WO2012108572A1 - Method for manufacturing femoral stem and rasp for an artificial hip joint - Google Patents

Method for manufacturing femoral stem and rasp for an artificial hip joint Download PDF

Info

Publication number
WO2012108572A1
WO2012108572A1 PCT/KR2011/000948 KR2011000948W WO2012108572A1 WO 2012108572 A1 WO2012108572 A1 WO 2012108572A1 KR 2011000948 W KR2011000948 W KR 2011000948W WO 2012108572 A1 WO2012108572 A1 WO 2012108572A1
Authority
WO
WIPO (PCT)
Prior art keywords
rasp
design
femoral stem
head
hip joint
Prior art date
Application number
PCT/KR2011/000948
Other languages
French (fr)
Korean (ko)
Inventor
선두훈
김용식
김정성
신태진
서정우
Original Assignee
주식회사 코렌텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코렌텍 filed Critical 주식회사 코렌텍
Priority to PCT/KR2011/000948 priority Critical patent/WO2012108572A1/en
Publication of WO2012108572A1 publication Critical patent/WO2012108572A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1659Surgical rasps, files, planes, or scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/568Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor produced with shape and dimensions specific for an individual patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]

Definitions

  • the present invention relates to a method for manufacturing a hip joint femoral stem and a surgical instrument used therein. More specifically, the design of the artificial hip joint femoral stem and surgical instrument (rasp) is designed by modularizing the body part and the neck and the head part. The body part of the artificial hip joint rasp is manufactured in advance, and the neck and the head part are manufactured by rapid prototyping or general machining, so that the production period of the rasp.
  • the present invention relates to a method for manufacturing an artificial hip joint femoral stem and a surgical instrument, which can reduce the cost.
  • the hip joint is the joint between the femur and pelvis of the human body, and it is the joint that plays the most important role in sitting or standing, and can be damaged by various pathological causes and traumas. Artificial hip joint may be applied.
  • the hip joint is composed of the acetabular cup 300 is fixed to the acetabular pelvis 400 and the femoral stem 100 is fixed to the femur 200, as shown in Figure 1, femoral stem 100 and the acetabular cup 300 is made of, for example, a titanium alloy harmless to the human body.
  • the femoral head 500 formed of ceramic or metal material is fixed, and the corresponding hemisphere 600 is accommodated in the acetabular cup 300 to accommodate and rotate the femoral head 500.
  • the corresponding hemispheres 600 are made of ceramic material or polymer polyethylene.
  • the artificial hip joint configured as described above is configured to allow the femoral head 500 to rotate about the corresponding hemisphere 600 according to the movement of the femur 200 and the femoral stem 100.
  • Artificial hips can be broadly divided into pre-fabricated hips that are pre-fabricated according to certain specifications and custom-made hips that are manufactured to the individual characteristics of the patient for patients with femur shapes that are not suitable for the preformed hips.
  • the most important part required for the hip joint is the horizontal distance (D1, head offset length) from the center of the femoral head associated with the position of the femoral head to the vertical center axis (Y) of the femur as shown in FIG. It is necessary to accurately correct the head longitudinal offset length (D2) from the center of the femoral head associated with the leg length and to supply the product as quickly as possible.
  • the present invention has been made to solve the above problems,
  • An object of the present invention is to design the hip joint femoral stem and surgical instrument (rasp) by modular design of the body portion and neck and head portion by artificially femoral hip joint that can accurately correct the position of the leg length and femoral head of the patient It is to provide a method for manufacturing a stem and a surgical instrument (rasp).
  • Another object of the present invention is to fit the characteristics of the patient during the body design of the various types of hip joint femoral stem and rasp for pre-standardization in the design of the body portion of the hip joint and the rasp By using the method of selecting the body design to provide a method for manufacturing the artificial femoral stem and rasp for the rapid reduction of the design and manufacturing period.
  • Another object of the present invention is the artificial hip joint (rasp) can be manufactured by modularizing the product itself into the body portion and neck and head portion artificial hip joint that can reduce the production period and cost of the surgical instrument (rasp) It is to provide a femoral stem and surgical instrument (rasp) manufacturing method.
  • Still another object of the present invention is to prepare the body portion of the rasp for artificial hips in advance, the neck and the head portion by rapid prototyping or general machining method (rasp) It is to provide a method for manufacturing artificial hip joint femoral stem and rasp that can reduce the production period and cost of the).
  • Artificial hip joint femoral stem and surgical instrument manufacturing method for achieving the above object of the present invention includes the following configuration.
  • a method for manufacturing an artificial hip joint femoral stem includes a first step of extracting a design variable from femoral bone shape information of a patient; A second step of selecting a body design suitable for the characteristics of the patient from among the body designs of the femoral stem for various hip joints, which are standardized using the design variables extracted in the first step; And a third step of designing a neck and a head suitable for the body design selected in the second step by using the design variable extracted in the first step.
  • the design variable used in the second step is the width of the lumen of the patient's femur
  • the design variable used in the third step is the femur It is characterized in that the horizontal length from the center of the head to the vertical axis of the femur and the vertical length from the center of the femur head to the small electrons.
  • the body design of the artificial hip joint femoral stem selected in the second step and the artificial hip joint femur designed in the third step A fourth step of designing the femoral stem for an artificial hip by integrating the neck and the head of the artificial hip; And a sixth step of processing the artificial hip joint femoral stem designed in the fourth step.
  • a fifth step of evaluating the artificial hip joint designed in the fourth step in advance through finite element analysis is characterized in that it further comprises.
  • a method for manufacturing an artificial hip surgical instrument includes a first step of extracting a design variable from the femur shape information of the patient; A second step of selecting a body design suitable for a patient's characteristics among the body designs of the various types of hip arthroplasty rasps that are standardized using the design variables extracted in the first step; And a third step of designing a neck and a head suitable for the body design selected in the second step by using the design variable extracted in the first step.
  • the design variable used in the second step in the method of manufacturing artificial hip surgical rasp according to the present invention is the width of the lumen of the patient's femur, and the design used in the third step The variable is characterized by the horizontal length from the center of the femur head to the vertical axis of the femur and the vertical length from the center of the femur head to the small electrons.
  • the seventh step in the manufacturing method of the artificial hip surgical rasp according to the present invention pre-processed the body of the standardized various types of artificial hip surgical rasp
  • the eighth step is characterized by being able to shorten the manufacturing period of the rasp by processing the neck and the head by Rapid Prototyping or general machining.
  • the present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
  • the present invention is designed by modularizing the design of the hip joint femoral stem and surgical instrument (rasp) into the body portion and neck and head portion, the artificial femoral stem for accurate correction of the position of the leg length and femoral head of the patient and Provides a method of making a rasp.
  • the present invention is to design the body design according to the characteristics of the patient during the body design of the various types of hip joint femoral stem and surgical instrument (rasp) of the pre-standardized in the design of the body portion of the hip joint and the surgical instrument (rasp)
  • the present invention provides a method for manufacturing an artificial hip femoral stem and a rasp that can shorten the design and manufacturing time.
  • the present invention is an artificial hip surgical instrument (rasp) is to be manufactured by modularizing the product itself into the body portion and neck and head portion, artificial femoral stem for artificial hip joint which can shorten the production period and cost of the surgical instrument (rasp) and Provides a method of making a rasp.
  • the body portion of the rasp for artificial hips is manufactured in advance, and the neck and the head are manufactured by rapid prototyping or general machining, thereby producing a rasp. And it provides a method of manufacturing artificial hip joint femoral stem and ras (rasp) that can reduce the cost.
  • Figure 1 is a schematic diagram showing a state in which the artificial hip joint
  • Figure 2 is a schematic diagram showing a state in which the artificial hip joint femoral stem and surgical instrument (rasp) is performed on the femur
  • Figure 3 is a block diagram showing the process of the femoral stem manufacturing method for artificial hip joint according to an embodiment of the present invention
  • Figure 4 is a block diagram showing the process of manufacturing method of femoral stem for artificial hip according to another embodiment of the present invention
  • FIG. 5 is a block diagram showing the process of a method for manufacturing a surgical instrument (rasp) for artificial hip joint according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing design variables extracted from femoral bone shape information of a patient
  • Figure 7 is a schematic diagram showing the process of designing the neck and head in the third step
  • FIG. 8 is a schematic diagram showing a process of designing a femoral stem in a fourth step
  • FIG. 9 is an isolated front view of the surgical instrument (rasp) for artificial hip joint according to an embodiment of the present invention
  • thigh stem 110 body 120: neck 130: head
  • femur 210 microcephaly 220: bone lumen
  • Figure 3 is a block diagram showing the process of manufacturing method of femoral stem for artificial hip joint according to an embodiment of the present invention
  • Figure 6 is a schematic diagram showing the design parameters extracted from the femur shape information of the patient
  • Figure 7 is a third step Is a schematic representation of the process of designing the neck and head.
  • a method for manufacturing a hip joint femoral stem includes a first step (S100) of extracting design parameters from femoral bone shape information of a patient; and the design parameters extracted in the first step.
  • the first step (S100) is to obtain the femur (200) shape information from the X-ray image information, etc. of the shape of the femur (200) of the patient in order to design the artificial hip femoral stem (100), and extracts the necessary design variables therefrom The process of doing.
  • the femoral 200 shape information of the patient may be obtained by using computer arithmetic processing and each image processing using the DICOM medical image information, which is an international medical imaging standard.
  • the necessary design variables are extracted from the obtained femoral 200 shape information.
  • the intraluminal lumen 220 of the patient femur 200 is largely extracted.
  • the width of the lumen 220 of the patient's femur 200 is specifically the width of the lumen in the upper 20 mm in the small electron 210 that can be obtained in the front shape of the femur 200 ( 1), width of bone lumen (2) at the small trochanter 210 in the vertical center axis (Y) of the femur (200), D3 at the small trochanter 210 (the proximal portion of the femoral stem at the small trochanter 210)
  • Width of bone lumen in the lower part (6) as much as (the length from the trochanter 210 to the proximal end 111 of the femoral stem), D4 in the trochanter 210 (the distal portion of the femoral stem in the trochanter 210) (113) the length to the end) means the width of the lumen (7) and the like in the lower portion. Extracting the necessary design variables from the femur 200 shape information is performed by a program, in which the pre-operation planning program may be used.
  • the second step (S200) is a body that fits the characteristics of the patient during the design of the body 110 of the femoral stem 100 for various types of hip joints, which is pre-standardized using the design variables extracted in the first step (S100). (110) means the process of selecting a design.
  • the core of the present invention is to design the modular body part 110 and the neck portion 120 and head 130 of the artificial femoral stem 100, respectively, the design of the dual body portion 110 is the patient Rather than designing the body portion 110 individually for each, as shown in Figure 11 based on the information about the existing hip joint body for the conventional hip joint, various types of pre-standardized hip joint femoral stem After preparing the design of the body 110 of the data 100, as shown in Figure 12, by inputting the design variables according to the shape of the femur of each patient, the design of the body 110 according to the characteristics of the patient of the most The method of selecting is used.
  • an auto-parametric design application of programming interface (API) or the like may be used, and the design variable used at this time may be a bone lumen of the patient's femur 200 among the design variables extracted in the first step S100.
  • API programming interface
  • a method of selecting the design of the body 110 according to the characteristics of the patient may also be utilized.
  • the third step (S300) uses the design variables extracted in the first step (S100) to the neck portion 120 and the head 130 suitable for the design of the body 110 selected in the second step (S200). The process of designing.
  • the present invention is to solve the problem that the correction of the position of the femoral ball head and the leg length of the patient according to the design of the body 110 and the neck 120 and the head 130 of the femoral stem 100 at a time is not accurate
  • the double neck 120 and the head 130 is designed based on the design of the body 110 selected in the second step (S200) as shown in FIG. Fit the body 110 to the femur of the patient first, and then input the design variables extracted in the first step (S100) based on this to design the neck (120) and head 130 according to the characteristics of the patient do.
  • an auto-parametric design application of programming interface (API) or the like may be used, and the design variable used at this time may be located at the center of the femoral head 500 among the design variables extracted in the first step S100.
  • the length means a head offset length and a head transverse offset length.
  • the design variables extracted in the first step S100 based on the design.
  • the neck 120 and the head 130 according to the characteristics of the patient, it is possible to quickly and accurately correct the position of the patient's femoral head and the patient's leg length by using It is possible to provide a femoral stem for the hip joint, which can reduce the cost and time loss and pain of the patient due to remanufacture or re-treatment.
  • Figure 4 is a block diagram showing the process of the method for manufacturing a hip joint femoral stem according to another embodiment of the present invention
  • Figure 8 is a schematic diagram showing a process of designing the femoral stem in the fourth step.
  • the artificial hip joint femoral stem manufacturing method is designed in the third step (S200) the body design of the hip joint femoral stem and the third step (S300)
  • the fourth step (S400) is the design of the body 110 of the hip joint femoral stem selected in the second step (S200) and the neck portion 120 of the femoral stem for artificial hips designed in the third step (S300) Means the process of designing the hip joint femoral stem 100 by integrating the head 130.
  • the design of the body 110 of the femoral stem for the hip joint selected in the second step (S200) on the design program and the neck portion 120 of the femoral stem for the hip joint designed in the third step (S300) Design variables extracted in the first step (S100) by constructing an automatic design system that can complete the overall design for the hip joint femoral stem 100 by a simple operation of combining the design and the head (130) By using only it is possible to quickly and accurately design the hip joint femoral stem to suit the individual patient's characteristics.
  • an auto-parametric design API Application of Programming Interface
  • the fifth step (S500) means a process of evaluating the artificial hip joint femoral stem 100 designed in the fourth step (S400) in advance through finite element analysis.
  • the hip joint femoral stem 100 designed in the fourth step (S400) has a range of motion (ROM, Range Of Motion) that does not interfere in daily life, and has strength to withstand the load of the patient.
  • ROM Range Of Motion
  • the product defect rate can be lowered to reduce the cost, time loss, and patient pain of remanufacturing or re-treatment.
  • COSMOS Works which is a general purpose finite element analysis program, can be used.
  • the sixth step S600 refers to a process of processing the artificial hip joint femoral stem 100 designed in the fourth step S400.
  • the cam (CAM) work to proceed to the free shape on the automated machine for processing based on the design of the artificial hip joint femur 100 designed in the fourth step (S400)
  • the femoral stem for artificial hip joint is processed using 5-axis M / CTR and CNC Lathe based on the CAM work.
  • the product is supplied through the ninth step S900 of post-treatment, and the dimensions of the processed product in the ninth step S900.
  • the design parameter extraction program for information on the shape of the femur according to the individual characteristics of the patient
  • the optimal femoral stem body design is selected according to the individual femoral characteristics of the patient among the various femoral stem body designs already stored in the database.
  • the neck and head of the femoral stem according to the individual characteristics of the patient are automatically designed, and the femoral stem body design and thigh Integrating the stem neck and head design to the patient's individual femur
  • the design of the hip joint femoral stem according to the characteristics is completed.
  • the motion range or strength of the femoral stem is evaluated in advance using a finite element analysis program, and then 5 axis M / CTR and CNC lathe are used.
  • the final product can be used.
  • FIG. 5 is a block diagram illustrating a process of a method for manufacturing an artificial hip surgical instrument (rasp) according to an embodiment of the present invention
  • FIG. 9 illustrates separation of an artificial hip surgical instrument (rasp) according to an embodiment of the present invention. Front view.
  • a method for manufacturing an artificial hip surgical instrument (rasp) includes a first step (S100) of extracting design parameters from femoral shape information of a patient; and extracting from the first step.
  • first step (S100), the second step (S200), and the third step (S300) are the same as those described in the method for manufacturing the femoral stem for artificial hip joint, duplicate description thereof will be omitted.
  • the seventh step (S700) and the eighth step (S800) will be mainly described.
  • the seventh step (S700) is to process the body 710 of the surgical instrument (rasp, 700) according to the design of the body 710 of the artificial surgical instrument (rasp, 700) selected in the second step (S200). The process of doing.
  • the product is manufactured to be modularized into the body 710 and the neck portion 720 and the head 730 to reduce the production period and cost required for the production of the surgical instrument (rasp, 700), of which
  • the seventh step (S700) is stainless steel to the body 710 of the surgical instrument (rasp, 700) according to the design of the body 710 of the artificial surgical instrument (rasp, 700) selected in the second step (S200) (stainles It can be processed by general machining method using s steel) material
  • the production period required for the production of the body 710 can be shortened, and recycling may be possible.
  • the eighth step (S800) is the neck portion of the surgical instrument (rasp, 700) according to the design of the neck 720 and the head 730 of the artificial surgical instrument (rasp, 700) designed in the third step (S300) 720 and the process of processing the head 730.
  • Rapid Prototyping is a processing technique that shortens the product development period and enables complex geometric shapes to be formed.
  • the rapid prototyping is used to process the neck portion 720 and the head 730 of the surgical instrument (rasp, 700). If only one day does not take the production period, and also can be manufactured in a separate equipment from the equipment for manufacturing the artificial hip femoral stem 100, it is possible to avoid the production interference between each other.
  • the body 710 and the neck portion 720 and the head 730 of the artificial hip surgical instrument (rasp, 700) After the body 710 and the neck portion 720 and the head 730 of the artificial hip surgical instrument (rasp, 700) by modularizing and processing, respectively, the body 710 as shown in FIG.
  • the product is supplied through a ninth step (S900) of post-treatment. Since the ninth step (S900) is the same as described above in the method for manufacturing the artificial femoral stem, the duplicate description thereof will be omitted.

Abstract

The present invention relates to a method for manufacturing a femoral stem and a rasp for an artificial hip joint. In the method for manufacturing the femoral stem and rasp for an artificial hip joint, the femoral stem and rasp for an artificial hip joint may be designed so that a body part, a neck part, and a head part are modularized. Thus, the body part of the rasp for an artificial hip joint is pre-manufactured, and then, the neck part and the head part are manufactured using a rapid prototyping process or a general machining process. Therefore, the time and cost for manufacturing the rasp may be reduced.

Description

인공 고관절용 대퇴스템 및 시술기구 제작방법Method of manufacturing artificial hip joint femoral stem and surgical instrument
본 발명은 인공고관절용 대퇴스템 및 이에 사용되는 시술기구의 제작방법에 관한 것으로, 보다 상세하게는 인공고관절용 대퇴스템 및 시술기구(rasp)의 설계를 몸체 부분 및 경부와 헤드 부분으로 모듈화하여 설계하며, 인공고관절용 시술기구(rasp)의 몸체 부분은 미리 제작해두고, 경부와 헤드 부분은 신속조형기법(Rapid Prototyping) 또는 일반적인 기계가공법(machining)으로 제작함으로써 시술기구(rasp)의 제작기간 및 비용을 단축할 수 있는 것을 특징으로 하는 인공 고관절용 대퇴스템 및 시술기구 제작방법에 관한 것이다. The present invention relates to a method for manufacturing a hip joint femoral stem and a surgical instrument used therein. More specifically, the design of the artificial hip joint femoral stem and surgical instrument (rasp) is designed by modularizing the body part and the neck and the head part. The body part of the artificial hip joint rasp is manufactured in advance, and the neck and the head part are manufactured by rapid prototyping or general machining, so that the production period of the rasp The present invention relates to a method for manufacturing an artificial hip joint femoral stem and a surgical instrument, which can reduce the cost.
고관절은 인체의 대퇴골과 골반 사이를 연결하는 관절로서, 사람이 앉거나 서는데 있어서 가장 중요한 작용을 하는 관절이고, 여러 가지의 병적 원인과 외상 등에 의해서 손상될 수 있으며, 이를 치유하기 위하여 외과 수술을 통하여 인공 고관절이 적용될 수 있다. The hip joint is the joint between the femur and pelvis of the human body, and it is the joint that plays the most important role in sitting or standing, and can be damaged by various pathological causes and traumas. Artificial hip joint may be applied.
통상적으로 인공 고관절은 도 1에 도시된 바와 같이 골반(400)의 비구에 고정되는 비구컵(300)과 대퇴골(200)에 삽입 고정되는 대퇴스템(100)으로 구성되는데, 대퇴스템(100)과 비구컵(300)은 예를 들면 인체에 무해한 티타늄 합금 등으로 제작된다. 대퇴스템(100)의 단부에는 세라믹 또는 금속재료로 형성된 대퇴골두(500)가 고정되고, 비구컵(300) 안에는 상기 대퇴골두(500)가 수용되어 회전할 수 있는 대응 반구체(600)가 끼워져 있으며 상기 대응 반구체(600)는 세라믹 재료 또는 고분자 폴리에틸렌으로 제작된다. 이와 같이 구성된 인공 고관절은 대퇴골(200) 및 대퇴스템(100)의 움직임에 따라 대퇴골두(500)가 대응 반구체(600)에 대한 회전운동을 할 수 있도록 되어 있다. Typically, the hip joint is composed of the acetabular cup 300 is fixed to the acetabular pelvis 400 and the femoral stem 100 is fixed to the femur 200, as shown in Figure 1, femoral stem 100 and the acetabular cup 300 is made of, for example, a titanium alloy harmless to the human body. At the end of the femoral stem 100, the femoral head 500 formed of ceramic or metal material is fixed, and the corresponding hemisphere 600 is accommodated in the acetabular cup 300 to accommodate and rotate the femoral head 500. The corresponding hemispheres 600 are made of ceramic material or polymer polyethylene. The artificial hip joint configured as described above is configured to allow the femoral head 500 to rotate about the corresponding hemisphere 600 according to the movement of the femur 200 and the femoral stem 100.
인공 고관절은 일정한 규격에 따라 미리 제작되어진 기성형 인공고관절과 기성형 인공고관절에 적합하지 않는 대퇴골 형상을 가진 환자를 위해 환자의 개별적인 특성에 맞게 제작되어지는 주문형 인공고관절로 크게 나누어볼 수 있는데, 주문형 인공고관절에 대해 요구되는 가장 중요한 부분은 도 2에 도시된 바와 같이 대퇴골두의 위치와 연관된 대퇴골두의 중심에서 대퇴골의 수직중심축(Y)까지의 수평거리(D1, head offset length)와 환자의 다리길이와 연관된 대퇴골두의 중심에서 소전자까지의 수직길이(D2, head longitudinal offset length)를 정확하게 보정해야 하고, 최대한 신속하게 제품을 공급해야 한다는데 있다. Artificial hips can be broadly divided into pre-fabricated hips that are pre-fabricated according to certain specifications and custom-made hips that are manufactured to the individual characteristics of the patient for patients with femur shapes that are not suitable for the preformed hips. The most important part required for the hip joint is the horizontal distance (D1, head offset length) from the center of the femoral head associated with the position of the femoral head to the vertical center axis (Y) of the femur as shown in FIG. It is necessary to accurately correct the head longitudinal offset length (D2) from the center of the femoral head associated with the leg length and to supply the product as quickly as possible.
또한, 종래의 주문형 인공고관절의 경우는 특히 주문형 인공고관절의 대퇴스템의 삽입공간을 대퇴골에 시술하기 위해 드릴링 기구나 드릴링 후 확공에 필요한 여러가지 기구 등 여러 가지 시술에 필요한 기구들을 모두 갖추어야 하고, 또한 이를 시술하는 데에도 많은 시간과 비용이 소모된다는 문제점이 있었다. In addition, in the case of a conventional artificial hip joint, it is necessary to have all the instruments necessary for various procedures such as a drilling mechanism or various mechanisms necessary for expansion after drilling to treat the insertion space of the femoral stem of the custom artificial hip joint on the femur, and also There was a problem that it takes a lot of time and money to perform the procedure.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로,The present invention has been made to solve the above problems,
본 발명의 목적은 인공고관절용 대퇴스템 및 시술기구(rasp)의 설계를 몸체 부분 및 경부와 헤드 부분으로 모듈화하여 설계함으로써 환자의 다리길이와 대퇴골두의 위치를 정확하게 보정할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공하는 것이다. An object of the present invention is to design the hip joint femoral stem and surgical instrument (rasp) by modular design of the body portion and neck and head portion by artificially femoral hip joint that can accurately correct the position of the leg length and femoral head of the patient It is to provide a method for manufacturing a stem and a surgical instrument (rasp).
본 발명의 다른 목적은 인공고관절용 대퇴스템 및 시술기구(rasp)의 몸체 부분의 설계에 있어서 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템 및 시술기구(rasp)의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 방식을 사용함으로써 빠른 설계 및 제작기간을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공하는 것이다. Another object of the present invention is to fit the characteristics of the patient during the body design of the various types of hip joint femoral stem and rasp for pre-standardization in the design of the body portion of the hip joint and the rasp By using the method of selecting the body design to provide a method for manufacturing the artificial femoral stem and rasp for the rapid reduction of the design and manufacturing period.
본 발명의 또 다른 목적은 인공고관절용 시술기구(rasp)는 제품 자체를 몸체 부분 및 경부와 헤드 부분으로 모듈화하여 제작할 수 있도록 함으로써 시술기구(rasp)의 제작기간 및 비용을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공하는 것이다. Another object of the present invention is the artificial hip joint (rasp) can be manufactured by modularizing the product itself into the body portion and neck and head portion artificial hip joint that can reduce the production period and cost of the surgical instrument (rasp) It is to provide a femoral stem and surgical instrument (rasp) manufacturing method.
본 발명의 또 다른 목적은 인공고관절용 시술기구(rasp)의 몸체 부분은 미리 제작해두고, 경부와 헤드 부분은 신속조형기법(Rapid Prototyping) 또는 일반적인 기계가공법(machining)으로 제작함으로써 시술기구(rasp)의 제작기간 및 비용을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공하는 것이다. Still another object of the present invention is to prepare the body portion of the rasp for artificial hips in advance, the neck and the head portion by rapid prototyping or general machining method (rasp) It is to provide a method for manufacturing artificial hip joint femoral stem and rasp that can reduce the production period and cost of the).
상술한 본 발명의 목적을 달성하기 위한 인공 고관절용 대퇴스템 및 시술기구 제작방법은 다음과 같은 구성을 포함한다.Artificial hip joint femoral stem and surgical instrument manufacturing method for achieving the above object of the present invention includes the following configuration.
본 발명의 일 실시예에 따르면, 본 발명에 따른 인공 고관절용 대퇴스템 제작방법은 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계; 상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계; 상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계;를 포함하는 것을 특징으로 한다. According to an embodiment of the present invention, a method for manufacturing an artificial hip joint femoral stem according to the present invention includes a first step of extracting a design variable from femoral bone shape information of a patient; A second step of selecting a body design suitable for the characteristics of the patient from among the body designs of the femoral stem for various hip joints, which are standardized using the design variables extracted in the first step; And a third step of designing a neck and a head suitable for the body design selected in the second step by using the design variable extracted in the first step.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 대퇴스템 제작방법에 있어서 상기 제2단계에서 이용하는 설계변수는 환자 대퇴골의 골내강의 폭이고, 상기 제3단계에서 이용하는 설계변수는 대퇴골두의 중심에서 대퇴골의 수직중심축까지의 수평길이와 대퇴골두의 중심에서 소전자까지의 수직길이인 것을 특징으로 한다. According to another embodiment of the present invention, in the method for manufacturing an artificial hip joint femoral stem according to the present invention, the design variable used in the second step is the width of the lumen of the patient's femur, and the design variable used in the third step is the femur It is characterized in that the horizontal length from the center of the head to the vertical axis of the femur and the vertical length from the center of the femur head to the small electrons.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 대퇴스템 제작방법에 있어서 상기 제2단계에서 선정된 인공고관절용 대퇴스템의 몸체설계와 상기 제3단계에서 설계된 인공고관절용 대퇴스템의 경부와 헤드를 통합하여 인공고관절용 대퇴스템을 설계하는 제4단계; 상기 제4단계에서 설계한 인공고관절용 대퇴스템을 가공하는 제6단계;를 추가로 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the manufacturing method of the artificial hip joint femoral stem according to the present invention, the body design of the artificial hip joint femoral stem selected in the second step and the artificial hip joint femur designed in the third step A fourth step of designing the femoral stem for an artificial hip by integrating the neck and the head of the artificial hip; And a sixth step of processing the artificial hip joint femoral stem designed in the fourth step.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 대퇴스템 제작방법에 있어서 상기 제4단계에서 설계한 인공고관절용 대퇴스템을 유한요소해석을 통해 사전에 평가하는 제5단계;를 추가로 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the manufacturing method of the artificial hip joint femoral stem according to the present invention a fifth step of evaluating the artificial hip joint designed in the fourth step in advance through finite element analysis; It is characterized in that it further comprises.
본 발명의 일 실시예에 따르면, 본 발명에 따른 인공 고관절용 시술기구(rasp) 제작방법은 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계; 상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 시술기구(rasp)의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계; 상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계;를 포함하는 것을 특징으로 한다. According to an embodiment of the present invention, a method for manufacturing an artificial hip surgical instrument (rasp) according to the present invention includes a first step of extracting a design variable from the femur shape information of the patient; A second step of selecting a body design suitable for a patient's characteristics among the body designs of the various types of hip arthroplasty rasps that are standardized using the design variables extracted in the first step; And a third step of designing a neck and a head suitable for the body design selected in the second step by using the design variable extracted in the first step.
본 발명의 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 시술기구(rasp) 제작방법에 있어서 상기 제2단계에서 이용하는 설계변수는 환자 대퇴골의 골내강의 폭이고, 상기 제3단계에서 이용하는 설계변수는 대퇴골두의 중심에서 대퇴골의 수직중심축까지의 수평길이와 대퇴골두의 중심에서 소전자까지의 수직길이인 것을 특징으로 한다. According to another embodiment of the present invention, the design variable used in the second step in the method of manufacturing artificial hip surgical rasp according to the present invention is the width of the lumen of the patient's femur, and the design used in the third step The variable is characterized by the horizontal length from the center of the femur head to the vertical axis of the femur and the vertical length from the center of the femur head to the small electrons.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 시술기구(rasp) 제작방법에 있어서 상기 제2단계에서 선정된 인공고관절용 시술기구(rasp)의 몸체설계에 따라 가공하는 제7단계: 상기 제3단계에서 설계된 인공고관절용 시술기구(rasp)의 경부와 헤드를 가공하는 제8단계:를 추가로 포함하는 것을 특징으로 한다. According to another embodiment of the present invention, in the manufacturing method of the artificial hip surgical instrument (rasp) according to the present invention the seventh processing according to the body design of the artificial surgical instrument (rasp) selected in the second step Step: The eighth step of processing the neck and head of the artificial hip surgical instrument (rasp) designed in the third step: characterized in that it further comprises.
본 발명의 또 다른 실시예에 따르면, 본 발명에 따른 인공 고관절용 시술기구(rasp) 제작방법에 있어서 상기 제7단계는 규격화된 다양한 형태의 인공고관절용 시술기구(rasp)의 몸체를 미리 가공해두고, 상기 제8단계는 신속조형기법(Rapid Prototyping) 또는 일반적인 기계가공법(machining)에 의해 경부와 헤드를 가공함으로써, 시술기구(rasp) 제작기간을 단축할 수 있는 것을 특징으로 한다. According to another embodiment of the present invention, the seventh step in the manufacturing method of the artificial hip surgical rasp according to the present invention pre-processed the body of the standardized various types of artificial hip surgical rasp In addition, the eighth step is characterized by being able to shorten the manufacturing period of the rasp by processing the neck and the head by Rapid Prototyping or general machining.
본 발명은 앞서 본 실시예와 하기에 설명할 구성과 결합, 사용관계에 의해 다음과 같은 효과를 얻을 수 있다.The present invention can obtain the following effects by the configuration, combination, and use relationship described above with the present embodiment.
본 발명은 인공고관절용 대퇴스템 및 시술기구(rasp)의 설계를 몸체 부분 및 경부와 헤드 부분으로 모듈화하여 설계함으로써 환자의 다리길이와 대퇴골두의 위치를 정확하게 보정할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공한다. The present invention is designed by modularizing the design of the hip joint femoral stem and surgical instrument (rasp) into the body portion and neck and head portion, the artificial femoral stem for accurate correction of the position of the leg length and femoral head of the patient and Provides a method of making a rasp.
본 발명은 인공고관절용 대퇴스템 및 시술기구(rasp)의 몸체 부분의 설계에 있어서 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템 및 시술기구(rasp)의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 방식을 사용함으로써 빠른 설계 및 제작기간을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공한다. The present invention is to design the body design according to the characteristics of the patient during the body design of the various types of hip joint femoral stem and surgical instrument (rasp) of the pre-standardized in the design of the body portion of the hip joint and the surgical instrument (rasp) By using the selection method, the present invention provides a method for manufacturing an artificial hip femoral stem and a rasp that can shorten the design and manufacturing time.
본 발명은 인공고관절용 시술기구(rasp)는 제품 자체를 몸체 부분 및 경부와 헤드 부분으로 모듈화하여 제작할 수 있도록 함으로써 시술기구(rasp)의 제작기간 및 비용을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공한다. The present invention is an artificial hip surgical instrument (rasp) is to be manufactured by modularizing the product itself into the body portion and neck and head portion, artificial femoral stem for artificial hip joint which can shorten the production period and cost of the surgical instrument (rasp) and Provides a method of making a rasp.
본 발명은 인공고관절용 시술기구(rasp)의 몸체 부분은 미리 제작해두고, 경부와 헤드 부분은 신속조형기법(Rapid Prototyping) 또는 일반적인 기계가공법(machining)으로 제작함으로써 시술기구(rasp)의 제작기간 및 비용을 단축할 수 있는 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법을 제공한다. According to the present invention, the body portion of the rasp for artificial hips is manufactured in advance, and the neck and the head are manufactured by rapid prototyping or general machining, thereby producing a rasp. And it provides a method of manufacturing artificial hip joint femoral stem and ras (rasp) that can reduce the cost.
도 1은 인공고관절이 시술된 상태를 나타내는 개략도Figure 1 is a schematic diagram showing a state in which the artificial hip joint
도 2는 인공고관절용 대퇴스템 및 시술기구(rasp)가 대퇴골에 시술된 상태를 나타내는 개략도Figure 2 is a schematic diagram showing a state in which the artificial hip joint femoral stem and surgical instrument (rasp) is performed on the femur
도 3은 본 발명의 일 실시예에 따른 인공고관절용 대퇴스템 제작방법의 공정을 나타내는 블럭도Figure 3 is a block diagram showing the process of the femoral stem manufacturing method for artificial hip joint according to an embodiment of the present invention
도 4은 본 발명의 다른 실시예에 따른 인공고관절용 대퇴스템 제작방법의 공정을 나타내는 블럭도Figure 4 is a block diagram showing the process of manufacturing method of femoral stem for artificial hip according to another embodiment of the present invention
도 5는 본 발명의 일 실시예에 따른 인공고관절용 시술기구(rasp) 제작방법의 공정을 나타내는 블럭도Figure 5 is a block diagram showing the process of a method for manufacturing a surgical instrument (rasp) for artificial hip joint according to an embodiment of the present invention
도 6는 환자의 대퇴골 형상정보로부터 추출하는 설계변수를 나타내는 개략도6 is a schematic diagram showing design variables extracted from femoral bone shape information of a patient
도 7는 제3단계에서 경부와 헤드를 설계하는 과정을 나타내는 개략도Figure 7 is a schematic diagram showing the process of designing the neck and head in the third step
도 8은 제4단계에서 대퇴스템을 설계하는 과정을 나타내는 개략도8 is a schematic diagram showing a process of designing a femoral stem in a fourth step
도 9은 본 발명의 일 실시예에 따른 인공고관절용 시술기구(rasp)의 분리정면도Figure 9 is an isolated front view of the surgical instrument (rasp) for artificial hip joint according to an embodiment of the present invention
도 10은 대퇴골 형상정보 사진10 femur shape information photo
도 11은 대퇴스템 몸체설계 데이터베이스11 is the femoral stem body design database
도 12는 설계변수 입력 사진12 is a design variable input photo
*도면에 사용된 주요부호에 대한 설명* Explanation of the main symbols used in the drawings
100: 대퇴스템 110: 몸체 120: 경부 130: 헤드100: thigh stem 110: body 120: neck 130: head
111: 근위부 113: 원위부111: proximal 113: distal
200: 대퇴골 210: 소전자 220: 골내강200: femur 210: microcephaly 220: bone lumen
300: 비구컵 400: 골반 500: 대퇴골두 600: 대응반구체300: Acetabular cup 400: Pelvis 500: Thigh head 600: Corresponding hemisphere
700: 시술기구(rasp) 710: 몸체 720: 경부 730: 헤드700: rasp 710: body 720: neck 730: head
711: 결합돌기711: engaging projection
이하에서는 본 발명에 따른 인공 고관절용 대퇴스템 및 시술기구(rasp) 제작방법의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings a preferred embodiment of the artificial hip joint femoral stem and surgical instrument (rasp) manufacturing method according to the present invention will be described in detail.
도 3은 본 발명의 일 실시예에 따른 인공고관절용 대퇴스템 제작방법의 공정을 나타내는 블럭도이고, 도 6는 환자의 대퇴골 형상정보로부터 추출하는 설계변수를 나타내는 개략도이고, 도 7는 제3단계에서 경부와 헤드를 설계하는 과정을 나타내는 개략도이다. Figure 3 is a block diagram showing the process of manufacturing method of femoral stem for artificial hip joint according to an embodiment of the present invention, Figure 6 is a schematic diagram showing the design parameters extracted from the femur shape information of the patient, Figure 7 is a third step Is a schematic representation of the process of designing the neck and head.
도 3을 참조하면, 본 발명의 일 실시예에 따른 인공고관절용 대퇴스템 제작방법은 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계(S100);와 상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계(S200);와 상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계(S300);를 포함하는 것을 특징으로 한다. Referring to FIG. 3, a method for manufacturing a hip joint femoral stem according to an embodiment of the present invention includes a first step (S100) of extracting design parameters from femoral bone shape information of a patient; and the design parameters extracted in the first step. The second step (S200) of selecting a body design according to the characteristics of the patient of the body design of the various types of hip joint femoral stem pre-standardized using the; and using the design parameters extracted in the first step And a third step S300 of designing the neck portion and the head suitable for the body design selected in the second step.
상기 제1단계(S100)는 인공고관절용 대퇴스템(100)을 설계하기 위하여 환자의 대퇴골(200) 형상에 관한 엑스레이 영상정보 등으로부터 대퇴골(200) 형상정보를 얻고, 이로부터 필요한 설계변수를 추출하는 과정을 의미한다. The first step (S100) is to obtain the femur (200) shape information from the X-ray image information, etc. of the shape of the femur (200) of the patient in order to design the artificial hip femoral stem (100), and extracts the necessary design variables therefrom The process of doing.
환자의 대퇴골(200) 형상정보는 국제 의료영상표준인 다이콤(DICOM) 의료영상정보를 이용하여 컴퓨터 산술처리 및 각 이미지 프로세싱을 이용하여 정확한 값을 획득할 수 있다. The femoral 200 shape information of the patient may be obtained by using computer arithmetic processing and each image processing using the DICOM medical image information, which is an international medical imaging standard.
도 10에서 볼 수 있는 바와 같이, 이렇게 획득한 대퇴골(200) 형상정보로부터 필요한 설계변수를 추출해내는데, 필요한 설계변수로는 도 6에 도시된 바와 같이, 크게 환자 대퇴골(200)의 골내강(220)의 폭, 대퇴골두(500)의 중심에서 대퇴골(200)의 수직중심축(Y)까지의 수평길이(D1)와 대퇴골두(500)의 중심에서 소전자(210)까지의 수직길이(D2) 등이 있는데, 이 중 환자 대퇴골(200)의 골내강(220)의 폭은 구체적으로 대퇴골(200)의 정면 형상에서 얻을 수 있는 소전자(210)에서 20㎜윗부분에서의 골내강의 폭(①), 대퇴골(200) 수직중심축(Y)에서 소전자(210)부위의 골내강의 폭(②), 소전자(210)에서 D3(소전자(210)에서 대퇴스템의 근위부(111) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(③), 소전자(210)에서 D4(소전자(210)에서 대퇴스템의 원위부(113) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(④)과, 대퇴골(200)의 측면 형상에서 얻을 수 있는 소전자(210)에서 20㎜윗부분에서의 골내강의 폭(⑤), 소전자(210)에서 D3(소전자(210)에서 대퇴스템의 근위부(111) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(⑥), 소전자(210)에서 D4(소전자(210)에서 대퇴스템의 원위부(113) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(⑦) 등을 의미한다. 대퇴골(200) 형상정보로부터 필요한 설계변수를 추출해내는 작업은 프로그램에 의해 수행되는데, 이때 사용되는 프로그램으로는 Pre-operation Planning Program 등이 사용될 수 있다. As can be seen in FIG. 10, the necessary design variables are extracted from the obtained femoral 200 shape information. As shown in FIG. 6, the intraluminal lumen 220 of the patient femur 200 is largely extracted. ), The horizontal length D1 from the center of the femoral head 500 to the vertical center axis Y of the femur 200 and the vertical length D2 from the center of the femoral head 500 to the small electrons 210. Among these, the width of the lumen 220 of the patient's femur 200 is specifically the width of the lumen in the upper 20 mm in the small electron 210 that can be obtained in the front shape of the femur 200 ( ①), width of bone lumen (②) at the small trochanter 210 in the vertical center axis (Y) of the femur (200), D3 at the small trochanter 210 (the proximal portion of the femoral stem at the small trochanter 210) The width of the lumen at the lower portion (③) by the length to the distal end, and as much as D4 (the length from the cerebellum 210 to the distal end of the femoral stem 113) at the cerebellum 210 Width (4) of the lumen of the bone in the lower part, width (5) of the lumen of the bone in the upper part 20 mm in the small electron 210 obtained from the lateral shape of the femur 200, and D3 in the small electron 210. (Width of bone lumen in the lower part (⑥) as much as (the length from the trochanter 210 to the proximal end 111 of the femoral stem), D4 in the trochanter 210 (the distal portion of the femoral stem in the trochanter 210) (113) the length to the end) means the width of the lumen (⑦) and the like in the lower portion. Extracting the necessary design variables from the femur 200 shape information is performed by a program, in which the pre-operation planning program may be used.
상기 제2단계(S200)는 상기 제1단계(S100)에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템(100)의 몸체(110)설계 중 환자의 특성에 맞는 몸체(110)설계를 선정하는 과정을 의미한다. The second step (S200) is a body that fits the characteristics of the patient during the design of the body 110 of the femoral stem 100 for various types of hip joints, which is pre-standardized using the design variables extracted in the first step (S100). (110) means the process of selecting a design.
본 발명의 핵심은 바로 인공고관절용 대퇴스템(100)의 몸체(110)부분과 경부(120)와 헤드(130)부분을 모듈화하여 각각 설계하는 것인데, 이중 몸체(110)부분에 대한 설계는 환자마다 개별적으로 몸체(110)부분을 설계하는 것이 아니라, 기존의 인공고관절용 대퇴스템 몸체(110)에 대한 정보를 토대로 도 11에서 볼 수 있는 바와 같이, 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템(100)의 몸체(110)설계를 데이터화하여 마련해둔 다음, 도 12에서 볼 수 있는 바와 같이, 환자 개개인의 대퇴골 형상에 따른 설계변수를 입력하여 이 중 가장 환자의 특성에 맞는 몸체(110)설계를 선정하는 방식을 사용하게 된다. The core of the present invention is to design the modular body part 110 and the neck portion 120 and head 130 of the artificial femoral stem 100, respectively, the design of the dual body portion 110 is the patient Rather than designing the body portion 110 individually for each, as shown in Figure 11 based on the information about the existing hip joint body for the conventional hip joint, various types of pre-standardized hip joint femoral stem After preparing the design of the body 110 of the data 100, as shown in Figure 12, by inputting the design variables according to the shape of the femur of each patient, the design of the body 110 according to the characteristics of the patient of the most The method of selecting is used.
이때 사용되는 프로그램으로는 Auto-Parametric Design API(Application of Programming Interface) 등이 사용될 수 있고, 또한 이때 이용하는 설계변수는 상기 제1단계(S100)에서 추출된 설계변수 중 환자 대퇴골(200)의 골내강(220)의 폭과 대퇴골(200) 수직중심축(Y)에서 소전자(210)까지의 길이(②)인데, 여기서 환자 대퇴골(200)의 골내강(220)의 폭이란 앞서 설명한 바와 같이 대퇴골(200)의 정면 형상에서 얻을 수 있는 소전자(210)에서 20㎜윗부분에서의 골내강의 폭(①), 소전자(210)에서 D3(소전자(210)에서 대퇴스템의 근위부(111-도1에 도시됨) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(③), 소전자(210)에서 D4(소전자(210)에서 대퇴스템의 원위부(113-도1에 도시됨) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(④)과, 대퇴골(200)의 측면 형상에서 얻을 수 있는 소전자(210)에서 20㎜윗부분에서의 골내강의 폭(⑤), 소전자(210)에서 D3(소전자(210)에서 대퇴스템의 근위부(111) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(⑥), 소전자(210)에서 D4(소전자(210)에서 대퇴스템의 원위부(113) 말단까지의 길이)만큼 아랫부분에서의 골내강의 폭(⑦)을 의미한다. In this case, an auto-parametric design application of programming interface (API) or the like may be used, and the design variable used at this time may be a bone lumen of the patient's femur 200 among the design variables extracted in the first step S100. The width of the 220 and the length (②) of the femur 200 from the vertical center axis (Y) to the microelectrode 210, where the width of the lumen 220 of the patient's femur 200 is the femur as described above. Width of bone lumen (①) at 20 mm upper part in small cell 210 obtained from the frontal shape of (200), D3 in small cell 210 (proximal part of femoral stem in small cell 210) 1) the width of the lumen at the lower portion (③) by the length to the distal end), D4 in the small electrons 210 (distal portion of the femoral stem in the small electrons 210) is shown in 113- FIG. Width of the bone lumen at the lower portion ④ by the length to the distal end) and the small electrons 210 obtained from the lateral shape of the femur 200 Width of bone lumen (⑤) in the upper 20 mm, the width of the lumen in the lower portion by the small electrons 210 to D3 (the length from the small electrons 210 to the proximal end 111 of the femoral stem) ⑥), means the width of the bone lumen (⑦) in the lower portion as much as D4 (the length from the small electrons 210 to the distal portion 113 end of the femoral stem) in the small electrons 210.
또한 환자의 특성에 맞는 몸체(110)설계를 선정하는 방식으로는 상기와 같이 설계변수를 입력하는 방법 이외에도, 설계 프로그램상에서 마우스를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템(100)의 몸체(110)설계를 직접 환자의 대퇴골(200) 형상정보에 드래그시켜 환자의 특성에 맞는 몸체(110)설계를 선정하는 방식도 활용될 수 있다. In addition to the method of selecting the design of the body 110 according to the characteristics of the patient as well as inputting the design variables as described above, in the design program using a mouse of the various types of artificial hip joint 100 of the pre-standardized By dragging the design of the body 110 directly onto the shape of the femur 200 of the patient, a method of selecting the design of the body 110 according to the characteristics of the patient may also be utilized.
이와 같이 미리 규격화된 다양한 형태의 몸체(110)설계에서 환자의 특성에 맞는 몸체(110)설계를 선정하는 방식에 의해 대퇴스템(100)의 몸체(110)를 설계하는 경우, 이를 통해 인공고관절용 대퇴스템(100)에 대한 빠른 설계가 가능함은 물론 기존의 사용되는 수술도구를 사용할 수 있어 비용절감을 도모할 수 있는 효과를 얻을 수 있다. In the case of designing the body 110 of the femoral stem 100 by selecting a body 110 design suitable for the patient's characteristics in various pre-standardized body 110 designs as described above, Fast design for the femoral stem 100 can be used as well as the existing surgical tools can be used to achieve the effect of reducing the cost.
상기 제3단계(S300)는 상기 제1단계(S100)에서 추출된 설계변수를 이용하여 상기 제2단계(S200)에서 선정된 몸체(110)설계에 맞는 경부(120)와 헤드(130)를 설계하는 과정을 의미한다. The third step (S300) uses the design variables extracted in the first step (S100) to the neck portion 120 and the head 130 suitable for the design of the body 110 selected in the second step (S200). The process of designing.
본 발명은 대퇴스템(100)의 몸체(110)부분과 경부(120)와 헤드(130)부분을 한번에 설계함에 따른 대퇴골두의 위치 및 환자의 다리길이에 관한 보정이 정확하지 않은 문제점을 해결하기 위해, 각각을 모듈화하여 설계하는 것으로, 이중 경부(120)와 헤드(130)부분에 대한 설계는 도 7에 도시된 바와 같이 상기 제2단계(S200)에서 선정된 몸체(110)설계를 기준으로 상기 몸체(110)부분을 환자의 대퇴골에 먼저 맞춘 후, 이를 기준으로 상기 제1단계(S100)에서 추출된 설계변수를 입력하여 환자의 특성에 맞는 경부(120)와 헤드(130)를 설계하게 된다. The present invention is to solve the problem that the correction of the position of the femoral ball head and the leg length of the patient according to the design of the body 110 and the neck 120 and the head 130 of the femoral stem 100 at a time is not accurate In order to design each modular, the double neck 120 and the head 130 is designed based on the design of the body 110 selected in the second step (S200) as shown in FIG. Fit the body 110 to the femur of the patient first, and then input the design variables extracted in the first step (S100) based on this to design the neck (120) and head 130 according to the characteristics of the patient do.
이때 사용되는 프로그램으로는 Auto-Parametric Design API(Application of Programming Interface) 등이 사용될 수 있고, 또한 이때 이용하는 설계변수는 상기 제1단계(S100)에서 추출된 설계변수 중 대퇴골두(500)의 중심에서 대퇴골(200)의 수직중심축(Y)까지의 수평길이(D1)와 대퇴골두(500)의 중심에서 소전자(210)까지의 수직길이(D2)인데, 이는 환자의 대퇴골두의 위치 및 다리길이에 관계된 헤드오프셋길이(head offset length)와 헤드트랜스버스오프셋길이(head transverse offset length)를 의미한다. In this case, an auto-parametric design application of programming interface (API) or the like may be used, and the design variable used at this time may be located at the center of the femoral head 500 among the design variables extracted in the first step S100. The horizontal length D1 to the vertical center axis Y of the femur 200 and the vertical length D2 from the center of the femoral head 500 to the small electrons 210, which are the position and leg of the patient's femur head. The length means a head offset length and a head transverse offset length.
이와 같이 상기 제2단계(S200)에서 선정된 몸체(110)설계를 기준으로 상기 몸체(110)부분을 환자의 대퇴골에 먼저 맞춘 후, 이를 기준으로 상기 제1단계(S100)에서 추출된 설계변수를 이용하여 환자의 특성에 맞는 경부(120)와 헤드(130)를 설계하는 경우, 이를 통해 환자의 대퇴골두의 위치 및 환자의 다리길이에 관한 보정을 빠르고 정확하게 할 수 있어 환자의 특성에 맞는 정확한 인공고관절용 대퇴스템을 제공할 수 있어 재제작이나 재시술에 따른 비용 및 시간손실이나 환자의 고통을 줄일 수 있게 된다. As described above, after fitting the body 110 to the femur of the patient based on the design of the body 110 selected in the second step S200, the design variables extracted in the first step S100 based on the design. In the case of designing the neck 120 and the head 130 according to the characteristics of the patient, it is possible to quickly and accurately correct the position of the patient's femoral head and the patient's leg length by using It is possible to provide a femoral stem for the hip joint, which can reduce the cost and time loss and pain of the patient due to remanufacture or re-treatment.
도 4은 본 발명의 다른 실시예에 따른 인공고관절용 대퇴스템 제작방법의 공정을 나타내는 블럭도이고, 도 8은 제4단계에서 대퇴스템을 설계하는 과정을 나타내는 개략도이다. Figure 4 is a block diagram showing the process of the method for manufacturing a hip joint femoral stem according to another embodiment of the present invention, Figure 8 is a schematic diagram showing a process of designing the femoral stem in the fourth step.
도 4을 참조하면, 본 발명의 다른 실시예에 따른 인공고관절용 대퇴스템 제작방법은 상기 제2단계(S200)에서 선정된 인공고관절용 대퇴스템의 몸체설계와 상기 제3단계(S300)에서 설계된 인공고관절용 대퇴스템의 경부와 헤드를 통합하여 인공고관절용 대퇴스템을 설계하는 제4단계(S400);와 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템을 유한요소해석을 통해 사전에 평가하는 제5단계(S500);와 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템을 가공하는 제6단계(S600);를 추가로 포함하는 것을 특징으로 한다.Referring to Figure 4, the artificial hip joint femoral stem manufacturing method according to another embodiment of the present invention is designed in the third step (S200) the body design of the hip joint femoral stem and the third step (S300) The fourth step (S400) of designing the hip joint femoral stem by integrating the neck and head of the artificial femoral stem; and the hip joint femur stem designed in the fourth step (S400) through finite element analysis. The fifth step (S500) to evaluate in; and the sixth step (S600) for processing the femoral stem for artificial hip designed in the fourth step (S400); characterized in that it further comprises.
상기 제4단계(S400)는 상기 제2단계(S200)에서 선정된 인공고관절용 대퇴스템의 몸체(110)설계와 상기 제3단계(S300)에서 설계된 인공고관절용 대퇴스템의 경부(120)와 헤드(130)를 통합하여 인공고관절용 대퇴스템(100)을 설계하는 과정을 의미한다. The fourth step (S400) is the design of the body 110 of the hip joint femoral stem selected in the second step (S200) and the neck portion 120 of the femoral stem for artificial hips designed in the third step (S300) Means the process of designing the hip joint femoral stem 100 by integrating the head 130.
도 8에 도시된 바와 같이 설계 프로그램상에서 상기 제2단계(S200)에서 선정된 인공고관절용 대퇴스템의 몸체(110)설계와 상기 제3단계(S300)에서 설계된 인공고관절용 대퇴스템의 경부(120)와 헤드(130)설계를 합치는 간단한 작업에 의해 인공고관절용 대퇴스템(100)에 대한 전체 설계를 완성할 수 있는 자동설계 시스템을 구축함으로써, 상기 제1단계(S100)에서 추출된 설계변수만을 이용하여 개개인의 환자 특성에 적합한 인공고관절용 대퇴스템을 빠르고 정확하게 설계할 수 있게 된다. 이때 사용되는 프로그램으로는 Auto-Parametric Design API(Application of Programming Interface) 등이 사용될 수 있다. As shown in FIG. 8, the design of the body 110 of the femoral stem for the hip joint selected in the second step (S200) on the design program and the neck portion 120 of the femoral stem for the hip joint designed in the third step (S300) Design variables extracted in the first step (S100) by constructing an automatic design system that can complete the overall design for the hip joint femoral stem 100 by a simple operation of combining the design and the head (130) By using only it is possible to quickly and accurately design the hip joint femoral stem to suit the individual patient's characteristics. In this case, an auto-parametric design API (Application of Programming Interface) may be used as the program.
상기 제5단계(S500)는 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템(100)을 유한요소해석을 통해 사전에 평가하는 과정을 의미한다. The fifth step (S500) means a process of evaluating the artificial hip joint femoral stem 100 designed in the fourth step (S400) in advance through finite element analysis.
이는 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템(100)이 일상생활에 지장이 없는 운동범위(ROM, Range Of Motion)를 갖는지, 환자의 하중을 견딜 수 있는 강도를 갖는지 등을 설계단계에서 유한요소해석을 통해 사전에 평가함으로써 제품의 불량률을 낮추어 재제작이나 재시술에 따른 비용 및 시간손실이나 환자의 고통을 줄일 수 있게 된다. 이때 사용되는 유한요소해석프로그램으로는 일반적으로 사용되는 범용 유한요소해석프로그램인 COSMOS Works 등이 활용될 수 있다. This is whether the hip joint femoral stem 100 designed in the fourth step (S400) has a range of motion (ROM, Range Of Motion) that does not interfere in daily life, and has strength to withstand the load of the patient. By preliminary evaluation through finite element analysis at the design stage, the product defect rate can be lowered to reduce the cost, time loss, and patient pain of remanufacturing or re-treatment. At this time, as the finite element analysis program used, COSMOS Works, which is a general purpose finite element analysis program, can be used.
상기 제6단계(S600)는 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템(100)을 가공하는 과정을 의미한다. The sixth step S600 refers to a process of processing the artificial hip joint femoral stem 100 designed in the fourth step S400.
그 구체적인 가공과정에 대해 살펴보면, 먼저 상기 제4단계(S400)에서 설계한 인공고관절용 대퇴스템(100)설계를 토대로 가공용 자동화 기계에서 자유로운 형상을 가공할 수 있도록 캠(CAM)작업을 진행하게 되고, 상기 캠(CAM)작업을 바탕으로 5축 M/CTR 및 씨엔씨선반(CNC Lathe) 등을 이용하여 인공고관절용 대퇴스템을 가공하게 된다. Looking at the specific machining process, first the cam (CAM) work to proceed to the free shape on the automated machine for processing based on the design of the artificial hip joint femur 100 designed in the fourth step (S400) The femoral stem for artificial hip joint is processed using 5-axis M / CTR and CNC Lathe based on the CAM work.
상기와 같은 단계를 거쳐 인공고관절용 대퇴스템(100)이 가공되면, 후처리를 하는 제9단계(S900)을 거쳐 제품이 공급되게 되는데, 상기 제9단계(S900)으로는 가공된 제품의 치수 및 형상을 측정하여 오차범위 내이지 여부를 검사하는 검사공정, 검사가 완료된 제품에 대해 표면 처리 및 세척을 하는 세척공정, 완제품을 감마멸균을 통해 최종 멸균한 후 포장하는 멸균및포장공정 등이 진행되게 된다. When the femoral stem 100 for artificial hip is processed through the above steps, the product is supplied through the ninth step S900 of post-treatment, and the dimensions of the processed product in the ninth step S900. And inspection process for measuring the shape to check whether it is within the error range, cleaning process for surface treatment and cleaning for the finished product, sterilization and packaging process for final sterilization of the finished product through gamma sterilization and packaging. Will be.
본 발명에 따른 인공고관절용 대퇴스템의 설계 및 가공공정에 대한 전체적인 흐름을 다시 한번 살펴보면, 먼저 설계변수 추출프로그램에 환자의 의료영상정보를 입력하게 되면 환자의 개별적인 특성에 맞는 대퇴골 형상에 관한 정보를 설계변수로 추출해낼 수 있고, 이와 같이 추출한 설계변수를 설계프로그램에 입력하면 기존에 데이터베이스화되어 기저장되어 있는 다양한 대퇴스템의 몸체설계 중 환자의 개별적인 대퇴골 특성에 맞는 최적의 대퇴스템 몸체설계를 선정하게 되고, 이와 같이 선정된 대퇴스템의 몸체를 기준으로 하여 추출한 설계변수를 설계프로그램에 입력하면 환자의 개별적인 특성에 맞는 대퇴스템의 경부 및 헤드가 자동으로 설계되고, 상기의 대퇴스템 몸체설계와 대퇴스템 경부및헤드설계를 통합하여 환자의 개별적인 대퇴골 특성에 맞는 인공고관절용 대퇴스템의 설계가 완성되게 된다. Looking again at the overall flow of the design and processing process of the hip joint femoral stem according to the present invention, first input the patient's medical image information into the design parameter extraction program for information on the shape of the femur according to the individual characteristics of the patient If the extracted design variables are inputted into the design program, the optimal femoral stem body design is selected according to the individual femoral characteristics of the patient among the various femoral stem body designs already stored in the database. If the design variables extracted on the basis of the selected femoral stem body are input into the design program, the neck and head of the femoral stem according to the individual characteristics of the patient are automatically designed, and the femoral stem body design and thigh Integrating the stem neck and head design to the patient's individual femur The design of the hip joint femoral stem according to the characteristics is completed.
인공고관절용 대퇴스템의 설계가 완성된 이후에는 유한요소 해석프로그램을 이용하여 사전에 대퇴스템의 운동범위나 강도 등에 대해 평가를 거친 후, 5축 M/CTR 및 씨엔씨선반(CNC Lathe) 등을 이용하여 인공고관절용 대퇴스템을 가공하고, 가공 후에는 검사, 세척, 멸균 등의 후처리 공정을 거쳐 최종 제품이 완성되어 사용할 수 있게 된다. After the design of the hip joint femoral stem is completed, the motion range or strength of the femoral stem is evaluated in advance using a finite element analysis program, and then 5 axis M / CTR and CNC lathe are used. By processing the femoral stem for artificial hips, and after processing through the post-treatment process, such as inspection, washing, sterilization, the final product can be used.
도 5는 본 발명의 일 실시예에 따른 인공고관절용 시술기구(rasp) 제작방법의 공정을 나타내는 블럭도이고, 도 9은 본 발명의 일 실시예에 따른 인공고관절용 시술기구(rasp)의 분리정면도이다. FIG. 5 is a block diagram illustrating a process of a method for manufacturing an artificial hip surgical instrument (rasp) according to an embodiment of the present invention, and FIG. 9 illustrates separation of an artificial hip surgical instrument (rasp) according to an embodiment of the present invention. Front view.
도 5를 참조하면, 본 발명의 일 실시예에 따른 인공고관절용 시술기구(rasp) 제작방법은 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계(S100);와 상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 시술기구(rasp)의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계(S200);와 상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계(S300);와 상기 제2단계(S200)에서 선정된 인공고관절용 시술기구(rasp)의 몸체설계에 따라 가공하는 제7단계(S700):와 상기 제3단계(S300)에서 설계된 인공고관절용 시술기구(rasp)의 경부와 헤드를 가공하는 제8단계(S800):를 포함하는 것을 특징으로 한다. Referring to FIG. 5, a method for manufacturing an artificial hip surgical instrument (rasp) according to an embodiment of the present invention includes a first step (S100) of extracting design parameters from femoral shape information of a patient; and extracting from the first step. A second step (S200) of selecting a body design suitable for a patient's characteristics among the body designs of various types of hip joint surgical instruments (rasps) pre-standardized using the designed design variables; and the design extracted in the first step A third step (S300) of designing the neck and the head according to the body design selected in the second step using the variable; and the body design of the rasp for the artificial hip selected in the second step (S200). Process according to the seventh step (S700): and the eighth step (S800) for processing the neck and head of the artificial hip surgical instrument (rasp) designed in the third step (S300): characterized in that it comprises a .
상기 제1단계(S100), 제2단계(S200), 제3단계(S300)는 앞서 인공고관절용 대퇴스템의 제작방법에서 설명한 것과 동일한 내용이므로 이에 대한 중복설명은 생략하기로 하고, 이하에서는 제7단계(S700)와 제8단계(S800)를 중점적으로 설명하기로 한다.Since the first step (S100), the second step (S200), and the third step (S300) are the same as those described in the method for manufacturing the femoral stem for artificial hip joint, duplicate description thereof will be omitted. The seventh step (S700) and the eighth step (S800) will be mainly described.
상기 제7단계(S700)는 상기 제2단계(S200)에서 선정된 인공고관절용 시술기구(rasp, 700)의 몸체(710)설계에 따라 시술기구(rasp, 700)의 몸체(710)를 가공하는 과정을 의미한다. The seventh step (S700) is to process the body 710 of the surgical instrument (rasp, 700) according to the design of the body 710 of the artificial surgical instrument (rasp, 700) selected in the second step (S200). The process of doing.
이는 본 발명의 핵심 특징 중의 하나로 기존의 주문형 인공고관절의 경우 환자의 개별적인 특성에 맞는 대퇴스템(100)뿐만 아니라 이를 시술하기 위한 시술기구(rasp, 700)를 별도로 제작하여야 하고 또한 시술기구(rasp, 700)를 일체로 제작하기 때문에 이로 인한 제작기간 및 비용증가의 문제점이 발생하게 되는바, 이를 해결하기 위해 인공고관절용 대퇴스템(100)을 시술하기 위한 시술기구(rasp, 700)의 설계뿐만 아니라 제품까지도 몸체(710)부분과 경부(720)와 헤드(730)부분으로 모듈화하여 제작함으로써 시술기구(rasp, 700)의 제작에 필요한 제작 기간 및 비용을 절감할 수 있도록 하기 위한 것으로, 이 중 상기 제7단계(S700)는 상기 제2단계(S200)에서 선정된 인공고관절용 시술기구(rasp, 700)의 몸체(710)설계에 따라 시술기구(rasp, 700)의 몸체(710)를 스테인레스강(stainless steel)재질을 사용하여 일반적인 기계 가공법에 의해 가공할 수 있다. 이때, 상기 시술기구(rasp, 700)의 몸체(710)의 상부에는 향후 경부(720)와 헤드(730)부분과의 결합을 위한 결합돌기(711)가 형성될 수 있다. This is one of the key features of the present invention, in the case of the existing custom-made hip joint, as well as the treatment apparatus (rasp, 700) for the treatment of the femoral stem 100 for the individual characteristics of the patient to be manufactured separately and also the surgical instrument (rasp, Since the production of 700 is integrated, there is a problem of increased production period and cost, and thus, not only the design of a surgical instrument (rasp, 700) for the treatment of the hip joint femoral stem 100 to solve this problem, The product is manufactured to be modularized into the body 710 and the neck portion 720 and the head 730 to reduce the production period and cost required for the production of the surgical instrument (rasp, 700), of which The seventh step (S700) is stainless steel to the body 710 of the surgical instrument (rasp, 700) according to the design of the body 710 of the artificial surgical instrument (rasp, 700) selected in the second step (S200) (stainles It can be processed by general machining method using s steel) material. In this case, a coupling protrusion 711 may be formed on the upper portion of the body 710 of the surgical instrument (rasp, 700) in the future for coupling the neck portion 720 and the head 730 portion.
또한, 시술기구(rasp, 700)의 제작에 필요한 제작 기간을 단축시키기 위해 상기 제7단계(S700)에서 가공되는 시술기구(rasp, 700)의 몸체(710)는 규격화된 다양한 형태의 인공고관절용 시술기구(rasp, 700)의 몸체(710)별로 미리 가공을 해두고 활용할 수 있는데, 이와 같이 규격화된 형태별로 미리 가공해두더라도 규격화되어 있기 때문에 활용성이 떨어지지 않을 뿐더러, 오히려 시술기구(rasp, 700)의 몸체(710) 제작에 필요한 제작기간을 단축시킬 수 있고, 재활용도 가능할 수 있게 된다. In addition, the body 710 of the surgical instrument (rasp, 700) to be processed in the seventh step (S700) in order to shorten the production period required for the production of the surgical instrument (rasp, 700) for the standardized artificial hip joint It can be used after processing in advance for each of the body 710 of the surgical instrument (rasp, 700). The production period required for the production of the body 710 can be shortened, and recycling may be possible.
상기 제8단계(S800)는 상기 제3단계(S300)에서 설계된 인공고관절용 시술기구(rasp, 700)의 경부(720)와 헤드(730)설계에 따라 시술기구(rasp, 700)의 경부(720)와 헤드(730)를 가공하는 과정을 의미한다. The eighth step (S800) is the neck portion of the surgical instrument (rasp, 700) according to the design of the neck 720 and the head 730 of the artificial surgical instrument (rasp, 700) designed in the third step (S300) 720 and the process of processing the head 730.
이는 본 발명의 핵심 특징 중의 하나로 기존의 주문형 인공고관절의 경우 환자의 개별적인 특성에 맞는 대퇴스템(100)뿐만 아니라 이를 시술하기 위한 시술기구(rasp, 700)를 별도로 제작하여야 하고 또한 시술기구(rasp, 700)를 일체로 제작하기 때문에 이로 인한 제작기간 및 비용증가의 문제점이 발생하게 되는바, 이를 해결하기 위해 인공고관절용 대퇴스템(100)을 시술하기 위한 시술기구(rasp, 700)의 설계뿐만 아니라 제품까지도 몸체(710)부분과 경부(720)와 헤드(730)부분으로 모듈화하여 제작함으로써 시술기구(rasp, 700)의 제작에 필요한 제작 기간 및 비용을 절감할 수 있도록 하기 위한 것으로, 이 중 상기 제8단계(S800)는 상기 제3단계(S300)에서 설계된 인공고관절용 시술기구(rasp, 700)의 경부(720)와 헤드(730)설계에 따라 시술기구(rasp, 700)의 경부(720)와 헤드(730)를 일반적인 기계가공법(machining)으로 가공하거나, 특히 인체에 무해한 폴리(poly)계열의 소재를 이용하여 신속조형기법(Rapid Prototyping)에 의해 가공할 수 있다. 이때, 상기 시술기구(rasp, 700)의 경부(720)의 하부에는 향후 몸체(710)부분과의 결합을 위한 결합홈(미도시)가 형성될 수 있다. This is one of the key features of the present invention, in the case of the existing custom-made hip joint, as well as the treatment apparatus (rasp, 700) for the treatment of the femoral stem 100 for the individual characteristics of the patient to be manufactured separately and also the surgical instrument (rasp, Since the production of 700 is integrated, there is a problem of increased production period and cost, and thus, not only the design of a surgical instrument (rasp, 700) for the treatment of the hip joint femoral stem 100 to solve this problem, The product is manufactured to be modularized into the body 710 and the neck portion 720 and the head 730 to reduce the production period and cost required for the production of the surgical instrument (rasp, 700), of which Eighth step (S800) is the neck portion 720 of the surgical instrument (rasp, 700) according to the design of the neck portion 720 and the head 730 of the artificial surgical instrument (rasp, 700) designed in the third step (S300) ) And head (730) Typical machining process machining (machining), or it may be processed by the particular rapid prototyping techniques (Rapid Prototyping) using the poly (poly) series of materials not harmful to human body. At this time, the lower portion of the neck portion 720 of the surgical instrument (rasp, 700) may be formed with a coupling groove (not shown) for coupling with the body 710 in the future.
신속조형기법(Rapid Prototyping)이란 제품 개발 기간을 단축하고 복잡한 기하학적 형상도 조형이 가능한 가공기법으로, 이러한 기법을 사용하여 시술기구(rasp, 700)의 경부(720)와 헤드(730)를 가공하게 되면 불과 1일밖에 제작기간이 소요되지 않으며, 또한 인공고관절용 대퇴스템(100)을 제작하는 장비와는 별도의 장비에서 제작이 가능하므로 상호 간의 제작간섭을 피할 수도 있게 된다. Rapid Prototyping is a processing technique that shortens the product development period and enables complex geometric shapes to be formed. The rapid prototyping is used to process the neck portion 720 and the head 730 of the surgical instrument (rasp, 700). If only one day does not take the production period, and also can be manufactured in a separate equipment from the equipment for manufacturing the artificial hip femoral stem 100, it is possible to avoid the production interference between each other.
이와 같은 방식에 의해 인공고관절용 시술기구(rasp, 700)의 몸체(710)부분 및 경부(720)와 헤드(730)부분을 각각 모듈화하여 가공한 후, 도 9에 도시된 바와 같이 몸체(710)부분 및 경부(720)와 헤드(730)부분을 상호 결합시킴으로써 인공고관절용 시술기구(rasp, 700)를 최종 완성하게 되는데, 이와 같이 인공고관절용 시술기구(rasp, 700)를 제작하는 경우 제품 자체를 모듈화하여 가공함에 따라 시술기구(rasp, 700) 제작에 소요되는 시간과 비용을 절감할 수 있고, 재활용율을 높일 수 있는 효과를 도모할 수 있게 된다. 인공고관절용 시술기구(rasp, 700)의 몸체(710)부분 및 경부(720)와 헤드(730)부분이 각각 가공되면, 후처리를 하는 제9단계(S900)을 거쳐 제품이 공급되게 되는데, 상기 제9단계(S900)은 앞서 인공고관절용 대퇴스템의 제작방법에서 설명한 것과 동일한 내용이므로 이에 대한 중복설명은 생략하기로 한다. After the body 710 and the neck portion 720 and the head 730 of the artificial hip surgical instrument (rasp, 700) by modularizing and processing, respectively, the body 710 as shown in FIG. The final combination of the hip and surgical instrument (rasp, 700) by combining the portion and the neck portion 720 and the head 730, the product in the case of manufacturing the artificial surgical instrument (rasp, 700) in this way As the module is processed by itself, it is possible to reduce the time and cost required to manufacture the surgical instrument (rasp, 700) and to increase the recycling rate. When the body 710 and the neck 720 and the head 730 of the artificial surgical instrument (rasp, 700) are processed, respectively, the product is supplied through a ninth step (S900) of post-treatment. Since the ninth step (S900) is the same as described above in the method for manufacturing the artificial femoral stem, the duplicate description thereof will be omitted.
이상에서, 출원인은 본 발명의 바람직한 실시예들을 설명하였지만, 이와 같은 실시예들은 본 발명의 기술적 사상을 구현하는 일 실시예일 뿐이며 본 발명의 기술적 사상을 구현하는 한 어떠한 변경예 또는 수정예도 본 발명의 범위에 속하는 것으로 해석되어야 한다.In the above, the Applicant has described preferred embodiments of the present invention, but these embodiments are merely one embodiment for implementing the technical idea of the present invention, and any changes or modifications may be made as long as the technical idea of the present invention is implemented. Should be interpreted as being within the scope.

Claims (8)

  1. 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계;Extracting a design variable from femoral shape information of the patient;
    상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 대퇴스템의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계;A second step of selecting a body design suitable for the characteristics of the patient from among the body designs of the femoral stem for various hip joints, which are standardized using the design variables extracted in the first step;
    상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계;를 포함하는 것을 특징으로 하는 인공고관절용 대퇴스템 제작방법.And a third step of designing the neck and the head suitable for the body design selected in the second step by using the design variables extracted in the first step.
  2. 제1항에 있어서, The method of claim 1,
    상기 제2단계에서 이용하는 설계변수는 환자 대퇴골의 골내강의 폭이고, The design variable used in the second step is the width of the lumen of the patient's femur,
    상기 제3단계에서 이용하는 설계변수는 대퇴골두의 중심에서 대퇴골의 수직중심축까지의 수평길이와 대퇴골두의 중심에서 소전자까지의 수직길이인 것을 특징으로 하는 인공고관절용 대퇴스템 제작방법.The design variable used in the third step is a horizontal length from the center of the femoral head to the vertical central axis of the femur and the vertical length from the center of the femur head to the small electrons.
  3. 제1항에 있어서, 상기 인공고관절용 대퇴스템 제작방법은 The method of claim 1, wherein the artificial femoral stem manufacturing method
    상기 제2단계에서 선정된 인공고관절용 대퇴스템의 몸체설계와 상기 제3단계에서 설계된 인공고관절용 대퇴스템의 경부와 헤드를 통합하여 인공고관절용 대퇴스템을 설계하는 제4단계;A fourth step of designing a hip joint femoral stem by integrating the body design of the hip joint femoral stem selected in the second step and the neck and the head of the hip joint femur designed in the third step;
    상기 제4단계에서 설계한 인공고관절용 대퇴스템을 가공하는 제6단계;를 추가로 포함하는 것을 특징으로 하는 인공고관절용 대퇴스템 제작방법.And a sixth step of processing the artificial hip joint femoral stem designed in the fourth step.
  4. 제3항에 있어서, 상기 인공고관절용 대퇴스템 제작방법은 According to claim 3, The method for manufacturing the artificial hip femoral stem
    상기 제4단계에서 설계한 인공고관절용 대퇴스템을 유한요소해석을 통해 사전에 평가하는 제5단계;를 추가로 포함하는 것을 특징으로 하는 인공고관절용 대퇴스템 제작방법.And a fifth step of evaluating the artificial femoral stem for hip joint designed in the fourth step in advance through finite element analysis.
  5. 환자의 대퇴골 형상정보로부터 설계변수를 추출하는 제1단계;Extracting a design variable from femoral shape information of the patient;
    상기 제1단계에서 추출된 설계변수를 이용하여 미리 규격화된 다양한 형태의 인공고관절용 시술기구(rasp)의 몸체설계 중 환자의 특성에 맞는 몸체설계를 선정하는 제2단계;A second step of selecting a body design suitable for a patient's characteristics among the body designs of the various types of hip arthroplasty rasps that are standardized using the design variables extracted in the first step;
    상기 제1단계에서 추출된 설계변수를 이용하여 상기 제2단계에서 선정된 몸체설계에 맞는 경부와 헤드를 설계하는 제3단계;를 포함하는 것을 특징으로 하는 인공고관절용 시술기구(rasp) 제작방법.A third step of designing a neck and a head suitable for the body design selected in the second step by using the design variables extracted in the first step; and a rasp manufacturing method for a hip joint, comprising: .
  6. 제5항에 있어서, The method of claim 5,
    상기 제2단계에서 이용하는 설계변수는 환자 대퇴골의 골내강의 폭이고, The design variable used in the second step is the width of the lumen of the patient's femur,
    상기 제3단계에서 이용하는 설계변수는 대퇴골두의 중심에서 대퇴골의 수직중심축까지의 수평길이와 대퇴골두의 중심에서 소전자까지의 수직길이인 것을 특징으로 하는 인공고관절용 시술기구(rasp) 제작방법.The design variable used in the third step is a horizontal length from the center of the femur head to the vertical axis of the femur and the vertical length from the center of the femur head to the small electrons (rasp) manufacturing method (rasp) manufacturing method .
  7. 제5항에 있어서, 상기 인공고관절용 시술기구(rasp) 제작방법은 The method of claim 5, wherein the method for manufacturing an artificial hip surgical rasp
    상기 제2단계에서 선정된 인공고관절용 시술기구(rasp)의 몸체설계에 따라 가공하는 제7단계:The seventh step of processing according to the body design of the rasp for artificial hip selected in the second step:
    상기 제3단계에서 설계된 인공고관절용 시술기구(rasp)의 경부와 헤드를 가공하는 제8단계:를 추가로 포함하는 것을 특징으로 하는 인공고관절용 시술기구(rasp) 제작방법.Eighth step of processing the neck and head of the artificial hip surgical instrument (rasp) designed in the third step: Method of manufacturing an artificial hip surgical instrument (rasp) further comprising.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 제7단계는 규격화된 다양한 형태의 인공고관절용 시술기구(rasp)의 몸체를 미리 가공해두고,The seventh step is to pre-process the body of the standardized various types of artificial surgical instrument (rasp),
    상기 제8단계는 신속조형기법(Rapid Prototyping) 또는 일반적인 기계가공법(machining)에 의해 경부와 헤드를 가공함으로써, The eighth step is to process the neck and the head by rapid prototyping or general machining (machining),
    시술기구(rasp) 제작기간을 단축할 수 있는 것을 특징으로 하는 인공고관절용 시술기구(rasp) 제작방법.Surgical instrument (rasp) manufacturing method of the artificial surgical instrument (rasp) characterized in that it can shorten the production period.
PCT/KR2011/000948 2011-02-11 2011-02-11 Method for manufacturing femoral stem and rasp for an artificial hip joint WO2012108572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000948 WO2012108572A1 (en) 2011-02-11 2011-02-11 Method for manufacturing femoral stem and rasp for an artificial hip joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000948 WO2012108572A1 (en) 2011-02-11 2011-02-11 Method for manufacturing femoral stem and rasp for an artificial hip joint

Publications (1)

Publication Number Publication Date
WO2012108572A1 true WO2012108572A1 (en) 2012-08-16

Family

ID=46638778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000948 WO2012108572A1 (en) 2011-02-11 2011-02-11 Method for manufacturing femoral stem and rasp for an artificial hip joint

Country Status (1)

Country Link
WO (1) WO2012108572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368151A (en) * 2019-07-30 2019-10-25 广州华钛三维材料制造有限公司 The preparation method of glove and its dedicated bending machine between a kind of hip joint bone cement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658808A (en) * 1984-05-11 1987-04-21 Waldemar Link Gmbh & Co. Arrangement for preparing an anatomically measured endoprosthesis
US4704686A (en) * 1982-04-10 1987-11-03 Aldinger Guenther Method of manufacturing of individually formed prothesis or implant
US5150304A (en) * 1989-10-28 1992-09-22 Metalpraecis Berchem+Schaberg Gesellschaft Fur Metallformgebung Mbh Method of making an implantable joint prosthesis
US5360446A (en) * 1992-12-18 1994-11-01 Zimmer, Inc. Interactive prosthesis design system for implantable prosthesis
FR2729481A1 (en) * 1995-01-12 1996-07-19 Landanger Landos Generation of instructions for formation of hip replacement joint
US20080234833A1 (en) * 2004-03-23 2008-09-25 B.I. Tec Ltd Method of Designing and Manufacturing Artificial Joint Stem with Use of Composite Material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704686A (en) * 1982-04-10 1987-11-03 Aldinger Guenther Method of manufacturing of individually formed prothesis or implant
US4658808A (en) * 1984-05-11 1987-04-21 Waldemar Link Gmbh & Co. Arrangement for preparing an anatomically measured endoprosthesis
US5150304A (en) * 1989-10-28 1992-09-22 Metalpraecis Berchem+Schaberg Gesellschaft Fur Metallformgebung Mbh Method of making an implantable joint prosthesis
US5360446A (en) * 1992-12-18 1994-11-01 Zimmer, Inc. Interactive prosthesis design system for implantable prosthesis
FR2729481A1 (en) * 1995-01-12 1996-07-19 Landanger Landos Generation of instructions for formation of hip replacement joint
US20080234833A1 (en) * 2004-03-23 2008-09-25 B.I. Tec Ltd Method of Designing and Manufacturing Artificial Joint Stem with Use of Composite Material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368151A (en) * 2019-07-30 2019-10-25 广州华钛三维材料制造有限公司 The preparation method of glove and its dedicated bending machine between a kind of hip joint bone cement

Similar Documents

Publication Publication Date Title
US10621289B2 (en) Personalized fit and functional designed medical prostheses and surgical instruments and methods for making
KR101156077B1 (en) System and arrangement for production and insertion of a dental bridge structure
EP3107483B1 (en) Method and system for tooth restoration
US9201988B2 (en) Process and system for generating a specification for a customized device, and device made thereby
WO2018080086A2 (en) Surgical navigation system
CN102599981B (en) Digital processing method of personalized components in dental implantation
WO2015008893A1 (en) Semi-custom dental implant prosthesis production method having simplified production process
WO2018066764A1 (en) System and method for generating images for implant evaluation
CN105434009A (en) Navigation template for thighbone osteotomy, application method and fabrication method
WO2015046675A1 (en) Production method for implant scan abutment
CN101642393A (en) Jawbone repair support and manufacture method thereof
WO2012108572A1 (en) Method for manufacturing femoral stem and rasp for an artificial hip joint
WO2020159173A2 (en) Three-dimensional implant used in cranioplasty and method for manufacturing same
KR100909580B1 (en) The manufacturing method of femoral stem and rasp for order-type artificial hip-joint
CN104840240B (en) A kind of femur osteotomy assistor
CN107468338A (en) The scaling method of personalized prosthese position real-time tracking
WO2015008892A1 (en) Customized dental implant prosthesis production method using cad/cam
WO2022065594A1 (en) Digital dental prosthesis manufacturing method
EP3745996A1 (en) Method for manufacture of a jaw customized guide, system for aiding mounting of tooth implants, jaw customized guide, a radiopaque marker element and software for determining data for manufacture of a jaw customized guide for guiding mounting of permanent tooth implants
KR100917715B1 (en) The design method of custom-made artificial hip-joint and computer readable recording medium storing program performing the method
WO2022075694A1 (en) Implant for pelvic and hip plasty
WO2019124846A1 (en) Dental implant surgery guide device, and system and method for manufacturing dental implant surgery guide device
WO2022060017A1 (en) Device and method for determining accuracy of implant surgery guide
WO2016183904A1 (en) Human body part-based autodiagnosis method and system in network hospital
CN205307155U (en) 3D prints full wrist joint of individuation customization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858203

Country of ref document: EP

Kind code of ref document: A1