WO2010139884A2 - Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid - Google Patents

Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid Download PDF

Info

Publication number
WO2010139884A2
WO2010139884A2 PCT/FR2010/051031 FR2010051031W WO2010139884A2 WO 2010139884 A2 WO2010139884 A2 WO 2010139884A2 FR 2010051031 W FR2010051031 W FR 2010051031W WO 2010139884 A2 WO2010139884 A2 WO 2010139884A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
oxygen
enriched
argon
flow
Prior art date
Application number
PCT/FR2010/051031
Other languages
French (fr)
Other versions
WO2010139884A3 (en
Inventor
Jean-Pierre Tranier
Original Assignee
L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude filed Critical L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
Priority to CA2762237A priority Critical patent/CA2762237A1/en
Priority to EP10731773A priority patent/EP2438378A2/en
Priority to CN2010800247790A priority patent/CN102695935A/en
Priority to US13/375,256 priority patent/US20120067082A1/en
Priority to AU2010255559A priority patent/AU2010255559A1/en
Publication of WO2010139884A2 publication Critical patent/WO2010139884A2/en
Publication of WO2010139884A3 publication Critical patent/WO2010139884A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/84Separating high boiling, i.e. less volatile components, e.g. NOx, SOx, H2S
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a process for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a waste fluid from a process for purifying a waste gas containing carbon dioxide. carbon and either argon or oxygen or both.
  • a particular example would be the production of argon from the incondensables of a low temperature separation process of a waste gas produced by an oxygen consuming facility, the residual gas being oxycombustion fumes.
  • Thermal power plants make it possible, by combustion of fuels, to release usable heat to produce water vapor and mechanical or electrical energy. Combustion fumes release significant amounts of CO2 into the atmosphere.
  • the current solution consists in carrying out combustion within the boiler in the presence of a gas rich in oxygen and especially depleted in nitrogen. This combustion produces combustion fumes with a high concentration of CO2, which is advantageous because current technologies for the removal of CO2 from combustion fumes make it possible to remove CO2 more easily from fumes with a high concentration of CO2 than fumes. low concentration of CO2. This CO2 must then be purified and compressed before being sequestered.
  • the object of the present invention is to propose a method for producing argon and oxygen from a carbon dioxide-rich waste gas also containing argon and / or oxygen which are incondensable from a unit for cleaning fumes with CO2 at a low temperature.
  • the cryogenic treatment of the low carbon dioxide flow comprises a step of cooling in at least one exchanger, optionally a reboiler, optionally a condenser, optionally a reversible or regenerative exchanger, and a distillation step in a column; distill;
  • the purification process preferably operates at a low temperature but other known purification methods can be substituted therein (for example, amine washing);
  • the flow rate that is low in carbon dioxide is substantially free of carbon dioxide, which may contain, for example, a few ppm of carbon dioxide); air is separated in an air separation apparatus, preferably by cryogenic distillation, to produce a flow rich in oxygen containing at most 99% oxygen, preferably at most 98% oxygen, or even plus 97 mol% oxygen, and argon, preferably at least 2 mol%. argon, at least 3% mol. argon and the oxygen-rich flow is sent to the oxygen consuming plant, preferably the oxycombustion;
  • the fraction enriched with oxygen is used for the oxyfuel combustion of the fuel and / or the pretreatment of the waste gas depleted in carbon dioxide; the treatment also makes it possible to recover an enriched or even nitrogen-rich fraction;
  • one or more fluid (s) originating from an air gas separation unit or from the air gas separation unit providing at least one part of oxygen for oxycombustion;
  • the low carbon dioxide flow rate is cooled upstream of the cryogenic treatment, the low carbon dioxide flow rate being substantially free of carbon dioxide;
  • the low carbon dioxide flow rate is cooled upstream of the cryogenic treatment and at the same time is purified to carbon dioxide, the low carbon dioxide flow rate containing carbon dioxide;
  • the low carbon dioxide flow rate is cooled in at least one reversible heat exchanger or in a regenerator type exchanger and the flow rate is sent to a column of the cryogenic treatment unit;
  • one of these fluids is a nitrogen-rich liquid which at least partially keeps cold the cryogenic treatment of the low carbon dioxide flow rate
  • the flow rate that is low in carbon dioxide is sent to a first column, optionally having a bottom reboiler, separated to form an oxygen-enriched fluid and a nitrogen-enriched fluid, an intermediate flow is withdrawn from the first column and sent to the first column; tank of a second column where it is enriched in argon to form a fraction enriched in argon;
  • an argon-enriched fraction is withdrawn from the second column and sent to a denitrogenation column to form an argon-rich fraction; in the treatment of the low carbon dioxide flow rate, one or more fluid (s) originating from an air gas separation unit or from the air gas separation unit providing at least one part of the oxygen for the oxygen fed plant, for example oxycombustion;
  • At least one column of the air gas separation unit and at least one column of the treatment unit are in a single cold box;
  • one of these fluids is a gas rich in nitrogen which will serve as a cycle gas for at least one reboiler and / or at least one condenser of the cryogenic treatment;
  • pretreatment removes at least 50%, or even substantially 100%, of the carbon dioxide in the waste gas before the cryogenic treatment. at least partly by antisublimation / sublimation of carbon dioxide in several exchangers in parallel;
  • the sublimation of the carbon dioxide is done in the presence of the enriched oxygen fraction so as to constitute a mixture of carbon dioxide / oxygen for the oxyfuel combustion of the fuel; the pretreatment is done at least in part by a method of the TSA type,
  • PSA or VPSA to produce a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched in argon;
  • the pretreatment is done at least in part by an absorption process;
  • the absorption process uses an aqueous solution of basic pH;
  • the basic pH is obtained by injection of NaOH and / or Na 2 CO 3 and / or NH 3 ;
  • the pretreatment is done at least partly by an adsorption process
  • the pretreatment is done at least partly by permeation; the flow rate enriched with carbon dioxide produced by the pretreatment is recycled to the boiler, preferably to the combustion chamber.
  • an installation for producing at least one fluid enriched in argon and at least one oxygen-enriched fluid from a waste fluid originating from a purification process comprising: - a unit for purifying the waste gas, constituted by fumes from a furnace for the oxyfuel combustion of a fuel by means of a gas rich in oxygen and carbon dioxide, the unit purification unit which can be a low temperature purification unit, so as to produce a carbon dioxide enriched fluid and a carbon dioxide depleted waste fluid,
  • a pre-treatment unit for the residual fluid to obtain a flow enriched in carbon dioxide and a flow rate that is low in carbon dioxide
  • cryogenic low carbon dioxide flow treatment unit for extracting an argon-enriched fraction, an oxygen-enriched fraction and a depleted argon and / or oxygen fraction.
  • the cryogenic treatment unit of the low carbon dioxide flow comprises at least one exchanger and at least one distillation column; at least one exchanger is a reboiler;
  • At least one exchanger is a condenser
  • the treatment unit makes it possible to recover an enriched or even rich fraction in argon and an enriched or even rich fraction in oxygen;
  • the installation comprises means for sending the fraction enriched in oxygen to the boiler and / or the pretreatment unit;
  • the treatment also makes it possible to recover a fraction enriched in nitrogen
  • the installation comprises means for sending one or more fluid (s) coming from the air gas separation unit supplying at least a portion of the oxygen for the oxygen powered installation, for example oxycombustion, at the unit of cryogenic treatment of the low carbon dioxide flow rate;
  • one of these fluids is a liquid rich in nitrogen for keeping the treatment cold;
  • one of these fluids is a nitrogen-rich gas which will serve as a cycle gas for at least one reboiler and / or at least one condenser of the cryogenic treatment unit of the low carbon dioxide flow rate;
  • the pretreatment unit is / comprises a carbon dioxide antisublimation / sublimation unit comprising a plurality of exchangers in parallel;
  • the sublimation unit is connected to a conduit for supplying the fraction enriched with oxygen so as to constitute a mixture of carbon dioxide and oxygen and possibly means for sending the mixture to the oxy-fuel combustion unit of the combustible ;
  • the pretreatment unit is / comprises an installation of the TSA, PSA or VPSA type which produces a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched with argon;
  • the preprocessing unit is / comprises an absorption installation; the absorption process uses an aqueous solution of basic pH;
  • the basic pH is obtained by injection of NaOH, Na 2 CO 3 , NH 3 ;
  • the absorption process is a methanol washing process
  • the preprocessing unit is / comprises a permeation unit
  • the installation comprises means for recycling the carbon dioxide enriched flow of the pre-treatment unit into the boiler.
  • the oxygen delivered by the air separation apparatus to the oxycombustion comprises at most 98 mol%, oxygen, preferably at most 97 mol%. of oxygen, see at most 96 mol%. oxygen.
  • the oxygen supplied by the air separation apparatus to the plant comprises at least 1 mol%. argon, preferably at least 2 mol%. argon, or at least 3 mol%. argon.
  • the argon-enriched gas produced by the apparatus comprises at least 50 mol% argon, preferably at least 70 mol%. argon, or even at least 90 mol% of argon.
  • the invention will be described in more detail with reference to the Figures.
  • Figure 1 shows an oxycombustion plant with flue gas purification units
  • Figure 2 shows the flue gas purification units in more detail
  • Figure 3 shows a flue gas purification unit for CO 2 at low temperature
  • Figure 4 shows a nitrogen recovery apparatus and / or of oxygen and / or argon from a waste gas of the unit of Figure 4
  • Figure 5 shows a variant of Figure 4.
  • FIG. 1 is a schematic view of an oxycombustion plant.
  • An air separation apparatus 2 produces a flow rate of oxygen at a typical purity of 95 mol. % to maximize its argon content and a waste nitrogen flow 13.
  • the apparatus also produces nitrogen gas 13 and liquid nitrogen 159 for the treatment of incondensables.
  • the flow rate of oxygen 10 is divided into two fractions 11 and 12.
  • the main flow of flue gas recycle 15 passes through the units 3 where the coal 14 is converted into powder.
  • the fraction 11 is mixed with the recycle flow downstream of the unit 3 and the mixture is sent to the combustion chamber of the boiler 1.
  • Fraction 12 is mixed with a secondary flue gas recirculation flow rate 16 which provides ballast to the burners to maintain temperatures at acceptable levels.
  • Water 17 is sent to the boiler 1 to produce steam 18 which is expanded in a turbine 8.
  • Unit 4 removes NOx for example by catalysis.
  • the unit 5 removes the dust and after the unit 6 is a desulfurization system to remove SO2 and / or SO3.
  • Units 4 and 6 may be redundant depending on the composition of the required product.
  • the purified flow 24 from unit 6 (or 5 if 6 is not present) is sent to a compression and scrubber unit 7 to produce a relatively pure CO 2 flow rate and a residual flow rate 26.
  • FIG. 2 is a schematic view of the compression and purification unit 7 of FIG. 1.
  • a flow 110 (corresponding to flow 24 of FIG. 1) enters a unit 101 where it is prepared upstream of the compression. in unit 102.
  • flow 110 may be purified to dust, SO2, and / or SO3 and / or cooled.
  • the residual flow rate 111 produced by unit 101 may be condensed water, dust or H 2 SO 4 , HNO 3, Na 2 SO 4 , CaSO 4 , Na 2 CO 3 , CaCO 3 , etc.
  • the compression unit 102 compresses the flow 112 from the unit 101 from a pressure close to atmospheric to a high pressure between 15 and 60 bar abs, preferably to 30 bar abs. This compression can be carried out in several stages with intermediate cooling. In this case, condensates 113 may be produced. The heat of compression can be recovered to preheat the water 17. A hot flow 114 leaves the compression unit 102 and enters the unit 103. This unit cools the flow 114, the drying and possibly the mercury treatment. producing waste 115, 116 and 117.
  • Unit 104 is a low temperature purification unit.
  • low temperature means a minimum temperature in the cycle of the purification process below 0 ° C. and preferably below -20 ° C., or as close as possible to the triple point of pure CO2 at - 56.6 0 C.
  • the flow 118 is cooled and partially condensed in one or more steps.
  • One or more CO2-enriched flow rates are expanded and vaporized to obtain a CO 2 -rich product 119.
  • a high-pressure incondensable flow 120 is recovered from unit 104 and sent to a pretreatment unit 122.
  • the pre-processed flow 123 is sent to a treatment unit 124 where one or more fluids is produced which may be liquid and / or gaseous nitrogen 125 and / or liquid and / or gaseous oxygen 126 and / or argon gas and / or liquid 127.
  • a treatment unit 124 where one or more fluids is produced which may be liquid and / or gaseous nitrogen 125 and / or liquid and / or gaseous oxygen 126 and / or argon gas and / or liquid 127.
  • the CO2-rich product 119 is compressed in a compression unit 105.
  • the compressed flow 121 is condensed and can be pumped.
  • FIG. 3 shows a low temperature purification apparatus which corresponds to the unit 104 of FIG. 2.
  • the flow 1 18 comprising fumes at approximately 30 bar and at a temperature of between 15 ° C. and 43 ° C.
  • the flow 118 includes mainly carbon dioxide as well as NO 2 , oxygen, argon and nitrogen. It can be produced directly at high pressure by the unit 103 or can be compressed by a compressor (dashed).
  • the flow 5 cools in an exchange line 9 and is partially condensed. Part 7 of the flow 5 is not cooled in the exchange line 9 but is mixed with the remainder of the flow 5 downstream of the exchange line in order to vary the temperature of the mixture.
  • the partially condensed flow is fed to a first phase separator 11 and separated into a gaseous phase 13 and a liquid phase 17.
  • the gaseous phase 13 is divided in two to form a flow 15 and a flow 21.
  • the flow 21 is used to to reboil column 43 in the exchanger 25 and is then sent to a second phase separator 22.
  • the flow 15 bypasses the reboilers to regulate the reboiling.
  • the liquid 17 of the first phase separator 11 is expanded in a valve 19 and the liquid flow 29 of the second phase separator 22 is expanded in a valve 31, the two expanded flows then being sent to the top of the column 43.
  • the column 43 serves primarily to remove the non-condensable components (oxygen, nitrogen and argon) from the feed rate 118.
  • a depleted flow of carbon dioxide 33 is withdrawn at the top of the column 43 and sent to the compressor 35.
  • the compressed flow 37 thus produced is recycled at flow 5.
  • a flow enriched or rich in carbon dioxide 67 is withdrawn in the bottom of the column 43 and divided into two.
  • a portion 69 is pumped by the pump 71 to form a flow 85, then pumped into the pump 87 and removed from the system.
  • the flow 85 corresponds to the flow rate 25 of FIG. 1.
  • the remainder 73 of the flow 67 serves to keep the apparatus cold.
  • Incondensables can be separated before or after separation of NO 2 .
  • This column may have a head condenser and a bottom reboiler, the flow 73 being sent to an intermediate point. Otherwise, if there is no tank reboiler, the flow is sent to the tank.
  • a low NO2 flow 79 is withdrawn from the column 105 and returned to the exchange line 9.
  • This flow 79 is heated, compressed in the compressors 75, 77, sent to the exchanger 65, removed as the flow 78, cooled in the exchangers 81, 83 and mixed with the flow 69 to form the flow 85.
  • the exchanger 81 can be used to heat the water for a boiler.
  • the exchanger 83 is cooled by a refrigerant flow 185 which can be R134a, ammonia, water etc., the heated refrigerant is designated 187.
  • An enriched flow NO2 84 is withdrawn from the bottom of the column 105. This flow 84 is recycled to a point upstream of the filters 3.
  • the overhead gas 32 of the second phase separator 22 is cooled in the exchanger 55 and sent to the third phase separator 133.
  • Part of the liquid of the third phase separator 133 is sent to the column 43 and the remainder, as the flow at intermediate purity 45, is divided into two flow rates 47, 141.
  • the flow 47 is vaporized in the exchanger 55 and sent to the top of the column 43 or mixed with the flow 33.
  • the flow 141 is expanded in a valve, heated in the exchangers 55, 9, compressed in the compressor 59, cooled as a flow 91 in the exchanger 60 and mixed with the compressed flow 5.
  • the valve which serves to relax the flow 141 can be replaced by a liquid turbine.
  • the overhead gas of the third phase separator 133 is cooled in a heat exchanger 55, optionally after compression in a compressor 134 and sent to a fourth phase separator 143.
  • the carbon dioxide-poor overhead gas 157 of the fourth separator of phase 143 is heated in a heat exchanger 55, then in the exchanger 9, heated in the exchanger 65 and expanded as flow 23 in the exchanger 63, coupled to the compressor 35.
  • the carbon dioxide-poor gas 157 comprises between 30 and 45% of carbon dioxide and between 30 and 45% of nitrogen. It also includes substantial amounts of oxygen and argon.
  • the tank liquid 51 of the phase separator 143 is sent to the column 43 with the flow 47.
  • the flow rate expanded in the turbine 63 is mixed with the flow 115 which does not pass into the turbine and then reheated at 89.
  • a portion 97 of the heated flow rate is expanded in the turbine 61 and sent to the atmosphere as flow 99.
  • a flow 120 rich in incondensable (oxygen and / or argon and / or nitrogen) and containing CO2 is recovered in unit 104 to recover at least one of its components as a product.
  • This flow 120 may be a part of the flow 101 from the turbine 61 and / or a part of the overhead gas 157 of the fourth phase separator 143 upstream of the exchanger 55 and / or a part of the flow expanded in the turbine 63 and / or part of the flow 157 downstream of the exchanger 9.
  • FIG. 4 shows a pre-treatment apparatus and a cryogenic distillation separation apparatus of the flow 120.
  • This flow 120 is first pretreated in the pretreatment unit 122.
  • This pretreatment unit removes at least 50 mol%. carbon dioxide in the waste gas 120 prior to the cryogenic treatment producing a CO 2 enriched flow rate that can be recycled to the unit 104 with the flow rate 118.
  • the pretreatment can be carried out by antisublimation / sublimation of carbon dioxide in several exchangers in parallel.
  • the pretreatment can be carried out by absorption (for example methanol washing), adsorption, permeation or several of these techniques.
  • Sublimation of carbon dioxide occurs, for example, in the presence of an oxygen-enriched fraction so as to constitute a mixture of carbon dioxide and oxygen for the oxyfuel combustion of the fuel. Thanks to anti-sublimation, the temperature of the treated gas drops from -56.6 ° C (triple point of CO2) to -170 ° C / -175 ° C, a temperature at which cryogenic distillation of gas can be carried out. the air.
  • the pretreatment can be done by a process of the TSA, PSA or VPSA type so as to produce a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched in argon.
  • the pretreatment can be done by an absorption process, using for example an aqueous solution of basic pH.
  • the basic pH is optionally obtained by injection of NaOH and / or Na 2 CO 3 and / or NH 3 .
  • the absorption process may also use a non-aqueous fluid such as methanol. In this case, the absorption will be carried out at low temperature and preferably under pressure.
  • the pretreatment is by permeation or a combination of the various methods mentioned.
  • the depleted flow rate of carbon dioxide 123 is sent to a cryogenic distillation unit 124 as shown in FIG. 4.
  • the flow 123 is cooled to a cryogenic temperature in an exchanger 130 and sent to the middle of a column 131 having a tank reboiler 133.
  • the flow 123 could be cooled by expansion in a turbine with production of work (isentropic expansion).
  • Oxygen gas GOX is withdrawn above the tank of column 131, heated in exchanger 130 and serves as product 126 and / or is recycled to pretreatment 122 and / or boiler 1.
  • Oxygen liquid 136 can be withdrawn in the bottom of column 131, for example as a product.
  • An argon-enriched flow 141 is sent from column 131 to column 137 and a flow of impure argon 145 is withdrawn under condenser 155 of this column 137.
  • a flow of vessel liquid 143 is returned to column 131.
  • L Impure argon 145 is purified in a denitrogenation column 139 having a top condenser 153 and a bottom reboiler 151.
  • Liquid argon 127 is produced in the bottom of the denitrogenation column 139.
  • the apparatus is kept cold at room temperature. least partially by liquid nitrogen injection 159 from the air separation apparatus 2 feeding the oxyconnbustion. The liquid nitrogen 159 is sent to the top of the column 131.
  • This air separation unit 2 also supplies nitrogen gas 13 which cools in the exchanger 130, heats the bottom reboiler 133 of the column 131 to form a condensed flow.
  • the condensed flow is sent in part 147 after expansion to the top condenser 153 of the denitrogenation column 139, in part 165 to the top condenser 155 of the column 137 and in part 157 after expansion at the head of the column 131.
  • the nitrogen 163 vaporized in the condenser 153 is mixed with the overhead gas 135 of the column 131, heated in the subcooler 160 and the exchanger 130 and forms the nitrogen gas 165.
  • the nitrogen 161 vaporized in the condenser 155 forms the nitrogen flow 161.
  • At least one column of the apparatus 124 may possibly be in the same cold box as at least one column of the apparatus 2.
  • the transfers of nitrogen 13 and / or 159 can be done without having to heat and cool the nitrogen.
  • Figure 5 shows a variant of the cold part of Figure 4 in which the cold mixture 123 from the exchanger 130 is sent to an intermediate level of a column 163 without reboiler or overhead condenser.
  • the overhead gas 171 of the column 163 is nitrogen gas and the vessel liquid 173 is fed to a column 165 in the intermediate position. Gas 175 is returned from the intermediate position of the column 165 to the tank of the column 163.
  • the column 165 has a bottom reboiler 175 and a top condenser 177.
  • Oxygen gas 126 and / or liquid 136 is recovered in the tank of the column 165 and the overhead liquid 145 is sent to a denitrogenation column 167, the liquid argon being formed 127 in the vessel thereof.
  • the denitrogenation column has a bottom reboiler 151 and a top condenser 153.
  • Liquid nitrogen 159 from the air separation unit 2 is sent to the top of the column 163.
  • the column 163 has a top condenser which, like all the reboilers and condensers of FIG. nitrogen gas cycle from the air separation apparatus 2, a cycle which has not been illustrated but resembling that of Figure 4.
  • the sending of liquid nitrogen 159 may be the only source of cold for the process.
  • Other ways of separating the flow 123 by cryogenic distillation can obviously be envisaged as those illustrated in FIGS. 4 and 5.

Abstract

The invention relates to a method for producing an argon-enriched fluid and an oxygen-enriched fluid from a fluid resulting from a method for purifying of oxy-fuel combustion fumes, wherein said method comprises purifying the residual gas by a purification method in order to produce a gas enriched with carbon dioxide (119) and a residual gas lean in carbon dioxide (120), pretreating the residual gas lean in carbon dioxide in order to obtain a flow enriched with carbon dioxide and a flow (123) lean in carbon dioxide, treating the flow lean in carbon dioxide by a cryogenic technique so as to extract at least an argon-enriched fraction (127), an oxygen-enriched fraction (126), and a fraction (125) lean in argon and/or oxygen.

Description

Procédé et appareil de production d'au moins un fluide enrichi en argon et au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a waste fluid
La présente invention concerne un procédé de production d'au moins un fluide enrichi en argon et d'au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire provenant d'un procédé de purification d'un gaz résiduaire contenant du dioxyde de carbone et soit de l'argon, soit de l'oxygène, soit les deux. Un exemple particulier serait la production d'argon à partir des incondensables d'un procédé de séparation à basse température d'un gaz résiduaire produit par une installation consommatrice d'oxygène, l e g az résiduaire étant des fumées d'oxycombustion.The present invention relates to a process for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a waste fluid from a process for purifying a waste gas containing carbon dioxide. carbon and either argon or oxygen or both. A particular example would be the production of argon from the incondensables of a low temperature separation process of a waste gas produced by an oxygen consuming facility, the residual gas being oxycombustion fumes.
Les centrales thermiques permettent par combustion de combustibles de dégager de la chaleur utilisable pour produire de la vapeur d'eau et de l'énergie mécanique ou électrique. Les fumées de combustion dégagent des quantités importantes de CO2 dans l'atmosphère. Afin de résoudre ce problème environnemental, la solution actuelle consiste à réaliser la combustion au sein de la chaudière en présence d'un gaz riche en oxygène et surtout appauvri en azote. Cette combustion produit des fumées de combustion présentant une concentration élevée en CO2, ce qui est avantageux car les technologies actuelles d'élimination du CO2 des fumées de combustion permettent d'éliminer le CO2 plus aisément des fumées de concentration élevée en CO2 plutôt que des fumées de faible concentration en CO2. Ce CO2 doit ensuite être purifié et comprimé avant d'être séquestré.Thermal power plants make it possible, by combustion of fuels, to release usable heat to produce water vapor and mechanical or electrical energy. Combustion fumes release significant amounts of CO2 into the atmosphere. In order to solve this environmental problem, the current solution consists in carrying out combustion within the boiler in the presence of a gas rich in oxygen and especially depleted in nitrogen. This combustion produces combustion fumes with a high concentration of CO2, which is advantageous because current technologies for the removal of CO2 from combustion fumes make it possible to remove CO2 more easily from fumes with a high concentration of CO2 than fumes. low concentration of CO2. This CO2 must then be purified and compressed before being sequestered.
Le but de la présente invention est de proposer un procédé de production d'argon et d'oxygène à partir d'un gaz résiduaire riche en dioxyde de carbone contenant aussi de l'argon et/ou de l'oxygène qui sont des incondensables d'une unité d'épuration des fumées en CO2 à basse température.The object of the present invention is to propose a method for producing argon and oxygen from a carbon dioxide-rich waste gas also containing argon and / or oxygen which are incondensable from a unit for cleaning fumes with CO2 at a low temperature.
Selon un objet de l'invention, il est prévu un procédé de production d'au moins un fluide enrichi en argon et d'au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire provenant d'un procédé de purification d'un gaz résiduaire contenant du dioxyde de carbone et de l'oxygène et/ou de l'argon, le gaz résiduaire étant dérivé d'une installation alimentée par de l'oxygène contenant de l'argon, qui est une installation d'oxycombustion mettant en œuvre les étapes suivantes :According to an object of the invention, there is provided a method for producing at least one fluid enriched with argon and at least one oxygen enriched fluid from a waste fluid from a purification process of a waste gas containing carbon dioxide and oxygen and / or argon, the waste gas being derived from an oxygen-fed plant containing argon, which is an oxy-fuel combustion plant implementing the following steps:
- récupération de gaz résiduaire constitué par des fumées provenant de l'oxycombustion d'un combustible au moyen d'un gaz riche en oxygène et en dioxyde de carbone contenant de l'argon dans la chambre de combustion d'une chaudière ;- waste gas recovery consisting of fumes from the oxyfuel combustion of a fuel using a gas rich in oxygen and carbon dioxide containing argon in the combustion chamber of a boiler;
- purification du gaz résiduaire, en particulier des fumées issues de la chaudière, par un procédé de purification, notamment à basse température, de manière à produire un fluide enrichi en dioxyde de carbone et un fluide résiduaire appauvri en dioxyde de carbone ;- purification of the waste gas, in particular the fumes from the boiler, by a purification process, especially at low temperature, so as to produce a carbon dioxide-enriched fluid and a waste fluid depleted in carbon dioxide;
- prétraitement du fluide résiduaire appauvri en dioxyde de carbone pour obtenir un débit enrichi en dioxyde de carbone et un débit pauvre en dioxyde de carbone ; etpretreatment of the waste fluid depleted in carbon dioxide to obtain a flow enriched in carbon dioxide and a low carbon dioxide flow rate; and
- traitement du débit pauvre en dioxyde de carbone par voie cryogénique de manière à en extraire au moins une fraction enrichie, voire riche, en argon, une fraction enrichie, voire riche, en oxygène et au moins une fraction appauvrie en argon et/ou en oxygène. Selon d'autres aspects facultatifs :treatment of the cryogenic low carbon dioxide flow so as to extract at least one enriched or even rich fraction of argon, an enriched or even rich fraction of oxygen and at least one fraction depleted of argon and / or oxygen. According to other optional aspects:
- le traitement par voie cryogénique du débit pauvre en dioxyde de carbone comprend une étape de refroidissement dans au moins un échangeur, éventuellement un rebouilleur, éventuellement un condenseur, éventuellement un échangeur de type réversible ou régénérateur, et une étape de distillation dans une colonne à distiller ;the cryogenic treatment of the low carbon dioxide flow comprises a step of cooling in at least one exchanger, optionally a reboiler, optionally a condenser, optionally a reversible or regenerative exchanger, and a distillation step in a column; distill;
- le procédé de purification opère de préférence à basse température mais d'autres procédés de purification connus peuvent y être substitués (par exemple, lavage aux aminés) ;the purification process preferably operates at a low temperature but other known purification methods can be substituted therein (for example, amine washing);
- le débit pauvre en dioxyde de carbone est substantiellement sans dioxyde de carbone, pouvant contenir par exemple quelques ppm de dioxyde de carbone) ; - de l'air est séparé dans un appareil de séparation d'air, de préférence par distillation cryogénique, pour produire un débit riche en oxygène contenant au plus 99% d'oxygène, de préférence au plus 98% d'oxygène, voire au plus 97% mol. d'oxygène, et de l'argon, de préférence au moins 2% mol. d'argon, voire au moins 3 % mol. d'argon et le débit riche en oxygène est envoyé à l'installation consommatrice de l'oxygène, de préférence l'oxycombustion ;the flow rate that is low in carbon dioxide is substantially free of carbon dioxide, which may contain, for example, a few ppm of carbon dioxide); air is separated in an air separation apparatus, preferably by cryogenic distillation, to produce a flow rich in oxygen containing at most 99% oxygen, preferably at most 98% oxygen, or even plus 97 mol% oxygen, and argon, preferably at least 2 mol%. argon, at least 3% mol. argon and the oxygen-rich flow is sent to the oxygen consuming plant, preferably the oxycombustion;
- la fraction enrichie en oxygène sert à l'oxycombustion du combustible et/ou au prétraitement du gaz résiduaire appauvri en dioxyde de carbone ; - le traitement permet aussi la récupération d'une fraction enrichie, voire riche en azote ;the fraction enriched with oxygen is used for the oxyfuel combustion of the fuel and / or the pretreatment of the waste gas depleted in carbon dioxide; the treatment also makes it possible to recover an enriched or even nitrogen-rich fraction;
- on utilise dans le traitement du débit pauvre en dioxyde de carbone un ou plusieurs fluide(s) provenant d'une unité de séparation de gaz de l'air ou de l'unité de séparation des gaz de l'air fournissant au moins une partie de l'oxygène pour l'oxycombustion ;in the treatment of the low carbon dioxide flow rate, one or more fluid (s) originating from an air gas separation unit or from the air gas separation unit providing at least one part of oxygen for oxycombustion;
- on refroidit le débit pauvre en dioxyde de carbone en amont du traitement par voie cryogénique, le débit pauvre en dioxyde de carbone étant sensiblement sans dioxyde de carbone ;the low carbon dioxide flow rate is cooled upstream of the cryogenic treatment, the low carbon dioxide flow rate being substantially free of carbon dioxide;
- on refroidit le débit pauvre en dioxyde de carbone en amont du traitement par voie cryogénique et en même temps on l'épure en dioxyde de carbone, le débit pauvre en dioxyde de carbone contenant du dioxyde de carbone ;the low carbon dioxide flow rate is cooled upstream of the cryogenic treatment and at the same time is purified to carbon dioxide, the low carbon dioxide flow rate containing carbon dioxide;
- on refroidit le débit pauvre en dioxyde de carbone dans au moins un échangeur réversible ou dans un échangeur de type régénérateur et on envoie le débit produit à une colonne de l'unité de traitement par voie cryogénique ;the low carbon dioxide flow rate is cooled in at least one reversible heat exchanger or in a regenerator type exchanger and the flow rate is sent to a column of the cryogenic treatment unit;
- un de ces fluides est un liquide riche en azote qui maintient au moins partiellement en froid le traitement par voie cryogénique du débit pauvre en dioxyde de carbone ;one of these fluids is a nitrogen-rich liquid which at least partially keeps cold the cryogenic treatment of the low carbon dioxide flow rate;
- aucun fluide destiné à ou provenant d'une colonne de l'unité de traitement n'est détendu dans une turbine ;no fluid intended for or coming from a column of the treatment unit is expanded in a turbine;
- le débit pauvre en dioxyde de carbone est envoyé à une première colonne, ayant éventuellement un rebouilleur de cuve, séparé pour former un fluide enrichi en oxygène et un fluide enrichi en azote, un débit intermédiaire est soutiré de la première colonne est envoyé à la cuve d'une deuxième colonne où il s'enrichit en argon pour former une/la fraction enrichie en argon ;the flow rate that is low in carbon dioxide is sent to a first column, optionally having a bottom reboiler, separated to form an oxygen-enriched fluid and a nitrogen-enriched fluid, an intermediate flow is withdrawn from the first column and sent to the first column; tank of a second column where it is enriched in argon to form a fraction enriched in argon;
- une fraction enrichie en argon est soutirée de la deuxième colonne pour être envoyée à une colonne de déazotation pour former une fraction riche en argon ; - on utilise dans le traitement du débit pauvre en dioxyde de carbone un ou plusieurs fluide(s) provenant d'une unité de séparation de gaz de l'air ou de l'unité de séparation des gaz de l'air fournissant au moins une partie de l'oxygène pour l'installation alimentée par l'oxygène, par exemple l'oxycombustion ;an argon-enriched fraction is withdrawn from the second column and sent to a denitrogenation column to form an argon-rich fraction; in the treatment of the low carbon dioxide flow rate, one or more fluid (s) originating from an air gas separation unit or from the air gas separation unit providing at least one part of the oxygen for the oxygen fed plant, for example oxycombustion;
- au moins une colonne de l'unité de séparation de gaz de l'air et au moins une colonne de l'unité de traitement se trouvent dans une boîte froide unique ;at least one column of the air gas separation unit and at least one column of the treatment unit are in a single cold box;
- un de ces fluides est un gaz riche en azote qui servira de gaz de cycle pour au moins un rebouilleur et/ou au moins un condenseur du traitement par voie cryogénique ;one of these fluids is a gas rich in nitrogen which will serve as a cycle gas for at least one reboiler and / or at least one condenser of the cryogenic treatment;
- le prétraitement élimine au moins 50%, voire substantiellement 100%, du dioxyde de carbone dans le gaz résiduaire avant le traitement cryogénique. l e p rét ra i te m e n t s e fa i t au moins en partie par antisublimation/sublimation du dioxyde de carbone dans plusieurs échangeurs en parallèle ;pretreatment removes at least 50%, or even substantially 100%, of the carbon dioxide in the waste gas before the cryogenic treatment. at least partly by antisublimation / sublimation of carbon dioxide in several exchangers in parallel;
- la sublimation du dioxyde de carbone se fait en présence de la fraction enrich ie en oxygène de man ière à constituer un mélange d ioxyde de carbone/oxygène servant à l'oxycombustion du combustible ; - le prétraitement se fait au moins en partie par un procédé de type TSA,the sublimation of the carbon dioxide is done in the presence of the enriched oxygen fraction so as to constitute a mixture of carbon dioxide / oxygen for the oxyfuel combustion of the fuel; the pretreatment is done at least in part by a method of the TSA type,
PSA ou VPSA de manière à produire une fraction enrichie en dioxyde de carbone et une fraction appauvrie en dioxyde de carbone mais enrichie en argon ;PSA or VPSA to produce a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched in argon;
- le prétraitement se fait au moins en partie par un procédé d'absorption ; - le procédé d'absorption utilise une solution aqueuse de pH basique ;the pretreatment is done at least in part by an absorption process; the absorption process uses an aqueous solution of basic pH;
- le pH basique est obtenu par injection de NaOH et/ou Na2CO3 et/ou NH3 ;the basic pH is obtained by injection of NaOH and / or Na 2 CO 3 and / or NH 3 ;
- le prétraitement se fait au moins en partie par un procédé d'adsorption ;the pretreatment is done at least partly by an adsorption process;
- le prétraitement se fait au moins en partie par perméation ; - le débit enrichi en dioxyde de carbone produit par le prétraitement est recyclé dans la chaudière, de préférence à la chambre de combustion.the pretreatment is done at least partly by permeation; the flow rate enriched with carbon dioxide produced by the pretreatment is recycled to the boiler, preferably to the combustion chamber.
Selon un autre objet de l'invention, il est prévu une installation de production d'au moins un fluide enrichi en argon et d'au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire provenant d'un procédé de purification d'un gaz résiduaire, le gaz résiduaire contenant du dioxyde de carbone et de l'argon et/ou de l'oxygène, le gaz résiduaire étant dérivé d'une installation alimentée par de l'oxygène contenant de l'argon qui est une installation d'oxycombustion, comprenant : - une unité de purification du gaz résiduaire, constitué par des fumées issues d'une chaudière d'oxycombustion d'un combustible au moyen d'un gaz riche en oxygène et en dioxyde de carbone, l'unité de purification pouvant être une unité de purification à basse température, de manière à produire un fluide enrichi en dioxyde de carbone et un fluide résiduaire appauvri en dioxyde de carbone,According to another object of the invention, there is provided an installation for producing at least one fluid enriched in argon and at least one oxygen-enriched fluid from a waste fluid originating from a purification process. of a waste gas, the waste gas containing carbon dioxide and argon and / or oxygen, the waste gas being derived from an oxygen-fed plant containing argon which is a oxycombustion plant, comprising: - a unit for purifying the waste gas, constituted by fumes from a furnace for the oxyfuel combustion of a fuel by means of a gas rich in oxygen and carbon dioxide, the unit purification unit which can be a low temperature purification unit, so as to produce a carbon dioxide enriched fluid and a carbon dioxide depleted waste fluid,
- une unité de prétraitement du fluide résiduaire pour obtenir un débit enrichi en dioxyde de carbone et un débit pauvre en dioxyde de carbone eta pre-treatment unit for the residual fluid to obtain a flow enriched in carbon dioxide and a flow rate that is low in carbon dioxide and
- une unité de traitement du débit pauvre en dioxyde de carbone par voie cryogénique de manière à en extraire une fraction enrichie en argon, une fraction enrichie en oxygène et une fraction appauvrie en argon et/ou en oxygène.a cryogenic low carbon dioxide flow treatment unit for extracting an argon-enriched fraction, an oxygen-enriched fraction and a depleted argon and / or oxygen fraction.
Selon d'autres caractéristiques optionnelles :According to other optional features:
- l'unité traitement par voie cryogénique du débit pauvre en dioxyde de carbone comprend au moins un échangeur et au moins une colonne à distiller ; - au moins un échangeur est un rebouilleur ;the cryogenic treatment unit of the low carbon dioxide flow comprises at least one exchanger and at least one distillation column; at least one exchanger is a reboiler;
- au moins un échangeur est un condenseur ;at least one exchanger is a condenser;
- l'unité de traitement permet la récupération d'une fraction enrichie, voire riche, en argon et d'une fraction enrichie, voire riche, en oxygène ;the treatment unit makes it possible to recover an enriched or even rich fraction in argon and an enriched or even rich fraction in oxygen;
- l'installation comprend des moyens pour envoyer la fraction enrichie en oxygène à la chaudière et/ou à l'unité de prétraitement ;the installation comprises means for sending the fraction enriched in oxygen to the boiler and / or the pretreatment unit;
- le traitement permet aussi la récupération d'une fraction enrichie en azote ;the treatment also makes it possible to recover a fraction enriched in nitrogen;
- l'installation comprend des moyens pour envoyer un ou plusieurs fluide(s) provenant de l'unité de séparation des gaz de l'air fournissant au moins une partie de l'oxygène pour l'installation alimentée par l'oxygène, par exemple l'oxycombustion, à l'unité de traitement par voie cryogénique du débit pauvre en dioxyde de carbone ;the installation comprises means for sending one or more fluid (s) coming from the air gas separation unit supplying at least a portion of the oxygen for the oxygen powered installation, for example oxycombustion, at the unit of cryogenic treatment of the low carbon dioxide flow rate;
- un de ces fluides est un liquide riche en azote pour maintenir en froid le traitement ; - un de ces fluides est un gaz riche en azote qui servira de gaz de cycle pour au moins un rebouilleur et/ou au moins un condenseur de l'unité de traitement par voie cryogénique du débit pauvre en dioxyde de carbone ; l'unité de prétraitement est/comprend u n e u n i t é d e antisublimation/sublimation du dioxyde de carbone comprenant plusieurs échangeurs en parallèle ;one of these fluids is a liquid rich in nitrogen for keeping the treatment cold; one of these fluids is a nitrogen-rich gas which will serve as a cycle gas for at least one reboiler and / or at least one condenser of the cryogenic treatment unit of the low carbon dioxide flow rate; the pretreatment unit is / comprises a carbon dioxide antisublimation / sublimation unit comprising a plurality of exchangers in parallel;
- l'unité de sublimation est reliée à une conduite d'amenée de la fraction enrichie en oxygène de manière à constituer un mélange de dioxyde de carbone et d'oxygène et éventuellement des moyens pour envoyer le mélange à l'unité d'oxycombustion du combustible ;the sublimation unit is connected to a conduit for supplying the fraction enriched with oxygen so as to constitute a mixture of carbon dioxide and oxygen and possibly means for sending the mixture to the oxy-fuel combustion unit of the combustible ;
- l'unité de prétraitement est/comprend une installation de type TSA, PSA ou VPSA qui produit une fraction enrichie en dioxyde de carbone et une fraction appauvrie en dioxyde de carbone mais enrichie en argon ;the pretreatment unit is / comprises an installation of the TSA, PSA or VPSA type which produces a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched with argon;
- l'unité de prétraitement est/ comprend une installation d'absorption ; - le procédé d'absorption utilise une solution aqueuse de pH basique ;the preprocessing unit is / comprises an absorption installation; the absorption process uses an aqueous solution of basic pH;
- le pH basique est obtenu par injection de NaOH, Na2CO3, NH3 ;the basic pH is obtained by injection of NaOH, Na 2 CO 3 , NH 3 ;
- le procédé d'absorption est un procédé de lavage au méthanol ;the absorption process is a methanol washing process;
- l'unité de prétraitement est/comprend une unité de perméation ;the preprocessing unit is / comprises a permeation unit;
- l'installation comprend des moyens pour recycler le débit enrichi en dioxyde de carbone de l'unité de prétraitement dans la chaudière.the installation comprises means for recycling the carbon dioxide enriched flow of the pre-treatment unit into the boiler.
L'oxygène envoyé par l'appareil de séparation d'air à l'oxycombustion comprend au plus 98% mol, d'oxygène, de préférence au plus 97% mol. d'oxygène, voir au plus 96% mol. d'oxygène.The oxygen delivered by the air separation apparatus to the oxycombustion comprises at most 98 mol%, oxygen, preferably at most 97 mol%. of oxygen, see at most 96 mol%. oxygen.
L'oxygène envoyé par l'appareil de séparation d'air à l'installation, par exemple l'oxycombustion, comprend au moins 1 % mol. d'argon, de préférence au moins 2 % mol. d'argon, voire au moins 3 % mol. d'argon.The oxygen supplied by the air separation apparatus to the plant, for example oxycombustion, comprises at least 1 mol%. argon, preferably at least 2 mol%. argon, or at least 3 mol%. argon.
Le gaz enrichi en argon produit par l'appareil comprend au moins 50 mol% d'argon, de préférence au moins 70% mol. d'argon, voire au moins 90 % mol d'argon. L'invention sera décrite en plus de détail en se référant aux Figures. LaThe argon-enriched gas produced by the apparatus comprises at least 50 mol% argon, preferably at least 70 mol%. argon, or even at least 90 mol% of argon. The invention will be described in more detail with reference to the Figures. The
Figure 1 montre une installation d'oxycombustion avec unités d'épuration des fumées, la Figure 2 montre les unités d'épuration des fumées en plus de détail, la Figure 3 montre une un ité d'épuration des fumées en CO2 à basse température, la Figure 4 montre un appareil de récupération d'azote et/ou d'oxygène et/ou d'argon à partir d'un gaz résiduaire de l'unité de la Figure 4 et la Figure 5 montre une variante de la Figure 4.Figure 1 shows an oxycombustion plant with flue gas purification units, Figure 2 shows the flue gas purification units in more detail, Figure 3 shows a flue gas purification unit for CO 2 at low temperature. , Figure 4 shows a nitrogen recovery apparatus and / or of oxygen and / or argon from a waste gas of the unit of Figure 4 and Figure 5 shows a variant of Figure 4.
La Figure 1 est une vue schématique d'une installation d'oxycombustion. Un appareil de séparation d'air 2 produit un débit d'oxygène 10 à une pureté typique de 95 mol. % de manière à maximiser son contenu en argon et un débit d'azote résiduaire 13. L'appareil produit également de l'azote gazeux 13 et de l'azote liquide 159 destiné au traitement des incondensables. Le débit d'oxygène 10 est divisé en deux fractions 11 et 12. Le débit principal de recycle de fumées 15 passe par les unités 3 où le charbon 14 est transformé en poudre. La fraction 11 est mélangée avec le débit de recycle en aval de l'unité 3 et le mélange est envoyé à la chambre de combustion de la chaudière 1 . La fraction 12 est mélangée avec un débit secondaire de recycle de fumées 16 qui fournit du ballast aux brûleurs afin de maintenir les températures à des niveaux acceptables. De l'eau 17 est envoyée à la chaudière 1 pour produire de la vapeur 18 qui est détendue dans une turbine 8. Des fumées 19 riches en CO2, contenant typiquement plus de 70 mol. % (sans compter la vapeur d'eau), subissent plusieurs traitements pour enlever des impuretés. L'unité 4 enlève les NOx par exemple par catalyse. Ensuite l'unité 5 enlève les poussières et après l'unité 6 est un système de désulfurisation pour enlever le SO2 et/ou le SO3. Les unités 4 et 6 peuvent être superflues selon la composition du produit requis. Le débit épuré 24 provenant de l'unité 6 (ou 5 si 6 n'est pas présent) est envoyé à une unité de compression et d'épuration 7 pour produire un débit de CO2 relativement pur 25 et un débit résiduaire 26.Figure 1 is a schematic view of an oxycombustion plant. An air separation apparatus 2 produces a flow rate of oxygen at a typical purity of 95 mol. % to maximize its argon content and a waste nitrogen flow 13. The apparatus also produces nitrogen gas 13 and liquid nitrogen 159 for the treatment of incondensables. The flow rate of oxygen 10 is divided into two fractions 11 and 12. The main flow of flue gas recycle 15 passes through the units 3 where the coal 14 is converted into powder. The fraction 11 is mixed with the recycle flow downstream of the unit 3 and the mixture is sent to the combustion chamber of the boiler 1. Fraction 12 is mixed with a secondary flue gas recirculation flow rate 16 which provides ballast to the burners to maintain temperatures at acceptable levels. Water 17 is sent to the boiler 1 to produce steam 18 which is expanded in a turbine 8. Fumes 19 rich in CO2, typically containing more than 70 mol. % (not counting water vapor), undergo several treatments to remove impurities. Unit 4 removes NOx for example by catalysis. Then the unit 5 removes the dust and after the unit 6 is a desulfurization system to remove SO2 and / or SO3. Units 4 and 6 may be redundant depending on the composition of the required product. The purified flow 24 from unit 6 (or 5 if 6 is not present) is sent to a compression and scrubber unit 7 to produce a relatively pure CO 2 flow rate and a residual flow rate 26.
La Figure 2 est une vue schématique de l'unité de compression et d'épuration 7 de la Figure 1. Un débit 110 (correspondant au débit 24 de la figure 1 ) entre dans une unité 101 où il est préparé en amont de la compression dans l'unité 102. Dans l'unité 101 , le débit 110 peut être épuré en poussière, SO2, et/ou SO3 et/ou refroidi.FIG. 2 is a schematic view of the compression and purification unit 7 of FIG. 1. A flow 110 (corresponding to flow 24 of FIG. 1) enters a unit 101 where it is prepared upstream of the compression. in unit 102. In unit 101, flow 110 may be purified to dust, SO2, and / or SO3 and / or cooled.
Le débit résiduaire 111 produit par l'unité 101 peut être de l'eau condensée, de la poussière ou H2SO4, HNO3, Na2SO4, CaSO4, Na2COs, CaCO3, ...The residual flow rate 111 produced by unit 101 may be condensed water, dust or H 2 SO 4 , HNO 3, Na 2 SO 4 , CaSO 4 , Na 2 CO 3 , CaCO 3 , etc.
L'unité de compression 102 comprime le débit 112 provenant de l'unité 101 à partir d'une pression proche de l'atmosphérique jusqu'à une pression élevée entre 15 et 60 bar abs, de préférence vers 30 bar abs. Cette compression peut être effectuée en plusieurs étapes avec refroidissement intermédiaire. Dans ce cas, des condensats 113 peuvent être produits. La chaleur de compression peut être récupérée pour préchauffer l'eau 17. Un débit chaud 114 quitte l'unité de compression 102 et entre dans l'unité 103. Cette unité refroidit le débit 114, le sèche et éventuellement l'épure en mercure, produisant des résiduaires 115, 116 et 117.The compression unit 102 compresses the flow 112 from the unit 101 from a pressure close to atmospheric to a high pressure between 15 and 60 bar abs, preferably to 30 bar abs. This compression can be carried out in several stages with intermediate cooling. In this case, condensates 113 may be produced. The heat of compression can be recovered to preheat the water 17. A hot flow 114 leaves the compression unit 102 and enters the unit 103. This unit cools the flow 114, the drying and possibly the mercury treatment. producing waste 115, 116 and 117.
L'unité 104 est une unité d'épuration à basse température. Dans ce cas, « basse température » veut dire une température minimale dans le cycle du procédé d'épuration en dessous de 00C et de préférence en dessous de -200C, voire aussi proche que possible du point triple de CO2 pur à - 56.60C. Dans cette unité, le débit 118 est refroidi et partiellement condensé dans une ou plusieurs étapes. Un ou plusieurs débits enrichis en CO2 sont détendus et vaporisés pour obtenir un produit enrichi en CO2 119. Un débit haute pression d'incondensables 120 est récupéré à partir de l'unité 104 et envoyé à une unité de prétraitement 122. Le débit prétraité 123 est envoyé à une unité de traitement 124 où on produit un ou plusieurs fluides pouvant être de l'azote liquide et/ou gazeux 125 et/ou de l'oxygène liquide et/ou gazeux 126 et/ou de l'argon gazeux et/ou liquide 127.Unit 104 is a low temperature purification unit. In this case, "low temperature" means a minimum temperature in the cycle of the purification process below 0 ° C. and preferably below -20 ° C., or as close as possible to the triple point of pure CO2 at - 56.6 0 C. In this unit, the flow 118 is cooled and partially condensed in one or more steps. One or more CO2-enriched flow rates are expanded and vaporized to obtain a CO 2 -rich product 119. A high-pressure incondensable flow 120 is recovered from unit 104 and sent to a pretreatment unit 122. The pre-processed flow 123 is sent to a treatment unit 124 where one or more fluids is produced which may be liquid and / or gaseous nitrogen 125 and / or liquid and / or gaseous oxygen 126 and / or argon gas and / or liquid 127.
Le produ it riche en CO2 119 est comprimé dans une unité de compression 105. Dans l'unité 105, le débit comprimé 121 est condensé et peut être pompé.The CO2-rich product 119 is compressed in a compression unit 105. In the unit 105, the compressed flow 121 is condensed and can be pumped.
La Figure 3 montre un appareil d'épuration à basse température qui correspond à l'unité 104 de la Figure 2. Le débit 1 18 comprenant des fumées à environ 30 bar et à une température d'entre 15°C et 43°C est filtré en 3 pour former le débit 5. Le débit 118 comprend surtout du dioxyde de carbone ainsi q ue d u NO2, de l'oxygène, de l'argon et de l'azote. Il peut être produit directement à haute pression par l'unité 103 ou peut être comprimé par un compresseur (en pointillés) 2. Le débit 5 se refroidit dans une ligne d'échange 9 et est partiellement condensé. Une partie 7 du débit 5 n'est pas refroidie dans la ligne d'échange 9 mais est mélangée avec le reste du débit 5 en aval de la ligne d'échange afin de varier la température du mélange. Le débit partiellement condensé est envoyé à un premier séparateur de phases 1 1 et séparé en une phase gazeuse 13 et une phase liquide 17. La phase gazeuse 13 est divisée en deux pour former un débit 15 et un débit 21. Le débit 21 sert à rebouillir la colonne 43 dans l'échangeur 25 puis est envoyé à un deuxième séparateur de phases 22. Le débit 15 court-circuite les rebouilleurs afin de réguler le rebouillage.FIG. 3 shows a low temperature purification apparatus which corresponds to the unit 104 of FIG. 2. The flow 1 18 comprising fumes at approximately 30 bar and at a temperature of between 15 ° C. and 43 ° C. is The flow 118 includes mainly carbon dioxide as well as NO 2 , oxygen, argon and nitrogen. It can be produced directly at high pressure by the unit 103 or can be compressed by a compressor (dashed). The flow 5 cools in an exchange line 9 and is partially condensed. Part 7 of the flow 5 is not cooled in the exchange line 9 but is mixed with the remainder of the flow 5 downstream of the exchange line in order to vary the temperature of the mixture. The partially condensed flow is fed to a first phase separator 11 and separated into a gaseous phase 13 and a liquid phase 17. The gaseous phase 13 is divided in two to form a flow 15 and a flow 21. The flow 21 is used to to reboil column 43 in the exchanger 25 and is then sent to a second phase separator 22. The flow 15 bypasses the reboilers to regulate the reboiling.
Le liquide 17 du premier séparateur de phases 11 est détendu dans une vanne 19 et le débit liquide 29 du deuxième séparateur de phases 22 est détendu dans une vanne 31 , les deux débits détendus étant ensuite envoyés à la tête de la colonne 43. La colonne 43 sert principalement à enlever les composants incondensables (oxygène, azote et argon) du débit d'alimentation 118. Un débit appauvri en dioxyde de carbone 33 est soutiré en tête de la colonne 43 et envoyé au compresseur 35. Le débit comprimé 37 ainsi produit est recyclé au débit 5.The liquid 17 of the first phase separator 11 is expanded in a valve 19 and the liquid flow 29 of the second phase separator 22 is expanded in a valve 31, the two expanded flows then being sent to the top of the column 43. The column 43 serves primarily to remove the non-condensable components (oxygen, nitrogen and argon) from the feed rate 118. A depleted flow of carbon dioxide 33 is withdrawn at the top of the column 43 and sent to the compressor 35. The compressed flow 37 thus produced is recycled at flow 5.
Un débit enrichi ou riche en dioxyde de carbone 67 est soutiré en cuve de la colonne 43 et divisé en deux. Une partie 69 est pompée par la pompe 71 pour former un débit 85, ensuite pompée dans la pompe 87 puis retirée du système. Le débit 85 correspond au débit 25 de la Figure 1. Le reste 73 du débit 67 sert à tenir en froid l'appareil.A flow enriched or rich in carbon dioxide 67 is withdrawn in the bottom of the column 43 and divided into two. A portion 69 is pumped by the pump 71 to form a flow 85, then pumped into the pump 87 and removed from the system. The flow 85 corresponds to the flow rate 25 of FIG. 1. The remainder 73 of the flow 67 serves to keep the apparatus cold.
Il est à conseiller d'épurer le débit 118 en NO2.It is advisable to purge the flow 118 in NO2.
Les incondensables peuvent être séparés avant ou après la séparation de NO2.Incondensables can be separated before or after separation of NO 2 .
Dans la Figure 3, après la division avec le débit 69, le reste 73 du débit enrichi en dioxyde de carbone est vaporisé dans la ligne d'échange 9 et envoyé à une colonne d'épuration en NO2 105.In FIG. 3, after division with the flow 69, the remainder 73 of the carbon dioxide enriched flow is vaporized in the exchange line 9 and sent to an NO 2 purification column 105.
Cette colonne peut avoir un condenseur de tête et un rebouilleur de cuve, le débit 73 étant envoyé à un point intermédiaire. Sinon, s'il n'y a pas de rebouilleur de cuve, le débit est envoyé en cuve.This column may have a head condenser and a bottom reboiler, the flow 73 being sent to an intermediate point. Otherwise, if there is no tank reboiler, the flow is sent to the tank.
Un débit pauvre en NO2 79 est soutiré de la colonne 105 et renvoyé à la ligne d'échange 9. Ce débit 79 est chauffé, comprimé dans les compresseurs 75, 77, envoyé à l'échangeur 65, retiré comme le débit 78, refroidi dans les échangeurs 81 , 83 et mélangé avec le débit 69 pour former le débit 85. L'échangeur 81 peut servir à chauffer l'eau destinée à une chaudière. L'échangeur 83 est refroidi par un débit de réfrigérant 185 qui peut être R134a, ammoniac, de l'eau etc, le réfrigérant chauffé est désigné 187. Un débit enrichi en NO2 84 est soutiré en cuve de la colonne 105. Ce débit 84 est recyclé à un point en amont des filtres 3.A low NO2 flow 79 is withdrawn from the column 105 and returned to the exchange line 9. This flow 79 is heated, compressed in the compressors 75, 77, sent to the exchanger 65, removed as the flow 78, cooled in the exchangers 81, 83 and mixed with the flow 69 to form the flow 85. The exchanger 81 can be used to heat the water for a boiler. The exchanger 83 is cooled by a refrigerant flow 185 which can be R134a, ammonia, water etc., the heated refrigerant is designated 187. An enriched flow NO2 84 is withdrawn from the bottom of the column 105. This flow 84 is recycled to a point upstream of the filters 3.
Du gaz de tête 32 du deuxième séparateur de phases 22 est refroidi dans l'échangeur 55 et envoyé au troisième séparateur de phases 133. Une partie du liquide du troisième séparateur de phases 133 est envoyée à la colonne 43 et le reste, en tant que débit à pureté intermédiaire 45, est divisé en deux débits 47, 141. Le débit 47 est vaporisé dans l'échangeur 55 et envoyé en tête de la colonne 43 ou mélangé avec le débit 33.The overhead gas 32 of the second phase separator 22 is cooled in the exchanger 55 and sent to the third phase separator 133. Part of the liquid of the third phase separator 133 is sent to the column 43 and the remainder, as the flow at intermediate purity 45, is divided into two flow rates 47, 141. The flow 47 is vaporized in the exchanger 55 and sent to the top of the column 43 or mixed with the flow 33.
Le débit 141 est détendu dans une vanne, chauffé dans les échangeurs 55, 9, comprimé dans le compresseur 59, refroidi en tant que débit 91 dans l'échangeur 60 et mélangé avec le débit comprimé 5. La vanne qui sert à détendre le débit 141 peut être remplacée par une turbine liquide.The flow 141 is expanded in a valve, heated in the exchangers 55, 9, compressed in the compressor 59, cooled as a flow 91 in the exchanger 60 and mixed with the compressed flow 5. The valve which serves to relax the flow 141 can be replaced by a liquid turbine.
Le gaz de tête du troisième séparateur de phases 133 est refroidi dans un échangeur de chaleur 55, optionnellement après compression dans un compresseur 134 et envoyé à un quatrième séparateur de phases 143. Le gaz de tête pauvre en dioxyde de carbone 157 du quatrième séparateur de phases 143 est chauffé dans un échangeur de chaleur 55, ensuite dans l'échangeur 9 , chauffé dans l'échangeur 65 et détendu comme débit 23 dans l'échangeur 63, couplé au compresseur 35. Le gaz pauvre en dioxyde de carbone 157 comprend entre 30 et 45% de dioxyde de carbone et entre 30 et 45 % d'azote. Il comprend également de quantités substantielles d'oxygène et d'argon. Le liquide de cuve 51 du séparateur de phase 143 est envoyé à la colonne 43 avec le débit 47.The overhead gas of the third phase separator 133 is cooled in a heat exchanger 55, optionally after compression in a compressor 134 and sent to a fourth phase separator 143. The carbon dioxide-poor overhead gas 157 of the fourth separator of phase 143 is heated in a heat exchanger 55, then in the exchanger 9, heated in the exchanger 65 and expanded as flow 23 in the exchanger 63, coupled to the compressor 35. The carbon dioxide-poor gas 157 comprises between 30 and 45% of carbon dioxide and between 30 and 45% of nitrogen. It also includes substantial amounts of oxygen and argon. The tank liquid 51 of the phase separator 143 is sent to the column 43 with the flow 47.
Le débit détendu dans la turbine 63 est mélangé avec le débit 115 qui ne passe pas dans la turbine et ensuite réchauffé en 89. Une partie 97 du débit chauffé est détendue dans la turbine 61 et envoyée à l'atmosphère comme débit 99.The flow rate expanded in the turbine 63 is mixed with the flow 115 which does not pass into the turbine and then reheated at 89. A portion 97 of the heated flow rate is expanded in the turbine 61 and sent to the atmosphere as flow 99.
Un débit 120 riche en incondensables (oxygène et/ou argon et/ou azote) et contenant du CO2 est récupéré dans l'unité 104 pour récupérer au moins un de ses composants comme produit. Ce débit 120 peut être une partie du débit 101 provenant de la turbine 61 et/ou une partie du gaz de tête 157 du quatrième séparateur de phases 143 en amont de l'échangeur 55 et/ou une partie du débit détendu dans la turbine 63 et/ou une partie du débit 157 en aval de l'échangeur 9. Fractions molaires en pourcentages (exemple) pour O2, N2, Ar, CO2.A flow 120 rich in incondensable (oxygen and / or argon and / or nitrogen) and containing CO2 is recovered in unit 104 to recover at least one of its components as a product. This flow 120 may be a part of the flow 101 from the turbine 61 and / or a part of the overhead gas 157 of the fourth phase separator 143 upstream of the exchanger 55 and / or a part of the flow expanded in the turbine 63 and / or part of the flow 157 downstream of the exchanger 9. Percent molar fractions (example) for O2, N 2 , Ar, CO 2 .
Figure imgf000013_0001
Figure imgf000013_0001
Table 1Table 1
La Figure 4 montre un appareil de prétraitement et un appareil de séparation par distillation cryogénique du débit 120. Ce débit 120 est d'abord prétraité dans l'unité de prétraitement 122. Cette unité de prétraitement élimine au moins 50% mol. du dioxyde de carbone dans le gaz résiduaire 120 avant le traitement cryogénique produisant un débit 169 enrichi en CO2 qui peut être recyclé à l'unité 104 avec le débit 118.Figure 4 shows a pre-treatment apparatus and a cryogenic distillation separation apparatus of the flow 120. This flow 120 is first pretreated in the pretreatment unit 122. This pretreatment unit removes at least 50 mol%. carbon dioxide in the waste gas 120 prior to the cryogenic treatment producing a CO 2 enriched flow rate that can be recycled to the unit 104 with the flow rate 118.
Le prétraitement peut être réalisé par antisublimation/sublimation du dioxyde de carbone dans plusieurs échangeurs en parallèle. Alternativement, le prétraitement peut être réalisé par absorption (par exemple lavage au méthanol), adsorption, perméation ou plusieurs de ces techniques. La sublimation du dioxyde de carbone se fait par exemple en présence d'une fraction enrichie en oxygène de manière à constituer un mélange de dioxyde de carbone et oxygène servant à l'oxycombustion du combustible. Grâce à l'anti-sublimation, la température du gaz traité descend de -56.6 0C (point triple du CO2) à -170°C/-175°C, une température à laquelle on peut effectuer de la distillation cryogénique des gaz de l'air.The pretreatment can be carried out by antisublimation / sublimation of carbon dioxide in several exchangers in parallel. Alternatively, the pretreatment can be carried out by absorption (for example methanol washing), adsorption, permeation or several of these techniques. Sublimation of carbon dioxide occurs, for example, in the presence of an oxygen-enriched fraction so as to constitute a mixture of carbon dioxide and oxygen for the oxyfuel combustion of the fuel. Thanks to anti-sublimation, the temperature of the treated gas drops from -56.6 ° C (triple point of CO2) to -170 ° C / -175 ° C, a temperature at which cryogenic distillation of gas can be carried out. the air.
Sinon, le prétraitement peut se faire par un procédé de type TSA, PSA ou VPSA de manière à produire une fraction enrichie en dioxyde de carbone et une fraction appauvrie en dioxyde de carbone mais enrichie en argon.Otherwise, the pretreatment can be done by a process of the TSA, PSA or VPSA type so as to produce a fraction enriched in carbon dioxide and a fraction depleted of carbon dioxide but enriched in argon.
Le prétraitement peut se faire par un procédé d'absorption, utilisant par exemple une solution aqueuse de pH basique. Le pH basique est éventuellement obtenu par injection de NaOH et/ou Na2COs et/ou NH3. Le procédé d'absorption peut aussi utiliser un fluide non aqueux tel que le méthanol. Dans ce cas, l'absorption sera réalisée à basse température et de préférence sous pression.The pretreatment can be done by an absorption process, using for example an aqueous solution of basic pH. The basic pH is optionally obtained by injection of NaOH and / or Na 2 CO 3 and / or NH 3 . The The absorption process may also use a non-aqueous fluid such as methanol. In this case, the absorption will be carried out at low temperature and preferably under pressure.
Alternativement, le prétraitement se fait par perméation ou par une combinaison des différents procédés cités.Alternatively, the pretreatment is by permeation or a combination of the various methods mentioned.
Il est possible d'enlever tout le dioxyde de carbone dans l'unité de prétraitement pour ensuite envoyer un débit contenant quelques ppm de dioxyde de carbone. Ceci permet d'utiliser un échangeur à plaques et à ailettes comme échangeurs. Par contre, si le débit 123 contient plus de dioxyde de carbone, il est nécessaire de poursuivre le prétraitement en utilisant des échangeurs réversibles ou des échangeurs de type régénérateurs tels que décrit à la page 475 de « Tieftemperaturtechnik », sections 9.4.2.3 et 9.4.2.4, éditions Springer Verlag. Ainsi le dioxyde de carbone restant peut être enlevé en passant par un échangeur 130 d'un ces deux types. Evidemment, à l'entrée des colonnes, le débit d'alimentation 123 ne doit plus contenir que quelques ppm de dioxyde de carbone.It is possible to remove all the carbon dioxide in the pretreatment unit and then send a flow containing a few ppm of carbon dioxide. This makes it possible to use a plate and fin heat exchanger as exchangers. On the other hand, if the flow 123 contains more carbon dioxide, it is necessary to continue the pretreatment using reversible heat exchangers or regenerative type exchangers as described on page 475 of "Tieftemperaturtechnik", sections 9.4.2.3 and 9.4. .2.4, Springer Verlag editions. Thus the remaining carbon dioxide can be removed through an exchanger 130 of one of these two types. Obviously, at the entrance of the columns, the feed rate 123 must contain only a few ppm of carbon dioxide.
Après prétraitement, le débit appauvri en dioxyde de carbone 123 est envoyé à une unité de distillation cryogénique 124 comme illustré à la Figure 4. Le débit 123 est refroidi à une température cryogénique dans un échangeur 130 et envoyé au milieu d'une colonne 131 ayant un rebouilleur de cuve 133. Alternativement, le débit 123 pourrait être refroidi par détente dans une turbine avec production de travail (détente isentropique). De l'oxygène gazeux GOX est soutiré au-dessus de la cuve de la colonne 131 , chauffé dans l'échangeur 130 et sert comme produit 126 et/ou est recyclé au prétraitement 122 et/ou à la chaudière 1. De l'oxygène liquide 136 peut être soutiré en cuve de la colonne 131 , par exemple en tant que produit. Un débit enrichi en argon 141 est envoyé de la colonne 131 à la colonne 137 et un débit d'argon impur 145 est soutiré sous le condenseur 155 de cette colonne 137. Un débit de liquide de cuve 143 est renvoyé à la colonne 131. L'argon impur 145 est épuré dans une colonne de déazotation 139 ayant un condenseur de tête 153 et un rebouilleur de cuve 151. De l'argon liquide 127 est produit en cuve de la colonne de déazotation 139. L'appareil est tenu en froid au moins partiellement par injection d'azote liquide 159 provenant de l'appareil de séparation d'air 2 alimentant l'oxyconnbustion. L'azote liquide 159 est envoyé en tête de la colonne 131. Cet appareil de séparation d'air 2 fournit également de l'azote gazeux 13 qui se refroidit dans l'échangeur 130, chauffe le rebouilleur de cuve 133 de la colonne 131 pour former un débit condensé. Le débit condensé est envoyé en partie 147 après détente au condenseur de tête 153 de la colonne de déazotation 139, en partie 165 au condenseur de tête 155 de la colonne 137 et en partie 157 après détente à la tête de la colonne 131 . L'azote 163 vaporisé dans le condenseur 153 est mélangé avec le gaz de tête 135 de la colonne 131 , chauffé dans le sous-refroidisseur 160 et l'échangeur 130 et forme l'azote gazeux 165. L'azote 161 vaporisé dans le condenseur 155 forme le débit d'azote 161.After pretreatment, the depleted flow rate of carbon dioxide 123 is sent to a cryogenic distillation unit 124 as shown in FIG. 4. The flow 123 is cooled to a cryogenic temperature in an exchanger 130 and sent to the middle of a column 131 having a tank reboiler 133. Alternatively, the flow 123 could be cooled by expansion in a turbine with production of work (isentropic expansion). Oxygen gas GOX is withdrawn above the tank of column 131, heated in exchanger 130 and serves as product 126 and / or is recycled to pretreatment 122 and / or boiler 1. Oxygen liquid 136 can be withdrawn in the bottom of column 131, for example as a product. An argon-enriched flow 141 is sent from column 131 to column 137 and a flow of impure argon 145 is withdrawn under condenser 155 of this column 137. A flow of vessel liquid 143 is returned to column 131. L Impure argon 145 is purified in a denitrogenation column 139 having a top condenser 153 and a bottom reboiler 151. Liquid argon 127 is produced in the bottom of the denitrogenation column 139. The apparatus is kept cold at room temperature. least partially by liquid nitrogen injection 159 from the air separation apparatus 2 feeding the oxyconnbustion. The liquid nitrogen 159 is sent to the top of the column 131. This air separation unit 2 also supplies nitrogen gas 13 which cools in the exchanger 130, heats the bottom reboiler 133 of the column 131 to form a condensed flow. The condensed flow is sent in part 147 after expansion to the top condenser 153 of the denitrogenation column 139, in part 165 to the top condenser 155 of the column 137 and in part 157 after expansion at the head of the column 131. The nitrogen 163 vaporized in the condenser 153 is mixed with the overhead gas 135 of the column 131, heated in the subcooler 160 and the exchanger 130 and forms the nitrogen gas 165. The nitrogen 161 vaporized in the condenser 155 forms the nitrogen flow 161.
Au moins une colonne de l'appareil 124 peut éventuellement se trouver dans la même boîte froide qu'au moins une colonne de l'appareil 2. Ainsi les transferts d'azote 13 et/ou 159 peuvent se faire sans avoir à réchauffer et à refroidir l'azote. Pour le cas de la Figure 4, il est possible de supprimer les colonnes 137,139 s'il n'est pas nécessaire de récupérer de l'argon.At least one column of the apparatus 124 may possibly be in the same cold box as at least one column of the apparatus 2. Thus the transfers of nitrogen 13 and / or 159 can be done without having to heat and cool the nitrogen. For the case of Figure 4, it is possible to delete columns 137,139 if it is not necessary to recover argon.
La Figure 5 montre une variante de la partie froide de la Figure 4 dans lequel le mélange froid 123 provenant de l'échangeur 130 est envoyé à un niveau intermédiaire d'une colonne 163 sans rebouilleur ou condenseur de tête. Le gaz de tête 171 de la colonne 163 constitue l'azote gazeux et le liquide de cuve 173 est envoyé à une colonne 165 en position intermédiaire. Du gaz 175 est renvoyé de la position intermédiaire de la colonne 165 à la cuve de la colonne 163. La colonne 165 a un rebouilleur de cuve 175 et un condenseur de tête 177. De l'oxygène gazeux 126 et/ou liquide 136 est récupéré en cuve de la colonne 165 et le liquide de tête 145 est envoyé à une colonne de déazotation 167, l'argon liquide étant formé 127 dans la cuve de celle-ci. La colonne de déazotation a un rebouilleur de cuve 151 et un condenseur de tête 153.Figure 5 shows a variant of the cold part of Figure 4 in which the cold mixture 123 from the exchanger 130 is sent to an intermediate level of a column 163 without reboiler or overhead condenser. The overhead gas 171 of the column 163 is nitrogen gas and the vessel liquid 173 is fed to a column 165 in the intermediate position. Gas 175 is returned from the intermediate position of the column 165 to the tank of the column 163. The column 165 has a bottom reboiler 175 and a top condenser 177. Oxygen gas 126 and / or liquid 136 is recovered in the tank of the column 165 and the overhead liquid 145 is sent to a denitrogenation column 167, the liquid argon being formed 127 in the vessel thereof. The denitrogenation column has a bottom reboiler 151 and a top condenser 153.
De l'azote liquide 159 provenant de l'appareil de séparation d'air 2 est envoyé en tête de la colonne 163. La colonne 163 a un condenseur de tête qui, comme tous les rebouilleurs et condenseurs de la Figure 5 fonctionne grâce à un cycle d'azote gazeux provenant de l'appareil de séparation d'air 2, cycle qui n'a pas été illustré mais ressemblant à celui de la Figure 4.Liquid nitrogen 159 from the air separation unit 2 is sent to the top of the column 163. The column 163 has a top condenser which, like all the reboilers and condensers of FIG. nitrogen gas cycle from the air separation apparatus 2, a cycle which has not been illustrated but resembling that of Figure 4.
Eventuellement, l'envoi d'azote liquide 159 peut constituer la seule source de froid pour le procédé. D'autres façons de séparer le débit 123 par distillation cryogénique peuvent évidemment être envisagées que celles illustrées dans les Figures 4 et 5. Optionally, the sending of liquid nitrogen 159 may be the only source of cold for the process. Other ways of separating the flow 123 by cryogenic distillation can obviously be envisaged as those illustrated in FIGS. 4 and 5.

Claims

REVENDICATIONS
1. Procédé de production d'au moins un fluide enrichi en argon et d'au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire provenant d'un procédé de purification d'un gaz résiduaire, le gaz résiduaire contenant du dioxyde de carbone et de l'oxygène et/ou de l'argon, le gaz résiduaire étant dérivé d'une installation alimentée par de l'oxygène contenant de l'argon qui est une installation d'oxycombustion, mettant en œuvre les étapes suivantes :A process for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a waste fluid from a process for purifying a waste gas, the waste gas containing dioxide of carbon and oxygen and / or argon, the waste gas being derived from an oxygen-fed plant containing argon which is an oxy-fuel combustion plant, implementing the following steps:
- récupération de fumées provenant de l'oxycombustion d'un combustible au moyen d'un gaz riche en oxygène et en dioxyde de carbone contenant de l'argon dans la chambre de combustion d'une chaudière (1 ) ;- recovery of fumes from the oxyfuel combustion of a fuel with an oxygen-rich gas and carbon dioxide containing argon in the combustion chamber of a boiler (1);
- purification du gaz résiduaire constitué par des fumées issues de la chaudière, par un procédé de purification à basse température, de manière à produire un fluide enrichi en dioxyde de carbone (119) et un fluide résiduaire (120) appauvri en dioxyde de carbone ;- purification of the waste gas consisting of fumes from the boiler, by a low temperature purification process, so as to produce a carbon dioxide-enriched fluid (119) and a waste fluid (120) depleted in carbon dioxide;
- prétraitement du fluide résiduaire appauvri en dioxyde de carbone pour obtenir un débit enrichi en dioxyde de carbone (169) et un débit pauvre en dioxyde de carbone (123) ;pretreatment of the carbon dioxide-depleted waste fluid to obtain a carbon dioxide enriched flow (169) and a low carbon dioxide flow (123);
- traitement du débit pauvre en dioxyde de carbone par voie cryogénique de manière à en extraire au moins une fraction enrichie, voire riche, en argontreatment of the low carbon dioxide flow rate by cryogenic means so as to extract at least one enriched or even rich fraction, argon
(127) et au moins une fraction enrichie, voire riche, en oxygène (126) et au moins une fraction (125) appauvrie en argon et/ou en oxygène.(127) and at least one fraction enriched or rich, oxygen (126) and at least one fraction (125) depleted argon and / or oxygen.
2. Procédé selon la revendication précédente, caractérisé en ce que le traitement par voie cryogénique du débit pauvre en dioxyde de carbone comprend une étape de refroidissement dans au moins un échangeur (130), éventuellement un rebouilleur, éventuellement un condenseur, éventuellement un échangeur de type réversible ou de type régénérateur et une étape de distillation dans une colonne à distiller (131 ,163).2. Method according to the preceding claim, characterized in that the cryogenic treatment of low carbon dioxide flow comprises a cooling step in at least one exchanger (130), optionally a reboiler, optionally a condenser, optionally a heat exchanger. reversible or regenerative type and a distillation step in a distillation column (131, 163).
3. Procédé selon l'une des revendications précédentes dans lequel de l'air est séparé dans un appareil de séparation d'air (2), de préférence par distillation cryogénique, pour produire un débit (10) riche en oxygène contenant au plus 99% d'oxygène, de préférence au plus 98% d'oxygène, voire au plus 97% mol. d'oxygène, et de l'argon, de préférence au moins 2% mol. d'argon, voire au moins 3 % mol. d'argon et le débit riche en oxygène est envoyé à l'oxycombustion.Method according to one of the preceding claims, wherein air is separated in an air separation apparatus (2), preferably by cryogenic distillation, to produce a flow (10) rich in oxygen containing at most 99 % oxygen, preferably at most 98% oxygen, or even more 97 mol% oxygen, and argon, preferably at least 2 mol%. argon, or at least 3 mol%. of argon and the flow rich in oxygen is sent to the oxycombustion.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la fraction enrichie, voire riche, en oxygène (126) sert à l'oxycombustion du combustible et/ou au prétraitement du gaz résiduaire appauvri en dioxyde de carbone.5. Method according to one of the preceding claims, characterized in that the fraction enriched or rich, oxygen (126) is used for oxyfuel combustion and / or pretreatment of the waste gas depleted carbon dioxide.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le traitement permet aussi la récupération d'une fraction (125) enrichie, voire riche en azote.6. Method according to one of the preceding claims, characterized in that the treatment also allows the recovery of a fraction (125) enriched or even rich in nitrogen.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise dans le traitement du débit pauvre en dioxyde de carbone un ou plusieurs fluide(s) provenant d'une unité de séparation de gaz de l'air (2) ou de l'unité de séparation des gaz de l'air fournissant au moins une partie de l'oxygène pour l'installation alimentée par l'oxygène, par exemple l'oxycombustion, au moins une colonne de l'unité de séparation de gaz de l'air et au moins une colonne de l'unité de traitement pouvant se trouver dans une boîte froide unique.7. Method according to one of the preceding claims, characterized in that one or more fluid (s) from an air gas separation unit (2) is used in the treatment of the low carbon dioxide flow rate. ) or the air-gas separation unit supplying at least a part of the oxygen for the oxygen-fed plant, for example oxy-fuel combustion, at least one column of the separation unit of the gas and at least one column of the treatment unit can be in a single cold box.
8. Procédé selon la revendication 7, caractérisé en ce qu'un de ces fluides est un liquide riche en azote (159) qui maintient au moins partiellement en froid le traitement par voie cryogénique du débit pauvre en dioxyde de carbone.8. The method of claim 7, characterized in that one of these fluids is a nitrogen-rich liquid (159) which maintains at least partially in cold cryogenic treatment of low carbon dioxide flow.
9. Procédé selon l'une des revendications précédentes 7 ou 8, caractérisé en ce qu'un de ces fluides est un gaz riche en azote (13) qui servira de gaz de cycle pour au moins un rebouilleur et/ou au moins un condenseur du traitement par voie cryogénique. 9. Method according to one of the preceding claims 7 or 8, characterized in that one of these fluids is a nitrogen-rich gas (13) which will serve as a cycle gas for at least one reboiler and / or at least one condenser cryogenic treatment.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le prétraitement élimine au moins 50% mol. du dioxyde de carbone dans le gaz résiduaire avant le traitement cryogénique.10. Method according to one of the preceding claims, characterized in that the pretreatment eliminates at least 50 mol%. carbon dioxide in the waste gas before the cryogenic treatment.
11. Procédé selon la revendication 10 caractérisé en ce que le prétraitement se fait au moins en partie par antisublimation/sublimation du dioxyde de carbone dans plusieurs échangeurs en parallèle.11. The method of claim 10 characterized in that the pretreatment is at least partly by antisublimation / sublimation of carbon dioxide in several exchangers in parallel.
12. Procédé selon la revendication 11 caractérisé par le fait que la sublimation du dioxyde de carbone se fait en présence de la fraction enrichie en oxygène de manière à constituer un mélange dioxyde de carbone/oxygène servant à l'oxycombustion du combustible.12. The method of claim 11 characterized in that the sublimation of carbon dioxide is in the presence of the enriched oxygen fraction so as to constitute a carbon dioxide / oxygen mixture for the oxyfuel combustion of the fuel.
13. Procédé selon la revendication 10,11 ou 12 caractérisé en ce que le prétraitement se fait au moins en partie par un procédé de type TSA, PSA ou13. The method of claim 10,11 or 12 characterized in that the pretreatment is at least partly by a method of TSA, PSA or
VPSA de manière à produire une fraction enrichie en dioxyde de carbone et une fraction appauvrie en dioxyde de carbone mais enrichie en argon.VPSA to produce a fraction enriched in carbon dioxide and a fraction depleted in carbon dioxide but enriched in argon.
14. Procédé selon la revendication 10,11 ,12 ou 13 caractérisé en ce que le prétraitement se fait au moins en partie par un procédé d'absorption, éventuellement par lavage au méthanol.14. The method of claim 10,11, 12 or 13 characterized in that the pretreatment is at least in part by an absorption process, optionally by washing with methanol.
15. Procédé selon l'une des revendications 10 à 14 caractérisé en ce que le prétraitement se fait au moins en partie par perméation.15. Method according to one of claims 10 to 14 characterized in that the pretreatment is at least partly by permeation.
16. Procédé selon au moins une des revendications précédentes caractérisé en ce que le débit enrichi en dioxyde de carbone (169) produit par le prétraitement est recyclé dans l'installation consommatrice d'oxygène, de préférence à la chaudière d'oxycombustion, de préférence à la chambre de combustion.16. Method according to at least one of the preceding claims, characterized in that the flow rate enriched in carbon dioxide (169) produced by the pretreatment is recycled to the oxygen consuming plant, preferably to the oxy-fuel combustion boiler, preferably to the combustion chamber.
17. Installation de production d'au moins un fluide enrichi en argon et d'au moins un fluide enrichi en oxygène à partir d'un fluide résiduaire provenant d'un procédé de purification d'un gaz résiduaire, le gaz résiduaire contenant du dioxyde de carbone et de l'argon et/ou de l'oxygène, le gaz résiduaire étant dérivé d'une installation alimentée par de l'oxygène contenant de l'argon qui est une installation d'oxycombustion comprenant :17. A plant for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a waste fluid from a process for purifying a waste gas, the waste gas containing carbon dioxide and argon and / or oxygen, the waste gas being derived from an oxygen-fed facility containing argon which is an oxy-fuel combustion plant comprising:
- une unité de purification (104) du gaz résiduaire, en particulier de fumées issues d'une chaudière d'oxycombustion d'un combustible au moyen d'un gaz riche en oxygène et en dioxyde de carbone, l'unité de purification pouvant être une unité de purification à basse température, de manière à produire un fluide enrichi en dioxyde de carbone et un fluide résiduaire appauvri en dioxyde de carbone ; - une unité de prétraitement (122) du fluide résiduaire pour obtenir un débit enrichi en dioxyde de carbone et un débit pauvre en dioxyde de carbone ; eta purification unit (104) for the waste gas, in particular fumes from a boiler for oxyfuel combustion of a fuel by means of a gas rich in oxygen and carbon dioxide, the purification unit being able to be a low temperature purification unit, so as to produce a carbon dioxide enriched fluid and a carbon dioxide depleted waste fluid; a pre-treatment unit (122) for the waste fluid to obtain a flow rate enriched with carbon dioxide and a flow rate that is low in carbon dioxide; and
- une unité de traitement (124) du débit pauvre en dioxyde de carbone par voie cryogénique de manière à en extraire une fraction enrichie en argon, une fraction enrichie en oxygène et une fraction appauvrie en argon et/ou en oxygène.- A treatment unit (124) of the cryogenic low carbon dioxide flow so as to extract an argon enriched fraction, an oxygen enriched fraction and a depleted fraction argon and / or oxygen.
18. Installation selon la revendication 17, caractérisée en ce que l'unité traitement par voie cryogénique du débit pauvre en dioxyde de carbone comprend au moins un échangeur (130) et au moins une colonne à distiller (131 , 139, 163, 165, 167). 18. Installation according to claim 17, characterized in that the cryogenic treatment unit low carbon dioxide flow comprises at least one exchanger (130) and at least one distillation column (131, 139, 163, 165, 167).
PCT/FR2010/051031 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid WO2010139884A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2762237A CA2762237A1 (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
EP10731773A EP2438378A2 (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
CN2010800247790A CN102695935A (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
US13/375,256 US20120067082A1 (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
AU2010255559A AU2010255559A1 (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953648A FR2946417A1 (en) 2009-06-03 2009-06-03 METHOD AND APPARATUS FOR PRODUCING AT LEAST ONE ARGON-ENRICHED FLUID AND / OR AT LEAST ONE OXYGEN-ENRICHED FLUID FROM A RESIDUAL FLUID
FR0953648 2009-06-03

Publications (2)

Publication Number Publication Date
WO2010139884A2 true WO2010139884A2 (en) 2010-12-09
WO2010139884A3 WO2010139884A3 (en) 2012-11-15

Family

ID=41820086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051031 WO2010139884A2 (en) 2009-06-03 2010-05-28 Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid

Country Status (7)

Country Link
US (1) US20120067082A1 (en)
EP (1) EP2438378A2 (en)
CN (1) CN102695935A (en)
AU (1) AU2010255559A1 (en)
CA (1) CA2762237A1 (en)
FR (1) FR2946417A1 (en)
WO (1) WO2010139884A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871164B2 (en) 2010-05-31 2014-10-28 Mitsubushi Heavy Industries, Ltd. Air pollution control system and method
US8894941B2 (en) 2010-05-31 2014-11-25 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
CA2800994C (en) * 2010-05-31 2015-12-08 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
EP2578295B1 (en) 2010-05-31 2020-05-27 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment system and method
WO2011152547A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
US20160223253A1 (en) * 2013-09-10 2016-08-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separation at cryogenic temperature
CN105688597B (en) * 2016-03-31 2018-06-05 四川天采科技有限责任公司 A kind of full temperature journey pressure swing absorption process that hydro carbons is recycled from low-temperature methanol washing tail-gas
RU2764773C2 (en) * 2017-06-27 2022-01-21 Касале Са Method for producing argon and nitrogen
US10663224B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US11913718B2 (en) 2019-11-27 2024-02-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Argon and power production by integration with power plant
FR3119227B1 (en) * 2021-01-27 2023-03-10 Air Liquide Method and apparatus for separating a stream rich in carbon dioxide by distillation to produce liquid carbon dioxide
CN113797700A (en) * 2021-09-22 2021-12-17 乔治洛德方法研究和开发液化空气有限公司 Integrated unit and method for separating air and producing carbon dioxide-rich product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036749B3 (en) 2006-08-05 2007-09-06 Messer Group Gmbh Producing noble gases comprises mixing a gas stream with an auxiliary gas stream containing noble gases before it is supplied to a gas separation unit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1125505A (en) * 1966-06-23 1968-08-28 Distillers Co Carbon Dioxide Production of carbon dioxide and argon
US4308043A (en) * 1980-08-15 1981-12-29 Yearout James D Production of oxygen by air separation
US5100635A (en) * 1990-07-31 1992-03-31 The Boc Group, Inc. Carbon dioxide production from combustion exhaust gases with nitrogen and argon by-product recovery
FR2705141B1 (en) * 1993-05-11 1995-07-28 Air Liquide PROCESS AND CRYOGENIC ARGON PRODUCTION FACILITY.
EP0640794B2 (en) * 1993-08-31 2001-02-28 Praxair Technology, Inc. Combustion using argon with oxygen
US5775128A (en) * 1997-05-02 1998-07-07 Praxair Technology, Inc. Process for producing ammonia and recovering argon using low purity oxygen
US6238460B1 (en) * 1997-09-26 2001-05-29 The Boc Group, Inc. Air purification process
US6045602A (en) * 1998-10-28 2000-04-04 Praxair Technology, Inc. Method for integrating a blast furnace and a direct reduction reactor using cryogenic rectification
US6212906B1 (en) * 2000-02-16 2001-04-10 Praxair Technology, Inc. Cryogenic reflux condenser system for producing oxygen-enriched air
US6282901B1 (en) * 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
US6568185B1 (en) * 2001-12-03 2003-05-27 L'air Liquide Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Combination air separation and steam-generation processes and plants therefore
US7708804B2 (en) * 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
US20090013868A1 (en) * 2007-07-11 2009-01-15 Arthur Darde Process and apparatus for the separation of a gaseous mixture
US20100018218A1 (en) * 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036749B3 (en) 2006-08-05 2007-09-06 Messer Group Gmbh Producing noble gases comprises mixing a gas stream with an auxiliary gas stream containing noble gases before it is supplied to a gas separation unit

Also Published As

Publication number Publication date
WO2010139884A3 (en) 2012-11-15
EP2438378A2 (en) 2012-04-11
US20120067082A1 (en) 2012-03-22
AU2010255559A1 (en) 2011-12-22
CA2762237A1 (en) 2010-12-09
CN102695935A (en) 2012-09-26
FR2946417A1 (en) 2010-12-10

Similar Documents

Publication Publication Date Title
WO2010139884A2 (en) Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
EP1869385B1 (en) Integrated method and installation for cryogenic adsorption and separation for producing co2
EP2167891B1 (en) Process and apparatus for the separation of a gaseous mixture
AU2008200176B2 (en) Purification of carbon dioxide
AU2008273716B2 (en) Process and apparatus for the separation of a gaseous mixture
KR20080069522A (en) Purification of carbon dioxide
KR20080069523A (en) Purification of carbon dioxide
US20090013868A1 (en) Process and apparatus for the separation of a gaseous mixture
EP0503910A1 (en) Carbon dioxide and acid gas removal and recovery process for fossil fuel fired power plants
CA2793610C (en) Purification of carbon dioxide
FR2872890A1 (en) Integrated process for adsorption and cryogenic separation for the production of carbon dioxide from sources containing low percentages of carbon dioxide
US20120240616A1 (en) Method and device for treating a carbon dioxide-containing gas stream
FR2929686A1 (en) APPARATUS AND METHOD FOR OXYCOMBUSTION WITH CO2 CAPTURE.
WO2012114118A1 (en) Process and apparatus for purification of carbon dioxide
FR2884304A1 (en) Carbon dioxide separating method for iron and steel industry, involves receiving flow enriched in carbon dioxide from absorption unit, sending it towards homogenization unit and subjecting carbon dioxide to intermediate compression stage
WO2012114119A1 (en) Process and apparatus for purification of carbon dioxide
WO2012114120A1 (en) Process and apparatus for purification of carbon dioxide
EP1697690A2 (en) Method and installation for enriching a gas stream with one of the components thereof
FR2997866A3 (en) Purification of carbon dioxide from e.g. synthesis gas, from gas turbine in integrated gasification combined cycle-type thermal power plant, comprises carrying out partial condensation of feed gas followed by purification and distillation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731773

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2762237

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010731773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375256

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010255559

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010255559

Country of ref document: AU

Date of ref document: 20100528

Kind code of ref document: A