WO2011146413A1 - Method and structure capable of changing color saturation - Google Patents

Method and structure capable of changing color saturation Download PDF

Info

Publication number
WO2011146413A1
WO2011146413A1 PCT/US2011/036690 US2011036690W WO2011146413A1 WO 2011146413 A1 WO2011146413 A1 WO 2011146413A1 US 2011036690 W US2011036690 W US 2011036690W WO 2011146413 A1 WO2011146413 A1 WO 2011146413A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
refraction
partial reflector
index
reflector
Prior art date
Application number
PCT/US2011/036690
Other languages
French (fr)
Inventor
Jian Liu
Kostadin Djordjev
Marc Maurice Mignard
Original Assignee
Qualcomm Mems Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Mems Technologies, Inc. filed Critical Qualcomm Mems Technologies, Inc.
Priority to EP11724322A priority Critical patent/EP2572228A1/en
Priority to JP2013511267A priority patent/JP5592003B2/en
Priority to CN2011800248482A priority patent/CN103003735A/en
Priority to KR1020127032910A priority patent/KR20130107208A/en
Publication of WO2011146413A1 publication Critical patent/WO2011146413A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements

Definitions

  • This disclosure relates to displays including electromechanical systems.
  • Electromechanical systems include devices having electrical and mechanical elements, actuators, transducers, sensors, optical components (e.g., mirrors) and electronics. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscales and nanoscales.
  • microelectromechanical systems (MEMS) devices can include structures having sizes ranging from about a micron to hundreds of microns or more.
  • Nanoelectromechanical systems (NEMS) devices can include structures having sizes smaller than a micron including, for example, sizes smaller than several hundred nanometers.
  • Electromechanical elements may be created using deposition, etching, lithography, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers, or that add layers to form electrical and electromechanical devices.
  • an interferometric modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
  • an interferometric modulator may include a pair of conductive plates, one or both of which may be transparent and/or reflective, wholly or in part, and capable of relative motion upon application of an appropriate electrical signal.
  • one plate may include a stationary layer deposited on a substrate and the other plate may include a metallic membrane separated from the stationary layer by an air gap. The position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
  • Interferometric modulator devices have a wide range of applications, and are anticipated to be used in improving existing products and creating new products, especially those with display capabilities.
  • a device for modulating light comprising: a movable reflector; a partial reflector positioned at a first distance from said movable reflector; a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and a multilayer configured to provide a refractive index gradient between the partial reflector and the substrate, the multilayer including at least two dielectric layers, wherein the respective indices of refraction of the at least two dielectric layers are configured to provide a reduction in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
  • the index of refraction of the partial reflector can be larger than the index of refraction of the substrate.
  • at least one dielectric layer included in the multilayer can form a color filter.
  • the color filter can be a red color filter that substantially suppresses light wavelengths associated with cyan hues.
  • the color filter can be a blue color filter that substantially suppresses light wavelengths associated with yellow hues.
  • the color filter can be a green color filter that substantially suppresses light wavelengths associated with magenta hues.
  • the respective indices of refraction of the at least two dielectric layers can be configured to provide a plurality of reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device. In some implementations the respective indices of refraction of the at least two dielectric layers can be configured to provide at least three reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device. In some implementations the respective indices of refraction of the at least three dielectric layers can be configured to provide at least four reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
  • a device for modulating light comprising: a movable reflector; a partial reflector positioned at a first distance from said movable reflector; a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and a dielectric layer having an index of refraction between that of the partial reflector and the substrate and a thickness sufficient to produce an interference filtering effect that increases saturation of light reflected by the device, wherein metal layers are excluded from between the dielectric layer and the substrate.
  • a display comprising a plurality of display elements, each of the display elements comprising: means for reflecting light, said reflecting means being movable; means for partially reflecting light, wherein said movable reflecting means and said partial reflecting means are configured to interferometrically modulate light; a substrate positioned at a fixed distance from said partial reflecting means, the substrate having an index of refraction different from the partial reflecting means, wherein there are no metal layers between the substrate and the partial reflecting means; and means for matching refractive indices of the partial reflecting means and the substrate, wherein the refractive index matching means provides a reduction in the index of refraction from the partial reflecting means to the substrate thereby increasing the saturation of a particular color of light reflected by the device.
  • the moveable reflecting means can comprise a reflective layer; or the partial reflecting means comprises a partially reflective material; or the refractive index matching means comprises a dielectric layer, the dielectric layer configured to provide a refractive index gradient between the partial reflector and the substrate, and wherein the dielectric layer is also configured as a color filter having a thickness sufficient to produce an interference effect that increases saturation of light reflected by the device.
  • Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of making a device for modulating light, the method comprising: forming a movable reflector; forming a partial reflector positioned at a first distance from said movable reflector; providing a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and forming a dielectric layer configured to provide a refractive index gradient between the partial reflector and the substrate, and wherein the dielectric layer is also configured as a color filter having a thickness sufficient to produce an interference effect that increases saturation of light reflected by the device.
  • Figure 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device.
  • IMOD interferometric modulator
  • Figure 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3x3 interferometric modulator display.
  • Figure 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of Figure 1.
  • Figure 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied.
  • Figure 5 A shows an example of a diagram illustrating a frame of display data in the 3x3 interferometric modulator display of Figure 2.
  • Figure 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in Figure 5A.
  • Figure 6A shows an example of a partial cross-section of the interferometric modulator display of Figure 1.
  • Figures 6B-6E show examples of cross-sections of varying implementations of interferometric modulators.
  • Figure 7 shows an example of a flow diagram illustrating a manufacturing process for an interferometric modulator.
  • Figures 8A-8E show examples of cross-sectional schematic illustrations of various stages in a method of making an interferometric modulator.
  • Figure 9 is a chromaticity diagram that illustrates an example of an expanded color gamut provided by one implementation of a display that includes an interferometric modulator in combination with a multilayer having a refractive index gradient.
  • Figure 10 is a side cross-sectional view of an implementation of an electromechanical systems device including an interferometric modulator and a multilayer having a refractive index gradient.
  • Figures 11 A and 1 IB show examples of system block diagrams illustrating a display device that includes a plurality of interferometric modulators.
  • the implementations may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, multimedia Internet enabled cellular telephones, mobile television receivers, wireless devices, smartphones, bluetooth devices, personal data assistants (PDAs), wireless electronic mail receivers, hand-held or portable computers, netbooks, notebooks, smartbooks, printers, copiers, scanners, facsimile devices, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, electronic reading devices (e.g., e-readers), computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, camera view displays (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, microwaves, refrigerators, stereo systems, cassette recorders or players, DVD players, CD players, VCRs, radios, portable memory
  • PDAs personal data assistant
  • teachings herein also can be used in non-display applications such as, but not limited to, electronic switching devices, radio frequency filters, sensors, accelerometers, gyroscopes, motion-sensing devices, magnetometers, inertial components for consumer electronics, parts of consumer electronics products, varactors, liquid crystal devices, electrophoretic devices, drive schemes, manufacturing processes, electronic test equipment.
  • electronic switching devices radio frequency filters
  • sensors accelerometers
  • gyroscopes motion-sensing devices
  • magnetometers magnetometers
  • inertial components for consumer electronics
  • parts of consumer electronics products varactors
  • liquid crystal devices parts of consumer electronics products
  • electrophoretic devices drive schemes
  • manufacturing processes electronic test equipment
  • Various implementations include an interferometric modulator device configured to provide improved saturation. With the addition of a color filter layer, the color saturation of an interferometric modulator is improved. In particular, increased saturation and filtering is provided by optically matching the impedance of two materials in the interference modulator using a multilayer having layers with different refractive indices arranged to yield a refractive index gradient. In various implementations the thickness one or more of the layers are selected to provide increased saturation. Accordingly, in various embodiments the multilayer having a refractive index gradient narrows the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller. In turn, a device including a combination of red, green and blue pixels may expand the spectrum of colors that are reflected by the device in operation. Additionally, there may be better contrast between whites and blacks, with the black appearing more true black and containing less of a hue.
  • a reflective display device can incorporate interferometric modulators (IMODs) to selectively absorb and/or reflect light incident thereon using principles of optical interference.
  • IMODs can include an absorber, a reflector that is movable with respect to the absorber, and an optical resonant cavity defined between the absorber and the reflector.
  • the reflector can be moved to two or more different positions, which can change the size of the optical resonant cavity and thereby affect the reflectance of the interferometric modulator.
  • the reflectance spectrums of IMODs can create fairly broad spectral bands which can be shifted across the visible wavelengths to generate different colors. The position of the spectral band can be adjusted by changing the thickness of the optical resonant cavity, i.e., by changing the position of the reflector.
  • FIG. 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device.
  • the IMOD display device includes one or more interferometric MEMS display elements.
  • the pixels of the MEMS display elements can be in either a bright or dark state. In the bright ("relaxed,” “open” or “on”) state, the display element reflects a large portion of incident visible light, e.g., to a user. Conversely, in the dark (“actuated,” “closed” or “off) state, the display element reflects little incident visible light. In some implementations, the light reflectance properties of the on and off states may be reversed.
  • MEMS pixels can be configured to reflect predominantly at particular wavelengths allowing for a color display in addition to black and white.
  • the IMOD display device can include a row/column array of IMODs.
  • Each IMOD can include a pair of reflective layers, i.e., a movable reflective layer and a fixed partially reflective layer, positioned at a variable and controllable distance from each other to form an air gap (also referred to as an optical gap or cavity).
  • the movable reflective layer may be moved between at least two positions. In a first position, i.e., a relaxed position, the movable reflective layer can be positioned at a relatively large distance from the fixed partially reflective layer. In a second position, i.e., an actuated position, the movable reflective layer can be positioned more closely to the partially reflective layer.
  • Incident light that reflects from the two layers can interfere constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non- reflective state for each pixel.
  • the IMOD may be in a reflective state when unactuated, reflecting light within the visible spectrum, and may be in a dark state when unactuated, reflecting light outside of the visible range (e.g., infrared light). In some other implementations, however, an IMOD may be in a dark state when unactuated, and in a reflective state when actuated.
  • the introduction of an applied voltage can drive the pixels to change states.
  • an applied charge can drive the pixels to change states.
  • the depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12.
  • a movable reflective layer 14 is illustrated in a relaxed position at a predetermined distance from an optical stack 16, which includes a partially reflective layer.
  • the voltage V 0 applied across the IMOD 12 on the left is insufficient to cause actuation of the movable reflective layer 14.
  • the movable reflective layer 14 is illustrated in an actuated position near or adjacent the optical stack 16.
  • the voltage Vbias applied across the IMOD 12 on the right is sufficient to maintain the movable reflective layer 14 in the actuated position.
  • the reflective properties of pixels 12 are generally illustrated with arrows 13 indicating light incident upon the pixels 12, and light 15 reflecting from the pixel 12 on the left.
  • arrows 13 indicating light incident upon the pixels 12, and light 15 reflecting from the pixel 12 on the left.
  • a portion of the light incident upon the optical stack 16 will be transmitted through the partially reflective layer of the optical stack 16, and a portion will be reflected back through the transparent substrate 20.
  • the portion of light 13 that is transmitted through the optical stack 16 will be reflected at the movable reflective layer 14, back toward (and through) the transparent substrate 20. Interference (constructive or destructive) between the light reflected from the partially reflective layer of the optical stack 16 and the light reflected from the movable reflective layer 14 will determine the wavelength(s) of light 15 reflected from the pixel 12.
  • the optical stack 16 can include a single layer or several layers.
  • the layer(s) can include one or more of an electrode layer, a partially reflective and partially transmissive layer and a transparent dielectric layer.
  • the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20.
  • the electrode layer can be formed from a variety of materials, such as various metals, for example indium tin oxide (ITO).
  • the partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, e.g., chromium (Cr), semiconductors, and dielectrics.
  • the partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
  • the optical stack 16 can include a single semi-transparent thickness of metal or semiconductor which serves as both an optical absorber and conductor, while different, more conductive layers or portions (e.g., of the optical stack 16 or of other structures of the IMOD) can serve to bus signals between IMOD pixels.
  • the optical stack 16 also can include one or more insulating or dielectric layers covering one or more conductive layers or a conductive/absorptive layer.
  • the layer(s) of the optical stack 16 can be patterned into parallel strips, and may form row electrodes in a display device as described further below.
  • the term "patterned" is used herein to refer to masking as well as etching processes.
  • a highly conductive and reflective material such as aluminum (Al) may be used for the movable reflective layer 14, and these strips may form column electrodes in a display device.
  • the movable reflective layer 14 may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of the optical stack 16) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18.
  • a defined gap 19, or optical cavity can be formed between the movable reflective layer 14 and the optical stack 16.
  • the spacing between posts 18 may be on the order of 1-1000 um, while the gap 19 may be on the order of ⁇ 10,000 Angstroms (A).
  • each pixel of the IMOD is essentially a capacitor formed by the fixed and moving reflective layers.
  • the movable reflective layer 14a remains in a mechanically relaxed state, as illustrated by the pixel 12 on the left in Figure 1, with the gap 19 between the movable reflective layer 14 and optical stack 16.
  • a potential difference e.g., voltage
  • the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the applied voltage exceeds a threshold, the movable reflective layer 14 can deform and move near or against the optical stack 16.
  • a dielectric layer (not shown) within the optical stack 16 may prevent shorting and control the separation distance between the layers 14 and 16, as illustrated by the actuated pixel 12 on the right in Figure 1.
  • the behavior is the same regardless of the polarity of the applied potential difference.
  • a series of pixels in an array may be referred to in some instances as “rows” or “columns,” a person having ordinary skill in the art will readily understand that referring to one direction as a "row” and another as a “column” is arbitrary. Restated, in some orientations, the rows can be considered columns, and the columns considered to be rows.
  • the display elements may be evenly arranged in orthogonal rows and columns (an “array"), or arranged in non-linear configurations, for example, having certain positional offsets with respect to one another (a “mosaic”).
  • array and “mosaic” may refer to either configuration.
  • the display is referred to as including an “array” or “mosaic,” the elements themselves need not be arranged orthogonally to one another, or disposed in an even distribution, in any instance, but may include arrangements having asymmetric shapes and unevenly distributed elements.
  • Figure 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3x3 interferometric modulator display.
  • the electronic device includes a processor 21 that may be configured to execute one or more software modules.
  • the processor 21 may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
  • the processor 21 can be configured to communicate with an array driver 22.
  • the array driver 22 can include a row driver circuit 24 and a column driver circuit 26 that provide signals to, e.g., a display array or panel 30.
  • the cross section of the IMOD display device illustrated in Figure 1 is shown by the lines 1-1 in Figure 2.
  • Figure 2 illustrates a 3x3 array of IMODs for the sake of clarity, the display array 30 may contain a very large number of IMODs, and may have a different number of IMODs in rows than in columns, and vice versa.
  • Figure 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of Figure 1.
  • the row/column (i.e., common/segment) write procedure may take advantage of a hysteresis property of these devices as illustrated in Figure 3.
  • An interferometric modulator may require, for example, about a 10-volt potential difference to cause the movable reflective layer, or mirror, to change from the relaxed state to the actuated state.
  • the movable reflective layer maintains its state as the voltage drops back below, e.g., 10-volts, however, the movable reflective layer does not relax completely until the voltage drops below 2-volts.
  • a range of voltage approximately 3 to 7-volts, as shown in Figure 3, exists where there is a window of applied voltage within which the device is stable in either the relaxed or actuated state.
  • This is referred to herein as the "hysteresis window” or "stability window.”
  • the row/column write procedure can be designed to address one or more rows at a time, such that during the addressing of a given row, pixels in the addressed row that are to be actuated are exposed to a voltage difference of about 10-volts, and pixels that are to be relaxed are exposed to a voltage difference of near zero volts.
  • each pixel After addressing, the pixels are exposed to a steady state or bias voltage difference of approximately 5-volts such that they remain in the previous strobing state. In this example, after being addressed, each pixel sees a potential difference within the "stability window" of about 3-7-volts.
  • This hysteresis property feature enables the pixel design, e.g., illustrated in Figure 1, to remain stable in either an actuated or relaxed pre-existing state under the same applied voltage conditions. Since each IMOD pixel, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a steady voltage within the hysteresis window without substantially consuming or losing power. Moreover, essentially little or no current flows into the IMOD pixel if the applied voltage potential remains substantially fixed.
  • a frame of an image may be created by applying data signals in the form of "segment" voltages along the set of column electrodes, in accordance with the desired change (if any) to the state of the pixels in a given row.
  • Each row of the array can be addressed in turn, such that the frame is written one row at a time.
  • segment voltages corresponding to the desired state of the pixels in the first row can be applied on the column electrodes, and a first row pulse in the form of a specific "common" voltage or signal can be applied to the first row electrode.
  • the set of segment voltages can then be changed to correspond to the desired change (if any) to the state of the pixels in the second row, and a second common voltage can be applied to the second row electrode.
  • the pixels in the first row are unaffected by the change in the segment voltages applied along the column electrodes, and remain in the state they were set to during the first common voltage row pulse.
  • This process may be repeated for the entire series of rows, or alternatively, columns, in a sequential fashion to produce the image frame.
  • the frames can be refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second.
  • FIG. 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied.
  • the "segment” voltages can be applied to either the column electrodes or the row electrodes, and the “common” voltages can be applied to the other of the column electrodes or the row electrodes.
  • a hold voltage When a hold voltage is applied on a common line, such as a high hold voltage VCHOLD H or a low hold voltage VCHOLD_L, the state of the interferometric modulator will remain constant. For example, a relaxed IMOD will remain in a relaxed position, and an actuated IMOD will remain in an actuated position.
  • the hold voltages can be selected such that the pixel voltage will remain within a stability window both when the high segment voltage VSH and the low segment voltage VS L are applied along the corresponding segment line.
  • the segment voltage swing i.e., the difference between the high VSH and low segment voltage VSL, is less than the width of either the positive or the negative stability window.
  • a common line such as a high addressing voltage VCADD H or a low addressing voltage VCADD_L
  • data can be selectively written to the modulators along that line by application of segment voltages along the respective segment lines.
  • the segment voltages may be selected such that actuation is dependent upon the segment voltage applied.
  • an addressing voltage is applied along a common line
  • application of one segment voltage will result in a pixel voltage within a stability window, causing the pixel to remain unactuated.
  • application of the other segment voltage will result in a pixel voltage beyond the stability window, resulting in actuation of the pixel.
  • the particular segment voltage which causes actuation can vary depending upon which addressing voltage is used.
  • the high addressing voltage VCADD H when the high addressing voltage VCADD H is applied along the common line, application of the high segment voltage VSH can cause a modulator to remain in its current position, while application of the low segment voltage VSL can cause actuation of the modulator.
  • the effect of the segment voltages can be the opposite when a low addressing voltage VCADD L is applied, with high segment voltage VSH causing actuation of the modulator, and low segment voltage VSL having no effect (i.e., remaining stable) on the state of the modulator.
  • hold voltages, address voltages, and segment voltages may be used which always produce the same polarity potential difference across the modulators.
  • signals can be used which alternate the polarity of the potential difference of the modulators. Alternation of the polarity across the modulators (that is, alternation of the polarity of write procedures) may reduce or inhibit charge accumulation which could occur after repeated write operations of a single polarity.
  • Figure 5A shows an example of a diagram illustrating a frame of display data in the 3x3 interferometric modulator display of Figure 2.
  • Figure 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in Figure 5 A.
  • the signals can be applied to the, e.g., 3x3 array of Figure 2, which will ultimately result in the line time 60e display arrangement illustrated in Figure 5A.
  • the actuated modulators in Figure 5A are in a dark-state, i.e., where a substantial portion of the reflected light is outside of the visible spectrum so as to result in a dark appearance to, e.g., a viewer.
  • the pixels Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, but the write procedure illustrated in the timing diagram of Figure 5B presumes that each modulator has been released and resides in an unactuated state before the first line time 60a.
  • a release voltage 70 is applied on common line 1 ; the voltage applied on common line 2 begins at a high hold voltage 72 and moves to a release voltage 70; and a low hold voltage 76 is applied along common line 3.
  • the modulators (common 1 , segment 1), (1,2) and (1,3) along common line 1 remain in a relaxed, or unactuated, state for the duration of the first line time 60a, the modulators (2, 1 ), (2,2) and (2,3) along common line 2 will move to a relaxed state, and the modulators (3, 1 ), (3,2) and (3,3) along common line 3 will remain in their previous state.
  • segment voltages applied along segment lines 1 , 2 and 3 will have no effect on the state of the interferometric modulators, as none of common lines 1 , 2 or 3 are being exposed to voltage levels causing actuation during line time 60a (i.e., VCREL - relax and VCHOLD L - stable).
  • the voltage on common line 1 moves to a high hold voltage 72, and all modulators along common line 1 remain in a relaxed state regardless of the segment voltage applied because no addressing, or actuation, voltage was applied on the common line 1.
  • the modulators along common line 2 remain in a relaxed state due to the application of the release voltage 70, and the modulators (3,1), (3,2) and (3,3) along common line 3 will relax when the voltage along common line 3 moves to a release voltage 70.
  • common line 1 is addressed by applying a high address voltage 74 on common line 1. Because a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across modulators (1 , 1) and (1,2) is greater than the high end of the positive stability window (i.e., the voltage differential exceeded a predefined threshold) of the modulators, and the modulators (1 , 1) and (1,2) are actuated. Conversely, because a high segment voltage 62 is applied along segment line 3, the pixel voltage across modulator (1,3) is less than that of modulators (1 , 1) and (1,2), and remains within the positive stability window of the modulator; modulator (1,3) thus remains relaxed. Also during line time 60c, the voltage along common line 2 decreases to a low hold voltage 76, and the voltage along common line 3 remains at a release voltage 70, leaving the modulators along common lines 2 and 3 in a relaxed position.
  • the voltage on common line 1 returns to a high hold voltage 72, leaving the modulators along common line 1 in their respective addressed states.
  • the voltage on common line 2 is decreased to a low address voltage 78. Because a high segment voltage 62 is applied along segment line 2, the pixel voltage across modulator (2,2) is below the lower end of the negative stability window of the modulator, causing the modulator (2,2) to actuate. Conversely, because a low segment voltage 64 is applied along segment lines 1 and 3, the modulators (2,1) and (2,3) remain in a relaxed position.
  • the voltage on common line 3 increases to a high hold voltage 72, leaving the modulators along common line 3 in a relaxed state.
  • the voltage on common line 1 remains at high hold voltage 72, and the voltage on common line 2 remains at a low hold voltage 76, leaving the modulators along common lines 1 and 2 in their respective addressed states.
  • the voltage on common line 3 increases to a high address voltage 74 to address the modulators along common line 3.
  • the modulators (3,2) and (3,3) actuate, while the high segment voltage 62 applied along segment line 1 causes modulator (3,1) to remain in a relaxed position.
  • the 3x3 pixel array is in the state shown in Figure 5A, and will remain in that state as long as the hold voltages are applied along the common lines, regardless of variations in the segment voltage which may occur when modulators along other common lines (not shown) are being addressed.
  • a given write procedure (i.e., line times 60a-60e) can include the use of either high hold and address voltages, or low hold and address voltages.
  • the pixel voltage remains within a given stability window, and does not pass through the relaxation window until a release voltage is applied on that common line.
  • the actuation time of a modulator may determine the necessary line time.
  • the release voltage may be applied for longer than a single line time, as depicted in Figure 5B.
  • voltages applied along common lines or segment lines may vary to account for variations in the actuation and release voltages of different modulators, such as modulators of different colors.
  • Figures 6A- 6E show examples of cross-sections of varying implementations of interferometric modulators, including the movable reflective layer 14 and its supporting structures.
  • Figure 6A shows an example of a partial cross-section of the interferometric modulator display of Figure 1, where a strip of metal material, i.e., the movable reflective layer 14 is deposited on supports 18 extending orthogonally from the substrate 20.
  • the movable reflective layer 14 of each IMOD is generally square or rectangular in shape and attached to supports at or near the corners, on tethers 32.
  • the movable reflective layer 14 is generally square or rectangular in shape and suspended from a deformable layer 34, which may include a flexible metal.
  • the deformable layer 34 can connect, directly or indirectly, to the substrate 20 around the perimeter of the movable reflective layer 14. These connections are herein referred to as support posts.
  • the implementation shown in Figure 6C has additional benefits deriving from the decoupling of the optical functions of the movable reflective layer 14 from its mechanical functions, which are carried out by the deformable layer 34.
  • This decoupling allows the structural design and materials used for the reflective layer 14 and those used for the deformable layer 34 to be optimized independently of one another.
  • Figure 6D shows another example of an IMOD, where the movable reflective layer 14 includes a reflective sub-layer 14a.
  • the movable reflective layer 14 rests on a support structure, such as support posts 18.
  • the support posts 18 provide separation of the movable reflective layer 14 from the lower stationary electrode (i.e., part of the optical stack 16 in the illustrated IMOD) so that a gap 19 is formed between the movable reflective layer 14 and the optical stack 16, for example when the movable reflective layer 14 is in a relaxed position.
  • the movable reflective layer 14 also can include a conductive layer 14c, which may be configured to serve as an electrode, and a support layer 14b.
  • the conductive layer 14c is disposed on one side of the support layer 14b, distal from the substrate 20, and the reflective sub-layer 14a is disposed on the other side of the support layer 14b, proximal to the substrate 20.
  • the reflective sub-layer 14a can be conductive and can be disposed between the support layer 14b and the optical stack 16.
  • the support layer 14b can include one or more layers of a dielectric material, for example, silicon oxynitride (SiON) or silicon dioxide (Si0 2 ).
  • the support layer 14b can be a stack of layers, such as, for example, a Si0 2 /SiON/Si0 2 tri-layer stack.
  • Either or both of the reflective sub-layer 14a and the conductive layer 14c can include, e.g., an Al alloy with about 0.5% Cu ; or another reflective metallic material.
  • Employing conductive layers 14a, 14c above and below the dielectric support layer 14b can balance stresses and provide enhanced conduction.
  • the reflective sub-layer 14a and the conductive layer 14c can be formed of different materials for a variety of design purposes, such as achieving specific stress profiles within the movable reflective layer 14.
  • some implementations also can include a black mask structure 23.
  • the black mask structure 23 can be formed in optically inactive regions (e.g., between pixels or under posts 18) to absorb ambient or stray light.
  • the black mask structure 23 also can improve the optical properties of a display device by inhibiting light from being reflected from or transmitted through inactive portions of the display, thereby increasing the contrast ratio.
  • the black mask structure 23 can be conductive and be configured to function as an electrical bussing layer.
  • the row electrodes can be connected to the black mask structure 23 to reduce the resistance of the connected row electrode.
  • the black mask structure 23 can be formed using a variety of methods, including deposition and patterning techniques.
  • the black mask structure 23 can include one or more layers.
  • the black mask structure 23 includes a molybdenum-chromium (MoCr) layer that serves as an optical absorber, a Si0 2 layer, and an aluminum alloy that serves as a reflector and a bussing layer, with a thickness in the range of about 30-80 A, 500-1000 A, and 500-6000 A, respectively.
  • the one or more layers can be patterned using a variety of techniques, including photolithography and dry etching, including, for example, CF 4 and/or 0 2 for the MoCr and Si0 2 layers and Cl 2 and/or BC1 3 for the aluminum alloy layer.
  • the black mask 23 can be an etalon or interferometric stack structure.
  • the conductive absorbers can be used to transmit or bus signals between lower, stationary electrodes in the optical stack 16 of each row or column.
  • a spacer layer 35 can serve to generally electrically isolate the absorber layer 16a from the conductive layers in the black mask 23.
  • Figure 6E shows another example of an IMOD, where the movable reflective layer 14 is self supporting.
  • the implementation of Figure 6E does not include support posts 18. Instead, the movable reflective layer 14 contacts the underlying optical stack 16 at multiple locations, and the curvature of the movable reflective layer 14 provides sufficient support that the movable reflective layer 14 returns to the unactuated position of Figure 6E when the voltage across the interferometric modulator is insufficient to cause actuation.
  • the IMODs function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, i.e., the side opposite to that upon which the modulator is arranged.
  • the back portions of the device that is, any portion of the display device behind the movable reflective layer 14, including, for example, the deformable layer 34 illustrated in Figure 6C
  • the reflective layer 14 optically shields those portions of the device.
  • a bus structure (not illustrated) can be included behind the movable reflective layer 14 which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as voltage addressing and the movements that result from such addressing.
  • the implementations of Figures 6A-6E can simplify processing, such as, e.g., patterning.
  • Figure 7 shows an example of a flow diagram illustrating a manufacturing process 80 for an interferometric modulator
  • Figures 8A-8E show examples of cross- sectional schematic illustrations of corresponding stages of such a manufacturing process 80.
  • the manufacturing process 80 can be implemented to manufacture, e.g., interferometric modulators of the general type illustrated in Figures 1 and 6, in addition to other blocks not shown in Figure 7.
  • the process 80 begins at block 82 with the formation of the optical stack 16 over the substrate 20.
  • Figure 8A illustrates such an optical stack 16 formed over the substrate 20.
  • the substrate 20 may be a transparent substrate such as glass or plastic, it may be flexible or relatively stiff and unbending, and may have been subjected to prior preparation processes, e.g., cleaning, to facilitate efficient formation of the optical stack 16.
  • the optical stack 16 can be electrically conductive, partially transparent and partially reflective and may be fabricated, for example, by depositing one or more layers having the desired properties onto the transparent substrate 20.
  • the optical stack 16 includes a multilayer structure having sub-layers 16a and 16b, although more or fewer sub-layers may be included in some other implementations.
  • one of the sub-layers 16a, 16b can be configured with both optically absorptive and conductive properties, such as the combined conductor/absorber sub-layer 16a. Additionally, one or more of the sub-layers 16a, 16b can be patterned into parallel strips, and may form row electrodes in a display device. Such patterning can be performed by a masking and etching process or another suitable process known in the art. In some implementations, one of the sub-layers 16a, 16b can be an insulating or dielectric layer, such as sub-layer 16b that is deposited over one or more metal layers (e.g., one or more reflective and/or conductive layers). In addition, the optical stack 16 can be patterned into individual and parallel strips that form the rows of the display.
  • the process 80 continues at block 84 with the formation of a sacrificial layer 25 over the optical stack 16.
  • the sacrificial layer 25 is later removed (e.g., at block 90) to form the cavity 19 and thus the sacrificial layer 25 is not shown in the resulting interferometric modulators 12 illustrated in Figure 1.
  • Figure 8B illustrates a partially fabricated device including a sacrificial layer 25 formed over the optical stack 16.
  • the formation of the sacrificial layer 25 over the optical stack 16 may include deposition of a xenon difluoride (XeF 2 )-etchable material such as molybdenum (Mo) or amorphous silicon (Si), in a thickness selected to provide, after subsequent removal, a gap or cavity 19 (see also Figures 1 and 8E) having a desired design size.
  • XeF 2 xenon difluoride
  • Mo molybdenum
  • Si amorphous silicon
  • Deposition of the sacrificial material may be carried out using deposition techniques such as physical vapor deposition (PVD, e.g., sputtering), plasma-enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition (thermal CVD), or spin-coating.
  • PVD physical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • thermal CVD thermal chemical vapor deposition
  • the process 80 continues at block 86 with the formation of a support structure e.g., a post 18 as illustrated in Figures 1, 6 and 8C.
  • the formation of the post 18 may include patterning the sacrificial layer 25 to form a support structure aperture, then depositing a material (e.g., a polymer or an inorganic material, e.g., silicon oxide) into the aperture to form the post 18, using a deposition method such as PVD, PECVD, thermal CVD, or spin-coating.
  • a material e.g., a polymer or an inorganic material, e.g., silicon oxide
  • the support structure aperture formed in the sacrificial layer can extend through both the sacrificial layer 25 and the optical stack 16 to the underlying substrate 20, so that the lower end of the post 18 contacts the substrate 20 as illustrated in Figure 6A.
  • the aperture formed in the sacrificial layer 25 can extend through the sacrificial layer 25, but not through the optical stack 16.
  • Figure 8E illustrates the lower ends of the support posts 18 in contact with an upper surface of the optical stack 16.
  • the post 18, or other support structures may be formed by depositing a layer of support structure material over the sacrificial layer 25 and patterning portions of the support structure material located away from apertures in the sacrificial layer 25.
  • the support structures may be located within the apertures, as illustrated in Figure 8C, but also can, at least partially, extend over a portion of the sacrificial layer 25.
  • the patterning of the sacrificial layer 25 and/or the support posts 18 can be performed by a patterning and etching process, but also may be performed by alternative etching methods.
  • the process 80 continues at block 88 with the formation of a movable reflective layer or membrane such as the movable reflective layer 14 illustrated in Figures 1, 6 and 8D.
  • the movable reflective layer 14 may be formed by employing one or more deposition steps, e.g., reflective layer (e.g., aluminum, aluminum alloy) deposition, along with one or more patterning, masking, and/or etching steps.
  • the movable reflective layer 14 can be electrically conductive, and referred to as an electrically conductive layer.
  • the movable reflective layer 14 may include a plurality of sub-layers 14a, 14b, 14c as shown in Figure 8D.
  • one or more of the sub-layers may include highly reflective sub-layers selected for their optical properties, and another sub-layer 14b may include a mechanical sub-layer selected for its mechanical properties. Since the sacrificial layer 25 is still present in the partially fabricated interferometric modulator formed at block 88, the movable reflective layer 14 is typically not movable at this stage. A partially fabricated IMOD that contains a sacrificial layer 25 may also be referred to herein as an "unreleased" IMOD. As described above in connection with Figure 1, the movable reflective layer 14 can be patterned into individual and parallel strips that form the columns of the display.
  • the process 80 continues at block 90 with the formation of a cavity, e.g., cavity 19 as illustrated in Figures 1, 6 and 8E.
  • the cavity 19 may be formed by exposing the sacrificial material 25 (deposited at block 84) to an etchant.
  • an etchable sacrificial material such as Mo or amorphous Si may be removed by dry chemical etching, e.g., by exposing the sacrificial layer 25 to a gaseous or vaporous etchant, such as vapors derived from solid XeF 2 for a period of time that is effective to remove the desired amount of material, typically selectively removed relative to the structures surrounding the cavity 19.
  • a gaseous or vaporous etchant such as vapors derived from solid XeF 2
  • the sacrificial layer 25 is removed during block 90, the movable reflective layer 14 is typically movable after this stage. After removal of the sacrificial material 25, the resulting fully or partially fabricated IMOD may be referred to herein as a "released" IMOD.
  • modulators 12 reflect light that has one or more spectral peaks when wavelength is plotted versus intensity.
  • the perceived color of light produced by a modulator 12 depends on the number, location, and spectral width of these peaks of the modulator 12 within the visible spectrum.
  • the width of such peaks may be characterized by the width of the peak at the half maximum of intensity of reflected light, e.g., the full width at half maximum.
  • modulators 12 that reflect light over a narrower range of wavelengths e.g., have a narrower peak or higher "Q" value, produce colored light that is more saturated.
  • saturation refers to the dominance of hue in the color as indicated by the narrowness of the range of wavelengths of light output.
  • a highly saturated hue has a vivid, intense color, while a less saturated hue appears more muted and grey.
  • a laser which produces a very narrow range of wavelengths, produces highly saturated light.
  • a typical incandescent light bulb produces white light that may have a desaturated red or blue color.
  • the saturation of the modulators 12 that comprise a color pixel affects properties of a display such as the color gamut and white point of the display.
  • An exemplary color display includes red, green, and blue display elements. Other colors are produced in such a display by varying the relative intensity of light produced by the red, green, and blue elements. Such mixtures of primary colors such as red, green, and blue are perceived by the human eye as other colors.
  • the relative values of red, green, and blue in such a color system may be referred to as tristimulus values in reference to the stimulation of red, green, and blue light sensitive portions of the human eye.
  • the range of colors that can be produced by a particular display may be referred to as the color gamut of the display. In general, increasing the saturation of the primary colors increases the color gamut, or range of colors that can be produced by the display.
  • an embodiment of a display has a relatively larger color gamut as compared to some other displays because the saturation of at least one of the primary colors is substantially increased. While an exemplary color system based on red, green, and blue are disclosed herein, in other embodiments, the display may include modulators 12 having sets of colors that define other color systems in terms of sets of colors other than red, green, and blue.
  • an output spectral peak of a light modulator that is broad or wide will appear brighter than one that is narrow because more light energy is reflected.
  • the broader spectrum will appear brighter, it will also be less saturated, e.g., appear pastel in color because the reflected light energy is spread across a broader spectrum.
  • the modulators 12 may be formed so as to increase the color saturation of reflected light.
  • the saturation of light output by a display that includes the interferometric modulator 12 is increased using a color filter.
  • a display may include a color filter that is configured to cause the interferometric modulator to output light having a wavelength response peak that is narrower than the visible light wavelength response peak of the modulator 12 without the color filter.
  • this filter is an interference filter. This filter may be formed by adding a dielectric layer to the interferometric modulator.
  • an interferometric modulator is provided with a multilayer having layers with different refractive indices arranged to yield a refractive index gradient.
  • the multilayer is included in the interferometric modulator so as to optically match the impedance of two materials in the interference modulator.
  • the multilayer may include one or more color filter layers. In some embodiments, for example, a plurality of layers and possibly each layer in the multilayer contributes to increasing color saturation.
  • a single layer is configured as a color filter that increases saturation.
  • the single layer is configured to improve saturation by forming the color filter layer.
  • the layer comprises a dielectric layer having a thickness tuned to provide a narrow spectral transmission band.
  • the layer operates as an interference filter with reflective surfaces formed at the top and bottom (rear and front) of the dielectric layer are separated by a distance so as to provide optical interference and a resultant transmission spectrum with a narrow spectral band.
  • the dielectric layer through such an interferometric effect operates as a color filter layer.
  • the dielectric layer may have an index of refraction that is between that of adjacent layers so as to provide a gradient in refractive index. As described above, the dielectric layer having a refractive index gradient narrows the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller.
  • additional layers for example, additional dielectric layers. These layers may establish a gradient in refractive index. One or more (possibly all) of these layers may also have a thickness that provides for color filtering and/or increased saturation. The additional layers may in some embodiments provide increased saturation. Such a designed is discussed in more detail with regard to Figure 10.
  • Figure 9 is a chromaticity diagram that illustrates an example of an expanded color gamut provided by an embodiment of a display that includes an interferometric modulator with a multilayer having a refractive index gradient.
  • the multilayer having a refractive index gradient may be configured to provide color filtering and to provide refractive index matching between a reflector and the transparent substrate of the interferometric modulator.
  • color is often described using three dimensions: hue, saturation, and lightness-darkness.
  • the CIE defines color in three dimensions according to a color model known as the CIE 1976 ( * u*, v*) color space (also referred to as the CIELUV color space).
  • the model was originally developed based on the tristimulus theory of color perception, which is based on the scientific understanding that human eyes contain three different types of color receptors called cones. These three receptors respond differently to different wavelengths of visible light.
  • Hue is often described with the words that are commonly used to describe color: red, orange, yellow, green, blue, purple, etc.
  • hue is more specifically described as the dominant wavelength of light perceived by the human eye.
  • Saturation refers to the dominance or purity of a hue in a particular color relative to other colors.
  • saturation is the ratio of the dominant light wavelength to other wavelengths in the color. For example saturated red light contains less light energy from others colors than less saturated red light, but the less saturated red may appear brighter.
  • White light is white because it contains an even balance of all wavelengths. How light or dark a color appears is referred to as value or brightness.
  • value describes the overall intensity or strength of the light. As noted above, brighter colors tend to be muted or pastel colors because bright colors tend to have a broader spectrum that very saturated colors.
  • Chromaticity is understood by those skilled in the art to be one possible objective specification of the quality of a particular color irrespective of luminance, as determined by the hue and saturation (or excitation purity).
  • the chromaticity diagram of Figure 9 is defined by a pair of chromaticity dimensions or coordinates (u*,v*), leaving out the luminance dimension, L*, defining the CIELUV color space.
  • the chromaticity dimensions (w* v*) of the CIELUV color space allow the saturation of colored light to be considered in a two-dimensional space, which is easier to represent and interpret graphically than higher order spaces.
  • an embodiment of an interferometric modulator-based display can be characterized for the purposes of measurement and testing using any suitable color model or system, and that the CIELUV color space is merely described herein as one of many possible color models that may be employed to characterize an embodiment of an interferometric modulator-based display.
  • trace 91 defines the approximate boundary of the color gamut provided by the CIELUV color space.
  • the trace 91 defines the approximate boundary of colors perceptible by human eyes according to the definition of the CIELUV color space.
  • Trace 92 defines the approximate boundary of the color gamut provided by the sRGB color space.
  • the trace 92 defines the approximate boundary of colors perceptible by human eyes that can be reproduced under the sRGB color space by electronics, such as, monitors, printers, projectors, etc.
  • the simulated point D65 as defined by the CIE and discussed above, is the simulated standard white point corresponding roughly to a midday sun in Northwestern Europe.
  • the CIE specifies that D65 is preferably used in all colorimetric calculations requiring representative daylight, unless there are specific reasons for using a different illuminant. Variations in the relative spectral power distribution of daylight are known to occur, particularly in the ultraviolet spectral region, as a function of season, time of day, and geographic location. Those skilled in the art will also appreciate that there are no actual D65 light sources, only simulators. The traces 91, 92 and the point D65 are useful references for evaluating the performance of displays and the like.
  • Trace 94 is a test result which defines the approximate boundary of the color gamut that can be reflected by an embodiment of a display including display elements, which include an interferometric modulator with a multilayer having a refractive index gradient.
  • the multilayer having a refractive index gradient is configured to provide refractive index matching between a reflector and a transparent substrate of the interferometric modulator and to provide color filtering.
  • trace 93 is a trace that defines the approximate boundary of the color gamut of a display that employs similar interferometric modulators that do not include the multilayer having a refractive index gradient between the reflector and a transparent substrate of the interferometric modulator.
  • the area enclosed by the trace 93 is smaller than the area enclosed by the trace 94, which means that the color gamut defined by the trace 94 is larger than the trace 93.
  • the larger color gamut is the result of increasing the color saturation of red, blue and green, which, with reference to the chromaticity diagram of Figure 9, is represented by the larger enclosed area defined by trace 94.
  • Those skilled in the art will appreciate that increasing the saturation of any one or more of red, blue, and green will increase the color gamut. As such, the color gamut of a display can be increased by merely increasing the color saturation of just one of red, blue and green.
  • one of the red, blue or green subpixels of a display is provided with a multilayer having a refractive index gradient, which is configured to provide refractive index matching and color filtering.
  • one or more of the red, blue and green subpixels of a display is provided with a multilayer having a refractive index gradient, which is configured index matching and color filtering.
  • Figure 10 is a side cross-sectional view of an embodiment of an interferometric modulator that includes a multilayer having a refractive index gradient formed on the transparent substrate 20.
  • the interferometric modulator functions as a direct-view device, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the interferometric modulator is arranged.
  • the interferometric modulator includes a moveable reflective layer 14, a partially reflective layer 106, and dielectric layers 108a, 108b.
  • the dielectric layer 108a includes Si0 2 .
  • the dielectric layer 108b includes AlOx.
  • the reflective layer 14 includes AlCu.
  • the partially reflective layer 106 includes MoCr.
  • the reflective layer 14 is connected to the substrate 20 by the posts 18.
  • the modulator 122 may include features according to any embodiment of the modulator 12 disclosed herein.
  • the application of a voltage between the reflective layer 14 and the partially reflective layer 106 causes the reflective layer 14 to move toward the partially reflective layer 106.
  • the dielectric layers 108a, 108b electrically isolate the reflective layer 14 from the partially reflective layer 106.
  • a multilayer 126 that provides a refractive index gradient is formed between the substrate 20 and the partially reflective layer 106.
  • the multilayer 126 having a refractive index gradient comprises a stack of layers including at least two dielectric layers.
  • the respective indices of refraction of the at least two dielectric layers are configured to provide a gradual change in the index of refraction from the partial reflector 106 to the substrate 20 thereby increasing color saturation.
  • the respective indices of refraction of the at least two dielectric layers are configured to provide at least three reductions in the index of refraction from the partially reflector layer 106 to the substrate 20 thereby increasing the color saturation of light reflected by the device.
  • At least one dielectric layer included in the multilayer 126 is also configured as a color filter.
  • at least one dielectric layer e.g., dielectric layer 104a
  • top and bottom surfaces may be in contact with the layers above and below (e.g., partially reflective layer 106, dielectric layer 104b), respectively that may have different refractive indexes such that the interfaces between the layers (e.g., 106/104a and 104a/104b) form reflective surfaces via Fresnel reflection and index mismatch. Reflections from these surfaces can contribute to optical interference that affects spectral transmission.
  • the space separating these interfaces is determined by the thickness of the dielectric layer (e.g., 104a) and can be such that the spectral transmission has a narrow transmission band or peak that provides color filtering.
  • the dielectric layer can alter the transmission spectrum in other ways as well.
  • additional dielectric layers may provide index matching.
  • These additional dielectric layers may also have suitable thickness so as to enhance the filtering effect and increase optical saturation as a result of optical interference.
  • Any one of the layers e.g., 104b, 104c, 104d
  • the thickness of one or more of the layers is such that the optical interference results in color filtering and increased color saturation.
  • the respective indices of refraction of the three dielectric layers 104b, 104c, 104d are configured to provide at least four reductions in the index of refraction from the partially reflector layer 106 to the substrate 20 thereby increasing the color saturation of light reflected by the device. That is, in such an embodiment, there is a first reduction in the index of refraction between the partially reflective layer 106 and the dielectric layer 104b. Additionally, there is a second reduction in the index of refraction between the dielectric layers 104b, 104c. Additionally, there is a third reduction in the index of refraction between the dielectric layers 104c, 104d. And there is a fourth reduction in the index of refraction between the dielectric layer 104d and the substrate 20.
  • the multilayer 126 having a refractive index gradient is an optical stack made up of the four layers 104a, 104b, 104c, 104d of material.
  • the first layer 104a is configured to serve as a color filter.
  • the layer 104a is configured to serve as a red color filter that substantially suppresses light wavelengths associated with cyan hues.
  • the layer 104a that is configured to serve as a color filter is configured to serve as a blue color filter that substantially suppresses light wavelengths associated with yellow hues.
  • the color filter layer 104a is configured to serve as a green color filter that substantially suppresses light wavelengths associated with magenta hues.
  • the second layer 104b is configured to serve as an etch stop layer, and includes a material less susceptible to etchants (e.g. AlOx) that might otherwise go through the layer beneath the second layer 104b when etching the layer 104a on top of the second layer 104b.
  • the third layer 104c includes Si0 2 .
  • the fourth layer 104d is configured to serve as an etch stop layer, and includes a material less susceptible to etchants (e.g. AlOx) that might otherwise go through the material beneath the fourth layer 104d when etching the layer 104c (e.g., Si0 2 ) on top of the fourth layer 104d.
  • the dielectric layers 104a, 104b, 104c, 104d are configured to produce a refractive index gradient between the partially reflective layer 106 and the substrate 20. Providing such a gradient between the partially reflective layer and the substrate 20 can also be described as a form of optical impedance matching. More specifically, in one embodiment: the first partially reflective layer 106 (MoCr) has a refractive index of approximately 3.0 - 4.0; the first dielectric layer 104a (e.g.
  • the color filter is configured to have a refractive index of approximately 1.9 - 2.6; the second dielectric layer 104b is configured to have a refractive index of approximately 1.7; the third dielectric layer 104c is configured to have a refractive index of approximately 1.5; the fourth dielectric layer 104d is configured to have a refractive index of approximately 1.7; and the substrate 20 is configured to have a refractive index of approximately 1.4 - 1.6.
  • the thickness of one or more, possibly all, of these layers 104a, 104b, 104c, 104d may be selected to provide color filtering and increased saturation via optical interference effects. Accordingly, the presence of any of these layers may increase the color saturation of the resultant modulator in comparison to an identical modulator without the layer (or layers). In some embodiments, the presence of any of these dielectric layers (e.g., 104a, 104b, 104c, 104d) may even increase the color saturation of the resultant modulator in comparison to a modulator with the same layer (or layers) removed but having the thickness(es) of the remaining layers in the modulator adjusted to optimize saturation.
  • these dielectric layers e.g., 104a, 104b, 104c, 104d
  • various embodiments such as the embodiment shown in Figure 10 may provide a more saturated red interferometric modulator. Similar approaches may be used to form different color interferometric modulators. For example, a green interferometric modulator having increase saturation may be produced using the same, similar, or different materials. Other color interferometric modulators having improved saturation may also be produced.
  • the multilayer index gradient provides for at least one reduction in refractive index from the partial reflector to a first layer in the multilayer that is under the partial reflector, at least one reduction in refractive index from the first layer in the multilayer to a second layer in the multilayer that is under the first layer, and at least one reduction from the second layer in the multilayer to the substrate that is under the second layer.
  • additional reductions are included.
  • a third layer may be included in the multilayer under the second layer. This third layer may provide a reduction in refractive index with respect to the second layer.
  • the index of the third layer may be such that the substrate, which is located under the third layer, has a lower refractive index than the third layer.
  • Other embodiments are possible.
  • the multilayer itself has layers that provide the multilayer with a gradient in refractive index.
  • layers may be included that deviate from the trend of the gradient provided by the multilayer.
  • the multilayer may include a plurality of layers with progressively decreasing index of refraction, one or more layers may be introduced between layers in the multilayer which result in an increase of index of refraction from one layer to the next. In some embodiments, however, the overall gradient may still be maintained.
  • the multilayer index gradient may provide for at least one reduction in refractive index from the partial reflector to a first layer in the multilayer that is under the partial reflector, at least one reduction in refractive index from the first layer in the multilayer to a second layer in the multilayer that is under the first layer, and at least one reduction from the second layer in the multilayer to a third layer in the multilayer that is under the second layer but an increase in refractive index from the third layer in the multilayer to the substrate that is under the third layer, however, with the index of the substrate being lower than the index of the second layer.
  • one or more layers may be included in the multilayer that deviate from the trend of the refractive index gradient within the multilayer.
  • Other designs are possible.
  • optically matching the impedance of two materials with substantially different respective refractive indices with a refractive index gradient comprising a plurality of layers of material arranged to provide a gradient index substantially improves the saturation of the interferometric modulator.
  • the optical impedance matching helps to improve saturation by narrowing the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller.
  • the resonance of a pixel may be narrowed by specifically configuring the refractive index of each of one or more dielectric layers 104b, 104c, 104d below the first dielectric layer 104a.
  • the refractive index of each particular dielectric layer 104a, 104b, 104c, 104d can be adjusted by, for example, the chemistry of each layer.
  • any one or more of the dielectric layers 104a, 104b, 104c, 104d can have a thickness suitable to provide through interference effects increased saturation.
  • the topmost layer (e.g., layer 104a) in the multilayer is referred to as a color filter, any one or more of the other layers may be characterized as a color filter in various embodiments.
  • a combination of red, green and blue display elements may expand the spectrum of colors that are reflected by the display in operation. Additionally, by providing index matching, an index gradient, and/or one or more color filters (e.g., by adjusting the thickness of layers) such as described herein, there may be better contrast between whites and blacks, as the black state produced by the interferometric modulator may be darker with less hue. A blacker back, which may be produced by using embodiments described herein, provides for more desirable images as well as better contrast.
  • dielectric layers are described above in the multilayer, more or less dielectric layers may be used. Additionally, other materials may be used. Another type of material that may be used is SiON. Materials other than those specifically recited herein may also be used.
  • a single layer (e.g. 104a) that is configured as a color filter may have a thickness that provides an interferometric filtering effect that improves saturation.
  • the thickness of the single layer may be such that Fresnel reflections from the top and bottom of the single layer produce optical interference and yield a transmission spectrum that provides color filtering.
  • the single dielectric layer having a thickness sufficient to create an interferometric filtering effect as a result of an optical resonant cavity as defined by the boundaries of the dielectric layer adjacent to other materials, may improve saturation.
  • the thickness is sufficient to create an effect similar to or substantially identical to an interference filter.
  • the single layer may also provide index matching.
  • the single dielectric layer may, for example, have an index of refraction between the index of refraction of that layer directly above (e.g., partially reflective layer) and the layer (e.g. substrate) directly below the single dielectric layer.
  • no metal layers are included between the single dielectric layer and the substrate.
  • the multilayer does not include any metal layers in various embodiments.
  • No metal layers are also included between the multilayer and the substrate in various embodiments.
  • no metal layers are included between the dielectric layer or layers and the substrate.
  • an interferometric modulator device incorporating a wavelength filter such as the dielectric layer or the multilayer having a refractive index gradient involves only a few additional process steps compared to the production of an interferometric modulator device without the dielectric layer or multilayer having a refractive index gradient.
  • incorporation of the multilayer having a refractive index gradient involves only the additional steps of depositing the dielectric layers 104a, 104b, 104c, 104d.
  • FIGS 11 A and 1 IB show examples of system block diagrams illustrating a display device 40 that includes a plurality of interferometric modulators.
  • the display device 40 can be, for example, a cellular or mobile telephone. However, the same components of the display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions, e-readers and portable media players.
  • the display device 40 includes a housing 41 , a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46.
  • the housing 41 can be formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming.
  • the housing 41 may be made from any of a variety of materials, including, but not limited to: plastic, metal, glass, rubber, and ceramic, or a combination thereof.
  • the housing 41 can include removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
  • the display 30 may be any of a variety of displays, including a bi-stable or analog display, as described herein.
  • the display 30 also can be configured to include a flat- panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD, or a non-flat-panel display, such as a CRT or other tube device.
  • the display 30 can include an interferometric modulator display, as described herein.
  • the components of the display device 40 are schematically illustrated in Figure 1 IB.
  • the display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
  • the display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47.
  • the transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52.
  • the conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal).
  • the conditioning hardware 52 is connected to a speaker 45 and a microphone 46.
  • the processor 21 is also connected to an input device 48 and a driver controller 29.
  • the driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30.
  • a power supply 50 can provide power to all components as required by the particular display device 40 design.
  • the network interface 27 includes the antenna 43 and the transceiver 47 so that the display device 40 can communicate with one or more devices over a network.
  • the network interface 27 also may have some processing capabilities to relieve, e.g., data processing requirements of the processor 21.
  • the antenna 43 can transmit and receive signals.
  • the antenna 43 transmits and receives RF signals according to the IEEE 16.1 1 standard, including IEEE 16.1 1(a), (b), or (g), or the IEEE 802.11 standard, including IEEE 802.11a, b, g or n.
  • the antenna 43 transmits and receives RF signals according to the BLUETOOTH standard.
  • the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile communications (GSM), GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Wideband-CDMA (W-CDMA), Evolution Data Optimized (EV-DO), lxEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals that are used to communicate within a wireless network, such as a system utilizing 3G or 4G technology.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA Time division multiple access
  • GSM Global System for Mobile communications
  • GPRS GSM/General Packe
  • the transceiver 47 can pre-process the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21.
  • the transceiver 47 also can process signals received from the processor 21 so that they may be transmitted from the display device 40 via the antenna 43.
  • the transceiver 47 can be replaced by a receiver.
  • the network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21.
  • the processor 21 can control the overall operation of the display device 40.
  • the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
  • the processor 21 can send the processed data to the driver controller 29 or to the frame buffer 28 for storage.
  • Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
  • the processor 21 can include a microcontroller, CPU, or logic unit to control operation of the display device 40.
  • the conditioning hardware 52 may include amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46.
  • the conditioning hardware 52 may be discrete components within the display device 40, or may be incorporated within the processor 21 or other components.
  • the driver controller 29 can take the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and can reformat the raw image data appropriately for high speed transmission to the array driver 22. In some implementations, the driver controller 29 can re-format the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30.
  • driver controller 29 sends the formatted information to the array driver 22.
  • a driver controller 29, such as an LCD controller is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways.
  • controllers may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
  • the array driver 22 can receive the formatted information from the driver controller 29 and can re-format the video data into a parallel set of waveforms that are applied many times per second to the hundreds, and sometimes thousands (or more), of leads coming from the display's x-y matrix of pixels.
  • the driver controller 29, the array driver 22, and the display array 30 are appropriate for any of the types of displays described herein.
  • the driver controller 29 can be a conventional display controller or a bi-stable display controller (e.g., an IMOD controller).
  • the array driver 22 can be a conventional driver or a bi-stable display driver (e.g., an IMOD display driver).
  • the display array 30 can be a conventional display array or a bi-stable display array (e.g., a display including an array of IMODs).
  • the driver controller 29 can be integrated with the array driver 22. Such an implementation is common in highly integrated systems such as cellular phones, watches and other small-area displays.
  • the input device 48 can be configured to allow, e.g., a user to control the operation of the display device 40.
  • the input device 48 can include a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a rocker, a touch-sensitive screen, or a pressure- or heat-sensitive membrane.
  • the microphone 46 can be configured as an input device for the display device 40. In some implementations, voice commands through the microphone 46 can be used for controlling operations of the display device 40.
  • the power supply 50 can include a variety of energy storage devices as are well known in the art.
  • the power supply 50 can be a rechargeable battery, such as a nickel-cadmium battery or a lithium-ion battery.
  • the power supply 50 also can be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or solar-cell paint.
  • the power supply 50 also can be configured to receive power from a wall outlet.
  • control programmability resides in the driver controller 29 which can be located in several places in the electronic display system. In some other implementations, control programmability resides in the array driver 22.
  • the above- described optimization may be implemented in any number of hardware and/or software components and in various configurations.
  • the hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • a general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • particular steps and methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.

Abstract

Various embodiments include an interferometric modulator device configured to provide improved saturation. In some embodiments, saturation is improved by optically matching the impedance of two materials with different refractive indices using a multilayer having a refractive index gradient. In various embodiments, the thickness one or more of the layers in the multilayer are selected to provide increased saturation. Accordingly, in various embodiments the multilayer having a refractive index gradient helps to narrow the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller. In turn, a device including a combination of red, green and blue pixels may expand the spectrum of colors that are reflected by the device in operation. Additionally, there may be better contrast between whites and blacks, as darker blacks with less hue are produced.

Description

METHOD AND STRUCTURE CAPABLE OF CHANGING COLOR SATURATION
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This disclosure claims priority to U.S. Patent Application No. 12/910,694 filed October 22, 2010, entitled "METHOD AND STRUCTURE CAPABLE OF CHANGING COLOR SATURATION," which claims priority to U.S. Provisional Patent Application No. 61/346,846 filed May 20, 2010, entitled "METHOD AND STRUCTURE CAPABLE OF CHANGING COLOR SATURATION," each of which are assigned to the assignee hereof. The disclosures of the prior applications are considered part of, and are incorporated by reference in, this disclosure.
TECHNICAL FIELD
[0002] This disclosure relates to displays including electromechanical systems.
DESCRIPTION OF THE RELATED TECHNOLOGY
[0003] Electromechanical systems include devices having electrical and mechanical elements, actuators, transducers, sensors, optical components (e.g., mirrors) and electronics. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscales and nanoscales. For example, microelectromechanical systems (MEMS) devices can include structures having sizes ranging from about a micron to hundreds of microns or more. Nanoelectromechanical systems (NEMS) devices can include structures having sizes smaller than a micron including, for example, sizes smaller than several hundred nanometers. Electromechanical elements may be created using deposition, etching, lithography, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers, or that add layers to form electrical and electromechanical devices.
[0004] One type of electromechanical systems device is called an interferometric modulator (IMOD). As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In some implementations, an interferometric modulator may include a pair of conductive plates, one or both of which may be transparent and/or reflective, wholly or in part, and capable of relative motion upon application of an appropriate electrical signal. In an implementation, one plate may include a stationary layer deposited on a substrate and the other plate may include a metallic membrane separated from the stationary layer by an air gap. The position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Interferometric modulator devices have a wide range of applications, and are anticipated to be used in improving existing products and creating new products, especially those with display capabilities.
SUMMARY
[0005] The systems, methods and devices of the disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
[0006] One innovative aspect of the subject matter described in this disclosure can be implemented in a device for modulating light, the device comprising: a movable reflector; a partial reflector positioned at a first distance from said movable reflector; a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and a multilayer configured to provide a refractive index gradient between the partial reflector and the substrate, the multilayer including at least two dielectric layers, wherein the respective indices of refraction of the at least two dielectric layers are configured to provide a reduction in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
[0007] In some implementations the index of refraction of the partial reflector can be larger than the index of refraction of the substrate. In some implementations at least one dielectric layer included in the multilayer can form a color filter. In some implementations the color filter can be a red color filter that substantially suppresses light wavelengths associated with cyan hues. In some implementations the color filter can be a blue color filter that substantially suppresses light wavelengths associated with yellow hues. In some implementations the color filter can be a green color filter that substantially suppresses light wavelengths associated with magenta hues.
[0008] In some implementations the respective indices of refraction of the at least two dielectric layers can be configured to provide a plurality of reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device. In some implementations the respective indices of refraction of the at least two dielectric layers can be configured to provide at least three reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device. In some implementations the respective indices of refraction of the at least three dielectric layers can be configured to provide at least four reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
[0009] Another innovative aspect of the subject matter described in this disclosure can be implemented in a device for modulating light, the device comprising: a movable reflector; a partial reflector positioned at a first distance from said movable reflector; a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and a dielectric layer having an index of refraction between that of the partial reflector and the substrate and a thickness sufficient to produce an interference filtering effect that increases saturation of light reflected by the device, wherein metal layers are excluded from between the dielectric layer and the substrate.
[0010] Another innovative aspect of the subject matter described in this disclosure can be implemented in a display comprising a plurality of display elements, each of the display elements comprising: means for reflecting light, said reflecting means being movable; means for partially reflecting light, wherein said movable reflecting means and said partial reflecting means are configured to interferometrically modulate light; a substrate positioned at a fixed distance from said partial reflecting means, the substrate having an index of refraction different from the partial reflecting means, wherein there are no metal layers between the substrate and the partial reflecting means; and means for matching refractive indices of the partial reflecting means and the substrate, wherein the refractive index matching means provides a reduction in the index of refraction from the partial reflecting means to the substrate thereby increasing the saturation of a particular color of light reflected by the device.
[0011] In some implementations the moveable reflecting means can comprise a reflective layer; or the partial reflecting means comprises a partially reflective material; or the refractive index matching means comprises a dielectric layer, the dielectric layer configured to provide a refractive index gradient between the partial reflector and the substrate, and wherein the dielectric layer is also configured as a color filter having a thickness sufficient to produce an interference effect that increases saturation of light reflected by the device.
[0012] Another innovative aspect of the subject matter described in this disclosure can be implemented in a method of making a device for modulating light, the method comprising: forming a movable reflector; forming a partial reflector positioned at a first distance from said movable reflector; providing a substrate positioned at a fixed distance from said partial reflector, the substrate having an index of refraction different from the partial reflector; and forming a dielectric layer configured to provide a refractive index gradient between the partial reflector and the substrate, and wherein the dielectric layer is also configured as a color filter having a thickness sufficient to produce an interference effect that increases saturation of light reflected by the device.
[0013] Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] Figure 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device.
[0015] Figure 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3x3 interferometric modulator display.
[0016] Figure 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of Figure 1. [0017] Figure 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied.
[0018] Figure 5 A shows an example of a diagram illustrating a frame of display data in the 3x3 interferometric modulator display of Figure 2.
[0019] Figure 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in Figure 5A.
[0020] Figure 6A shows an example of a partial cross-section of the interferometric modulator display of Figure 1.
[0021] Figures 6B-6E show examples of cross-sections of varying implementations of interferometric modulators.
[0022] Figure 7 shows an example of a flow diagram illustrating a manufacturing process for an interferometric modulator.
[0023] Figures 8A-8E show examples of cross-sectional schematic illustrations of various stages in a method of making an interferometric modulator.
[0024] Figure 9 is a chromaticity diagram that illustrates an example of an expanded color gamut provided by one implementation of a display that includes an interferometric modulator in combination with a multilayer having a refractive index gradient.
[0025] Figure 10 is a side cross-sectional view of an implementation of an electromechanical systems device including an interferometric modulator and a multilayer having a refractive index gradient.
[0026] Figures 11 A and 1 IB show examples of system block diagrams illustrating a display device that includes a plurality of interferometric modulators.
[0027] Like reference numbers and designations in the various drawings indicate like elements.
DETAILED DESCRIPTION
[0028] The following detailed description is directed to certain implementations for the purposes of describing the innovative aspects. However, the teachings herein can be applied in a multitude of different ways. The described implementations may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual, graphical or pictorial. More particularly, it is contemplated that the implementations may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, multimedia Internet enabled cellular telephones, mobile television receivers, wireless devices, smartphones, bluetooth devices, personal data assistants (PDAs), wireless electronic mail receivers, hand-held or portable computers, netbooks, notebooks, smartbooks, printers, copiers, scanners, facsimile devices, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, electronic reading devices (e.g., e-readers), computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, camera view displays (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, microwaves, refrigerators, stereo systems, cassette recorders or players, DVD players, CD players, VCRs, radios, portable memory chips, washers, dryers, washer/dryers, packaging (e.g., MEMS and non-MEMS), aesthetic structures (e.g., display of images on a piece of jewelry) and a variety of electromechanical systems devices. The teachings herein also can be used in non-display applications such as, but not limited to, electronic switching devices, radio frequency filters, sensors, accelerometers, gyroscopes, motion-sensing devices, magnetometers, inertial components for consumer electronics, parts of consumer electronics products, varactors, liquid crystal devices, electrophoretic devices, drive schemes, manufacturing processes, electronic test equipment. Thus, the teachings are not intended to be limited to the implementations depicted solely in the Figures, but instead have wide applicability as will be readily apparent to one having ordinary skill in the art.
[0029] Various implementations include an interferometric modulator device configured to provide improved saturation. With the addition of a color filter layer, the color saturation of an interferometric modulator is improved. In particular, increased saturation and filtering is provided by optically matching the impedance of two materials in the interference modulator using a multilayer having layers with different refractive indices arranged to yield a refractive index gradient. In various implementations the thickness one or more of the layers are selected to provide increased saturation. Accordingly, in various embodiments the multilayer having a refractive index gradient narrows the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller. In turn, a device including a combination of red, green and blue pixels may expand the spectrum of colors that are reflected by the device in operation. Additionally, there may be better contrast between whites and blacks, with the black appearing more true black and containing less of a hue.
[0030] Particular implementations of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages. For example, particular implementations of the subject matter described herein can be implemented to realize improved color saturation of one or more colors reflected by a display.
[0031] One example of a suitable MEMS device, to which the described implementations may apply, is a reflective display device. Reflective display devices can incorporate interferometric modulators (IMODs) to selectively absorb and/or reflect light incident thereon using principles of optical interference. IMODs can include an absorber, a reflector that is movable with respect to the absorber, and an optical resonant cavity defined between the absorber and the reflector. The reflector can be moved to two or more different positions, which can change the size of the optical resonant cavity and thereby affect the reflectance of the interferometric modulator. The reflectance spectrums of IMODs can create fairly broad spectral bands which can be shifted across the visible wavelengths to generate different colors. The position of the spectral band can be adjusted by changing the thickness of the optical resonant cavity, i.e., by changing the position of the reflector.
[0032] Figure 1 shows an example of an isometric view depicting two adjacent pixels in a series of pixels of an interferometric modulator (IMOD) display device. The IMOD display device includes one or more interferometric MEMS display elements. In these devices, the pixels of the MEMS display elements can be in either a bright or dark state. In the bright ("relaxed," "open" or "on") state, the display element reflects a large portion of incident visible light, e.g., to a user. Conversely, in the dark ("actuated," "closed" or "off) state, the display element reflects little incident visible light. In some implementations, the light reflectance properties of the on and off states may be reversed. MEMS pixels can be configured to reflect predominantly at particular wavelengths allowing for a color display in addition to black and white.
[0033] The IMOD display device can include a row/column array of IMODs. Each IMOD can include a pair of reflective layers, i.e., a movable reflective layer and a fixed partially reflective layer, positioned at a variable and controllable distance from each other to form an air gap (also referred to as an optical gap or cavity). The movable reflective layer may be moved between at least two positions. In a first position, i.e., a relaxed position, the movable reflective layer can be positioned at a relatively large distance from the fixed partially reflective layer. In a second position, i.e., an actuated position, the movable reflective layer can be positioned more closely to the partially reflective layer. Incident light that reflects from the two layers can interfere constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non- reflective state for each pixel. In some implementations, the IMOD may be in a reflective state when unactuated, reflecting light within the visible spectrum, and may be in a dark state when unactuated, reflecting light outside of the visible range (e.g., infrared light). In some other implementations, however, an IMOD may be in a dark state when unactuated, and in a reflective state when actuated. In some implementations, the introduction of an applied voltage can drive the pixels to change states. In some other implementations, an applied charge can drive the pixels to change states.
[0034] The depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12. In the IMOD 12 on the left (as illustrated), a movable reflective layer 14 is illustrated in a relaxed position at a predetermined distance from an optical stack 16, which includes a partially reflective layer. The voltage V0 applied across the IMOD 12 on the left is insufficient to cause actuation of the movable reflective layer 14. In the IMOD 12 on the right, the movable reflective layer 14 is illustrated in an actuated position near or adjacent the optical stack 16. The voltage Vbias applied across the IMOD 12 on the right is sufficient to maintain the movable reflective layer 14 in the actuated position.
[0035] In Figure 1 , the reflective properties of pixels 12 are generally illustrated with arrows 13 indicating light incident upon the pixels 12, and light 15 reflecting from the pixel 12 on the left. Although not illustrated in detail, it will be understood by one having ordinary skill in the art that most of the light 13 incident upon the pixels 12 will be transmitted through the transparent substrate 20, toward the optical stack 16. A portion of the light incident upon the optical stack 16 will be transmitted through the partially reflective layer of the optical stack 16, and a portion will be reflected back through the transparent substrate 20. The portion of light 13 that is transmitted through the optical stack 16 will be reflected at the movable reflective layer 14, back toward (and through) the transparent substrate 20. Interference (constructive or destructive) between the light reflected from the partially reflective layer of the optical stack 16 and the light reflected from the movable reflective layer 14 will determine the wavelength(s) of light 15 reflected from the pixel 12.
[0036] The optical stack 16 can include a single layer or several layers. The layer(s) can include one or more of an electrode layer, a partially reflective and partially transmissive layer and a transparent dielectric layer. In some implementations, the optical stack 16 is electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The electrode layer can be formed from a variety of materials, such as various metals, for example indium tin oxide (ITO). The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, e.g., chromium (Cr), semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials. In some implementations, the optical stack 16 can include a single semi-transparent thickness of metal or semiconductor which serves as both an optical absorber and conductor, while different, more conductive layers or portions (e.g., of the optical stack 16 or of other structures of the IMOD) can serve to bus signals between IMOD pixels. The optical stack 16 also can include one or more insulating or dielectric layers covering one or more conductive layers or a conductive/absorptive layer.
[0037] In some implementations, the layer(s) of the optical stack 16 can be patterned into parallel strips, and may form row electrodes in a display device as described further below. As will be understood by one having skill in the art, the term "patterned" is used herein to refer to masking as well as etching processes. In some implementations, a highly conductive and reflective material, such as aluminum (Al), may be used for the movable reflective layer 14, and these strips may form column electrodes in a display device. The movable reflective layer 14may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of the optical stack 16) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, a defined gap 19, or optical cavity, can be formed between the movable reflective layer 14 and the optical stack 16. In some implementations, the spacing between posts 18 may be on the order of 1-1000 um, while the gap 19 may be on the order of < 10,000 Angstroms (A).
[0038] In some implementations, each pixel of the IMOD, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers. When no voltage is applied, the movable reflective layer 14a remains in a mechanically relaxed state, as illustrated by the pixel 12 on the left in Figure 1, with the gap 19 between the movable reflective layer 14 and optical stack 16. However, when a potential difference, e.g., voltage, is applied to at least one of a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the applied voltage exceeds a threshold, the movable reflective layer 14 can deform and move near or against the optical stack 16. A dielectric layer (not shown) within the optical stack 16 may prevent shorting and control the separation distance between the layers 14 and 16, as illustrated by the actuated pixel 12 on the right in Figure 1. The behavior is the same regardless of the polarity of the applied potential difference. Though a series of pixels in an array may be referred to in some instances as "rows" or "columns," a person having ordinary skill in the art will readily understand that referring to one direction as a "row" and another as a "column" is arbitrary. Restated, in some orientations, the rows can be considered columns, and the columns considered to be rows. Furthermore, the display elements may be evenly arranged in orthogonal rows and columns (an "array"), or arranged in non-linear configurations, for example, having certain positional offsets with respect to one another (a "mosaic"). The terms "array" and "mosaic" may refer to either configuration. Thus, although the display is referred to as including an "array" or "mosaic," the elements themselves need not be arranged orthogonally to one another, or disposed in an even distribution, in any instance, but may include arrangements having asymmetric shapes and unevenly distributed elements.
[0039] Figure 2 shows an example of a system block diagram illustrating an electronic device incorporating a 3x3 interferometric modulator display. The electronic device includes a processor 21 that may be configured to execute one or more software modules. In addition to executing an operating system, the processor 21 may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
[0040] The processor 21 can be configured to communicate with an array driver 22. The array driver 22 can include a row driver circuit 24 and a column driver circuit 26 that provide signals to, e.g., a display array or panel 30. The cross section of the IMOD display device illustrated in Figure 1 is shown by the lines 1-1 in Figure 2. Although Figure 2 illustrates a 3x3 array of IMODs for the sake of clarity, the display array 30 may contain a very large number of IMODs, and may have a different number of IMODs in rows than in columns, and vice versa.
[0041] Figure 3 shows an example of a diagram illustrating movable reflective layer position versus applied voltage for the interferometric modulator of Figure 1. For MEMS interferometric modulators, the row/column (i.e., common/segment) write procedure may take advantage of a hysteresis property of these devices as illustrated in Figure 3. An interferometric modulator may require, for example, about a 10-volt potential difference to cause the movable reflective layer, or mirror, to change from the relaxed state to the actuated state. When the voltage is reduced from that value, the movable reflective layer maintains its state as the voltage drops back below, e.g., 10-volts, however, the movable reflective layer does not relax completely until the voltage drops below 2-volts. Thus, a range of voltage, approximately 3 to 7-volts, as shown in Figure 3, exists where there is a window of applied voltage within which the device is stable in either the relaxed or actuated state. This is referred to herein as the "hysteresis window" or "stability window." For a display array 30 having the hysteresis characteristics of Figure 3, the row/column write procedure can be designed to address one or more rows at a time, such that during the addressing of a given row, pixels in the addressed row that are to be actuated are exposed to a voltage difference of about 10-volts, and pixels that are to be relaxed are exposed to a voltage difference of near zero volts. After addressing, the pixels are exposed to a steady state or bias voltage difference of approximately 5-volts such that they remain in the previous strobing state. In this example, after being addressed, each pixel sees a potential difference within the "stability window" of about 3-7-volts. This hysteresis property feature enables the pixel design, e.g., illustrated in Figure 1, to remain stable in either an actuated or relaxed pre-existing state under the same applied voltage conditions. Since each IMOD pixel, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a steady voltage within the hysteresis window without substantially consuming or losing power. Moreover, essentially little or no current flows into the IMOD pixel if the applied voltage potential remains substantially fixed.
[0042] In some implementations, a frame of an image may be created by applying data signals in the form of "segment" voltages along the set of column electrodes, in accordance with the desired change (if any) to the state of the pixels in a given row. Each row of the array can be addressed in turn, such that the frame is written one row at a time. To write the desired data to the pixels in a first row, segment voltages corresponding to the desired state of the pixels in the first row can be applied on the column electrodes, and a first row pulse in the form of a specific "common" voltage or signal can be applied to the first row electrode. The set of segment voltages can then be changed to correspond to the desired change (if any) to the state of the pixels in the second row, and a second common voltage can be applied to the second row electrode. In some implementations, the pixels in the first row are unaffected by the change in the segment voltages applied along the column electrodes, and remain in the state they were set to during the first common voltage row pulse. This process may be repeated for the entire series of rows, or alternatively, columns, in a sequential fashion to produce the image frame. The frames can be refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second.
[0043] The combination of segment and common signals applied across each pixel (that is, the potential difference across each pixel) determines the resulting state of each pixel. Figure 4 shows an example of a table illustrating various states of an interferometric modulator when various common and segment voltages are applied. As will be readily understood by one having ordinary skill in the art, the "segment" voltages can be applied to either the column electrodes or the row electrodes, and the "common" voltages can be applied to the other of the column electrodes or the row electrodes.
[0044] As illustrated in Figure 4 (as well as in the timing diagram shown in Figure 5B), when a release voltage VCREL is applied along a common line, all interferometric modulator elements along the common line will be placed in a relaxed state, alternatively referred to as a released or unactuated state, regardless of the voltage applied along the segment lines, i.e., high segment voltage VSH and low segment voltage VSL- In particular, when the release voltage VCREL is applied along a common line, the potential voltage across the modulator (alternatively referred to as a pixel voltage) is within the relaxation window (see Figure 3, also referred to as a release window) both when the high segment voltage VSH and the low segment voltage VSL are applied along the corresponding segment line for that pixel.
[0045] When a hold voltage is applied on a common line, such as a high hold voltage VCHOLD H or a low hold voltage VCHOLD_L, the state of the interferometric modulator will remain constant. For example, a relaxed IMOD will remain in a relaxed position, and an actuated IMOD will remain in an actuated position. The hold voltages can be selected such that the pixel voltage will remain within a stability window both when the high segment voltage VSH and the low segment voltage VSL are applied along the corresponding segment line. Thus, the segment voltage swing, i.e., the difference between the high VSH and low segment voltage VSL, is less than the width of either the positive or the negative stability window.
[0046] When an addressing, or actuation, voltage is applied on a common line, such as a high addressing voltage VCADD H or a low addressing voltage VCADD_L, data can be selectively written to the modulators along that line by application of segment voltages along the respective segment lines. The segment voltages may be selected such that actuation is dependent upon the segment voltage applied. When an addressing voltage is applied along a common line, application of one segment voltage will result in a pixel voltage within a stability window, causing the pixel to remain unactuated. In contrast, application of the other segment voltage will result in a pixel voltage beyond the stability window, resulting in actuation of the pixel. The particular segment voltage which causes actuation can vary depending upon which addressing voltage is used. In some implementations, when the high addressing voltage VCADD H is applied along the common line, application of the high segment voltage VSH can cause a modulator to remain in its current position, while application of the low segment voltage VSL can cause actuation of the modulator. As a corollary, the effect of the segment voltages can be the opposite when a low addressing voltage VCADD L is applied, with high segment voltage VSH causing actuation of the modulator, and low segment voltage VSL having no effect (i.e., remaining stable) on the state of the modulator.
[0047] In some implementations, hold voltages, address voltages, and segment voltages may be used which always produce the same polarity potential difference across the modulators. In some other implementations, signals can be used which alternate the polarity of the potential difference of the modulators. Alternation of the polarity across the modulators (that is, alternation of the polarity of write procedures) may reduce or inhibit charge accumulation which could occur after repeated write operations of a single polarity.
[0048] Figure 5A shows an example of a diagram illustrating a frame of display data in the 3x3 interferometric modulator display of Figure 2. Figure 5B shows an example of a timing diagram for common and segment signals that may be used to write the frame of display data illustrated in Figure 5 A. The signals can be applied to the, e.g., 3x3 array of Figure 2, which will ultimately result in the line time 60e display arrangement illustrated in Figure 5A. The actuated modulators in Figure 5A are in a dark-state, i.e., where a substantial portion of the reflected light is outside of the visible spectrum so as to result in a dark appearance to, e.g., a viewer. Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, but the write procedure illustrated in the timing diagram of Figure 5B presumes that each modulator has been released and resides in an unactuated state before the first line time 60a.
[0049] During the first line time 60a: a release voltage 70 is applied on common line 1 ; the voltage applied on common line 2 begins at a high hold voltage 72 and moves to a release voltage 70; and a low hold voltage 76 is applied along common line 3. Thus, the modulators (common 1 , segment 1), (1,2) and (1,3) along common line 1 remain in a relaxed, or unactuated, state for the duration of the first line time 60a, the modulators (2, 1 ), (2,2) and (2,3) along common line 2 will move to a relaxed state, and the modulators (3, 1 ), (3,2) and (3,3) along common line 3 will remain in their previous state. With reference to Figure 4, the segment voltages applied along segment lines 1 , 2 and 3 will have no effect on the state of the interferometric modulators, as none of common lines 1 , 2 or 3 are being exposed to voltage levels causing actuation during line time 60a (i.e., VCREL - relax and VCHOLD L - stable).
[0050] During the second line time 60b, the voltage on common line 1 moves to a high hold voltage 72, and all modulators along common line 1 remain in a relaxed state regardless of the segment voltage applied because no addressing, or actuation, voltage was applied on the common line 1. The modulators along common line 2 remain in a relaxed state due to the application of the release voltage 70, and the modulators (3,1), (3,2) and (3,3) along common line 3 will relax when the voltage along common line 3 moves to a release voltage 70.
[0051] During the third line time 60c, common line 1 is addressed by applying a high address voltage 74 on common line 1. Because a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across modulators (1 , 1) and (1,2) is greater than the high end of the positive stability window (i.e., the voltage differential exceeded a predefined threshold) of the modulators, and the modulators (1 , 1) and (1,2) are actuated. Conversely, because a high segment voltage 62 is applied along segment line 3, the pixel voltage across modulator (1,3) is less than that of modulators (1 , 1) and (1,2), and remains within the positive stability window of the modulator; modulator (1,3) thus remains relaxed. Also during line time 60c, the voltage along common line 2 decreases to a low hold voltage 76, and the voltage along common line 3 remains at a release voltage 70, leaving the modulators along common lines 2 and 3 in a relaxed position.
[0052] During the fourth line time 60d, the voltage on common line 1 returns to a high hold voltage 72, leaving the modulators along common line 1 in their respective addressed states. The voltage on common line 2 is decreased to a low address voltage 78. Because a high segment voltage 62 is applied along segment line 2, the pixel voltage across modulator (2,2) is below the lower end of the negative stability window of the modulator, causing the modulator (2,2) to actuate. Conversely, because a low segment voltage 64 is applied along segment lines 1 and 3, the modulators (2,1) and (2,3) remain in a relaxed position. The voltage on common line 3 increases to a high hold voltage 72, leaving the modulators along common line 3 in a relaxed state.
[0053] Finally, during the fifth line time 60e, the voltage on common line 1 remains at high hold voltage 72, and the voltage on common line 2 remains at a low hold voltage 76, leaving the modulators along common lines 1 and 2 in their respective addressed states. The voltage on common line 3 increases to a high address voltage 74 to address the modulators along common line 3. As a low segment voltage 64 is applied on segment lines 2 and 3, the modulators (3,2) and (3,3) actuate, while the high segment voltage 62 applied along segment line 1 causes modulator (3,1) to remain in a relaxed position. Thus, at the end of the fifth line time 60e, the 3x3 pixel array is in the state shown in Figure 5A, and will remain in that state as long as the hold voltages are applied along the common lines, regardless of variations in the segment voltage which may occur when modulators along other common lines (not shown) are being addressed.
[0054] In the timing diagram of Figure 5B, a given write procedure (i.e., line times 60a-60e) can include the use of either high hold and address voltages, or low hold and address voltages. Once the write procedure has been completed for a given common line (and the common voltage is set to the hold voltage having the same polarity as the actuation voltage), the pixel voltage remains within a given stability window, and does not pass through the relaxation window until a release voltage is applied on that common line. Furthermore, as each modulator is released as part of the write procedure prior to addressing the modulator, the actuation time of a modulator, rather than the release time, may determine the necessary line time. Specifically, in implementations in which the release time of a modulator is greater than the actuation time, the release voltage may be applied for longer than a single line time, as depicted in Figure 5B. In some other implementations, voltages applied along common lines or segment lines may vary to account for variations in the actuation and release voltages of different modulators, such as modulators of different colors. [0055] The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, Figures 6A- 6E show examples of cross-sections of varying implementations of interferometric modulators, including the movable reflective layer 14 and its supporting structures. Figure 6A shows an example of a partial cross-section of the interferometric modulator display of Figure 1, where a strip of metal material, i.e., the movable reflective layer 14 is deposited on supports 18 extending orthogonally from the substrate 20. In Figure 6B, the movable reflective layer 14 of each IMOD is generally square or rectangular in shape and attached to supports at or near the corners, on tethers 32. In Figure 6C, the movable reflective layer 14 is generally square or rectangular in shape and suspended from a deformable layer 34, which may include a flexible metal. The deformable layer 34 can connect, directly or indirectly, to the substrate 20 around the perimeter of the movable reflective layer 14. These connections are herein referred to as support posts. The implementation shown in Figure 6C has additional benefits deriving from the decoupling of the optical functions of the movable reflective layer 14 from its mechanical functions, which are carried out by the deformable layer 34. This decoupling allows the structural design and materials used for the reflective layer 14 and those used for the deformable layer 34 to be optimized independently of one another.
[0056] Figure 6D shows another example of an IMOD, where the movable reflective layer 14 includes a reflective sub-layer 14a. The movable reflective layer 14 rests on a support structure, such as support posts 18. The support posts 18 provide separation of the movable reflective layer 14 from the lower stationary electrode (i.e., part of the optical stack 16 in the illustrated IMOD) so that a gap 19 is formed between the movable reflective layer 14 and the optical stack 16, for example when the movable reflective layer 14 is in a relaxed position. The movable reflective layer 14 also can include a conductive layer 14c, which may be configured to serve as an electrode, and a support layer 14b. In this example, the conductive layer 14c is disposed on one side of the support layer 14b, distal from the substrate 20, and the reflective sub-layer 14a is disposed on the other side of the support layer 14b, proximal to the substrate 20. In some implementations, the reflective sub-layer 14a can be conductive and can be disposed between the support layer 14b and the optical stack 16. The support layer 14b can include one or more layers of a dielectric material, for example, silicon oxynitride (SiON) or silicon dioxide (Si02). In some implementations, the support layer 14b can be a stack of layers, such as, for example, a Si02/SiON/Si02 tri-layer stack. Either or both of the reflective sub-layer 14a and the conductive layer 14c can include, e.g., an Al alloy with about 0.5% Cu; or another reflective metallic material. Employing conductive layers 14a, 14c above and below the dielectric support layer 14b can balance stresses and provide enhanced conduction. In some implementations, the reflective sub-layer 14a and the conductive layer 14c can be formed of different materials for a variety of design purposes, such as achieving specific stress profiles within the movable reflective layer 14.
[0057] As illustrated in Figure 6D, some implementations also can include a black mask structure 23. The black mask structure 23 can be formed in optically inactive regions (e.g., between pixels or under posts 18) to absorb ambient or stray light. The black mask structure 23 also can improve the optical properties of a display device by inhibiting light from being reflected from or transmitted through inactive portions of the display, thereby increasing the contrast ratio. Additionally, the black mask structure 23 can be conductive and be configured to function as an electrical bussing layer. In some implementations, the row electrodes can be connected to the black mask structure 23 to reduce the resistance of the connected row electrode. The black mask structure 23 can be formed using a variety of methods, including deposition and patterning techniques. The black mask structure 23 can include one or more layers. For example, in some implementations, the black mask structure 23 includes a molybdenum-chromium (MoCr) layer that serves as an optical absorber, a Si02 layer, and an aluminum alloy that serves as a reflector and a bussing layer, with a thickness in the range of about 30-80 A, 500-1000 A, and 500-6000 A, respectively. The one or more layers can be patterned using a variety of techniques, including photolithography and dry etching, including, for example, CF4 and/or 02 for the MoCr and Si02 layers and Cl2 and/or BC13 for the aluminum alloy layer. In some implementations, the black mask 23 can be an etalon or interferometric stack structure. In such interferometric stack black mask structures 23, the conductive absorbers can be used to transmit or bus signals between lower, stationary electrodes in the optical stack 16 of each row or column. In some implementations, a spacer layer 35 can serve to generally electrically isolate the absorber layer 16a from the conductive layers in the black mask 23.
[0058] Figure 6E shows another example of an IMOD, where the movable reflective layer 14 is self supporting. In contrast with Figure 6D, the implementation of Figure 6E does not include support posts 18. Instead, the movable reflective layer 14 contacts the underlying optical stack 16 at multiple locations, and the curvature of the movable reflective layer 14 provides sufficient support that the movable reflective layer 14 returns to the unactuated position of Figure 6E when the voltage across the interferometric modulator is insufficient to cause actuation. The optical stack 16, which may contain a plurality of several different layers, is shown here for clarity including an optical absorber 16a, and a dielectric 16b. In some implementations, the optical absorber 16a may serve both as a fixed electrode and as a partially reflective layer.
[0059] In implementations such as those shown in Figures 6A-6E, the IMODs function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, i.e., the side opposite to that upon which the modulator is arranged. In these implementations, the back portions of the device (that is, any portion of the display device behind the movable reflective layer 14, including, for example, the deformable layer 34 illustrated in Figure 6C) can be configured and operated upon without impacting or negatively affecting the image quality of the display device, because the reflective layer 14 optically shields those portions of the device. For example, in some implementations a bus structure (not illustrated) can be included behind the movable reflective layer 14 which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as voltage addressing and the movements that result from such addressing. Additionally, the implementations of Figures 6A-6E can simplify processing, such as, e.g., patterning.
[0060] Figure 7 shows an example of a flow diagram illustrating a manufacturing process 80 for an interferometric modulator, and Figures 8A-8E show examples of cross- sectional schematic illustrations of corresponding stages of such a manufacturing process 80. In some implementations, the manufacturing process 80 can be implemented to manufacture, e.g., interferometric modulators of the general type illustrated in Figures 1 and 6, in addition to other blocks not shown in Figure 7. With reference to Figures 1, 6 and 7, the process 80 begins at block 82 with the formation of the optical stack 16 over the substrate 20. Figure 8A illustrates such an optical stack 16 formed over the substrate 20. The substrate 20 may be a transparent substrate such as glass or plastic, it may be flexible or relatively stiff and unbending, and may have been subjected to prior preparation processes, e.g., cleaning, to facilitate efficient formation of the optical stack 16. As discussed above, the optical stack 16 can be electrically conductive, partially transparent and partially reflective and may be fabricated, for example, by depositing one or more layers having the desired properties onto the transparent substrate 20. In Figure 8 A, the optical stack 16 includes a multilayer structure having sub-layers 16a and 16b, although more or fewer sub-layers may be included in some other implementations. In some implementations, one of the sub-layers 16a, 16b can be configured with both optically absorptive and conductive properties, such as the combined conductor/absorber sub-layer 16a. Additionally, one or more of the sub-layers 16a, 16b can be patterned into parallel strips, and may form row electrodes in a display device. Such patterning can be performed by a masking and etching process or another suitable process known in the art. In some implementations, one of the sub-layers 16a, 16b can be an insulating or dielectric layer, such as sub-layer 16b that is deposited over one or more metal layers (e.g., one or more reflective and/or conductive layers). In addition, the optical stack 16 can be patterned into individual and parallel strips that form the rows of the display.
[0061] The process 80 continues at block 84 with the formation of a sacrificial layer 25 over the optical stack 16. The sacrificial layer 25 is later removed (e.g., at block 90) to form the cavity 19 and thus the sacrificial layer 25 is not shown in the resulting interferometric modulators 12 illustrated in Figure 1. Figure 8B illustrates a partially fabricated device including a sacrificial layer 25 formed over the optical stack 16. The formation of the sacrificial layer 25 over the optical stack 16 may include deposition of a xenon difluoride (XeF2)-etchable material such as molybdenum (Mo) or amorphous silicon (Si), in a thickness selected to provide, after subsequent removal, a gap or cavity 19 (see also Figures 1 and 8E) having a desired design size. Deposition of the sacrificial material may be carried out using deposition techniques such as physical vapor deposition (PVD, e.g., sputtering), plasma-enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition (thermal CVD), or spin-coating.
[0062] The process 80 continues at block 86 with the formation of a support structure e.g., a post 18 as illustrated in Figures 1, 6 and 8C. The formation of the post 18 may include patterning the sacrificial layer 25 to form a support structure aperture, then depositing a material (e.g., a polymer or an inorganic material, e.g., silicon oxide) into the aperture to form the post 18, using a deposition method such as PVD, PECVD, thermal CVD, or spin-coating. In some implementations, the support structure aperture formed in the sacrificial layer can extend through both the sacrificial layer 25 and the optical stack 16 to the underlying substrate 20, so that the lower end of the post 18 contacts the substrate 20 as illustrated in Figure 6A. Alternatively, as depicted in Figure 8C, the aperture formed in the sacrificial layer 25 can extend through the sacrificial layer 25, but not through the optical stack 16. For example, Figure 8E illustrates the lower ends of the support posts 18 in contact with an upper surface of the optical stack 16. The post 18, or other support structures, may be formed by depositing a layer of support structure material over the sacrificial layer 25 and patterning portions of the support structure material located away from apertures in the sacrificial layer 25. The support structures may be located within the apertures, as illustrated in Figure 8C, but also can, at least partially, extend over a portion of the sacrificial layer 25. As noted above, the patterning of the sacrificial layer 25 and/or the support posts 18 can be performed by a patterning and etching process, but also may be performed by alternative etching methods.
[0063] The process 80 continues at block 88 with the formation of a movable reflective layer or membrane such as the movable reflective layer 14 illustrated in Figures 1, 6 and 8D. The movable reflective layer 14 may be formed by employing one or more deposition steps, e.g., reflective layer (e.g., aluminum, aluminum alloy) deposition, along with one or more patterning, masking, and/or etching steps. The movable reflective layer 14 can be electrically conductive, and referred to as an electrically conductive layer. In some implementations, the movable reflective layer 14 may include a plurality of sub-layers 14a, 14b, 14c as shown in Figure 8D. In some implementations, one or more of the sub-layers, such as sub-layers 14a, 14c, may include highly reflective sub-layers selected for their optical properties, and another sub-layer 14b may include a mechanical sub-layer selected for its mechanical properties. Since the sacrificial layer 25 is still present in the partially fabricated interferometric modulator formed at block 88, the movable reflective layer 14 is typically not movable at this stage. A partially fabricated IMOD that contains a sacrificial layer 25 may also be referred to herein as an "unreleased" IMOD. As described above in connection with Figure 1, the movable reflective layer 14 can be patterned into individual and parallel strips that form the columns of the display.
[0064] The process 80 continues at block 90 with the formation of a cavity, e.g., cavity 19 as illustrated in Figures 1, 6 and 8E. The cavity 19 may be formed by exposing the sacrificial material 25 (deposited at block 84) to an etchant. For example, an etchable sacrificial material such as Mo or amorphous Si may be removed by dry chemical etching, e.g., by exposing the sacrificial layer 25 to a gaseous or vaporous etchant, such as vapors derived from solid XeF2 for a period of time that is effective to remove the desired amount of material, typically selectively removed relative to the structures surrounding the cavity 19. Other etching methods, e.g. wet etching and/or plasma etching, also may be used. Since the sacrificial layer 25 is removed during block 90, the movable reflective layer 14 is typically movable after this stage. After removal of the sacrificial material 25, the resulting fully or partially fabricated IMOD may be referred to herein as a "released" IMOD.
[0065] Generally, modulators 12 reflect light that has one or more spectral peaks when wavelength is plotted versus intensity. The perceived color of light produced by a modulator 12 depends on the number, location, and spectral width of these peaks of the modulator 12 within the visible spectrum. The width of such peaks may be characterized by the width of the peak at the half maximum of intensity of reflected light, e.g., the full width at half maximum. Generally, modulators 12 that reflect light over a narrower range of wavelengths, e.g., have a narrower peak or higher "Q" value, produce colored light that is more saturated. As discussed in greater detail below, saturation refers to the dominance of hue in the color as indicated by the narrowness of the range of wavelengths of light output. A highly saturated hue has a vivid, intense color, while a less saturated hue appears more muted and grey. For example, a laser, which produces a very narrow range of wavelengths, produces highly saturated light. Conversely, a typical incandescent light bulb produces white light that may have a desaturated red or blue color. The saturation of the modulators 12 that comprise a color pixel affects properties of a display such as the color gamut and white point of the display.
[0066] An exemplary color display includes red, green, and blue display elements. Other colors are produced in such a display by varying the relative intensity of light produced by the red, green, and blue elements. Such mixtures of primary colors such as red, green, and blue are perceived by the human eye as other colors. The relative values of red, green, and blue in such a color system may be referred to as tristimulus values in reference to the stimulation of red, green, and blue light sensitive portions of the human eye. The range of colors that can be produced by a particular display may be referred to as the color gamut of the display. In general, increasing the saturation of the primary colors increases the color gamut, or range of colors that can be produced by the display. As described below with reference to Figure 10, an embodiment of a display has a relatively larger color gamut as compared to some other displays because the saturation of at least one of the primary colors is substantially increased. While an exemplary color system based on red, green, and blue are disclosed herein, in other embodiments, the display may include modulators 12 having sets of colors that define other color systems in terms of sets of colors other than red, green, and blue.
[0067] In some embodiments, a trade off exists between producing light that appears bright and producing saturated colors (and increasing the color gamut of the display). Generally, given the same relative intensity levels, an output spectral peak of a light modulator that is broad or wide will appear brighter than one that is narrow because more light energy is reflected. However, while the broader spectrum will appear brighter, it will also be less saturated, e.g., appear pastel in color because the reflected light energy is spread across a broader spectrum.
[0068] In designing a display using interferometric modulators 12, the modulators 12 may be formed so as to increase the color saturation of reflected light. In one embodiment described herein, the saturation of light output by a display that includes the interferometric modulator 12 is increased using a color filter. In particular, such a display may include a color filter that is configured to cause the interferometric modulator to output light having a wavelength response peak that is narrower than the visible light wavelength response peak of the modulator 12 without the color filter. In various embodiments, this filter is an interference filter. This filter may be formed by adding a dielectric layer to the interferometric modulator. As described herein, in certain embodiments, an interferometric modulator is provided with a multilayer having layers with different refractive indices arranged to yield a refractive index gradient. The multilayer is included in the interferometric modulator so as to optically match the impedance of two materials in the interference modulator. The multilayer may include one or more color filter layers. In some embodiments, for example, a plurality of layers and possibly each layer in the multilayer contributes to increasing color saturation.
[0069] Accordingly, in various embodiments, a single layer is configured as a color filter that increases saturation. In one embodiment, the single layer is configured to improve saturation by forming the color filter layer. For example, the layer comprises a dielectric layer having a thickness tuned to provide a narrow spectral transmission band. The layer operates as an interference filter with reflective surfaces formed at the top and bottom (rear and front) of the dielectric layer are separated by a distance so as to provide optical interference and a resultant transmission spectrum with a narrow spectral band. The dielectric layer through such an interferometric effect operates as a color filter layer. The dielectric layer may have an index of refraction that is between that of adjacent layers so as to provide a gradient in refractive index. As described above, the dielectric layer having a refractive index gradient narrows the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller.
[0070] In various embodiments, additional layers, for example, additional dielectric layers, are included. These layers may establish a gradient in refractive index. One or more (possibly all) of these layers may also have a thickness that provides for color filtering and/or increased saturation. The additional layers may in some embodiments provide increased saturation. Such a designed is discussed in more detail with regard to Figure 10.
[0071] Figure 9 is a chromaticity diagram that illustrates an example of an expanded color gamut provided by an embodiment of a display that includes an interferometric modulator with a multilayer having a refractive index gradient. As discussed above, the multilayer having a refractive index gradient may be configured to provide color filtering and to provide refractive index matching between a reflector and the transparent substrate of the interferometric modulator.
[0072] Using various color models, color is often described using three dimensions: hue, saturation, and lightness-darkness. The CIE defines color in three dimensions according to a color model known as the CIE 1976 ( * u*, v*) color space (also referred to as the CIELUV color space). The model was originally developed based on the tristimulus theory of color perception, which is based on the scientific understanding that human eyes contain three different types of color receptors called cones. These three receptors respond differently to different wavelengths of visible light.
[0073] Hue is often described with the words that are commonly used to describe color: red, orange, yellow, green, blue, purple, etc. Under color models, such as the CIELUV color space, hue is more specifically described as the dominant wavelength of light perceived by the human eye. Saturation refers to the dominance or purity of a hue in a particular color relative to other colors. In terms of a spectral definition of color, saturation is the ratio of the dominant light wavelength to other wavelengths in the color. For example saturated red light contains less light energy from others colors than less saturated red light, but the less saturated red may appear brighter. White light is white because it contains an even balance of all wavelengths. How light or dark a color appears is referred to as value or brightness. In terms of a spectral definition of color using the CIELUV color space, value describes the overall intensity or strength of the light. As noted above, brighter colors tend to be muted or pastel colors because bright colors tend to have a broader spectrum that very saturated colors.
[0074] Chromaticity is understood by those skilled in the art to be one possible objective specification of the quality of a particular color irrespective of luminance, as determined by the hue and saturation (or excitation purity). The chromaticity diagram of Figure 9 is defined by a pair of chromaticity dimensions or coordinates (u*,v*), leaving out the luminance dimension, L*, defining the CIELUV color space. The chromaticity dimensions (w* v*) of the CIELUV color space allow the saturation of colored light to be considered in a two-dimensional space, which is easier to represent and interpret graphically than higher order spaces.
[0075] Those skilled in the art will appreciate that characterizing color using the terms hue, saturation and lightness-darkness does not limit the scope of the appended claims, but rather these terms merely serve to provide useful descriptions of colors. An embodiment of an interferometric modulator-based display can be characterized for the purposes of measurement and testing using any suitable color model or system, and that the CIELUV color space is merely described herein as one of many possible color models that may be employed to characterize an embodiment of an interferometric modulator-based display.
[0076] In Figure 9, trace 91 defines the approximate boundary of the color gamut provided by the CIELUV color space. In other words, the trace 91 defines the approximate boundary of colors perceptible by human eyes according to the definition of the CIELUV color space. Trace 92 defines the approximate boundary of the color gamut provided by the sRGB color space. In other words, the trace 92 defines the approximate boundary of colors perceptible by human eyes that can be reproduced under the sRGB color space by electronics, such as, monitors, printers, projectors, etc. The simulated point D65, as defined by the CIE and discussed above, is the simulated standard white point corresponding roughly to a midday sun in Northwestern Europe. Generally, the CIE specifies that D65 is preferably used in all colorimetric calculations requiring representative daylight, unless there are specific reasons for using a different illuminant. Variations in the relative spectral power distribution of daylight are known to occur, particularly in the ultraviolet spectral region, as a function of season, time of day, and geographic location. Those skilled in the art will also appreciate that there are no actual D65 light sources, only simulators. The traces 91, 92 and the point D65 are useful references for evaluating the performance of displays and the like.
[0077] Trace 94 is a test result which defines the approximate boundary of the color gamut that can be reflected by an embodiment of a display including display elements, which include an interferometric modulator with a multilayer having a refractive index gradient. Again, as noted above, the multilayer having a refractive index gradient is configured to provide refractive index matching between a reflector and a transparent substrate of the interferometric modulator and to provide color filtering. By contrast, trace 93 is a trace that defines the approximate boundary of the color gamut of a display that employs similar interferometric modulators that do not include the multilayer having a refractive index gradient between the reflector and a transparent substrate of the interferometric modulator. The area enclosed by the trace 93 is smaller than the area enclosed by the trace 94, which means that the color gamut defined by the trace 94 is larger than the trace 93. The larger color gamut is the result of increasing the color saturation of red, blue and green, which, with reference to the chromaticity diagram of Figure 9, is represented by the larger enclosed area defined by trace 94. Those skilled in the art will appreciate that increasing the saturation of any one or more of red, blue, and green will increase the color gamut. As such, the color gamut of a display can be increased by merely increasing the color saturation of just one of red, blue and green. In some embodiments, one of the red, blue or green subpixels of a display is provided with a multilayer having a refractive index gradient, which is configured to provide refractive index matching and color filtering. In other embodiments, one or more of the red, blue and green subpixels of a display is provided with a multilayer having a refractive index gradient, which is configured index matching and color filtering.
[0078] Figure 10 is a side cross-sectional view of an embodiment of an interferometric modulator that includes a multilayer having a refractive index gradient formed on the transparent substrate 20.
[0079] In various embodiments, the interferometric modulator functions as a direct-view device, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the interferometric modulator is arranged. The interferometric modulator includes a moveable reflective layer 14, a partially reflective layer 106, and dielectric layers 108a, 108b. In one embodiment, the dielectric layer 108a includes Si02. In one embodiment, the dielectric layer 108b includes AlOx. In one embodiment the reflective layer 14 includes AlCu. In one embodiment, the partially reflective layer 106 includes MoCr. In one embodiment, the reflective layer 14 is connected to the substrate 20 by the posts 18. Generally, the modulator 122 may include features according to any embodiment of the modulator 12 disclosed herein.
[0080] In some embodiments, the application of a voltage between the reflective layer 14 and the partially reflective layer 106 causes the reflective layer 14 to move toward the partially reflective layer 106. The dielectric layers 108a, 108b electrically isolate the reflective layer 14 from the partially reflective layer 106.
[0081] A multilayer 126 that provides a refractive index gradient is formed between the substrate 20 and the partially reflective layer 106. In various embodiments, the multilayer 126 having a refractive index gradient comprises a stack of layers including at least two dielectric layers. The respective indices of refraction of the at least two dielectric layers are configured to provide a gradual change in the index of refraction from the partial reflector 106 to the substrate 20 thereby increasing color saturation. In one embodiment, the respective indices of refraction of the at least two dielectric layers are configured to provide at least three reductions in the index of refraction from the partially reflector layer 106 to the substrate 20 thereby increasing the color saturation of light reflected by the device. That is, in such an embodiment, there is a first reduction in the index of refraction between the partially reflective layer 106 and a first one of the at least two dielectric layers. Additionally, there is a second reduction in the index of refraction between two of the at least two dielectric layers. And, there is a third reduction in the index of refraction between a second one of the at least two dielectric layers and the substrate 20.
[0082] In various embodiments, at least one dielectric layer included in the multilayer 126 is also configured as a color filter. As described above, for example, at least one dielectric layer (e.g., dielectric layer 104a) is configured as a color filter and has a thickness that provides optical interference from the top and bottom surfaces of the dielectric layer (e.g., layer 104a) so as to produce a transmission spectrum which provides color filtering. These top and bottom surfaces may be in contact with the layers above and below (e.g., partially reflective layer 106, dielectric layer 104b), respectively that may have different refractive indexes such that the interfaces between the layers (e.g., 106/104a and 104a/104b) form reflective surfaces via Fresnel reflection and index mismatch. Reflections from these surfaces can contribute to optical interference that affects spectral transmission. The space separating these interfaces is determined by the thickness of the dielectric layer (e.g., 104a) and can be such that the spectral transmission has a narrow transmission band or peak that provides color filtering. The dielectric layer can alter the transmission spectrum in other ways as well. [0083] As described above, additional dielectric layers (e.g., 104b, 104c, 104d) may provide index matching. These additional dielectric layers (e.g., 104b, 104c, 104d) may also have suitable thickness so as to enhance the filtering effect and increase optical saturation as a result of optical interference. Any one of the layers (e.g., 104b, 104c, 104d) may have reflective interfaces formed by that layer and a layer directly above and a layer directly below. Interfaces between different layers of material with different refractive index produce Fresnel reflection that may cause optical interference. In various embodiments, the thickness of one or more of the layers is such that the optical interference results in color filtering and increased color saturation. In one embodiment, the respective indices of refraction of the three dielectric layers 104b, 104c, 104d are configured to provide at least four reductions in the index of refraction from the partially reflector layer 106 to the substrate 20 thereby increasing the color saturation of light reflected by the device. That is, in such an embodiment, there is a first reduction in the index of refraction between the partially reflective layer 106 and the dielectric layer 104b. Additionally, there is a second reduction in the index of refraction between the dielectric layers 104b, 104c. Additionally, there is a third reduction in the index of refraction between the dielectric layers 104c, 104d. And there is a fourth reduction in the index of refraction between the dielectric layer 104d and the substrate 20.
[0084] With reference to Figure 10, the multilayer 126 having a refractive index gradient is an optical stack made up of the four layers 104a, 104b, 104c, 104d of material.
[0085] In one embodiment, the first layer 104a is configured to serve as a color filter. In one embodiment, the layer 104a is configured to serve as a red color filter that substantially suppresses light wavelengths associated with cyan hues. In one embodiment, the layer 104a that is configured to serve as a color filter is configured to serve as a blue color filter that substantially suppresses light wavelengths associated with yellow hues. In one embodiment, the color filter layer 104a is configured to serve as a green color filter that substantially suppresses light wavelengths associated with magenta hues.
[0086] In one embodiment, the second layer 104b is configured to serve as an etch stop layer, and includes a material less susceptible to etchants (e.g. AlOx) that might otherwise go through the layer beneath the second layer 104b when etching the layer 104a on top of the second layer 104b. In one embodiment, the third layer 104c includes Si02. In one embodiment, the fourth layer 104d is configured to serve as an etch stop layer, and includes a material less susceptible to etchants (e.g. AlOx) that might otherwise go through the material beneath the fourth layer 104d when etching the layer 104c (e.g., Si02) on top of the fourth layer 104d.
[0087] The dielectric layers 104a, 104b, 104c, 104d are configured to produce a refractive index gradient between the partially reflective layer 106 and the substrate 20. Providing such a gradient between the partially reflective layer and the substrate 20 can also be described as a form of optical impedance matching. More specifically, in one embodiment: the first partially reflective layer 106 (MoCr) has a refractive index of approximately 3.0 - 4.0; the first dielectric layer 104a (e.g. the color filter) is configured to have a refractive index of approximately 1.9 - 2.6; the second dielectric layer 104b is configured to have a refractive index of approximately 1.7; the third dielectric layer 104c is configured to have a refractive index of approximately 1.5; the fourth dielectric layer 104d is configured to have a refractive index of approximately 1.7; and the substrate 20 is configured to have a refractive index of approximately 1.4 - 1.6.
[0088] As described above, the thickness of one or more, possibly all, of these layers 104a, 104b, 104c, 104d, may be selected to provide color filtering and increased saturation via optical interference effects. Accordingly, the presence of any of these layers may increase the color saturation of the resultant modulator in comparison to an identical modulator without the layer (or layers). In some embodiments, the presence of any of these dielectric layers (e.g., 104a, 104b, 104c, 104d) may even increase the color saturation of the resultant modulator in comparison to a modulator with the same layer (or layers) removed but having the thickness(es) of the remaining layers in the modulator adjusted to optimize saturation.
[0089] Accordingly, various embodiments, such as the embodiment shown in Figure 10 may provide a more saturated red interferometric modulator. Similar approaches may be used to form different color interferometric modulators. For example, a green interferometric modulator having increase saturation may be produced using the same, similar, or different materials. Other color interferometric modulators having improved saturation may also be produced.
[0090] In various embodiments, the multilayer index gradient provides for at least one reduction in refractive index from the partial reflector to a first layer in the multilayer that is under the partial reflector, at least one reduction in refractive index from the first layer in the multilayer to a second layer in the multilayer that is under the first layer, and at least one reduction from the second layer in the multilayer to the substrate that is under the second layer. In some embodiments, additional reductions are included. For example, a third layer may be included in the multilayer under the second layer. This third layer may provide a reduction in refractive index with respect to the second layer. The index of the third layer may be such that the substrate, which is located under the third layer, has a lower refractive index than the third layer. Other embodiments are possible.
[0091] In some embodiments the multilayer itself has layers that provide the multilayer with a gradient in refractive index.
[0092] In some embodiments, layers may be included that deviate from the trend of the gradient provided by the multilayer. For example, although the multilayer may include a plurality of layers with progressively decreasing index of refraction, one or more layers may be introduced between layers in the multilayer which result in an increase of index of refraction from one layer to the next. In some embodiments, however, the overall gradient may still be maintained. For example, the multilayer index gradient may provide for at least one reduction in refractive index from the partial reflector to a first layer in the multilayer that is under the partial reflector, at least one reduction in refractive index from the first layer in the multilayer to a second layer in the multilayer that is under the first layer, and at least one reduction from the second layer in the multilayer to a third layer in the multilayer that is under the second layer but an increase in refractive index from the third layer in the multilayer to the substrate that is under the third layer, however, with the index of the substrate being lower than the index of the second layer.
[0093] In some embodiments, one or more layers may be included in the multilayer that deviate from the trend of the refractive index gradient within the multilayer. Other designs are possible. [0094] Nevertheless, in various embodiments, optically matching the impedance of two materials with substantially different respective refractive indices with a refractive index gradient comprising a plurality of layers of material arranged to provide a gradient index substantially improves the saturation of the interferometric modulator. The optical impedance matching helps to improve saturation by narrowing the resonance of a pixel such that the band of wavelengths that are reflected from the pixel is smaller. The resonance of a pixel may be narrowed by specifically configuring the refractive index of each of one or more dielectric layers 104b, 104c, 104d below the first dielectric layer 104a. The refractive index of each particular dielectric layer 104a, 104b, 104c, 104d can be adjusted by, for example, the chemistry of each layer.
[0095] As also described above, any one or more of the dielectric layers 104a, 104b, 104c, 104d can have a thickness suitable to provide through interference effects increased saturation.
[0096] Although the topmost layer (e.g., layer 104a) in the multilayer is referred to as a color filter, any one or more of the other layers may be characterized as a color filter in various embodiments.
[0097] In various embodiments, including a plurality of different color interferometric modulators, a combination of red, green and blue display elements may expand the spectrum of colors that are reflected by the display in operation. Additionally, by providing index matching, an index gradient, and/or one or more color filters (e.g., by adjusting the thickness of layers) such as described herein, there may be better contrast between whites and blacks, as the black state produced by the interferometric modulator may be darker with less hue. A blacker back, which may be produced by using embodiments described herein, provides for more desirable images as well as better contrast.
[0098] A wide variety of variations are possible. For example, although four dielectric layers are described above in the multilayer, more or less dielectric layers may be used. Additionally, other materials may be used. Another type of material that may be used is SiON. Materials other than those specifically recited herein may also be used.
[0099] Additionally, in one embodiment, instead of using a multilayer, a single layer (e.g. 104a) that is configured as a color filter may have a thickness that provides an interferometric filtering effect that improves saturation. The thickness of the single layer may be such that Fresnel reflections from the top and bottom of the single layer produce optical interference and yield a transmission spectrum that provides color filtering. Accordingly, the single dielectric layer having a thickness sufficient to create an interferometric filtering effect as a result of an optical resonant cavity as defined by the boundaries of the dielectric layer adjacent to other materials, may improve saturation. In one embodiment, the thickness is sufficient to create an effect similar to or substantially identical to an interference filter. The single layer may also provide index matching. The single dielectric layer may, for example, have an index of refraction between the index of refraction of that layer directly above (e.g., partially reflective layer) and the layer (e.g. substrate) directly below the single dielectric layer.
[0100] In various embodiments, no metal layers are included between the single dielectric layer and the substrate. Similarly, if a multilayer dielectric is used, the multilayer does not include any metal layers in various embodiments. No metal layers are also included between the multilayer and the substrate in various embodiments. Likewise, in various embodiments, no metal layers are included between the dielectric layer or layers and the substrate.
[0101] The production of an interferometric modulator device incorporating a wavelength filter such as the dielectric layer or the multilayer having a refractive index gradient involves only a few additional process steps compared to the production of an interferometric modulator device without the dielectric layer or multilayer having a refractive index gradient. In the example illustrated in Figure 10, incorporation of the multilayer having a refractive index gradient involves only the additional steps of depositing the dielectric layers 104a, 104b, 104c, 104d.
[0102] Figures 11 A and 1 IB show examples of system block diagrams illustrating a display device 40 that includes a plurality of interferometric modulators. The display device 40 can be, for example, a cellular or mobile telephone. However, the same components of the display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions, e-readers and portable media players. [0103] The display device 40 includes a housing 41 , a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 can be formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to: plastic, metal, glass, rubber, and ceramic, or a combination thereof. The housing 41 can include removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
[0104] The display 30 may be any of a variety of displays, including a bi-stable or analog display, as described herein. The display 30 also can be configured to include a flat- panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD, or a non-flat-panel display, such as a CRT or other tube device. In addition, the display 30 can include an interferometric modulator display, as described herein.
[0105] The components of the display device 40 are schematically illustrated in Figure 1 IB. The display device 40 includes a housing 41 and can include additional components at least partially enclosed therein. For example, the display device 40 includes a network interface 27 that includes an antenna 43 which is coupled to a transceiver 47. The transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52. The conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal). The conditioning hardware 52 is connected to a speaker 45 and a microphone 46. The processor 21 is also connected to an input device 48 and a driver controller 29. The driver controller 29 is coupled to a frame buffer 28, and to an array driver 22, which in turn is coupled to a display array 30. A power supply 50 can provide power to all components as required by the particular display device 40 design.
[0106] The network interface 27 includes the antenna 43 and the transceiver 47 so that the display device 40 can communicate with one or more devices over a network. The network interface 27 also may have some processing capabilities to relieve, e.g., data processing requirements of the processor 21. The antenna 43 can transmit and receive signals. In some implementations, the antenna 43 transmits and receives RF signals according to the IEEE 16.1 1 standard, including IEEE 16.1 1(a), (b), or (g), or the IEEE 802.11 standard, including IEEE 802.11a, b, g or n. In some other implementations, the antenna 43 transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile communications (GSM), GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Trunked Radio (TETRA), Wideband-CDMA (W-CDMA), Evolution Data Optimized (EV-DO), lxEV-DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Access (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals that are used to communicate within a wireless network, such as a system utilizing 3G or 4G technology. The transceiver 47 can pre-process the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also can process signals received from the processor 21 so that they may be transmitted from the display device 40 via the antenna 43.
[0107] In some implementations, the transceiver 47 can be replaced by a receiver. In addition, the network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. The processor 21 can control the overall operation of the display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 can send the processed data to the driver controller 29 or to the frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
[0108] The processor 21 can include a microcontroller, CPU, or logic unit to control operation of the display device 40. The conditioning hardware 52 may include amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. The conditioning hardware 52 may be discrete components within the display device 40, or may be incorporated within the processor 21 or other components. [0109] The driver controller 29 can take the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and can reformat the raw image data appropriately for high speed transmission to the array driver 22. In some implementations, the driver controller 29 can re-format the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as an LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. For example, controllers may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
[0110] The array driver 22 can receive the formatted information from the driver controller 29 and can re-format the video data into a parallel set of waveforms that are applied many times per second to the hundreds, and sometimes thousands (or more), of leads coming from the display's x-y matrix of pixels.
[0111] In some implementations, the driver controller 29, the array driver 22, and the display array 30 are appropriate for any of the types of displays described herein. For example, the driver controller 29 can be a conventional display controller or a bi-stable display controller (e.g., an IMOD controller). Additionally, the array driver 22 can be a conventional driver or a bi-stable display driver (e.g., an IMOD display driver). Moreover, the display array 30 can be a conventional display array or a bi-stable display array (e.g., a display including an array of IMODs). In some implementations, the driver controller 29 can be integrated with the array driver 22. Such an implementation is common in highly integrated systems such as cellular phones, watches and other small-area displays.
[0112] In some implementations, the input device 48 can be configured to allow, e.g., a user to control the operation of the display device 40. The input device 48 can include a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a rocker, a touch-sensitive screen, or a pressure- or heat-sensitive membrane. The microphone 46 can be configured as an input device for the display device 40. In some implementations, voice commands through the microphone 46 can be used for controlling operations of the display device 40.
[0113] The power supply 50 can include a variety of energy storage devices as are well known in the art. For example, the power supply 50 can be a rechargeable battery, such as a nickel-cadmium battery or a lithium-ion battery. The power supply 50 also can be a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell or solar-cell paint. The power supply 50 also can be configured to receive power from a wall outlet.
[0114] In some implementations, control programmability resides in the driver controller 29 which can be located in several places in the electronic display system. In some other implementations, control programmability resides in the array driver 22. The above- described optimization may be implemented in any number of hardware and/or software components and in various configurations.
[0115] The various illustrative logics, logical blocks, modules, circuits and algorithm steps described in connection with the implementations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The interchangeability of hardware and software has been described generally, in terms of functionality, and illustrated in the various illustrative components, blocks, modules, circuits and steps described above. Whether such functionality is implemented in hardware or software depends upon the particular application and design constraints imposed on the overall system.
[0116] The hardware and data processing apparatus used to implement the various illustrative logics, logical blocks, modules and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose single- or multi-chip processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, or, any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In some implementations, particular steps and methods may be performed by circuitry that is specific to a given function.
[0117] In one or more aspects, the functions described may be implemented in hardware, digital electronic circuitry, computer software, firmware, including the structures disclosed in this specification and their structural equivalents thereof, or in any combination thereof. Implementations of the subject matter described in this specification also can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on a computer storage media for execution by, or to control the operation of, data processing apparatus.
[0118] Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the claims, the principles and the novel features disclosed herein. The word "exemplary" is used exclusively herein to mean "serving as an example, instance, or illustration." Any implementation described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other implementations. Additionally, a person having ordinary skill in the art will readily appreciate, the terms "upper" and "lower" are sometimes used for ease of describing the figures, and indicate relative positions corresponding to the orientation of the figure on a properly oriented page, and may not reflect the proper orientation of the IMOD as implemented.
[0119] Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
[0120] Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.

Claims

WHAT IS CLAIMED IS:
1. A device for modulating light, the device comprising:
a movable reflector;
a partial reflector positioned at a first distance from the movable reflector; a substrate positioned at a fixed distance from the partial reflector, the substrate having an index of refraction different from the partial reflector; and
a multilayer configured to provide a refractive index gradient between the partial reflector and the substrate, the multilayer including at least two dielectric layers, wherein the respective indices of refraction of the at least two dielectric layers are configured to provide a reduction in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
2. The device of claim 1 , wherein the index of refraction of the partial reflector is greater than the index of refraction of the substrate.
3. The device of claim 1, wherein at least one dielectric layer included in the multilayer forms a color filter.
4. The device of claim 3, wherein the color filter is a red color filter that substantially suppresses light wavelengths associated with cyan hues.
5. The device of claim 3, wherein the color filter is a blue color filter that substantially suppresses light wavelengths associated with yellow hues.
6. The device of claim 3, wherein the color filter is a green color filter that substantially suppresses light wavelengths associated with magenta hues.
7. The device of claim 1, further comprising a dielectric layer between the movable reflector and the partial reflector.
8. The device of claim 1, wherein the substrate includes glass.
9. The device of claim 1, wherein at least one of the dielectric layers in the multilayer includes aluminum oxide.
10. The device of claim 1, wherein at least one of the dielectric layers in the multilayer includes silicon dioxide.
11. The device of claim 1 , wherein the device forms part of a display.
12. The device of claim 11 , further comprising:
a processor that is in electrical communication with the display, the processor being configured to process image data; and
a memory device in electrical communication with the processor.
13. The device of claim 12, further comprising a driver circuit configured to send at least one signal to the display.
14. The device of claim 13, further comprising a controller configured to send at least a portion of the image data to the driver circuit.
15. The device of claim 14, further comprising an image source module configured to send the image data to the processor.
16. The device of claim 15, wherein the image source module includes at least one of a receiver, transmitter and transceiver.
17. The device of claim 12, further comprising an input device configured to receive input data and to communicate the input data to the processor.
18. The device of claim 1, wherein the respective indices of refraction of the at least two dielectric layers are configured to provide a plurality of reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
19. The device of claim 1 , wherein the respective indices of refraction of the at least two dielectric layers are configured to provide at least three reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
20. The device of claim 1, wherein the respective indices of refraction of at least three dielectric layers in the multilayer are configured to provide at least four reductions in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
21. The device of claim 1, wherein metal layers are excluded from the multilayer and from between the multilayer and the substrate.
22. A device for modulating light, the device comprising:
a movable reflector; a partial reflector positioned at a first distance from the movable reflector; a substrate positioned at a fixed distance from the partial reflector, the substrate having an index of refraction different from the partial reflector; and
a dielectric layer having an index of refraction between that of the partial reflector and the substrate and a thickness sufficient to produce an interference filtering effect that increases saturation of light reflected by the device,
wherein metal layers are excluded from between the dielectric layer and the substrate.
23. The device of claim 22, wherein the index of refraction of the partial reflector is larger than the index of refraction of the substrate.
24. The device of claim 22, wherein the presence of the dielectric layer suppresses light wavelengths associated with cyan hues and selectively transmits wavelengths associated with red hues thereby providing red color filtering.
25. The device of claim 22, wherein the presence of the dielectric layer suppresses light wavelengths associated with yellow hues and selectively transmits wavelengths associated with blue hues thereby providing blue color filtering.
26. The device of claim 22, wherein the presence of the dielectric layer is suppresses light wavelengths associated with magenta hues and selectively transmits wavelengths associated with green hues thereby providing green color filtering.
27. The device of claim 22, further comprising a second dielectric layer between the movable reflector and the partial reflector.
28. The device of claim 22, wherein the substrate includes glass.
29. A device for modulating light, the device comprising:
means for reflecting, the reflecting means being movable;
means for partially reflecting positioned at a first distance from the movable reflecting means;
means for supporting positioned at a fixed distance from the partially reflecting means, the supporting means having an index of refraction different from the partially reflecting means; and means for providing a refractive index gradient between the partially reflecting means and the supporting means, the refractive index gradient providing means including at least two means for insulating, wherein the respective indices of refraction of the at least two insulating means are configured to provide a reduction in the index of refraction from the partially reflecting means to the supporting mean thereby increasing the color saturation of light reflected by the device.
30. The display of claim 29, wherein:
the moveable reflecting means includes a movable reflector; or the partially reflecting means includes a partial reflector; or
the supporting means include a substrate;
the refractive index gradient providing means includes a multilayer; or the two insulating means include at least two dielectric layers.
31. The display of claim 29, wherein the supporting means includes a means for supporting during fabrication of the device.
32. The display of claim 31, wherein the means for supporting during fabrication of the device includes a substrate.
33. A device for modulating light, the device comprising:
means for reflecting, the reflecting means being movable;
means for partially reflecting, the partially reflecting means being positioned at a first distance from the movable reflecting means;
a supporting means positioned at a fixed distance from the partially reflecting means, the supporting means having an index of refraction different from the partially reflecting means; and
means for insulating having an index of refraction between that of the partially reflecting means and the supporting means and a thickness sufficient to produce an interference filtering effect that increases saturation of light reflected by the device, wherein metal layers are excluded from between the insulating means and the supporting means.
34. The display of claim 33, wherein:
the moveable reflecting means includes a movable reflector; or the partially reflecting means includes a partial reflector; or the supporting means include a substrate;
the insulating means include a dielectric layer.
35. The display of claim 33, wherein the supporting means includes a means for supporting during fabrication of the device.
36. The display of claim 35, wherein the means for supporting during fabrication of the device includes a substrate.
37. A method of making a device for modulating light, the method comprising: providing a movable reflector;
providing a partial reflector, the partial reflector positioned at a first distance from the movable reflector;
providing a substrate, the substrate positioned at a fixed distance from the partial reflector, the substrate having an index of refraction different from the partial reflector; and
including a multilayer configured to provide a refractive index gradient between the partial reflector and the substrate, the multilayer including at least two dielectric layers, wherein the respective indices of refraction of the at least two dielectric layers are configured to provide a reduction in the index of refraction from the partial reflector to the substrate thereby increasing the color saturation of light reflected by the device.
38. A method of making a device for modulating light, the method comprising: providing a movable reflector;
providing a partial reflector, the partial reflector positioned at a first distance from the movable reflector;
providing a substrate, the substrate positioned at a fixed distance from the partial reflector, the substrate having an index of refraction different from the partial reflector; and
including a dielectric layer having an index of refractive between that of the partial reflector and the substrate and a thickness sufficient to produce an interference effect that increases saturation of light reflected by the device, wherein metal layers are excluded from between the dielectric layer and the substrate.
39. The method of claim 38, wherein the index of refraction of the partial reflector is larger than the index of refraction of the substrate.
40. The method of claim 38, wherein the dielectric layer is configured to serve as a red color filter that substantially suppresses light wavelengths including and around cyan hues.
41. The method of claim 38, wherein the dielectric layer is configured to serves as a blue color filter that substantially suppresses light wavelengths including and around yellow hues.
42. The method of claim 38, wherein the dielectric layer is configured to serve as a green color filter that substantially suppresses light wavelengths including and around magenta hues.
43. The method of claim 38, further comprising including a second dielectric layer between the movable reflector and the partial reflector.
44. The method of claim 38, wherein the substrate includes glass.
PCT/US2011/036690 2010-05-20 2011-05-16 Method and structure capable of changing color saturation WO2011146413A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11724322A EP2572228A1 (en) 2010-05-20 2011-05-16 Method and structure capable of changing color saturation
JP2013511267A JP5592003B2 (en) 2010-05-20 2011-05-16 Method and structure capable of changing saturation
CN2011800248482A CN103003735A (en) 2010-05-20 2011-05-16 Method and structure capable of changing color saturation
KR1020127032910A KR20130107208A (en) 2010-05-20 2011-05-16 Method and structure capable of changing color saturation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34684610P 2010-05-20 2010-05-20
US61/346,846 2010-05-20
US12/910,694 US8848294B2 (en) 2010-05-20 2010-10-22 Method and structure capable of changing color saturation
US12/910,694 2010-10-22

Publications (1)

Publication Number Publication Date
WO2011146413A1 true WO2011146413A1 (en) 2011-11-24

Family

ID=44972323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/036690 WO2011146413A1 (en) 2010-05-20 2011-05-16 Method and structure capable of changing color saturation

Country Status (6)

Country Link
US (1) US8848294B2 (en)
JP (1) JP5592003B2 (en)
KR (1) KR20130107208A (en)
CN (1) CN103003735A (en)
TW (1) TW201207542A (en)
WO (1) WO2011146413A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2016517539A (en) * 2013-03-13 2016-06-16 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッドQUALCOMM MEMS Technologies, Inc. Improved IMOD color performance

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
JP5786424B2 (en) 2011-04-11 2015-09-30 セイコーエプソン株式会社 Wavelength variable interference filter, optical module, and electronic device
US8760751B2 (en) 2012-01-26 2014-06-24 Qualcomm Mems Technologies, Inc. Analog IMOD having a color notch filter
WO2014097315A2 (en) * 2012-12-17 2014-06-26 Balakrishna Anil Kumar Display apparatus
CN104485429B (en) * 2014-12-31 2017-08-08 北京维信诺科技有限公司 A kind of OLED with optical resonance layer and preparation method thereof, display
CN111668394B (en) * 2020-05-27 2022-08-05 安徽熙泰智能科技有限公司 Method for adjusting color saturation of silicon-based white light OLED

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147198A1 (en) * 2003-01-29 2004-07-29 Prime View International Co., Ltd. Optical-interference type display panel and method for making the same
US20060067633A1 (en) * 2004-09-27 2006-03-30 Gally Brian J Device and method for wavelength filtering
US20090059346A1 (en) * 2007-08-29 2009-03-05 Qualcomm Incorporated Interferometric Optical Modulator With Broadband Reflection Characteristics
US20100014148A1 (en) * 2008-03-27 2010-01-21 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer

Family Cites Families (573)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534846A (en) 1946-06-20 1950-12-19 Emi Ltd Color filter
US2590906A (en) 1946-11-22 1952-04-01 Farrand Optical Co Inc Reflection interference filter
US2518647A (en) 1948-01-07 1950-08-15 Celanese Corp Interferometer means for thickness measurements
US2677714A (en) 1951-09-21 1954-05-04 Alois Vogt Dr Optical-electrical conversion device comprising a light-permeable metal electrode
US3247392A (en) 1961-05-17 1966-04-19 Optical Coating Laboratory Inc Optical coating and assembly used as a band pass interference filter reflecting in the ultraviolet and infrared
DE1288651B (en) 1963-06-28 1969-02-06 Siemens Ag Arrangement of electrical dipoles for wavelengths below 1 mm and method for producing such an arrangement
US3448334A (en) 1966-09-30 1969-06-03 North American Rockwell Multicolored e.l. displays using external colored light sources
US3924929A (en) 1966-11-14 1975-12-09 Minnesota Mining & Mfg Retro-reflective sheet material
FR1603131A (en) 1968-07-05 1971-03-22
US3813265A (en) 1970-02-16 1974-05-28 A Marks Electro-optical dipolar material
US3653741A (en) 1970-02-16 1972-04-04 Alvin M Marks Electro-optical dipolar material
US3728030A (en) 1970-06-22 1973-04-17 Cary Instruments Polarization interferometer
US3725868A (en) 1970-10-19 1973-04-03 Burroughs Corp Small reconfigurable processor for a variety of data processing applications
US3679313A (en) 1970-10-23 1972-07-25 Bell Telephone Labor Inc Dispersive element for optical pulse compression
JPS4946974A (en) 1972-09-11 1974-05-07
DE2336930A1 (en) 1973-07-20 1975-02-06 Battelle Institut E V INFRARED MODULATOR (II.)
US3886310A (en) 1973-08-22 1975-05-27 Westinghouse Electric Corp Electrostatically deflectable light valve with improved diffraction properties
US3990784A (en) 1974-06-05 1976-11-09 Optical Coating Laboratory, Inc. Coated architectural glass system and method
US4099854A (en) 1976-10-12 1978-07-11 The Unites States Of America As Represented By The Secretary Of The Navy Optical notch filter utilizing electric dipole resonance absorption
US4196396A (en) 1976-10-15 1980-04-01 Bell Telephone Laboratories, Incorporated Interferometer apparatus using electro-optic material with feedback
US4389096A (en) 1977-12-27 1983-06-21 Matsushita Electric Industrial Co., Ltd. Image display apparatus of liquid crystal valve projection type
US4287449A (en) 1978-02-03 1981-09-01 Sharp Kabushiki Kaisha Light-absorption film for rear electrodes of electroluminescent display panel
US4200472A (en) 1978-06-05 1980-04-29 The Regents Of The University Of California Solar power system and high efficiency photovoltaic cells used therein
JPS5688111A (en) 1979-12-19 1981-07-17 Citizen Watch Co Ltd Liquid crystal display device with solar battery
NL8001281A (en) 1980-03-04 1981-10-01 Philips Nv DISPLAY DEVICE.
DE3109653A1 (en) 1980-03-31 1982-01-28 Jenoptik Jena Gmbh, Ddr 6900 Jena "RESONANCE ABSORBER"
US4421381A (en) 1980-04-04 1983-12-20 Yokogawa Hokushin Electric Corp. Mechanical vibrating element
US4377324A (en) 1980-08-04 1983-03-22 Honeywell Inc. Graded index Fabry-Perot optical filter device
US4441791A (en) 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
EP0046873A1 (en) 1980-09-02 1982-03-10 Texas Instruments Incorporated Deformable mirror light modulator
US4400577A (en) 1981-07-16 1983-08-23 Spear Reginald G Thin solar cells
JPS5944763U (en) 1982-09-13 1984-03-24 黒崎炉工業株式会社 Walking beam furnace
US4633031A (en) 1982-09-24 1986-12-30 Todorof William J Multi-layer thin film, flexible silicon alloy photovoltaic cell
DE3402746A1 (en) 1984-01-27 1985-08-08 Robert Bosch Gmbh, 7000 Stuttgart Liquid crystal display
US4832459A (en) 1984-02-06 1989-05-23 Rogers Corporation Backlighting for electro-optical passive displays and transflective layer useful therewith
JPS60165621A (en) 1984-02-08 1985-08-28 Nec Corp Transmission type display element
JPS60130715U (en) 1984-02-10 1985-09-02 相原 克次 Removable shoulder bag
JPS60147718U (en) 1984-03-09 1985-10-01 マツダ株式会社 engine cooling system
JPS61124923U (en) 1985-01-25 1986-08-06
US5345322A (en) 1985-03-01 1994-09-06 Manchester R&D Limited Partnership Complementary color liquid crystal display
US4878741A (en) 1986-09-10 1989-11-07 Manchester R & D Partnership Liquid crystal color display and method
JPS6247841A (en) 1985-08-26 1987-03-02 Matsushita Electric Ind Co Ltd Storage carrier for optical information
JPS62119502A (en) 1985-11-18 1987-05-30 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Spectrum-filter
US4859060A (en) 1985-11-26 1989-08-22 501 Sharp Kabushiki Kaisha Variable interferometric device and a process for the production of the same
US5835255A (en) 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
GB8610129D0 (en) 1986-04-25 1986-05-29 Secr Defence Electro-optical device
GB2198867A (en) 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
JPS63309917A (en) 1987-06-11 1988-12-19 Seiko Epson Corp Projection type color display device
JPS6432289U (en) 1987-08-22 1989-02-28
JPH01114884A (en) 1987-10-29 1989-05-08 Toshiba Corp Color liquid crystal display device
JPH01108501U (en) 1988-01-16 1989-07-21
DE68906051T2 (en) 1988-02-16 1993-09-02 Gen Electric COLOR DISPLAY DEVICE.
US4947291A (en) 1988-06-17 1990-08-07 Mcdermott Kevin Lighting device
US4980775A (en) 1988-07-21 1990-12-25 Magnascreen Corporation Modular flat-screen television displays and modules and circuit drives therefor
JPH0268513A (en) 1988-09-05 1990-03-08 Fuji Photo Film Co Ltd Color filter
US5233447A (en) 1988-10-26 1993-08-03 Canon Kabushiki Kaisha Liquid crystal apparatus and display system
JPH02151079A (en) 1988-12-01 1990-06-11 Sharp Corp Manufacture of solar cell
US4982184A (en) 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US5192946A (en) 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
KR100202246B1 (en) 1989-02-27 1999-06-15 윌리엄 비. 켐플러 Apparatus and method for digital video system
NL8900637A (en) 1989-03-16 1990-10-16 Philips Nv DISPLAY FOR COLOR RENDERING.
US4961617A (en) 1989-07-19 1990-10-09 Ferrydon Shahidi Fibre optic waveguide illuminating elements
US5022745A (en) 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
JPH03170911A (en) 1989-11-30 1991-07-24 Pioneer Electron Corp Liquid crystal display device
US5235437A (en) 1989-12-18 1993-08-10 Sharp Kabushiki Kaisha Analog/digital image processor apparatus with liquid crystal light modulator
US5361190A (en) 1990-02-20 1994-11-01 K. W. Muth Co. Inc. Mirror assembly
US5164858A (en) 1990-03-07 1992-11-17 Deposition Sciences, Inc. Multi-spectral filter
JPH03296720A (en) 1990-04-17 1991-12-27 Citizen Watch Co Ltd Optical modulating device
US5044736A (en) 1990-11-06 1991-09-03 Motorola, Inc. Configurable optical filter or display
JPH04190323A (en) 1990-11-26 1992-07-08 Hitachi Ltd Liquid crystal display with solar battery cell
JPH04238321A (en) 1991-01-23 1992-08-26 Mitsubishi Electric Corp Liquid crystal display device
US5233459A (en) 1991-03-06 1993-08-03 Massachusetts Institute Of Technology Electric display device
US5136669A (en) 1991-03-15 1992-08-04 Sperry Marine Inc. Variable ratio fiber optic coupler optical signal processing element
US5142414A (en) 1991-04-22 1992-08-25 Koehler Dale R Electrically actuatable temporal tristimulus-color device
US5221982A (en) 1991-07-05 1993-06-22 Faris Sadeg M Polarizing wavelength separator
US5287215A (en) 1991-07-17 1994-02-15 Optron Systems, Inc. Membrane light modulation systems
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
US5326426A (en) 1991-11-14 1994-07-05 Tam Andrew C Undercut membrane mask for high energy photon patterning
US5233385A (en) 1991-12-18 1993-08-03 Texas Instruments Incorporated White light enhanced color field sequential projection
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US5228013A (en) 1992-01-10 1993-07-13 Bik Russell J Clock-painting device and method for indicating the time-of-day with a non-traditional, now analog artistic panel of digital electronic visual displays
US6381022B1 (en) 1992-01-22 2002-04-30 Northeastern University Light modulating device
US6002829A (en) 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
JPH05281479A (en) 1992-03-31 1993-10-29 Nippon Steel Corp Display device
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
WO1993021663A1 (en) 1992-04-08 1993-10-28 Georgia Tech Research Corporation Process for lift-off of thin film materials from a growth substrate
US5311360A (en) 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
US5398170A (en) 1992-05-18 1995-03-14 Lee; Song S. Optical-fiber display with intensive brightness
US5638084A (en) 1992-05-22 1997-06-10 Dielectric Systems International, Inc. Lighting-independent color video display
JPH06214169A (en) 1992-06-08 1994-08-05 Texas Instr Inc <Ti> Controllable optical and periodic surface filter
US5818095A (en) 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
GB2269697A (en) 1992-08-11 1994-02-16 Sharp Kk Display device
US5293272A (en) 1992-08-24 1994-03-08 Physical Optics Corporation High finesse holographic fabry-perot etalon and method of fabricating
US5339179A (en) 1992-10-01 1994-08-16 International Business Machines Corp. Edge-lit transflective non-emissive display with angled interface means on both sides of light conducting panel
US5648860A (en) 1992-10-09 1997-07-15 Ag Technology Co., Ltd. Projection type color liquid crystal optical apparatus
US5604607A (en) 1992-10-19 1997-02-18 Eastman Kodak Company Light concentrator system
US5671314A (en) 1993-01-15 1997-09-23 Sisters Of Prividence In Oregon Illuminator devices for ultraviolet light delivery and methods of making same
JPH06230410A (en) 1993-01-29 1994-08-19 Victor Co Of Japan Ltd Spatial optical modulation element
JP2823470B2 (en) 1993-03-09 1998-11-11 シャープ株式会社 Optical scanning device, display device using the same, and image information input / output device
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
JPH06265870A (en) 1993-03-17 1994-09-22 Fujitsu Ltd Formation of color filter for liquid crystal display plate
GB2278222A (en) 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
US5481385A (en) 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5365283A (en) 1993-07-19 1994-11-15 Texas Instruments Incorporated Color phase control for projection display using spatial light modulator
US5673139A (en) 1993-07-19 1997-09-30 Medcom, Inc. Microelectromechanical television scanning device and method for making the same
DE69424741T2 (en) 1993-10-26 2000-11-30 Matsushita Electric Ind Co Ltd Device for three-dimensional image display
US5452024A (en) 1993-11-01 1995-09-19 Texas Instruments Incorporated DMD display system
EP0727823B1 (en) 1993-11-05 2007-03-21 Citizen Watch Co. Ltd. Solar battery device and its manufacture
ES2132593T3 (en) 1993-11-15 1999-08-16 Allied Signal Inc OPTICAL ELEMENT FOR USE IN A NETWORK OF OPTICAL ELEMENTS IN A VISUAL PRESENTATION ARRANGEMENT.
US5517347A (en) 1993-12-01 1996-05-14 Texas Instruments Incorporated Direct view deformable mirror device
US5448314A (en) 1994-01-07 1995-09-05 Texas Instruments Method and apparatus for sequential color imaging
US5500761A (en) 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
DE4407067C2 (en) 1994-03-03 2003-06-18 Unaxis Balzers Ag Dielectric interference filter system, LCD display and CCD arrangement as well as method for producing a dielectric interference filter system
US7123216B1 (en) * 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US20010003487A1 (en) 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US6040937A (en) 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7138984B1 (en) 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
US7460291B2 (en) 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US5805117A (en) 1994-05-12 1998-09-08 Samsung Electronics Co., Ltd. Large area tiled modular display system
JPH0850283A (en) 1994-05-31 1996-02-20 Sanyo Electric Co Ltd Liquid crystal display panel
JPH0818990A (en) 1994-06-30 1996-01-19 Canon Inc Color image projecting device
WO1996002862A1 (en) 1994-07-15 1996-02-01 Matsushita Electric Industrial Co., Ltd. Head-up display apparatus, liquid crystal display panel and production method thereof
US5636052A (en) 1994-07-29 1997-06-03 Lucent Technologies Inc. Direct view display based on a micromechanical modulation
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
EP0784860A4 (en) 1994-09-15 1998-11-18 Panocorp Display Systems Inc Electronic fluorescent display system with simplified multiple electrode structure and its processing
JPH0894992A (en) 1994-09-22 1996-04-12 Casio Comput Co Ltd Liquid crystal display element
US5619059A (en) 1994-09-28 1997-04-08 National Research Council Of Canada Color deformable mirror device having optical thin film interference color coatings
US6560018B1 (en) 1994-10-27 2003-05-06 Massachusetts Institute Of Technology Illumination system for transmissive light valve displays
JP3071658B2 (en) 1994-11-02 2000-07-31 シャープ株式会社 Liquid crystal display device
JPH08136910A (en) 1994-11-07 1996-05-31 Hitachi Ltd Color liquid crystal display device and its production
US5474865A (en) 1994-11-21 1995-12-12 Sematech, Inc. Globally planarized binary optical mask using buried absorbers
US5815229A (en) 1994-11-21 1998-09-29 Proxima Corporation Microlens imbedded liquid crystal projection panel including thermal insulation layer
JP2916887B2 (en) 1994-11-29 1999-07-05 キヤノン株式会社 Electron emitting element, electron source, and method of manufacturing image forming apparatus
JP3065494B2 (en) 1994-12-02 2000-07-17 東芝ライテック株式会社 Fluorescent lamp and color liquid crystal display using the same
US5550373A (en) 1994-12-30 1996-08-27 Honeywell Inc. Fabry-Perot micro filter-detector
JPH08189990A (en) 1995-01-10 1996-07-23 Mitsubishi Heavy Ind Ltd Reactor fuel assembly
US5636185A (en) 1995-03-10 1997-06-03 Boit Incorporated Dynamically changing liquid crystal display timekeeping apparatus
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
US5886688A (en) 1995-06-02 1999-03-23 National Semiconductor Corporation Integrated solar panel and liquid crystal display for portable computer or the like
US6046840A (en) 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5835256A (en) 1995-06-19 1998-11-10 Reflectivity, Inc. Reflective spatial light modulator with encapsulated micro-mechanical elements
US6080467A (en) 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
US6712481B2 (en) 1995-06-27 2004-03-30 Solid State Opto Limited Light emitting panel assemblies
CN1145835C (en) 1995-07-17 2004-04-14 精工爱普生株式会社 Reflection type color liquid crystal device and electronic appliance using the same
JP2728041B2 (en) 1995-08-30 1998-03-18 日本電気株式会社 LCD panel
US5932309A (en) 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US5739945A (en) 1995-09-29 1998-04-14 Tayebati; Parviz Electrically tunable optical filter utilizing a deformable multi-layer mirror
US6324192B1 (en) 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same
EP0801765A1 (en) 1995-11-02 1997-10-22 Koninklijke Philips Electronics N.V. Picture display device
WO1997017628A1 (en) 1995-11-06 1997-05-15 Etalon, Inc. Interferometric modulation
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
JP3442918B2 (en) 1995-11-09 2003-09-02 シャープ株式会社 Thin-film electroluminescence panel
US5933183A (en) 1995-12-12 1999-08-03 Fuji Photo Film Co., Ltd. Color spatial light modulator and color printer using the same
US5737115A (en) 1995-12-15 1998-04-07 Xerox Corporation Additive color tristate light valve twisting ball display
JP3799092B2 (en) 1995-12-29 2006-07-19 アジレント・テクノロジーズ・インク Light modulation device and display device
US5771321A (en) 1996-01-04 1998-06-23 Massachusetts Institute Of Technology Micromechanical optical switch and flat panel display
EP0786911B1 (en) 1996-01-26 2003-09-10 Sharp Kabushiki Kaisha Autostereoscopic display
GB2309609A (en) 1996-01-26 1997-07-30 Sharp Kk Observer tracking autostereoscopic directional display
JP3869488B2 (en) 1996-04-17 2007-01-17 大日本印刷株式会社 Image display device using hologram color filter
WO1997044707A2 (en) 1996-05-24 1997-11-27 Digital D.J. Incorporated Liquid crystal display device with integrated solar power source and antenna
DE19622748A1 (en) 1996-06-05 1997-12-11 Forschungszentrum Juelich Gmbh Interference filter based on porous silicon
JP3145309B2 (en) 1996-06-12 2001-03-12 富士通株式会社 Method of preventing near-infrared emission from flat display device and plasma display panel
US5751492A (en) 1996-06-14 1998-05-12 Eastman Kodak Company Diffractive/Refractive lenslet array incorporating a second aspheric surface
KR100213968B1 (en) 1996-07-15 1999-08-02 구자홍 Liquid crystal display device
US5710656A (en) 1996-07-30 1998-01-20 Lucent Technologies Inc. Micromechanical optical modulator having a reduced-mass composite membrane
GB2315902A (en) 1996-08-01 1998-02-11 Sharp Kk LIquid crystal device
US5975703A (en) 1996-09-30 1999-11-02 Digital Optics International Image projection system
JPH09189910A (en) 1996-10-28 1997-07-22 Seiko Epson Corp Color display device
US6094285A (en) 1996-12-04 2000-07-25 Trw Inc. All optical RF signal channelizer
US5868480A (en) 1996-12-17 1999-02-09 Compaq Computer Corporation Image projection apparatus for producing an image supplied by parallel transmitted colored light
JPH10186249A (en) 1996-12-24 1998-07-14 Casio Comput Co Ltd Display device
GB2321532A (en) 1997-01-22 1998-07-29 Sharp Kk Multi-colour reflector device and display
US5981112A (en) 1997-01-24 1999-11-09 Eastman Kodak Company Method of making color filter arrays
US6130732A (en) 1997-01-31 2000-10-10 Xerox Corporation Paper-white reflective display and methods of forming the same
FR2760559B1 (en) 1997-03-07 1999-05-28 Sextant Avionique LIQUID CRYSTAL MATRIX SCREEN WITH DISSYMMETRICAL COLORED PIXELS
US6137904A (en) 1997-04-04 2000-10-24 Sarnoff Corporation Method and apparatus for assessing the visibility of differences between two signal sequences
EP0879991A3 (en) 1997-05-13 1999-04-21 Matsushita Electric Industrial Co., Ltd. Illuminating system
JP3378465B2 (en) 1997-05-16 2003-02-17 株式会社東芝 Light emitting device
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
JPH112764A (en) 1997-06-10 1999-01-06 Sharp Corp Optical opening and closing device, display device and manufacture of optical opening and closing device
US6259082B1 (en) 1997-07-31 2001-07-10 Rohm Co., Ltd. Image reading apparatus
JPH1164882A (en) 1997-08-12 1999-03-05 Matsushita Electric Ind Co Ltd Reflection type liquid crystal panel and its production
US6031653A (en) 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
JPH11112819A (en) 1997-09-30 1999-04-23 Fuji Photo Film Co Ltd Color conversion lookup table, preparation method and device therefor and color conversion method and device for image using the same
US6088102A (en) 1997-10-31 2000-07-11 Silicon Light Machines Display apparatus including grating light-valve array and interferometric optical system
US6285424B1 (en) 1997-11-07 2001-09-04 Sumitomo Chemical Company, Limited Black mask, color filter and liquid crystal display
FI107844B (en) 1997-11-07 2001-10-15 Nokia Display Products Oy Method for Adjusting Color Temperature in Backlit LCD and Backlit LCD
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US6028690A (en) 1997-11-26 2000-02-22 Texas Instruments Incorporated Reduced micromirror mirror gaps for improved contrast ratio
US6492065B2 (en) 1997-12-05 2002-12-10 Victor Company Of Japan, Limited Hologram color filter, production method of the same hologram color filter and space light modulating apparatus using the same hologram color filter
JPH11174234A (en) 1997-12-05 1999-07-02 Victor Co Of Japan Ltd Hologram color filter, manufacture of hologram color filter and spatial light modulation device using the same
JPH11211999A (en) 1998-01-28 1999-08-06 Teijin Ltd Optical modulating element and display device
US5914804A (en) 1998-01-28 1999-06-22 Lucent Technologies Inc Double-cavity micromechanical optical modulator with plural multilayer mirrors
US6278135B1 (en) 1998-02-06 2001-08-21 General Electric Company Green-light emitting phosphors and light sources using the same
US6800378B2 (en) 1998-02-19 2004-10-05 3M Innovative Properties Company Antireflection films for use with displays
JPH11258558A (en) 1998-03-13 1999-09-24 Fuji Photo Film Co Ltd Planar display device
JP3824290B2 (en) 1998-05-07 2006-09-20 富士写真フイルム株式会社 Array type light modulation element, array type exposure element, flat display, and method for driving array type light modulation element
US6195196B1 (en) 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
KR19990074812A (en) 1998-03-14 1999-10-05 윤종용 Compatible optical pickup device
CN1142597C (en) 1998-03-25 2004-03-17 Tdk株式会社 Solar cell module
JP3279265B2 (en) 1998-03-26 2002-04-30 株式会社エム・アール・システム研究所 Image display device
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
JP4106735B2 (en) 1998-04-13 2008-06-25 凸版印刷株式会社 Reflective display with solar cells
US6967779B2 (en) 1998-04-15 2005-11-22 Bright View Technologies, Inc. Micro-lens array with precisely aligned aperture mask and methods of producing same
JP4066503B2 (en) 1998-04-15 2008-03-26 凸版印刷株式会社 Reflective display with solar cells
JP4520545B2 (en) 1998-04-17 2010-08-04 セイコーインスツル株式会社 Reflective liquid crystal display device and manufacturing method thereof
US6282010B1 (en) 1998-05-14 2001-08-28 Texas Instruments Incorporated Anti-reflective coatings for spatial light modulators
KR100398755B1 (en) 1998-06-02 2003-09-19 니폰샤신인사츠가부시키가이샤 Front light-combined touch panel device
JPH11355797A (en) 1998-06-04 1999-12-24 Olympus Optical Co Ltd Liquid crystal color display device
WO1999064912A1 (en) 1998-06-05 1999-12-16 Seiko Epson Corporation Light source and display device
KR100357315B1 (en) 1998-06-25 2002-10-19 시티즌 도케이 가부시키가이샤 Reflective liquid crystal display
US6900868B2 (en) 1998-07-07 2005-05-31 Fujitsu Display Technologies Corporation Liquid crystal display device
TW523627B (en) 1998-07-14 2003-03-11 Hitachi Ltd Liquid crystal display device
GB2340281A (en) 1998-08-04 2000-02-16 Sharp Kk A reflective liquid crystal display device
US6034813A (en) 1998-08-24 2000-03-07 Southwall Technologies, Inc. Wavelength selective applied films with glare control
JP2000075267A (en) 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2000075293A (en) 1998-09-02 2000-03-14 Matsushita Electric Ind Co Ltd Illuminator, touch panel with illumination and reflective liquid crystal display device
US6113239A (en) 1998-09-04 2000-09-05 Sharp Laboratories Of America, Inc. Projection display system for reflective light valves
JP2000089733A (en) 1998-09-17 2000-03-31 Matsushita Electric Ind Co Ltd Liquid crystal display device
US6421054B1 (en) 1998-10-07 2002-07-16 Microsoft Corporation Methods and apparatus for performing grid fitting and hinting operations
US6323834B1 (en) 1998-10-08 2001-11-27 International Business Machines Corporation Micromechanical displays and fabrication method
US6288824B1 (en) 1998-11-03 2001-09-11 Alex Kastalsky Display device based on grating electromechanical shutter
JP3871176B2 (en) 1998-12-14 2007-01-24 シャープ株式会社 Backlight device and liquid crystal display device
JP2000193933A (en) 1998-12-25 2000-07-14 Matsushita Electric Works Ltd Display device
US6188519B1 (en) 1999-01-05 2001-02-13 Kenneth Carlisle Johnson Bigrating light valve
FR2788456B1 (en) 1999-01-15 2001-02-16 Saint Gobain Vitrage PROCESS FOR OBTAINING A PATTERN ON A SUBSTRATE OF GLASS MATERIAL
JP2000214804A (en) 1999-01-20 2000-08-04 Fuji Photo Film Co Ltd Light modulation element, aligner, and planar display
WO2000046633A1 (en) 1999-02-01 2000-08-10 Seiko Epson Corporation Display device, electronic device and light guide
JP3504174B2 (en) 1999-02-09 2004-03-08 株式会社東芝 Reflective display
US7683926B2 (en) 1999-02-25 2010-03-23 Visionsense Ltd. Optical device
KR20010043176A (en) 1999-03-02 2001-05-25 모리시타 요이찌 Illuminating device and display device provided with the device
JP4377984B2 (en) 1999-03-10 2009-12-02 キヤノン株式会社 Color filter, manufacturing method thereof, and liquid crystal element using the color filter
JP3471001B2 (en) 1999-04-16 2003-11-25 富士写真光機株式会社 Illumination optical system and projection display device using the same
JP3657143B2 (en) 1999-04-27 2005-06-08 シャープ株式会社 Solar cell and manufacturing method thereof
TW477897B (en) 1999-05-07 2002-03-01 Sharp Kk Liquid crystal display device, method and device to measure cell thickness of liquid crystal display device, and phase difference plate using the method thereof
KR100715133B1 (en) 1999-05-12 2007-05-10 코닌클리케 필립스 일렉트로닉스 엔.브이. White color selection for display on display device
JP3402253B2 (en) 1999-05-14 2003-05-06 日本電気株式会社 Light modulation element, light source and display device using the same, and method of driving the same
JP4328919B2 (en) 1999-05-21 2009-09-09 株式会社トプコン Target device
FI107085B (en) 1999-05-28 2001-05-31 Ics Intelligent Control System light Panel
US6201633B1 (en) 1999-06-07 2001-03-13 Xerox Corporation Micro-electromechanical based bistable color display sheets
GB2350963A (en) 1999-06-09 2000-12-13 Secr Defence Holographic Displays
US6597419B1 (en) 1999-07-02 2003-07-22 Minolta Co., Ltd. Liquid crystal display including filter means with 10-70% transmittance in the selective reflection wavelength range
US20070195392A1 (en) 1999-07-08 2007-08-23 Jds Uniphase Corporation Adhesive Chromagram And Method Of Forming Thereof
US6862029B1 (en) 1999-07-27 2005-03-01 Hewlett-Packard Development Company, L.P. Color display system
KR20010030164A (en) 1999-08-31 2001-04-16 고지마 아끼로, 오가와 다이스께 Touch panel and display device using the same
US6448709B1 (en) 1999-09-15 2002-09-10 Industrial Technology Research Institute Field emission display panel having diode structure and method for fabricating
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
JP3457591B2 (en) 1999-10-08 2003-10-20 インターナショナル・ビジネス・マシーンズ・コーポレーション Liquid crystal display
US6518944B1 (en) 1999-10-25 2003-02-11 Kent Displays, Inc. Combined cholesteric liquid crystal display and solar cell assembly device
JP3805189B2 (en) 2000-10-30 2006-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Liquid crystal display
EP1147509A1 (en) 1999-11-12 2001-10-24 Koninklijke Philips Electronics N.V. Liquid crystal display device with high brightness
US6549338B1 (en) 1999-11-12 2003-04-15 Texas Instruments Incorporated Bandpass filter to reduce thermal impact of dichroic light shift
US6717348B2 (en) 1999-12-09 2004-04-06 Fuji Photo Film Co., Ltd. Display apparatus
JP3987257B2 (en) 1999-12-10 2007-10-03 ローム株式会社 Liquid crystal display
KR100679095B1 (en) 1999-12-10 2007-02-05 엘지.필립스 엘시디 주식회사 Transparent Type Display Device Using Micro Light Modulator
JP3524831B2 (en) 1999-12-15 2004-05-10 シャープ株式会社 Reflective and transmissive liquid crystal display
US6221687B1 (en) 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
JP2001188230A (en) 1999-12-28 2001-07-10 Fuji Photo Film Co Ltd Liquid crystal display device
JP2001249287A (en) 1999-12-30 2001-09-14 Texas Instr Inc <Ti> Method for operating bistabl micro mirror array
US6519073B1 (en) 2000-01-10 2003-02-11 Lucent Technologies Inc. Micromechanical modulator and methods for fabricating the same
US6700322B1 (en) 2000-01-27 2004-03-02 General Electric Company Light source with organic layer and photoluminescent layer
JP2001215501A (en) 2000-02-02 2001-08-10 Fuji Photo Film Co Ltd Illumining device and liquid crystal display device
WO2001059851A1 (en) 2000-02-09 2001-08-16 Nippon Leiz Corporation Light source
JP4015342B2 (en) 2000-03-03 2007-11-28 ローム株式会社 LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE HAVING THE SAME
CA2401459A1 (en) 2000-03-06 2001-09-13 Teledyne Lighting And Display Products, Inc. Lighting apparatus having quantum dot layer
JP4856805B2 (en) 2000-03-31 2012-01-18 スリーエム イノベイティブ プロパティズ カンパニー Optical laminate
US6400738B1 (en) 2000-04-14 2002-06-04 Agilent Technologies, Inc. Tunable Fabry-Perot filters and lasers
JP3736461B2 (en) 2000-04-21 2006-01-18 セイコーエプソン株式会社 Electro-optical device, projection display device, and method of manufacturing electro-optical device
TW528169U (en) 2000-05-04 2003-04-11 Koninkl Philips Electronics Nv Assembly of a display device and an illumination system
JP2003532269A (en) 2000-05-04 2003-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Image display device and method of manufacturing photoconductor in the image display device
US6570584B1 (en) 2000-05-15 2003-05-27 Eastman Kodak Company Broad color gamut display
JP3904841B2 (en) 2000-05-15 2007-04-11 シャープ株式会社 Liquid crystal display device, electronic device using the same, and liquid crystal display method
US6480634B1 (en) 2000-05-18 2002-11-12 Silicon Light Machines Image projector including optical fiber which couples laser illumination to light modulator
JP2001345458A (en) 2000-05-30 2001-12-14 Kyocera Corp Solar cell
JP2001343514A (en) 2000-05-30 2001-12-14 Victor Co Of Japan Ltd Hologram color filter
JP2001356701A (en) 2000-06-15 2001-12-26 Fuji Photo Film Co Ltd Optical element, light source unit and display device
US6598987B1 (en) 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
US7583335B2 (en) 2000-06-27 2009-09-01 Citizen Holdings Co., Ltd. Liquid crystal display device
FR2811139B1 (en) 2000-06-29 2003-10-17 Centre Nat Rech Scient OPTOELECTRONIC DEVICE WITH INTEGRATED WAVELENGTH FILTERING
JP2002025326A (en) 2000-07-13 2002-01-25 Seiko Epson Corp Light source device, lighting device, liquid crystal device, and electronic device
JP4460732B2 (en) 2000-07-21 2010-05-12 富士フイルム株式会社 Flat display device and exposure apparatus
US6853129B1 (en) 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device
KR20020010322A (en) 2000-07-29 2002-02-04 구본준, 론 위라하디락사 Display device using micro electro-mechanical system
US6795605B1 (en) 2000-08-01 2004-09-21 Cheetah Omni, Llc Micromechanical optical switch
JP2002062505A (en) 2000-08-14 2002-02-28 Canon Inc Projection type display deice and interference modulation element used therefor
JP2002062492A (en) 2000-08-15 2002-02-28 Canon Inc Projection optical system using interferometric modulation device
JP4392970B2 (en) 2000-08-21 2010-01-06 キヤノン株式会社 Display element using interferometric modulation element
US6570681B1 (en) 2000-08-25 2003-05-27 Actuality Systems, Inc. System and method for dynamic optical switching using a diffractive optical element
US6643069B2 (en) 2000-08-31 2003-11-04 Texas Instruments Incorporated SLM-base color projection display having multiple SLM's and multiple projection lenses
US6466354B1 (en) 2000-09-19 2002-10-15 Silicon Light Machines Method and apparatus for interferometric modulation of light
US6538813B1 (en) 2000-09-19 2003-03-25 Honeywell International Inc. Display screen with metallized tapered waveguides
GB2371119A (en) 2000-09-25 2002-07-17 Marconi Caswell Ltd Micro electro-mechanical systems
US6596419B1 (en) 2000-09-27 2003-07-22 Seagate Technology Llc Medium with a seed layer and a B2-structured underlayer
US6778513B2 (en) 2000-09-29 2004-08-17 Arraycomm, Inc. Method and apparatus for separting multiple users in a shared-channel communication system
JP3851538B2 (en) 2000-10-16 2006-11-29 シャープ株式会社 Image display apparatus and method, and image processing system
US7072086B2 (en) 2001-10-19 2006-07-04 Batchko Robert G Digital focus lens system
US6714565B1 (en) 2000-11-01 2004-03-30 Agilent Technologies, Inc. Optically tunable Fabry Perot microelectromechanical resonator
US6556338B2 (en) 2000-11-03 2003-04-29 Intpax, Inc. MEMS based variable optical attenuator (MBVOA)
US6643067B2 (en) 2000-11-22 2003-11-04 Seiko Epson Corporation Electro-optical device and electronic apparatus
US7307775B2 (en) 2000-12-07 2007-12-11 Texas Instruments Incorporated Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
JP2002174780A (en) 2000-12-08 2002-06-21 Stanley Electric Co Ltd Reflection type color display device
JP3551310B2 (en) 2000-12-20 2004-08-04 ミネベア株式会社 Touch panel for display device
JP4074977B2 (en) 2001-02-02 2008-04-16 ミネベア株式会社 Surface lighting device
JP2002229023A (en) 2001-02-05 2002-08-14 Rohm Co Ltd Color liquid crystal display device
JP4476505B2 (en) 2001-02-09 2010-06-09 シャープ株式会社 Liquid crystal display
JP2002245835A (en) 2001-02-15 2002-08-30 Minolta Co Ltd Illumination device, display device, and electronic equipment
AU2002250271A1 (en) 2001-03-02 2002-09-19 Massachusetts Institute Of Technology Methods and apparatus for diffractive optical processing using an actuatable structure
GB0105781D0 (en) 2001-03-08 2001-04-25 Dyson Ltd Wand assembly for a vacuum cleaner
US6700695B2 (en) 2001-03-14 2004-03-02 3M Innovative Properties Company Microstructured segmented electrode film for electronic displays
JP3888075B2 (en) 2001-03-23 2007-02-28 セイコーエプソン株式会社 Optical switching element, optical switching device, and image display apparatus
JP2002297044A (en) 2001-03-29 2002-10-09 Toshiba Corp Mobile display for narrow angle of view, manufacturing method for filter used in the display, and portable terminal device
US6630786B2 (en) 2001-03-30 2003-10-07 Candescent Technologies Corporation Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance
JP2002314138A (en) 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
US6552842B2 (en) 2001-04-13 2003-04-22 Ut-Battelle, Llc Reflective coherent spatial light modulator
JP2002313121A (en) 2001-04-16 2002-10-25 Nitto Denko Corp Luminaire with touch panel and reflective liquid crystal display device
US6697403B2 (en) 2001-04-17 2004-02-24 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting apparatus using the same
JP2002328313A (en) 2001-05-01 2002-11-15 Sony Corp Optical switching element, its manufacturing method, and image display device
GB2375184A (en) 2001-05-02 2002-11-06 Marconi Caswell Ltd Wavelength selectable optical filter
JP4049267B2 (en) 2001-06-01 2008-02-20 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Compact lighting system and display device
US20020191130A1 (en) 2001-06-19 2002-12-19 Wei-Chen Liang Color display utilizing combinations of four colors
GB0114862D0 (en) 2001-06-19 2001-08-08 Secr Defence Image replication system
US6822628B2 (en) 2001-06-28 2004-11-23 Candescent Intellectual Property Services, Inc. Methods and systems for compensating row-to-row brightness variations of a field emission display
US20030001985A1 (en) 2001-06-28 2003-01-02 Steve Doe Electronic display
JP4526223B2 (en) 2001-06-29 2010-08-18 シャープ株式会社 Wiring member, solar cell module and manufacturing method thereof
JP3760810B2 (en) 2001-07-06 2006-03-29 ソニー株式会社 Light modulation element, GLV device, and laser display
JP2003021821A (en) 2001-07-09 2003-01-24 Toshiba Corp Liquid crystal unit and its driving method
JP4032216B2 (en) 2001-07-12 2008-01-16 ソニー株式会社 OPTICAL MULTILAYER STRUCTURE, ITS MANUFACTURING METHOD, OPTICAL SWITCHING DEVICE, AND IMAGE DISPLAY DEVICE
US6594059B2 (en) 2001-07-16 2003-07-15 Axsun Technologies, Inc. Tilt mirror fabry-perot filter system, fabrication process therefor, and method of operation thereof
JP3909812B2 (en) 2001-07-19 2007-04-25 富士フイルム株式会社 Display element and exposure element
US7595811B2 (en) 2001-07-26 2009-09-29 Seiko Epson Corporation Environment-complaint image display system, projector, and program
JP2003057653A (en) 2001-08-21 2003-02-26 Citizen Watch Co Ltd Liquid crystal display device
JP2003070017A (en) 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd Display device
TW574586B (en) 2001-09-19 2004-02-01 Optrex Kk Liquid crystal display element
JP4050119B2 (en) 2001-10-02 2008-02-20 シャープ株式会社 Liquid crystal display
KR20030029769A (en) 2001-10-10 2003-04-16 엘지.필립스 엘시디 주식회사 A liquid crystal display device having a light blocking metal layer
NZ514500A (en) 2001-10-11 2004-06-25 Deep Video Imaging Ltd A multiplane visual display unit with a transparent emissive layer disposed between two display planes
JP2003131215A (en) 2001-10-29 2003-05-08 Optrex Corp Reflection type display device
US6870581B2 (en) 2001-10-30 2005-03-22 Sharp Laboratories Of America, Inc. Single panel color video projection display using reflective banded color falling-raster illumination
JP2005533365A (en) 2001-11-07 2005-11-04 アプライド マテリアルズ インコーポレイテッド Maskless photon-electron spot grating array printing device
KR100774256B1 (en) 2001-11-08 2007-11-08 엘지.필립스 엘시디 주식회사 liquid crystal display devices
US7128459B2 (en) 2001-11-12 2006-10-31 Nidec Copal Corporation Light-guide plate and method for manufacturing the same
KR100440405B1 (en) 2001-11-19 2004-07-14 삼성전자주식회사 Device for controlling output of video data using double buffering
US20030095401A1 (en) 2001-11-20 2003-05-22 Palm, Inc. Non-visible light display illumination system and method
JP3941548B2 (en) 2002-03-06 2007-07-04 セイコーエプソン株式会社 Liquid crystal display panel, liquid crystal display panel substrate and electronic device
EP2420873A3 (en) 2001-12-14 2013-01-16 QUALCOMM MEMS Technologies, Inc. Uniform illumination system
JP2003186008A (en) 2001-12-14 2003-07-03 Dainippon Printing Co Ltd Sheet for front light and display device using the same
WO2003054797A2 (en) 2001-12-19 2003-07-03 Actuality Systems, Inc. A radiation conditioning system
US20040051724A1 (en) 2002-09-13 2004-03-18 Elliott Candice Hellen Brown Four color arrangements of emitters for subpixel rendering
JP2003209855A (en) 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Image observing apparatus
US6577429B1 (en) 2002-01-15 2003-06-10 Eastman Kodak Company Laser projection display system
US20030136759A1 (en) 2002-01-18 2003-07-24 Cabot Microelectronics Corp. Microlens array fabrication using CMP
JP3999081B2 (en) 2002-01-30 2007-10-31 シャープ株式会社 Liquid crystal display
JP4162900B2 (en) 2002-02-05 2008-10-08 アルプス電気株式会社 Illumination device and liquid crystal display device
US7203002B2 (en) 2002-02-12 2007-04-10 Nitto Denko Corporation Polarizer, polarizing plate, liquid crystal display, and image display, and a method for producing the polarizer
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
JP2003248181A (en) 2002-02-25 2003-09-05 Ricoh Co Ltd Reflective spatial light modulator
JP2003322824A (en) 2002-02-26 2003-11-14 Namco Ltd Stereoscopic video display device and electronic apparatus
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
JP2003255338A (en) 2002-02-28 2003-09-10 Mitsubishi Electric Corp Liquid crystal display
US7283112B2 (en) 2002-03-01 2007-10-16 Microsoft Corporation Reflective microelectrical mechanical structure (MEMS) optical modulator and optical display system
AU2003216481A1 (en) 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
JP2003255344A (en) 2002-03-05 2003-09-10 Citizen Electronics Co Ltd Front light for color liquid crystal display
US6768555B2 (en) 2002-03-21 2004-07-27 Industrial Technology Research Institute Fabry-Perot filter apparatus with enhanced optical discrimination
US6965468B2 (en) 2003-07-03 2005-11-15 Reflectivity, Inc Micromirror array having reduced gap between adjacent micromirrors of the micromirror array
TW554211B (en) 2002-04-10 2003-09-21 Au Optronics Corp Light guiding plate of controlling light emission angle and its liquid crystal display apparatus
KR20030081662A (en) 2002-04-12 2003-10-22 삼성에스디아이 주식회사 Solar cell with double layer antireflection coating
JP2003307734A (en) 2002-04-18 2003-10-31 Brother Ind Ltd Liquid crystal display device and printer having the same
JP2003315694A (en) 2002-04-25 2003-11-06 Fuji Photo Film Co Ltd Image display element and image display device using the same
JP2003315732A (en) 2002-04-25 2003-11-06 Fuji Photo Film Co Ltd Image display device
US6717650B2 (en) 2002-05-01 2004-04-06 Anvik Corporation Maskless lithography with sub-pixel resolution
DE10221301B4 (en) 2002-05-14 2004-07-29 Junghans Uhren Gmbh Device with solar cell arrangement and liquid crystal display
US6689949B2 (en) 2002-05-17 2004-02-10 United Innovations, Inc. Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies
KR100433229B1 (en) 2002-05-17 2004-05-28 엘지.필립스 엘시디 주식회사 Liquid Crystal Display and Method of Fabricating the same
JP4123415B2 (en) 2002-05-20 2008-07-23 ソニー株式会社 Solid-state imaging device
US20050179675A1 (en) 2002-05-27 2005-08-18 Koninklijke Phillips Electonics N.C. Pixel fault masking
JP4170677B2 (en) 2002-06-07 2008-10-22 大日本印刷株式会社 Light source device and display
JP4048844B2 (en) 2002-06-17 2008-02-20 カシオ計算機株式会社 Surface light source and display device using the same
US6741377B2 (en) 2002-07-02 2004-05-25 Iridigm Display Corporation Device having a light-absorbing mask and a method for fabricating same
US7019734B2 (en) 2002-07-17 2006-03-28 3M Innovative Properties Company Resistive touch sensor having microstructured conductive layer
JP4094919B2 (en) 2002-07-18 2008-06-04 東北パイオニア株式会社 Organic light emitting display
US6738194B1 (en) 2002-07-22 2004-05-18 The United States Of America As Represented By The Secretary Of The Navy Resonance tunable optical filter
US7019876B2 (en) 2002-07-29 2006-03-28 Hewlett-Packard Development Company, L.P. Micro-mirror with rotor structure
JP2004062099A (en) 2002-07-31 2004-02-26 Dainippon Printing Co Ltd Visibility improving sheet, display using the same and a transmission type projection screen
TWI266106B (en) 2002-08-09 2006-11-11 Sanyo Electric Co Display device with a plurality of display panels
KR100850589B1 (en) 2002-08-19 2008-08-05 비오이 하이디스 테크놀로지 주식회사 Fringe field switching mode liquid crystal display device
US7106509B2 (en) 2002-09-06 2006-09-12 Colorlink, Inc. Filter for enhancing vision and/or protecting the eyes and method of making a filter
JP4440523B2 (en) 2002-09-19 2010-03-24 大日本印刷株式会社 Organic EL display device by inkjet method, color filter manufacturing method, manufacturing device
JP4057871B2 (en) 2002-09-19 2008-03-05 東芝松下ディスプレイテクノロジー株式会社 Liquid crystal display
JP2004133430A (en) 2002-09-20 2004-04-30 Sony Corp Display element, display device, and micro lens array
JP4165165B2 (en) 2002-09-26 2008-10-15 セイコーエプソン株式会社 Liquid crystal display panel and electronic equipment
US7271790B2 (en) 2002-10-11 2007-09-18 Elcos Microdisplay Technology, Inc. Combined temperature and color-temperature control and compensation method for microdisplay systems
TW573170B (en) 2002-10-11 2004-01-21 Toppoly Optoelectronics Corp Dual-sided display liquid crystal panel
US6747785B2 (en) 2002-10-24 2004-06-08 Hewlett-Packard Development Company, L.P. MEMS-actuated color light modulator and methods
US7370185B2 (en) 2003-04-30 2008-05-06 Hewlett-Packard Development Company, L.P. Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers
TW200413776A (en) 2002-11-05 2004-08-01 Matsushita Electric Ind Co Ltd Display element and display using the same
JP2003255324A (en) 2002-11-18 2003-09-10 Seiko Epson Corp Liquid crystal display panel, substrate for liquid crystal display panel and electronic equipment
US6844959B2 (en) 2002-11-26 2005-01-18 Reflectivity, Inc Spatial light modulators with light absorbing areas
US6958846B2 (en) 2002-11-26 2005-10-25 Reflectivity, Inc Spatial light modulators with light absorbing areas
JP4140499B2 (en) 2002-11-29 2008-08-27 カシオ計算機株式会社 Communication terminal and program
US7230594B2 (en) 2002-12-16 2007-06-12 Eastman Kodak Company Color OLED display with improved power efficiency
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
JP2004205973A (en) 2002-12-26 2004-07-22 Fuji Photo Film Co Ltd Flat plane display element and method of driving the same
TW594155B (en) 2002-12-27 2004-06-21 Prime View Int Corp Ltd Optical interference type color display and optical interference modulator
JP2004212673A (en) 2002-12-27 2004-07-29 Fuji Photo Film Co Ltd Planar display device and its driving method
JP2004219843A (en) 2003-01-16 2004-08-05 Seiko Epson Corp Optical modulator, and display device and their manufacturing methods
US6930816B2 (en) 2003-01-17 2005-08-16 Fuji Photo Film Co., Ltd. Spatial light modulator, spatial light modulator array, image forming device and flat panel display
JP4397394B2 (en) 2003-01-24 2010-01-13 ディジタル・オプティクス・インターナショナル・コーポレイション High density lighting system
DE602004014250D1 (en) 2003-01-28 2008-07-17 Genoa Color Technologies Ltd SUBPIXEL ARRANGEMENT FOR DISPLAYS MORE THAN THREE PRIMARY COLORS
TW557395B (en) 2003-01-29 2003-10-11 Yen Sun Technology Corp Optical interference type reflection panel and the manufacturing method thereof
TW577549U (en) 2003-01-30 2004-02-21 Toppoly Optoelectronics Corp Back light module for flat display device
JP2004253199A (en) 2003-02-19 2004-09-09 Toyota Industries Corp Planar luminescent device, its manufacturing method, and liquid crystal display device
US7176861B2 (en) 2003-02-24 2007-02-13 Barco N.V. Pixel structure with optimized subpixel sizes for emissive displays
TW200417806A (en) 2003-03-05 2004-09-16 Prime View Int Corp Ltd A structure of a light-incidence electrode of an optical interference display plate
US20050120553A1 (en) 2003-12-08 2005-06-09 Brown Dirk D. Method for forming MEMS grid array connector
TWI226504B (en) 2003-04-21 2005-01-11 Prime View Int Co Ltd A structure of an interference display cell
TWI224235B (en) 2003-04-21 2004-11-21 Prime View Int Co Ltd A method for fabricating an interference display cell
TW567355B (en) 2003-04-21 2003-12-21 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TW594360B (en) 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
JP3918765B2 (en) 2003-04-21 2007-05-23 セイコーエプソン株式会社 Liquid crystal display device and electronic device
US7072093B2 (en) 2003-04-30 2006-07-04 Hewlett-Packard Development Company, L.P. Optical interference pixel display with charge control
JP3829819B2 (en) 2003-05-08 2006-10-04 ソニー株式会社 Holographic stereogram creation device
WO2004106983A2 (en) 2003-05-22 2004-12-09 Optical Research Associates Illumination in optical systems
JP4338442B2 (en) 2003-05-23 2009-10-07 富士フイルム株式会社 Manufacturing method of transmissive light modulation element
US6811267B1 (en) 2003-06-09 2004-11-02 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
US20050024890A1 (en) 2003-06-19 2005-02-03 Alps Electric Co., Ltd. Light guide plate, surface light-emitting unit, and liquid crystal display device and method for manufacturing the same
US6822780B1 (en) 2003-06-23 2004-11-23 Northrop Grumman Corporation Vertically stacked spatial light modulator with multi-bit phase resolution
US6917469B2 (en) 2003-06-27 2005-07-12 Japan Acryace Co., Ltd. Light diffusing laminated plate
DE10329917B4 (en) 2003-07-02 2005-12-22 Schott Ag Coated cover glass for photovoltaic modules
US20070201234A1 (en) 2003-07-21 2007-08-30 Clemens Ottermann Luminous element
US7190380B2 (en) 2003-09-26 2007-03-13 Hewlett-Packard Development Company, L.P. Generating and displaying spatially offset sub-frames
TWI305599B (en) 2003-08-15 2009-01-21 Qualcomm Mems Technologies Inc Interference display panel and method thereof
TWI251712B (en) 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TW200506479A (en) 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TW593127B (en) 2003-08-18 2004-06-21 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
US6880959B2 (en) 2003-08-25 2005-04-19 Timothy K. Houston Vehicle illumination guide
US20050057442A1 (en) 2003-08-28 2005-03-17 Olan Way Adjacent display of sequential sub-images
JP3979982B2 (en) 2003-08-29 2007-09-19 シャープ株式会社 Interferometric modulator and display device
KR101129113B1 (en) 2003-09-01 2012-03-23 다이니폰 인사츠 가부시키가이샤 Antireflection film for plasma display
JP2005084331A (en) 2003-09-08 2005-03-31 Fuji Photo Film Co Ltd Display device, image display apparatus, and display method
JP2007506175A (en) 2003-09-22 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Touch input screen using light guide
US6982820B2 (en) 2003-09-26 2006-01-03 Prime View International Co., Ltd. Color changeable pixel
KR20060089723A (en) 2003-09-30 2006-08-09 코닌클리케 필립스 일렉트로닉스 엔.브이. Multiple primary color display system and method of display using multiple primary colors
US7598961B2 (en) 2003-10-21 2009-10-06 Samsung Electronics Co., Ltd. method and apparatus for converting from a source color space to a target color space
US7303645B2 (en) 2003-10-24 2007-12-04 Miradia Inc. Method and system for hermetically sealing packages for optics
US7218812B2 (en) 2003-10-27 2007-05-15 Rpo Pty Limited Planar waveguide with patterned cladding and method for producing the same
US7198873B2 (en) 2003-11-18 2007-04-03 Asml Netherlands B.V. Lithographic processing optimization based on hypersampled correlations
TW200524236A (en) 2003-12-01 2005-07-16 Nl Nanosemiconductor Gmbh Optoelectronic device incorporating an interference filter
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US7161728B2 (en) 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7456805B2 (en) 2003-12-18 2008-11-25 3M Innovative Properties Company Display including a solid state light device and method using same
US6972827B2 (en) 2003-12-19 2005-12-06 Eastman Kodak Company Transflective film and display
ATE552521T1 (en) 2003-12-19 2012-04-15 Barco Nv BROADBAND REFLECTIVE DISPLAY DEVICE
US20050271325A1 (en) 2004-01-22 2005-12-08 Anderson Michael H Liquid crystal waveguide having refractive shapes for dynamically controlling light
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7030554B2 (en) 2004-02-06 2006-04-18 Eastman Kodak Company Full-color organic display having improved blue emission
US20060110090A1 (en) 2004-02-12 2006-05-25 Panorama Flat Ltd. Apparatus, method, and computer program product for substrated/componentized waveguided goggle system
ATE470167T1 (en) 2004-02-13 2010-06-15 Nokia Corp PRODUCTION PROCESS OF A LIGHT GUIDE
TWI256941B (en) 2004-02-18 2006-06-21 Qualcomm Mems Technologies Inc A micro electro mechanical system display cell and method for fabricating thereof
US20050195370A1 (en) 2004-03-02 2005-09-08 Gore Makarand P. Transmissive/reflective light engine
US7119945B2 (en) 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
TW200530669A (en) 2004-03-05 2005-09-16 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7855824B2 (en) 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US7025464B2 (en) 2004-03-30 2006-04-11 Goldeneye, Inc. Projection display systems utilizing light emitting diodes and light recycling
US20050224694A1 (en) 2004-04-08 2005-10-13 Taiwan Semiconductor Manufacturing Co. Ltd. High efficiency microlens array
JP2005308871A (en) 2004-04-19 2005-11-04 Aterio Design Kk Interference color filter
US7091523B2 (en) 2004-05-13 2006-08-15 Eastman Kodak Company Color OLED device having improved performance
KR101148791B1 (en) 2004-06-30 2012-05-24 엘지디스플레이 주식회사 Tiled display device
US7213958B2 (en) 2004-06-30 2007-05-08 3M Innovative Properties Company Phosphor based illumination system having light guide and an interference reflector
CN100584033C (en) 2004-07-02 2010-01-20 皇家飞利浦电子股份有限公司 Color display and its control method
US7256922B2 (en) 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
JP2006023026A (en) 2004-07-08 2006-01-26 Aichi Mach Ind Co Ltd Flange structure
US7436389B2 (en) 2004-07-29 2008-10-14 Eugene J Mar Method and system for controlling the output of a diffractive light device
JP2006093104A (en) 2004-08-25 2006-04-06 Seiko Instruments Inc Lighting system, and display device using the same
JP4285373B2 (en) 2004-09-01 2009-06-24 セイコーエプソン株式会社 Microlens manufacturing method, microlens and microlens array, and electro-optical device and electronic apparatus
WO2006076051A1 (en) 2004-09-03 2006-07-20 Cp Kelco U.S., Inc. Stable aqueous suspension of insoluble protein
US20060066557A1 (en) 2004-09-27 2006-03-30 Floyd Philip D Method and device for reflective display with time sequential color illumination
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
TW200628833A (en) 2004-09-27 2006-08-16 Idc Llc Method and device for multistate interferometric light modulation
US7750886B2 (en) 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
US8362987B2 (en) 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7525730B2 (en) 2004-09-27 2009-04-28 Idc, Llc Method and device for generating white in an interferometric modulator display
US7911428B2 (en) 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7710632B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Display device having an array of spatial light modulators with integrated color filters
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US8102407B2 (en) 2004-09-27 2012-01-24 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US20060077126A1 (en) 2004-09-27 2006-04-13 Manish Kothari Apparatus and method for arranging devices into an interconnected array
US7317568B2 (en) 2004-09-27 2008-01-08 Idc, Llc System and method of implementation of interferometric modulators for display mirrors
US7807488B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US8031133B2 (en) 2004-09-27 2011-10-04 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US20060132383A1 (en) 2004-09-27 2006-06-22 Idc, Llc System and method for illuminating interferometric modulator display
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
US20060066586A1 (en) 2004-09-27 2006-03-30 Gally Brian J Touchscreens for displays
US7349141B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and post structures for interferometric modulation
SG155994A1 (en) 2004-09-27 2009-10-29 Idc Llc Method and device for manipulating color in a display
US7561323B2 (en) 2004-09-27 2009-07-14 Idc, Llc Optical films for directing light towards active areas of displays
US7928928B2 (en) 2004-09-27 2011-04-19 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing perceived color shift
US20060077148A1 (en) 2004-09-27 2006-04-13 Gally Brian J Method and device for manipulating color in a display
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7029944B1 (en) 2004-09-30 2006-04-18 Sharp Laboratories Of America, Inc. Methods of forming a microlens array over a substrate employing a CMP stop
JP4688131B2 (en) 2004-10-21 2011-05-25 株式会社リコー Optical deflection apparatus, optical deflection array, optical system, and image projection display apparatus
JP2006120571A (en) 2004-10-25 2006-05-11 Fujikura Ltd Lighting system
KR100735148B1 (en) 2004-11-22 2007-07-03 (주)케이디티 Backlight unit by phosphorescent diffusion sheet
JP4634129B2 (en) 2004-12-10 2011-02-16 三菱重工業株式会社 Light scattering film and optical device using the same
US20060130889A1 (en) 2004-12-22 2006-06-22 Motorola, Inc. Solar panel with optical films
US7339635B2 (en) 2005-01-14 2008-03-04 3M Innovative Properties Company Pre-stacked optical films with adhesive layer
TWI263098B (en) 2005-02-16 2006-10-01 Au Optronics Corp Backlight module
US7521666B2 (en) 2005-02-17 2009-04-21 Capella Microsystems Inc. Multi-cavity Fabry-Perot ambient light filter apparatus
US20060187676A1 (en) 2005-02-18 2006-08-24 Sharp Kabushiki Kaisha Light guide plate, light guide device, lighting device, light guide system, and drive circuit
US7616368B2 (en) 2005-02-23 2009-11-10 Pixtronix, Inc. Light concentrating reflective display methods and apparatus
US20060209012A1 (en) 2005-02-23 2006-09-21 Pixtronix, Incorporated Devices having MEMS displays
JP2006270021A (en) 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Laminated photoelectric conversion element
US7224512B2 (en) 2005-03-15 2007-05-29 Motorola, Inc. Microelectromechanical system optical apparatus and method
KR100681521B1 (en) 2005-04-06 2007-02-09 (주)케이디티 Backlight unit
US7346251B2 (en) 2005-04-18 2008-03-18 The Trustees Of Columbia University In The City Of New York Light emission using quantum dot emitters in a photonic crystal
US20060291769A1 (en) 2005-05-27 2006-12-28 Eastman Kodak Company Light emitting source incorporating vertical cavity lasers and other MEMS devices within an electro-optical addressing architecture
US20100079711A1 (en) 2005-06-23 2010-04-01 TPO Hong Holding Limited Liquid crystal display device equipped with a photovoltaic conversion function
EP2495212A3 (en) 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
KR100723681B1 (en) 2005-08-03 2007-05-30 (주)케이디티 Photoluminescent diffusion sheet
US7233722B2 (en) 2005-08-15 2007-06-19 General Display, Ltd. System and method for fiber optics based direct view giant screen flat panel display
US7771103B2 (en) 2005-09-20 2010-08-10 Guardian Industries Corp. Optical diffuser with IR and/or UV blocking coating
US20070113887A1 (en) 2005-11-18 2007-05-24 Lih-Hong Laih Material system of photovoltaic cell with micro-cavity
US20070115415A1 (en) 2005-11-21 2007-05-24 Arthur Piehl Light absorbers and methods
US7561133B2 (en) 2005-12-29 2009-07-14 Xerox Corporation System and methods of device independent display using tunable individually-addressable fabry-perot membranes
CN101310351B (en) 2006-01-20 2011-04-13 日本写真印刷株式会社 Capacitive light emitting switch and light emitting switch element used therefor
WO2007086159A1 (en) 2006-01-24 2007-08-02 Sharp Kabushiki Kaisha Display device, method for manufacturing display device, substrate and color filter substrate
US7603001B2 (en) 2006-02-17 2009-10-13 Qualcomm Mems Technologies, Inc. Method and apparatus for providing back-lighting in an interferometric modulator display device
KR100678067B1 (en) 2006-02-28 2007-02-02 삼성전자주식회사 Touch sensor apparatus
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US20070235072A1 (en) 2006-04-10 2007-10-11 Peter Bermel Solar cell efficiencies through periodicity
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US8004743B2 (en) 2006-04-21 2011-08-23 Qualcomm Mems Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
US7223515B1 (en) 2006-05-30 2007-05-29 3M Innovative Properties Company Thermal mass transfer substrate films, donor elements, and methods of making and using same
US20080232135A1 (en) 2006-05-31 2008-09-25 3M Innovative Properties Company Light guide
JP2009539143A (en) 2006-06-01 2009-11-12 ライト レゾナンス テクノロジーズ リミテッド ライアビリティー カンパニー Optical filter / modulator and filter / modulator array
US7876489B2 (en) 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
TWI331231B (en) 2006-08-04 2010-10-01 Au Optronics Corp Color filter and frbricating method thereof
DE102006039071B4 (en) 2006-08-09 2012-04-19 Universität Kassel Optical filter and method for its production
US8022292B2 (en) 2006-10-02 2011-09-20 SolASE Corporation Photovoltaic device employing a resonator cavity
WO2008045311A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
EP2366945A1 (en) 2006-10-06 2011-09-21 Qualcomm Mems Technologies, Inc. Optical loss layer integrated in an illumination apparatus of a display
WO2008045207A2 (en) 2006-10-06 2008-04-17 Qualcomm Mems Technologies, Inc. Light guide
US20080095997A1 (en) 2006-10-19 2008-04-24 Tien-Hon Chiang Function-Enhancing Optical Film
US20080105298A1 (en) 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US7916378B2 (en) 2007-03-08 2011-03-29 Qualcomm Mems Technologies, Inc. Method and apparatus for providing a light absorbing mask in an interferometric modulator display
JP2008224930A (en) 2007-03-12 2008-09-25 Seiko Epson Corp Display device and manufacturing method therefor, and electronic equipment
US8111262B2 (en) 2007-05-18 2012-02-07 Qualcomm Mems Technologies, Inc. Interferometric modulator displays with reduced color sensitivity
JP2010533976A (en) 2007-07-18 2010-10-28 キユーデイー・ビジヨン・インコーポレーテツド Quantum dot-based light sheet useful for solid-state lighting
JP5478493B2 (en) 2007-09-17 2014-04-23 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Translucent / semi-transmissive light emitting interference device
ES2379890T3 (en) 2007-10-08 2012-05-04 Whirlpool Corporation Capacitive and household touch switch provided with such a switch
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
WO2009052326A2 (en) 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaics
US20090293955A1 (en) 2007-11-07 2009-12-03 Qualcomm Incorporated Photovoltaics with interferometric masks
US7949213B2 (en) 2007-12-07 2011-05-24 Qualcomm Mems Technologies, Inc. Light illumination of displays with front light guide and coupling elements
EP2232569A2 (en) 2007-12-17 2010-09-29 QUALCOMM MEMS Technologies, Inc. Photovoltaics with interferometric back side masks
US7701636B2 (en) 2008-03-06 2010-04-20 Aptina Imaging Corporation Gradient index microlenses and method of formation
US7948672B2 (en) 2008-03-07 2011-05-24 Qualcomm Mems Technologies, Inc. System and methods for tiling display panels
US7660028B2 (en) 2008-03-28 2010-02-09 Qualcomm Mems Technologies, Inc. Apparatus and method of dual-mode display
US8116005B2 (en) 2008-04-04 2012-02-14 Texas Instruments Incorporated Light combiner
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US20100096006A1 (en) 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. Monolithic imod color enhanced photovoltaic cell
US20100096011A1 (en) 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. High efficiency interferometric color filters for photovoltaic modules
US20100157406A1 (en) 2008-12-19 2010-06-24 Qualcomm Mems Technologies, Inc. System and method for matching light source emission to display element reflectivity
WO2010111306A1 (en) 2009-03-25 2010-09-30 Qualcomm Mems Technologies, Inc. Em shielding for display devices
KR20120030460A (en) 2009-05-29 2012-03-28 퀄컴 엠이엠스 테크놀로지스, 인크. Illumination devices and methods of fabrication thereof
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147198A1 (en) * 2003-01-29 2004-07-29 Prime View International Co., Ltd. Optical-interference type display panel and method for making the same
US20060067633A1 (en) * 2004-09-27 2006-03-30 Gally Brian J Device and method for wavelength filtering
US20090059346A1 (en) * 2007-08-29 2009-03-05 Qualcomm Incorporated Interferometric Optical Modulator With Broadband Reflection Characteristics
US20100014148A1 (en) * 2008-03-27 2010-01-21 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2016517539A (en) * 2013-03-13 2016-06-16 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッドQUALCOMM MEMS Technologies, Inc. Improved IMOD color performance

Also Published As

Publication number Publication date
KR20130107208A (en) 2013-10-01
US20110286072A1 (en) 2011-11-24
TW201207542A (en) 2012-02-16
JP5592003B2 (en) 2014-09-17
US8848294B2 (en) 2014-09-30
JP2013528833A (en) 2013-07-11
CN103003735A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US8848294B2 (en) Method and structure capable of changing color saturation
US9057872B2 (en) Dielectric enhanced mirror for IMOD display
US9081188B2 (en) Matching layer thin-films for an electromechanical systems reflective display device
CA2719645A1 (en) Electromechanical device with spacing layer
US20120134008A1 (en) Electromechanical interferometric modulator device
US20110221798A1 (en) Line multiplying to enable increased refresh rate of a display
US20140036343A1 (en) Interferometric modulator with improved primary colors
US20120236042A1 (en) White point tuning for a display
US8995043B2 (en) Interferometric modulator with dual absorbing layers
US8970941B2 (en) Analog IMOD having a color notch filter
US8659816B2 (en) Mechanical layer and methods of making the same
US20130182017A1 (en) Device and method for high reflectance multi-state architectures
US20120236009A1 (en) Inactive dummy pixels
WO2012125312A1 (en) System and method for tuning multi-color displays
US9075226B2 (en) Multi-state IMOD with RGB absorbers
US20130293519A1 (en) Grey scale electromechanical systems display device
WO2014042887A1 (en) Linear color separation for multi-primary output devices
EP2572228A1 (en) Method and structure capable of changing color saturation
US20130241903A1 (en) Optical stack for clear to mirror interferometric modulator
WO2014070575A1 (en) Electromechanical systems display device including a movable absorber and a movable reflector assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11724322

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013511267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10057/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011724322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127032910

Country of ref document: KR

Kind code of ref document: A