WO2012091671A1 - Dental attachment quality testing device - Google Patents

Dental attachment quality testing device Download PDF

Info

Publication number
WO2012091671A1
WO2012091671A1 PCT/SE2011/051604 SE2011051604W WO2012091671A1 WO 2012091671 A1 WO2012091671 A1 WO 2012091671A1 SE 2011051604 W SE2011051604 W SE 2011051604W WO 2012091671 A1 WO2012091671 A1 WO 2012091671A1
Authority
WO
WIPO (PCT)
Prior art keywords
crown
signal
response
frequency
attached
Prior art date
Application number
PCT/SE2011/051604
Other languages
French (fr)
Inventor
Anders Petersson
Callum Youngson
Original Assignee
Osstell Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/980,717 external-priority patent/US8979532B2/en
Application filed by Osstell Ab filed Critical Osstell Ab
Priority to EP11853060.9A priority Critical patent/EP2658468A4/en
Priority to JP2013547403A priority patent/JP2014507194A/en
Priority to KR1020137019408A priority patent/KR20130132949A/en
Priority to CN2011800634285A priority patent/CN103327927A/en
Publication of WO2012091671A1 publication Critical patent/WO2012091671A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same

Definitions

  • the present invention relates to a method and apparatus for testing attachment quality of a crown especially a crown of a dental bridge attached onto a tooth of a human or an animal subject.
  • Dental bridges are tooth restorations that can be used to replace missing teeth. They are an excellent alternative to dentures and dental implants; they provide more stability than dentures and the procedure is less invasive then the placement of dental implants. Dental bridges are one method used by dentists to fill a gap created by a missing tooth (or teeth). Depending on the dental bridge type, the attachment procedure and cost varies.
  • a dental bridge 10 is made up of two dental crowns 11 for the teeth on both side of the gap 12 and a false or replacement tooth 13 in between.
  • Natural teeth 14 and 15 dental implants or a combination of natural teeth and dental implants can be used to support the bridge 10.
  • the dentist may sculpt down the teeth on either side of the gap left by the missing tooth. Once the teeth have been sufficiently prepped, a mold, or impression, is taken and custom made bridge and crown are manufactured. Finally, temporary crowns and a bridge will be placed to protect the patients' teeth and gums from further damage.
  • Implant quality testing apparatuses are known, for example through US 5,392,779 and WO 2004/1 10272. However, these inventions relate to measuring stability of the implant inserted into a bone and do not provide for measuring attachment quality between a crown and a tooth.
  • a nondestructive test helps to detect and reduce failures of this type, and would also enable periodic tests to be carried out on the bridge attachments, which are in use to ensure that they are still satisfactory.
  • the method comprises: detecting at least one resonance frequency of a member in contact with the crown; and interpreting the detected resonance frequency in terms of the degree of attachment between the crown and the tooth.
  • the method may include the step of releasably attaching the member to the crown or a part attached to it.
  • the member may comprise a cantilever beam.
  • the beam is attached to the crown or part connected to the crown trough a threaded bore.
  • the beam may also be attached to the crown or part connected to the crown by means of an adhesive agent.
  • the beam may be incorporated in the crown or part attached to it.
  • the method may include the step of comparing the detected resonance frequency with one or more values for the resonance frequencies of the same or similar member from an earlier measurement.
  • the method may include the steps of exciting the member with an AC signal, detecting the response of the member to the AC signal, and varying the frequency of the AC signal until the detected response of the member is at a maximum.
  • the method may include deriving an output which is the ratio of the voltage of the response signal to that of the excitation signal.
  • the method could also mean making a pulse-excitation of the member and detecting the response and make a frequency analysis of the response signal.
  • the measurement is contactless.
  • the invention also relates to a dental crown attachment quality testing apparatus.
  • the apparatus comprises a detector for detecting at least one resonance frequency of a member when it is attached to the dental crown.
  • the detector for detecting at least one resonance frequency of the member may comprise means for exciting the member with an AC signal, and a transducer for detecting the response of the member to the AC signal, the arrangement being such that the frequency of the AC signal is varied, and the transducer detects when the response of the member is at a maximum.
  • the excitation means and/or detector may comprise a piezoelectric element, the piezoelectric element comprising the excitation means being driven by a variable frequency oscillator.
  • the member comprises a detectable part and that the detector part comprises a detector for contactless detection of the detectable part.
  • the member may comprise a magnetic portion and the detector may comprise a coil.
  • the member may comprise a marker and the detector comprises an illumination detector.
  • the member may consist of a ferromagnetic material and the detector may comprise a coil for detecting disturbances in an external magnetic field.
  • the apparatus may further comprise an amplifier, a processor, and a data store.
  • the processing unit is further configured to vary a frequency output of an oscillator, and stores the results in the data storing arrangement.
  • At least one coil may be configured to output magnetic pulses to a member attached to the member and detect responses
  • Fig. 1 is a schematic view of a dental bridge
  • Fig. 2 is a schematic diagram of a second embodiment of apparatus according to the invention.
  • Fig. 3 is a schematic diagram of a second embodiment of apparatus according to the invention.
  • Fig. 4 is a schematic diagram of third embodiment of apparatus according to the
  • Fig. 5 is a schematic diagram of a dental bridge according to one embodiment of
  • Fig. 6 is a diagram from a coarse sweep used to obtain resonance frequencies
  • Fig. 7 is a schematic diagram illustrating the resonance frequency varying with time for a particular bridge.
  • Fig. 8 is a diagram illustrating the data from a sweep used to obtain the resonance
  • the apparatus comprises a member in the form of a cantilever beam 20 attached by means of, e.g. a threaded section or adhesive to a fixture in a suitable position on the bridge 10 (in this case the false tooth).
  • the bridge may be any one of a number of known types.
  • Two transducers, such as piezoelectric elements or strain gauges 21 and 22, are attached, for example bonded, to opposite sides of the beam 20, gauge 21 being an exciter gauge and gauge 22 a receiver gauge.
  • connection as used herein for defining the connection between a measurable portion and crown/bridge is to be interpreted broadly to include incorporation inside the crown/bridge, or attachment to the surface of the crown bridge.
  • the exciter gauge 21 may be driven by a variable frequency oscillator, signals from which, for example in the form of a sinusoidal excitation voltage, are fed to the gauge 21 via an amplifier.
  • the oscillator and amplifier may be incorporated in a frequency response analyzer 28.
  • Signals detected by the receiver gauge 22 are amplified by a charge amplifier 27 and applied as an input to the analyzer 28.
  • the output from the analyzer which represents the ratio of the response voltage to the excitation voltage, is fed to a processor such as a microprocessor 26, which is used to vary the frequency output of the oscillator of the analyzer 28, and store the results in a data store 29.
  • the results may be printed out, and/or displayed on an oscilloscope 25, and/or an AC voltmeter or the like.
  • the beam 20 is secured, i.e. screwed, to the bridge 10.
  • Constant amplitude, for example 1 volt, AC excitation signals are then applied to the beam 20 via the gauge 21.
  • the frequency of the AC excitation signals is varied until the amplitude of the signal displayed on the oscilloscope 25 is at a maximum.
  • the resonance frequency is the frequency at which the amplitude of the ratio of the response voltage to the excitation voltage is a maximum.
  • Fig. 6 shows the data from a coarse sweep which is used to obtain the resonance frequency roughly. A finer sweep around this region is then used to identify this frequency, typically the first or fundamental frequency, more accurately. This frequency is noted, and compared, for example, with the data for other bridges/crowns at similar stages of bonding.
  • the resonance frequency will vary with time as depicted in Fig. 7.
  • an indication of the degree of attachment of the crown to the tooth can be obtained.
  • the technique which is based on detection and comparison of resonance frequency shifts, rather than amplitude changes, is effective to determine the quality of the attachment between the crown(s) and the tooth (teeth) as a function of its stiffness.
  • the beam 20 as shown in Fig. 2 may preferably be of metal such as aluminum, stainless steel or titanium, is dimensioned so as to provide a resonant frequency range of the system of the order of 1 to 20 kHz, more specifically 5 to 15 kHz, and preferably in the region of about 10 kHz.
  • an additional pair of excitation/detection transducers or gauges may be mounted on the sides of the beam at 90° to the transducers or gauges 21 and 22 shown, so as to provide readings at right angles to the latter transducers, without the necessity of re-orienting the beam on the bridge.
  • the beam and/or transducer system could be adapted to turn relative to the dental bridge or crown.
  • the transducers or gauges, and optionally also the beam may be coated, for example with an air dry acrylic material, to protect the transducers during sterilization of the apparatus.
  • the electrical connections or wires connected to the transducers are arranged or adapted to minimize their damping effect on the resonant structure.
  • the member may take a form other than a cantilever beam, and/or the piezoelectric transducers could be replaced by other receiver/transmitter elements, for example employing sonic resonance.
  • the beam instead of being basically straight, could be generally U-shaped, and connected to the bridge or crown by its base.
  • the transducers or equivalent could be mounted on the same or opposite limbs. According to a second aspect of the invention, the measurement is carried out contactless.
  • the system includes a member 30 in the form of a cantilever beam attached to the bridge 10.
  • the member 30 is provided with a magnetic member 31.
  • the magnetic member 31 can be provided at one end of the beam 30, e.g. the free end or integrated inside the beam.
  • the second part of the system comprises the testing apparatus 35, including a probe 351 5 and a response analyzer unit 352.
  • the probe 351 comprises a coil 353 for detecting oscillations of the magnetic member 31.
  • one of the crowns 11 is attached to a tooth 17 connected to and implant instead of a real tooth.
  • the implant is anchored to a bone by means of a screw portion 18.
  • Signals detected by the probe 350 are amplified by an amplifier 354 and applied as an 15 input to the analyser.
  • the output from the analyser which represents the ratio of the
  • response voltage to the excitation is fed to a processor such as a microprocessor 355, which is used to vary the frequency output of the oscillator of the analyser, and store the results in a data store 356.
  • the results can be printed out, and/or displayed on a display or the like.
  • the first part of the arrangement according to the invention comprises, a member in the form of a cantilever beam 31 as in the earlier embodiment attached to the dental bridge 10.
  • the beam 31 in this case is provided with markings 42, such as lines, arranged at one end of the beam 25 21.
  • the second part of the arrangement comprises the testing apparatus 450, including a probe 451 and a response analyzer unit 452.
  • the probe 450 comprises a light source 453a, preferably but not exclusively a laser, and a light detector 453b for detecting
  • the light source is preferably Laser diode.
  • the beam is provided with one or several markers, such as darker (or lighter) sections, which effect the reflection of the light.
  • the beam is excited manually or e.g. by means of an electrical exciter, by applying the 35 force F on the beam.
  • the light source on the tip of the probe illuminates the beam and the light detector 453b detects the reflected light.
  • the detected light signal is converted to an electrical signal by the detector, and signals detected by the probe 451 are amplified by an amplifier 454 and applied as an input to the analyser.
  • the output from the analyser which represents the ratio of the response voltage to the excitation, is fed to a processor such as a
  • microprocessor 455 which is used to vary the frequency output of the oscillator of the analyser, and store the results in a data store 456.
  • the results can be printed out, and/or displayed on a display or the like.
  • the beam 31 is secured to the dental bridge 10.
  • the beam according to the invention is disposable, which means that it can be detached and disposed, providing a hygienic testing arrangement.
  • Fig. 8 shows the data from a coarse sweep, which is used to obtain the resonance frequency roughly in the apparatus of Fig. 3. A finer sweep around this region is then used to identify this frequency, typically the first or fundamental frequency, more accurately. This frequency is noted, and compared, for example, with the data for an earlier measurement, e.g. when the bridge was mounted.
  • the resonance frequency will vary with the degree of attachment of the crowns to the teeth.
  • an indication of the degree of attachment of the bridge can be obtained.
  • the technique which is based on detection and comparison of resonance frequency shifts, rather than amplitude changes, is effective to determine the quality of the attachment.
  • the beam may preferably be of a metallic material, for example titanium or aluminium, is dimensioned so as to provide a resonant frequency range of the system (placed bridge and beam) of the order of 1 to 20 kHz, more specifically 1 to 10 kHz, and preferably in the region of about 8 KHz.
  • the upright beam can be approximately 1 cm high.
  • the beam may be made of a ferromagnetic material and can be brought into excitation by means of an external magnetic field generated by a field generator.
  • the field generator can be a permanent magnet for generating a DC field or a coil for generating an AC filed.
  • the probe may also be externally arranged.
  • the magnet attached to a smart peg may be excited with magnetic pulses. After each pulse, the alternating magnetic field that is the result of the self-vibrating peg is picked up by the electric coil in the measurement probe.
  • the magnetic pulses may be generated by another coil in the same probe (or an additional probe).
  • the metal pegs have a simplified mechanical design compared to the transducers, and do not require individual calibration. It is not possible to store any calibration parameters in them since they are not electrically connected to the instrument. Instead, the individual differences between pegs are reduced to a minimum by a carefully controlled
  • the pegs also have a simpler mechanical behavior when they are vibrating at their resonance frequency. They are more sensitive and have a predictable behavior down to very low attachment stability.
  • a measurement may consist of a number of pulses, e.g. 4 or 30 pulses.
  • these pulses cover the frequency spectrum from 1 to 10 kHz. Since the pulses are more narrow-band, the 30 pulses contain more energy. This makes the responding signal stronger, and the signal to noise ratio is improved, making the measuring device of the invention less sensitive to surrounding electromagnetic noise. It is recognized by a skilled person that the number of pulses are not limited to 4 or 30.
  • FIG. 5 An embodiment of a dental bridge 10 is illustrated in Fig. 5.
  • detectable portions such as magnetic or optical portions 16 are incorporated in the crowns 11 or the false tooth 3. This embodiment allows using same measuring points.
  • the transducers or gauges, and optionally also the beam may be coated, for example with an air-dry acrylic material, to protect the transducers during sterilization of the apparatus.
  • the member may take a form other than a cantilever beam.
  • the beam instead of being basically straight, could be generally U-shaped, and connected to the bridge by its base.
  • alternative detectors such as UV, sound, and the like can also be used.
  • the invention is not limited to bridges and can be applied to crowns or other arrangements to be attached onto a tooth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

The invention relates to a method and apparatus for testing quality of an attachment between a dental crown (11) attached onto a surface of a tooth (14; 17). The method comprises: detecting at least one resonance frequency of a member (16, 20, 21, 31) in contact with said crown (11); and interpreting the detected resonance frequency in terms of the degree of attachment of the crown to a tooth.

Description

DENTAL ATTACHMENT QUALITY TESTING DEVICE
TECHNICAL FIELD The present invention relates to a method and apparatus for testing attachment quality of a crown especially a crown of a dental bridge attached onto a tooth of a human or an animal subject.
BACKGROUND
Dental bridges are tooth restorations that can be used to replace missing teeth. They are an excellent alternative to dentures and dental implants; they provide more stability than dentures and the procedure is less invasive then the placement of dental implants. Dental bridges are one method used by dentists to fill a gap created by a missing tooth (or teeth). Depending on the dental bridge type, the attachment procedure and cost varies.
Referring now to Fig. 1 , normally a dental bridge 10 is made up of two dental crowns 11 for the teeth on both side of the gap 12 and a false or replacement tooth 13 in between. Natural teeth 14 and 15, dental implants or a combination of natural teeth and dental implants can be used to support the bridge 10.
During the first treatment, the dentist may sculpt down the teeth on either side of the gap left by the missing tooth. Once the teeth have been sufficiently prepped, a mold, or impression, is taken and custom made bridge and crown are manufactured. Finally, temporary crowns and a bridge will be placed to protect the patients' teeth and gums from further damage.
Most patients may return to the dentist about a week after their initial appointment to have the permanent restorations placed. The dentist may use cement or a bonding solution to hold the crowns and bridge in place and then polish the cusps of the restorations to provide the patient with a comfortable bite. Although the dental bridge treatment is an effective solution for patients with some missing teeth, there are some risks and limitations associated with the treatment.
One major risk is the attachment of the crowns to the surrounding teeth. If there is a loose contact between the crown and the teeth, the risk for caries increases. The most common reason for fixed bridge replacement is caries, or decay of the underlying tooth structure. Once either abutment tooth of a bridge develops caries (decay) the entire bridge, which is at least three crowns, must be replaced. Often the abutment tooth will also need more treatment such as a pulp cap, core build up, crown lengthening or root canal therapy.
Implant quality testing apparatuses are known, for example through US 5,392,779 and WO 2004/1 10272. However, these inventions relate to measuring stability of the implant inserted into a bone and do not provide for measuring attachment quality between a crown and a tooth.
SUMMARY
Thus, there is a need to detect whether there is a problem in the attachment between the crown(s), especially dental bridge crown and a tooth.
Thus, there is a need for a method and arrangement for clinically observing the quality of the attachment between the crown and the tooth surface. A nondestructive test helps to detect and reduce failures of this type, and would also enable periodic tests to be carried out on the bridge attachments, which are in use to ensure that they are still satisfactory.
It is therefore an object of the present invention to provide a non-destructive test which is capable of giving a reliable indication of the quality and/or extent of the attachment between a crown and the tooth to which the crown is attached. Accordingly there is provided a method of testing attachment quality of between dental crown attached onto a tooth surface (and/or a tooth attached to an implant). The method comprises: detecting at least one resonance frequency of a member in contact with the crown; and interpreting the detected resonance frequency in terms of the degree of attachment between the crown and the tooth. The method may include the step of releasably attaching the member to the crown or a part attached to it. The member may comprise a cantilever beam. The beam is attached to the crown or part connected to the crown trough a threaded bore. The beam may also be attached to the crown or part connected to the crown by means of an adhesive agent. The beam may be incorporated in the crown or part attached to it.
The method may include the step of comparing the detected resonance frequency with one or more values for the resonance frequencies of the same or similar member from an earlier measurement. The method may include the steps of exciting the member with an AC signal, detecting the response of the member to the AC signal, and varying the frequency of the AC signal until the detected response of the member is at a maximum. The method may include deriving an output which is the ratio of the voltage of the response signal to that of the excitation signal. The method could also mean making a pulse-excitation of the member and detecting the response and make a frequency analysis of the response signal. Preferably, the measurement is contactless.
The invention also relates to a dental crown attachment quality testing apparatus. The apparatus comprises a detector for detecting at least one resonance frequency of a member when it is attached to the dental crown. The detector for detecting at least one resonance frequency of the member may comprise means for exciting the member with an AC signal, and a transducer for detecting the response of the member to the AC signal, the arrangement being such that the frequency of the AC signal is varied, and the transducer detects when the response of the member is at a maximum. The excitation means and/or detector may comprise a piezoelectric element, the piezoelectric element comprising the excitation means being driven by a variable frequency oscillator. The member comprises a detectable part and that the detector part comprises a detector for contactless detection of the detectable part.
According to one embodiment, the member may comprise a magnetic portion and the detector may comprise a coil.
According to one embodiment, the member may comprise a marker and the detector comprises an illumination detector.
According to one embodiment, the member may consist of a ferromagnetic material and the detector may comprise a coil for detecting disturbances in an external magnetic field. The apparatus may further comprise an amplifier, a processor, and a data store. The processing unit is further configured to vary a frequency output of an oscillator, and stores the results in the data storing arrangement. At least one coil may be configured to output magnetic pulses to a member attached to the member and detect responses
corresponding to the magnetic pulses from the member.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be further described, by way of example only, with reference to the accompanying drawings, in which:
Fig. 1 is a schematic view of a dental bridge;
Fig. 2 is a schematic diagram of a second embodiment of apparatus according to the invention;
Fig. 3 is a schematic diagram of a second embodiment of apparatus according to the invention;
Fig. 4 is a schematic diagram of third embodiment of apparatus according to the
invention;
Fig. 5 is a schematic diagram of a dental bridge according to one embodiment of
according to the invention;
Fig. 6 is a diagram from a coarse sweep used to obtain resonance frequencies;
Fig. 7 is a schematic diagram illustrating the resonance frequency varying with time for a particular bridge; and
Fig. 8 is a diagram illustrating the data from a sweep used to obtain the resonance
frequency the apparatus of Fig. 3.
DETAILED DESCRIPTION
Referring to Figure 2, which shows a first aspect of the present invention, the apparatus comprises a member in the form of a cantilever beam 20 attached by means of, e.g. a threaded section or adhesive to a fixture in a suitable position on the bridge 10 (in this case the false tooth). The bridge may be any one of a number of known types. Two transducers, such as piezoelectric elements or strain gauges 21 and 22, are attached, for example bonded, to opposite sides of the beam 20, gauge 21 being an exciter gauge and gauge 22 a receiver gauge.
The term "attached" as used herein for defining the connection between a measurable portion and crown/bridge is to be interpreted broadly to include incorporation inside the crown/bridge, or attachment to the surface of the crown bridge.
The exciter gauge 21 may be driven by a variable frequency oscillator, signals from which, for example in the form of a sinusoidal excitation voltage, are fed to the gauge 21 via an amplifier. The oscillator and amplifier may be incorporated in a frequency response analyzer 28.
Signals detected by the receiver gauge 22 are amplified by a charge amplifier 27 and applied as an input to the analyzer 28. The output from the analyzer, which represents the ratio of the response voltage to the excitation voltage, is fed to a processor such as a microprocessor 26, which is used to vary the frequency output of the oscillator of the analyzer 28, and store the results in a data store 29. The results may be printed out, and/or displayed on an oscilloscope 25, and/or an AC voltmeter or the like. In use the beam 20 is secured, i.e. screwed, to the bridge 10. Constant amplitude, for example 1 volt, AC excitation signals are then applied to the beam 20 via the gauge 21. The frequency of the AC excitation signals is varied until the amplitude of the signal displayed on the oscilloscope 25 is at a maximum. The resonance frequency is the frequency at which the amplitude of the ratio of the response voltage to the excitation voltage is a maximum.
Fig. 6 shows the data from a coarse sweep which is used to obtain the resonance frequency roughly. A finer sweep around this region is then used to identify this frequency, typically the first or fundamental frequency, more accurately. This frequency is noted, and compared, for example, with the data for other bridges/crowns at similar stages of bonding.
It is expected that for a particular bridge attachment, the resonance frequency will vary with time as depicted in Fig. 7. Thus by comparing the detected resonance frequency with previously compiled data for similar earlier measurements, an indication of the degree of attachment of the crown to the tooth can be obtained.
The technique, which is based on detection and comparison of resonance frequency shifts, rather than amplitude changes, is effective to determine the quality of the attachment between the crown(s) and the tooth (teeth) as a function of its stiffness.
The beam 20 as shown in Fig. 2 may preferably be of metal such as aluminum, stainless steel or titanium, is dimensioned so as to provide a resonant frequency range of the system of the order of 1 to 20 kHz, more specifically 5 to 15 kHz, and preferably in the region of about 10 kHz.
For example, an additional pair of excitation/detection transducers or gauges may be mounted on the sides of the beam at 90° to the transducers or gauges 21 and 22 shown, so as to provide readings at right angles to the latter transducers, without the necessity of re-orienting the beam on the bridge. Additionally, or alternatively, the beam and/or transducer system could be adapted to turn relative to the dental bridge or crown. The transducers or gauges, and optionally also the beam may be coated, for example with an air dry acrylic material, to protect the transducers during sterilization of the apparatus. The electrical connections or wires connected to the transducers are arranged or adapted to minimize their damping effect on the resonant structure. The member may take a form other than a cantilever beam, and/or the piezoelectric transducers could be replaced by other receiver/transmitter elements, for example employing sonic resonance. The beam, instead of being basically straight, could be generally U-shaped, and connected to the bridge or crown by its base. The transducers or equivalent could be mounted on the same or opposite limbs. According to a second aspect of the invention, the measurement is carried out contactless.
Referring to Fig. 3, the system includes a member 30 in the form of a cantilever beam attached to the bridge 10. The member 30 is provided with a magnetic member 31. The magnetic member 31 can be provided at one end of the beam 30, e.g. the free end or integrated inside the beam.
The second part of the system comprises the testing apparatus 35, including a probe 351 5 and a response analyzer unit 352. The probe 351 comprises a coil 353 for detecting oscillations of the magnetic member 31.
In this case one of the crowns 11 is attached to a tooth 17 connected to and implant instead of a real tooth. The implant is anchored to a bone by means of a screw portion 18. 0
To generate oscillations in the beam, it must be excited. This can be done manually or by means of an electrical exciter, through application of a force F on the beam.
Signals detected by the probe 350 are amplified by an amplifier 354 and applied as an 15 input to the analyser. The output from the analyser, which represents the ratio of the
response voltage to the excitation, is fed to a processor such as a microprocessor 355, which is used to vary the frequency output of the oscillator of the analyser, and store the results in a data store 356. The results can be printed out, and/or displayed on a display or the like.
20
Referring now to Fig. 4, illustrating a third embodiment of the invention, the first part of the arrangement according to the invention comprises, a member in the form of a cantilever beam 31 as in the earlier embodiment attached to the dental bridge 10. The beam 31 in this case is provided with markings 42, such as lines, arranged at one end of the beam 25 21.
The second part of the arrangement comprises the testing apparatus 450, including a probe 451 and a response analyzer unit 452. The probe 450 comprises a light source 453a, preferably but not exclusively a laser, and a light detector 453b for detecting
30 reflections from the beam and thus oscillations of the beam. The light source is preferably Laser diode. The beam is provided with one or several markers, such as darker (or lighter) sections, which effect the reflection of the light.
The beam is excited manually or e.g. by means of an electrical exciter, by applying the 35 force F on the beam. The light source on the tip of the probe illuminates the beam and the light detector 453b detects the reflected light. The detected light signal is converted to an electrical signal by the detector, and signals detected by the probe 451 are amplified by an amplifier 454 and applied as an input to the analyser. The output from the analyser, which represents the ratio of the response voltage to the excitation, is fed to a processor such as a
microprocessor 455, which is used to vary the frequency output of the oscillator of the analyser, and store the results in a data store 456. The results can be printed out, and/or displayed on a display or the like.
In use the beam 31 is secured to the dental bridge 10. Preferably, but not necessarily, the beam according to the invention is disposable, which means that it can be detached and disposed, providing a hygienic testing arrangement. Fig. 8 shows the data from a coarse sweep, which is used to obtain the resonance frequency roughly in the apparatus of Fig. 3. A finer sweep around this region is then used to identify this frequency, typically the first or fundamental frequency, more accurately. This frequency is noted, and compared, for example, with the data for an earlier measurement, e.g. when the bridge was mounted.
It is expected that for a particular bridge, the resonance frequency will vary with the degree of attachment of the crowns to the teeth. Thus, by comparing the detected resonance frequency with previously compiled data for same bridge, an indication of the degree of attachment of the bridge can be obtained. The technique, which is based on detection and comparison of resonance frequency shifts, rather than amplitude changes, is effective to determine the quality of the attachment.
The beam may preferably be of a metallic material, for example titanium or aluminium, is dimensioned so as to provide a resonant frequency range of the system (placed bridge and beam) of the order of 1 to 20 kHz, more specifically 1 to 10 kHz, and preferably in the region of about 8 KHz. For example, in the embodiment of Figs. 2 and 3, the upright beam can be approximately 1 cm high. In yet another embodiment the beam may be made of a ferromagnetic material and can be brought into excitation by means of an external magnetic field generated by a field generator. The field generator can be a permanent magnet for generating a DC field or a coil for generating an AC filed. The probe may also be externally arranged.
The magnet attached to a smart peg (beam) may be excited with magnetic pulses. After each pulse, the alternating magnetic field that is the result of the self-vibrating peg is picked up by the electric coil in the measurement probe. The magnetic pulses may be generated by another coil in the same probe (or an additional probe).
The metal pegs have a simplified mechanical design compared to the transducers, and do not require individual calibration. It is not possible to store any calibration parameters in them since they are not electrically connected to the instrument. Instead, the individual differences between pegs are reduced to a minimum by a carefully controlled
manufacturing process.
The pegs also have a simpler mechanical behavior when they are vibrating at their resonance frequency. They are more sensitive and have a predictable behavior down to very low attachment stability.
A measurement may consist of a number of pulses, e.g. 4 or 30 pulses. In the case of 30 pulses, these pulses cover the frequency spectrum from 1 to 10 kHz. Since the pulses are more narrow-band, the 30 pulses contain more energy. This makes the responding signal stronger, and the signal to noise ratio is improved, making the measuring device of the invention less sensitive to surrounding electromagnetic noise. It is recognized by a skilled person that the number of pulses are not limited to 4 or 30.
An embodiment of a dental bridge 10 is illustrated in Fig. 5. In the embodiment, detectable portions such as magnetic or optical portions 16 are incorporated in the crowns 11 or the false tooth 3. This embodiment allows using same measuring points.
It will be understood that various modifications may be made without departing from the scope of the present invention as defined in the appended claims. The transducers or gauges, and optionally also the beam may be coated, for example with an air-dry acrylic material, to protect the transducers during sterilization of the apparatus. The member may take a form other than a cantilever beam. The beam, instead of being basically straight, could be generally U-shaped, and connected to the bridge by its base. Moreover, alternative detectors, such as UV, sound, and the like can also be used.
The invention is not limited to bridges and can be applied to crowns or other arrangements to be attached onto a tooth.

Claims

1. A method of testing quality of an attachment between a dental crown (11 ) attached onto a surface of a tooth (14; 17), the method comprising the steps of: detecting at least one resonance frequency of a member ( 6, 20, 21 , 31) in contact with said crown (11); and interpreting the detected resonance frequency in terms of the degree of attachment of the crown to a tooth.
2. The method according to claim 1 , including the step of releasably attaching the
member to the crown or a part attached to the crown.
3. The method according to claim 1 or 2, wherein the member comprises a cantilever beam. 4. The method according to claim 3, wherein the beam is attached to said crown or part connected to the crown trough a threaded bore.
5. The method according to claim 3, wherein the beam is attached to said crown or part connected to the crown by means of an adhesive agent.
6. The method according to claim 1 , wherein the member is incorporated in said crown or part attached to it.
7. The method according to any of claims 1 to 6, including the step of comparing the detected resonance frequency with one or more values for the resonance frequencies of the same or similar member from an earlier measurement .
8. The method according to any of claims 1 to 7, including the steps of exciting the
member with an AC signal, detecting the response of the member to the AC signal, and varying the frequency of the AC signal until the detected response of the member is at a maximum.
9. The method according to claim 8, further comprising deriving an output signal, which is the ratio of the voltage of the response signal to that of the excitation signal. 0. The method according to any of preceding claims, wherein said measurement is contactless.
11. The method according to any of preceding claims, further comprising a pulse- excitation of the member and detecting the response from the member and analyzing a frequency of the response signal.
5
12. Dental crown (11) attachment quality testing apparatus, characterized in that the
apparatus comprises a detector (27, 351 , 451) for detecting at least one resonance frequency of a member (16, 20, 21 , 31 ) attached to the dental crown (11).
10 13. Apparatus according to claim 12, comprising means for exciting the member with an AC signal, and a detector for detecting the response of the member to the AC signal, such that the frequency of the AC signal is varied, and the detector detects when the response of the member is at a maximum.
15 14. Apparatus according to claim 12, comprising a piezoelectric element provided as said excitation means configured to be driven by a variable frequency oscillator.
20 15. Apparatus according to claim 12, wherein said member comprises a magnetic portion. 6. Apparatus according to claim 12, wherein said detector comprises a coil.
17. Apparatus according to claim 12, wherein said member comprises a marker.
25
18. Apparatus according to claim 17, wherein said detector comprises an illumination detector.
19. Apparatus according to claim 12, wherein said member comprises ferromagnetic 30 material.
20. Apparatus according to claim 19, wherein said detector comprises a coil for detecting disturbances in an external magnetic field.
21. Apparatus according to any of claims 12-20, further comprising an amplifier,
processor, and a data store.
22. Apparatus according to claim 21 , wherein said processor is further configured to vary a frequency output of an oscillator, and stores the results in said data storing arrangement. 23. Apparatus according to claim 22, comprising at least one coil configured to output magnetic pulses to a member attached to a crown or part attached to it and detect a response corresponding to said magnetic pulses from said member.
PCT/SE2011/051604 2010-12-29 2011-12-29 Dental attachment quality testing device WO2012091671A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11853060.9A EP2658468A4 (en) 2010-12-29 2011-12-29 Dental attachment quality testing device
JP2013547403A JP2014507194A (en) 2010-12-29 2011-12-29 Dental installation quality inspection device
KR1020137019408A KR20130132949A (en) 2010-12-29 2011-12-29 Dental attachment quality testing device
CN2011800634285A CN103327927A (en) 2010-12-29 2011-12-29 Dental attachment quality testing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE1001237A SE1001237A1 (en) 2010-12-29 2010-12-29 Device for quality testing of a dental bracket
US12/980,717 2010-12-29
US12/980,717 US8979532B2 (en) 2003-06-19 2010-12-29 Dental attachment quality testing device
SE1001237-5 2010-12-29

Publications (1)

Publication Number Publication Date
WO2012091671A1 true WO2012091671A1 (en) 2012-07-05

Family

ID=46383406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2011/051604 WO2012091671A1 (en) 2010-12-29 2011-12-29 Dental attachment quality testing device

Country Status (6)

Country Link
EP (1) EP2658468A4 (en)
JP (1) JP2014507194A (en)
KR (1) KR20130132949A (en)
CN (1) CN103327927A (en)
SE (1) SE1001237A1 (en)
WO (1) WO2012091671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204684A1 (en) * 2015-06-18 2016-12-22 Osstell Ab Implant stability measuring device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554456A (en) * 2016-09-29 2018-04-04 Osstell Ab A probe
JP2018187052A (en) * 2017-05-02 2018-11-29 株式会社アドテックス Testing pole for obtaining index of coupling degree of dental implant body, and system with the same
KR20240012032A (en) 2022-07-20 2024-01-29 주식회사 덴티스 Probe of mobility-data measuring tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362511A (en) * 1981-07-09 1982-12-07 John Jacklich J Bolt
EP0602970A2 (en) * 1992-12-16 1994-06-22 Kabushiki Kaisha Egawa A measuring method using resonance of a resonance body
US5392779A (en) * 1991-04-11 1995-02-28 Imperial College Of Science, Technology & Medicine Testing implants
EP0702942A1 (en) * 1994-09-26 1996-03-27 Takuno Tetsuo Apparatus for measuring tooth mobility
EP0853938A1 (en) * 1997-01-20 1998-07-22 Injex Corporation Prosthetic restoration and manufacturing method thereof
US6413220B1 (en) * 1998-05-08 2002-07-02 Emery S. Rose Surface acoustic wave periodontal probe and method of detecting periodontal disease
US20020115944A1 (en) * 1999-11-18 2002-08-22 Emanuel Mendes Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
WO2004110272A1 (en) * 2003-06-19 2004-12-23 Integration Diagnostics Ltd Method and arrangement relating to testing objects

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070270684A1 (en) * 2004-06-21 2007-11-22 Integration Diagnostics Ltd. Method and Arrangement Relating to Testing Objects
TWI389675B (en) * 2007-10-05 2013-03-21 Nat Applied Res Laboratories Non-contact apparatus and method for stability assessment of dental implant
KR100956401B1 (en) * 2008-05-23 2010-05-06 (주)휴네스 Transducer unit and transducer for apparatus of resonance frequency analysis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362511A (en) * 1981-07-09 1982-12-07 John Jacklich J Bolt
US5392779A (en) * 1991-04-11 1995-02-28 Imperial College Of Science, Technology & Medicine Testing implants
EP0602970A2 (en) * 1992-12-16 1994-06-22 Kabushiki Kaisha Egawa A measuring method using resonance of a resonance body
EP0702942A1 (en) * 1994-09-26 1996-03-27 Takuno Tetsuo Apparatus for measuring tooth mobility
EP0853938A1 (en) * 1997-01-20 1998-07-22 Injex Corporation Prosthetic restoration and manufacturing method thereof
US6413220B1 (en) * 1998-05-08 2002-07-02 Emery S. Rose Surface acoustic wave periodontal probe and method of detecting periodontal disease
US20020115944A1 (en) * 1999-11-18 2002-08-22 Emanuel Mendes Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
WO2004110272A1 (en) * 2003-06-19 2004-12-23 Integration Diagnostics Ltd Method and arrangement relating to testing objects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2658468A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204684A1 (en) * 2015-06-18 2016-12-22 Osstell Ab Implant stability measuring device and method

Also Published As

Publication number Publication date
CN103327927A (en) 2013-09-25
EP2658468A1 (en) 2013-11-06
KR20130132949A (en) 2013-12-05
EP2658468A4 (en) 2015-11-11
JP2014507194A (en) 2014-03-27
SE1001237A1 (en) 2012-06-30

Similar Documents

Publication Publication Date Title
US8979532B2 (en) Dental attachment quality testing device
AU660456B2 (en) Testing implants
US20140072929A1 (en) Method and arrangement relating to testing objects
Meredith A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants
US8391958B2 (en) Method and arrangement relating to testing objects
US20020143268A1 (en) Bone implant testing
Kittur et al. Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review
Dario et al. Electronic monitoring of dental implant osseointegration
WO2012091671A1 (en) Dental attachment quality testing device
Lannocca et al. Intra-operative evaluation of cementless hip implant stability: A prototype device based on vibration analysis
Debruyne et al. ISQ calculation evaluation of in vitro laser scanning vibrometry-captured resonance frequency
TW200924719A (en) Inspection device and method for irregular bone defects of dental implant
US20070270684A1 (en) Method and Arrangement Relating to Testing Objects
Pan et al. Design/exploration and verification of an electromagnetic probe for assessing dental implant osseointegration
Zhuang et al. Noncontact vibro-acoustic detection technique for dental osseointegration examination
Kobayashi et al. Use of a laser displacement sensor with a non-contact electromagnetic vibration device for assessment of simulated periodontal tissue conditions
JP4232876B2 (en) Tactile sensor for gingival examination
Reuben Acoustic emission and ultrasound for monitoring the bone-implant interface
WO1998001736A1 (en) Method and device for measuring resilience
Khuntia et al. Resonance frequency analysis and oral implant stability: a long term relationship
SE1451369A1 (en) Device for quality testing of a dental bracket
Shekhar et al. Determination Of Implant Primary Stability By Resonance Frequency Analysis-Co-Relation With Bone Density And Insertion Torque: An In-Vivo Study
Kobayashi et al. Evaluation of Qualitative Changes in Simulated Periodontal Ligament and Alveolar Bone Using a Noncontact Electromagnetic Vibration Device with a Laser Displacement Sensor
Häggström Vibrations during resonance frequency analysis of dental implant stability
Mandal et al. Bridge to integration and implant stability: A review.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853060

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013547403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011853060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011853060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019408

Country of ref document: KR

Kind code of ref document: A