
     前記第1抵抗ドレイン領域と同導電型であって当該第1抵抗ドレイン領域より低濃度のドリフト領域を備え、
     前記ドリフト領域が、前記第1抵抗ドレイン領域の双方と電気的に接続するように、前記第1ゲート電極下方に形成されていることを特徴とする半導体装置。
    In the semiconductor device having the first region in which the first MOSFET is formed,
    A first ESD protection element formed by connecting a first protection resistance circuit to the first MOSFET is formed on the first region,
    The first MOSFET is:
    A first gate electrode formed through a first gate insulating film on the first well, and the first well formed on the surface layer of the first well so as to face each other with the first gate electrode interposed therebetween A first source region and a first drain region having a conductivity type opposite to that of one well;
    The first protective resistance circuit includes:
    A first gate electrode formed through the first gate insulating film;
    Two first resistance drain regions having a conductivity type opposite to that of the first well formed to be separated from each other in a surface layer of the first well so as to face each other with the first gate electrode interposed therebetween;
    A drift region having the same conductivity type as the first resistance drain region and having a lower concentration than the first resistance drain region;
    The semiconductor device, wherein the drift region is formed below the first gate electrode so as to be electrically connected to both the first resistance drain region.
  2.  前記第1のMOSFETは、
     前記第1のMOSFETの前記第1ソース領域及び前記第1ドレイン領域と同導電型であって当該第1ソース領域及び当該第1ドレイン領域より低濃度のドリフト領域を備え、
     前記第1のMOSFETの前記ドリフト領域が、前記第1のMOSFETの前記第1ソース領域から前記第1ゲート電極下方に向かって延伸するソース側ドリフト領域と、前記第1のMOSFETの前記第1ドレイン領域から前記第1ゲート電極下方に向かって延伸するドレイン側ドリフト領域に、前記第1のMOSFETの前記第1ゲート電極下方の前記第1ウェルを挟んで分離形成され、
     前記第1ESD保護素子を構成する前記第1のMOSFETの前記ドレイン側ドリフト領域が、前記第1の保護抵抗回路の前記ドリフト領域と接続していることを特徴とする請求項1に記載の半導体装置。
    The first MOSFET is:
    The first MOSFET has the same conductivity type as the first source region and the first drain region, and includes a drift region having a lower concentration than the first source region and the first drain region,
    The drift region of the first MOSFET extends from the first source region of the first MOSFET toward the lower side of the first gate electrode, and the first drain of the first MOSFET. A drain-side drift region extending downward from the region toward the lower side of the first gate electrode is separated and formed across the first well below the first gate electrode of the first MOSFET,
    2. The semiconductor device according to claim 1, wherein the drain-side drift region of the first MOSFET constituting the first ESD protection element is connected to the drift region of the first protection resistance circuit. .
  3.  前記第1のMOSFETの前記第1ゲート電極、及び、前記第1の保護抵抗回路の前記第1ゲート電極が、ポリシリコンで構成されていることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first gate electrode of the first MOSFET and the first gate electrode of the first protective resistance circuit are made of polysilicon.
  4.  前記第1の保護抵抗回路の前記第1ゲート電極の上面に形成されたシリサイド層が、前記第1抵抗ドレイン領域の上面に形成されたシリサイド層と、前記第1の保護抵抗回路の前記第1ゲート電極の側壁に沿って形成される絶縁膜を介して電気的に分離されていることを特徴とする請求項3に記載の半導体装置。 The silicide layer formed on the top surface of the first gate electrode of the first protection resistance circuit includes the silicide layer formed on the top surface of the first resistance drain region, and the first protection resistor circuit. 4. The semiconductor device according to claim 3, wherein the semiconductor device is electrically isolated through an insulating film formed along a side wall of the gate electrode.
  5.  前記第1のMOSFETより低耐圧の第2のMOSFETが形成される第2領域を有し、
     前記第2領域上に、前記第2のMOSFETに第2の保護抵抗回路を接続してなる第2ESD保護素子が形成され、
     前記第2のMOSFETは、
     第2ウェル上に、第2ゲート絶縁膜を介して形成された第2ゲート電極、及び、前記第2ゲート電極を挟んで互いに対向するように前記第2ウェルの表層に分離形成される前記第2ウェルと逆導電型の第2ソース領域及び第2ドレイン領域を備え、
     前記第2の保護抵抗回路は、
     前記第2ゲート絶縁膜を介して形成された第2ゲート電極、
     前記第2ゲート電極を挟んで互いに対向するように前記第2ウェルの表層に分離形成される前記第2ウェルと逆導電型の二つの第2抵抗ドレイン領域、及び、
     前記第2抵抗ドレイン領域と同導電型であって当該第2抵抗ドレイン領域より低濃度の第2のドリフト領域を備え、
     前記第2のドリフト領域が、前記第2抵抗ドレイン領域の双方と電気的に接続するように、前記第2ゲート電極下方に形成されていることを特徴とする請求項1~4の何れか一項に記載の半導体装置。
    A second region in which a second MOSFET having a lower breakdown voltage than the first MOSFET is formed;
    A second ESD protection element formed by connecting a second protection resistance circuit to the second MOSFET is formed on the second region,
    The second MOSFET is:
    A second gate electrode formed through a second gate insulating film on the second well, and the second well separated from the surface layer of the second well so as to face each other with the second gate electrode interposed therebetween A second source region and a second drain region having two wells and a reverse conductivity type;
    The second protective resistance circuit is:
    A second gate electrode formed through the second gate insulating film;
    Two second resistance drain regions having a conductivity type opposite to that of the second well formed to be separated from each other in a surface layer of the second well so as to face each other across the second gate electrode; and
    A second drift region having the same conductivity type as the second resistance drain region and having a lower concentration than the second resistance drain region;
    5. The method according to claim 1, wherein the second drift region is formed below the second gate electrode so as to be electrically connected to both of the second resistance drain regions. The semiconductor device according to item.
  6.  前記第2ゲート電極が、ポリシリコンで構成され、
     前記第2の保護抵抗回路の前記第2ゲート電極の上面に形成されたシリサイド層が、前記第2抵抗ドレイン領域の上面に形成されたシリサイド層と、前記第2の保護抵抗回路の前記第2ゲート電極の側壁に沿って形成される絶縁膜を介して電気的に分離されていることを特徴とする請求項5に記載の半導体装置。
    The second gate electrode is made of polysilicon;
    The silicide layer formed on the upper surface of the second gate electrode of the second protection resistance circuit includes the silicide layer formed on the upper surface of the second resistance drain region, and the second layer of the second protection resistance circuit. 6. The semiconductor device according to claim 5, wherein the semiconductor device is electrically isolated through an insulating film formed along the side wall of the gate electrode.
  7.  前記第2のMOSFETにおいて、前記第2ソース領域及び前記第2ドレイン領域の何れかと電気的に接続し、前記第2ゲート電極の下方に向って延伸する、当該第2ソース領域及び当該第2ドレイン領域と同導電型であって当該第2ソース領域及び当該第2ドレイン領域より低濃度のLDD領域が形成されていることを特徴とする請求項5に記載の半導体装置。 In the second MOSFET, the second source region and the second drain are electrically connected to either the second source region or the second drain region and extend downward from the second gate electrode. 6. The semiconductor device according to claim 5, wherein an LDD region having the same conductivity type as the region and having a lower concentration than the second source region and the second drain region is formed.
  8.  前記第1のMOSFETにおいて、前記第1ソース領域及び前記第1ドレイン領域の何れかと電気的に接続し、前記第1ゲート電極の下方に向って延伸する、当該第1ソース領域及び当該第1ドレイン領域と同導電型であって当該第1ソース領域及び当該第1ドレイン領域より低濃度のLDD領域が形成されていることを特徴とする請求項1、3または4に記載の半導体装置。 In the first MOSFET, the first source region and the first drain that are electrically connected to either the first source region or the first drain region and extend downward from the first gate electrode. 5. The semiconductor device according to claim 1, wherein an LDD region having the same conductivity type as the region and having a lower concentration than the first source region and the first drain region is formed.
PCT/JP2012/058858 2011-04-26 2012-04-02 Semiconductor device WO2012147456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011097820A JP5210414B2 (en) 2011-04-26 2011-04-26 Semiconductor device
JP2011-097820 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147456A1 true WO2012147456A1 (en) 2012-11-01

Family

ID=47071981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058858 WO2012147456A1 (en) 2011-04-26 2012-04-02 Semiconductor device

Country Status (3)

Country Link
JP (1) JP5210414B2 (en)
TW (1) TW201246507A (en)
WO (1) WO2012147456A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894664A3 (en) * 2014-01-14 2015-10-21 Socionext Inc. Semiconductor integrated circuit apparatus and manufacturing method for same
US9406753B2 (en) 2013-11-22 2016-08-02 Atomera Incorporated Semiconductor devices including superlattice depletion layer stack and related methods
EP3217431A1 (en) * 2016-03-11 2017-09-13 MediaTek Inc. Semiconductor device capable of high-voltage operation
US10199496B2 (en) 2016-03-11 2019-02-05 Mediatek Inc. Semiconductor device capable of high-voltage operation
US10418480B2 (en) 2016-03-11 2019-09-17 Mediatek Inc. Semiconductor device capable of high-voltage operation
TWI769526B (en) * 2019-12-31 2022-07-01 台灣積體電路製造股份有限公司 Boundary scheme for semiconductor integrated circuit and method for forming an integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322680B2 (en) 2019-11-28 2023-08-08 株式会社大林組 Calling system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173070A (en) * 1996-12-11 1998-06-26 Nec Corp Semiconductor device
JP2002057293A (en) * 2000-08-11 2002-02-22 Rohm Co Ltd Semiconductor device
JP2004235452A (en) * 2003-01-30 2004-08-19 Seiko Epson Corp Semiconductor device
JP2004273973A (en) * 2003-03-12 2004-09-30 Nec Electronics Corp Semiconductor element and semiconductor device, and method for manufacturing them
JP2005093458A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Semiconductor device and its fabricating process
JP2006005204A (en) * 2004-06-18 2006-01-05 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2009158621A (en) * 2007-12-25 2009-07-16 Toshiba Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838033A (en) * 1993-09-08 1998-11-17 Lucent Technologies Inc. Integrated circuit with gate conductor defined resistor
US5498892A (en) * 1993-09-29 1996-03-12 Ncr Corporation Lightly doped drain ballast resistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173070A (en) * 1996-12-11 1998-06-26 Nec Corp Semiconductor device
JP2002057293A (en) * 2000-08-11 2002-02-22 Rohm Co Ltd Semiconductor device
JP2004235452A (en) * 2003-01-30 2004-08-19 Seiko Epson Corp Semiconductor device
JP2004273973A (en) * 2003-03-12 2004-09-30 Nec Electronics Corp Semiconductor element and semiconductor device, and method for manufacturing them
JP2005093458A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Semiconductor device and its fabricating process
JP2006005204A (en) * 2004-06-18 2006-01-05 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2009158621A (en) * 2007-12-25 2009-07-16 Toshiba Corp Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406753B2 (en) 2013-11-22 2016-08-02 Atomera Incorporated Semiconductor devices including superlattice depletion layer stack and related methods
EP2894664A3 (en) * 2014-01-14 2015-10-21 Socionext Inc. Semiconductor integrated circuit apparatus and manufacturing method for same
US9935097B2 (en) 2014-01-14 2018-04-03 Mie Fujitsu Semiconductor Limited Semiconductor integrated circuit apparatus and manufacturing method for same
US10236286B2 (en) 2014-01-14 2019-03-19 Mie Fujitsu Semiconductor Limited Semiconductor integrated circuit apparatus and manufacturing method for same
EP3217431A1 (en) * 2016-03-11 2017-09-13 MediaTek Inc. Semiconductor device capable of high-voltage operation
TWI637520B (en) * 2016-03-11 2018-10-01 聯發科技股份有限公司 A semiconductor device
US10199496B2 (en) 2016-03-11 2019-02-05 Mediatek Inc. Semiconductor device capable of high-voltage operation
US10396166B2 (en) 2016-03-11 2019-08-27 Mediatek Inc. Semiconductor device capable of high-voltage operation
US10418480B2 (en) 2016-03-11 2019-09-17 Mediatek Inc. Semiconductor device capable of high-voltage operation
US10541328B2 (en) 2016-03-11 2020-01-21 Mediatek Inc. Semiconductor device capable of high-voltage operation
US10879389B2 (en) 2016-03-11 2020-12-29 Mediatek Inc Semiconductor device capable of high-voltage operation
TWI769526B (en) * 2019-12-31 2022-07-01 台灣積體電路製造股份有限公司 Boundary scheme for semiconductor integrated circuit and method for forming an integrated circuit

Also Published As

Publication number Publication date
TW201246507A (en) 2012-11-16
JP2012230989A (en) 2012-11-22
JP5210414B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5210414B2 (en) Semiconductor device
JP5202473B2 (en) Manufacturing method of semiconductor device
US8722522B2 (en) Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device
JP4845410B2 (en) Semiconductor device
EP3217432B1 (en) Semiconductor device capable of high-voltage operation
US9831235B2 (en) Method of making structure having a gate stack
JP2006278633A (en) Manufacturing method of semiconductor device
TWI656639B (en) Semiconductor device and method of forming same
US7573098B2 (en) Transistors fabricated using a reduced cost CMOS process
JP4584222B2 (en) Manufacturing method of high voltage transistor
TW202326291A (en) Mask layout, semiconductor device and manufacturing method using the same
TWI392083B (en) Semiconductor device
KR100550173B1 (en) Esd protection device and manufacturing method thereof
JP5058529B2 (en) Manufacturing method of high voltage field effect transistor
KR101035578B1 (en) Method for manufacturing semiconductor device
JP2006165481A (en) Semiconductor apparatus
CN107204370B (en) Semiconductor device and method for manufacturing semiconductor device
WO2014196223A1 (en) Semiconductor chip and semiconductor device
JP2007335463A (en) Electrostatic discharging protective element, and semiconductor device
JP5008363B2 (en) Semiconductor device
JP4921925B2 (en) Manufacturing method of semiconductor device
JP5481526B2 (en) High voltage field effect transistor
JP2010182821A (en) Semiconductor device
JP2013026542A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776020

Country of ref document: EP

Kind code of ref document: A1