WO2010110113A1 - Field device - Google Patents

Field device Download PDF

Info

Publication number
WO2010110113A1
WO2010110113A1 PCT/JP2010/054358 JP2010054358W WO2010110113A1 WO 2010110113 A1 WO2010110113 A1 WO 2010110113A1 JP 2010054358 W JP2010054358 W JP 2010054358W WO 2010110113 A1 WO2010110113 A1 WO 2010110113A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
switch
wireless
state
Prior art date
Application number
PCT/JP2010/054358
Other languages
French (fr)
Japanese (ja)
Inventor
立 鄭
Original Assignee
株式会社山武
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山武 filed Critical 株式会社山武
Publication of WO2010110113A1 publication Critical patent/WO2010110113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates to a field device, and more particularly to a field device having a wireless communication function.
  • the field device detects physical quantities such as temperature, flow rate, pressure, and position. Then, by collecting field data from such field devices, it is possible to control and manage facilities.
  • a valve positioner which is a field device, receives a 4-20 mA current signal. Based on this current signal, an operation signal is output so that the valve is at a predetermined valve position.
  • the field device further supplies the surplus current from the 4-20 mA signal (loop current) to the storage battery or the capacitor in the field device of Patent Document 1. (Claim 6)
  • a loop current is shunted to supply power to the radio circuit. That is, a loop current of 4-20 mA is shunted between the measurement circuit and the power supply circuit of the radio circuit.
  • the capacitor cannot be sufficiently charged.
  • the maximum current that can be used to charge the capacitor is about 0.5 mA.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a field device capable of wirelessly communicating with power efficiently.
  • a field device includes a wireless circuit that performs wireless communication, an analog signal input unit that receives an analog signal, and a single capacitor that is provided to supply power to the wireless circuit.
  • a power circuit provided to charge the capacitor based on the analog signal; a measurement circuit connected in series to the power circuit; and a first capacitor connected in parallel to the power circuit.
  • a switch unit that switches between a state and a second state connected in parallel to the wireless circuit, and a switch control unit that controls the switching by the switch unit to be performed intermittently.
  • a field device is the above-described field device, for supplying a power to the wireless circuit that performs wireless communication, an analog signal input unit that receives an analog signal, and the wireless circuit.
  • a plurality of capacitors a power supply circuit provided for charging the capacitor based on the analog signal, a measurement circuit connected in series to the power supply circuit, and the plurality of capacitors,
  • a switch unit for switching between a first state connected in parallel to the power supply circuit and a second state where the plurality of capacitors are connected in parallel and connected in parallel to the wireless circuit, and switching by the switch unit And a switch control unit that performs control so as to be performed intermittently.
  • wireless communication can be performed efficiently.
  • a field device is the above-described field device, and in the second state, the positive pole of the capacitor is connected to the positive terminal side of the wireless circuit, and the negative pole of the capacitor is The wireless circuit and the measurement circuit are grounded to a common ground. Thereby, wireless communication with strong noise tolerance can be performed.
  • a field device is the field device described above, wherein the capacitance value of the capacitor is obtained from an operating characteristic of the radio circuit and an operating cycle of the switch unit. Is. Thereby, sufficient electric power for wireless communication can be supplied simply.
  • a field device is the field device described above, wherein the switch is configured by a semiconductor switch, and a switch control signal line is insulated from the switch. .
  • FIG. 1 is a circuit diagram showing a configuration of a field device.
  • Field devices are installed in plants, factories, and other facilities. Examples of field devices include transmitters and valve positioners. Of course, various sensors that detect physical quantities such as temperature, flow rate, pressure, and position may be used.
  • the field device 10 includes an analog signal input unit 13, a radio circuit 14, a power supply circuit 15, and a measurement circuit 16.
  • the analog signal input unit 13 receives an analog signal.
  • the analog signal is, for example, a loop current of 4 to 20 mA. Therefore, the analog signal input unit 13 has a terminal 11 and a terminal 12. Then, a loop current of 4 to 20 mA flows from the terminal 11 to the terminal 12.
  • This loop current changes according to the value of the measurement data. For example, data values such as pressure are converted into loop currents. Further, for example, a power supply voltage of 24 V is applied to the analog signal input unit 13.
  • the wireless circuit 14 has a wireless communication function for performing wireless communication with the outside.
  • the radio circuit 14 includes, for example, an antenna, a modulator, and a demodulator.
  • the wireless circuit 14 wirelessly transmits various signals such as collected measurement data. This wireless signal is received by an external information processing apparatus, and field data is collected. Alternatively, parameter data to be set is transmitted from the outside wirelessly. This eliminates the need for external wiring or the like. It becomes possible to easily install and maintain field devices in the facility.
  • the power supply circuit 15 is a circuit that generates power to supply power to the wireless circuit 14. Therefore, a loop current is input to the power supply circuit 15. Then, a predetermined power is supplied to the radio circuit 14 based on the loop current.
  • the measurement circuit 16 also has a built-in circuit (such as a regulator) that supplies its own power from a loop current.
  • the measurement circuit 16 measures data.
  • the measurement circuit 16 is connected in series to the power supply circuit 15. That is, the power supply circuit 15 and the measurement circuit 16 are connected in series between the terminal 11 and the terminal 12.
  • the radio circuit 14 and the measurement circuit 16 are connected to a common ground 19.
  • the ground 19 is connected to a case (housing) of the field device 10, for example. Thereby, it can be operated stably.
  • the power supply circuit 15 is provided with a switch unit 23 that is one of the technical features of the field device 10 according to the present embodiment.
  • the switch unit 23 is provided with a capacitor 21 and a switch 22.
  • four capacitors 21 are provided.
  • eight switches 22 are provided. That is, the switches 22 are connected to both sides of each capacitor 21. And the connection state of the capacitor 21 changes when all the switches 22 are switched at the same timing.
  • the switch 22 is configured by a semiconductor switch such as a semiconductor transistor, for example.
  • the wireless circuit 14 is provided with a switch control circuit 20.
  • the switch control circuit 20 is implemented by a microcomputer, for example, and outputs a control signal for controlling switching of the switch unit 23. Further, the switch control circuit 20 can acquire various measurement data of the measurement circuit 16.
  • the switch control circuit 20 may not be built in the wireless circuit 14. That is, the switch control circuit 20 may be provided at a place other than the wireless circuit 14. For example, the switch control circuit 20 may be provided in the measurement circuit 16 or may be provided in other places.
  • the switch unit 23 switches the connection state of the four capacitors 21. While the wireless circuit 14 performs wireless communication, the switch unit 23 places the capacitor 21 in a discharged state. As a result, the radio circuit 14 is driven by the electric power stored in the capacitor 21. On the other hand, when the wireless circuit 14 does not perform wireless communication, the switch unit 23 places the capacitor 21 in a charged state. As a result, the power used during wireless communication is stored in the capacitor 21. Switching of the connection state of the switch unit 23 is executed by the switch control circuit 20. The switch control circuit 20 switches the connection state intermittently. For example, the switch control circuit 20 outputs a pulse signal that switches the switch 22 at a predetermined cycle. Thereby, all the switches 22 are switched simultaneously. Therefore, the discharge state and the charge state are switched intermittently.
  • FIG. 2 is a circuit diagram showing a state of charge, and a part of the configuration is omitted as appropriate.
  • FIG. 2 in the charged state, four capacitors 21 are connected in parallel. The four capacitors 21 are connected to the power supply circuit 15 and charged. In the charged state, the radio circuit 14 is disconnected from the capacitor 21. At this time, the radio circuit 14 is in a sleep state.
  • FIG. 3 is a circuit diagram showing a discharge state, and some components are omitted as appropriate.
  • the four capacitors 21 are connected in series. These four capacitors 21 are connected to the radio circuit 14 in parallel and discharged.
  • the plus end (positive electrode) of the capacitor 21 connected in series is connected to the + terminal side of the radio circuit 14, and the minus end (negative electrode) is connected to the ground.
  • the electric charge accumulated in the capacitor 21 flows to the wireless circuit 14 through the diode 17, and power for wireless communication is supplied.
  • the wireless circuit 14 performs wireless communication.
  • the power supply circuit 15 is disconnected from the capacitor 21.
  • the capacitor 21 is charged from the power supply circuit 15 at the time of sleep of the wireless operation.
  • the power supply circuit 15 and the measurement circuit 16 are connected in series, and a plurality of capacitors 21 are connected in parallel to the power supply circuit 15.
  • the sleep state of the wireless circuit can be maintained with a current of several ⁇ A from the power source of the measurement circuit 16.
  • a plurality of charged capacitors 21 are connected in series by the switch 22. Further, the positive end and the negative end are connected to the power supply and ground of the wireless circuit to supply power.
  • the switch 22 is returned to the original state and the capacitor 21 is restored in parallel. Thereby, the capacitor 21 is charged. By doing in this way, wireless power can be supplied efficiently. Therefore, wireless communication can be performed without using an AC power source or a battery. Therefore, installation in equipment can be easily performed. Wiring costs and battery maintenance costs can be reduced.
  • FIG. 4 is a timing chart showing the switching operation.
  • the switch control signal is a pulse signal having a predetermined cycle, and the switch 22 repeats ON / OFF. That is, the discharge period and the charge period are repeated at regular intervals.
  • the sleep current of the wireless circuit 14 becomes the wireless consumption current.
  • the capacitor 21 is charged while the wireless communication function is stopped.
  • the measurement circuit 16 is connected in series with the power supply circuit. Therefore, the loop current is supplied to the measurement circuit 16. For this reason, the current loss of the measurement circuit 16 can be reduced. For example, even if the loop current is the lower limit of 4 mA, the current value supplied to the measurement circuit 16 does not fall below 4 mA. Since the capacitor 21 is connected to the power supply circuit 15 in parallel, some voltage drops in the power supply circuit 15. However, since current loss can be reduced, the measurement circuit 16 operates without problems even when the voltage drops.
  • the discharge period first, it flows with the microcomputer operating current, and the switch control circuit which is the microcomputer operates.
  • a wireless operating current flows, and wireless communication is performed in the wireless circuit 14.
  • the wireless operating current is about 10 mA, for example.
  • the microcomputer operation is finished.
  • wireless communication is intermittently performed. Wireless communication can be performed simply by outputting a switch control signal for intermittently performing wireless operation. That is, it is not necessary to monitor the state of charge, and it can be easily controlled.
  • FIG. 5 is a diagram illustrating a specific example of the switch unit 23.
  • An isolator 51 is connected to the switch unit 23. That is, since the switch control circuit 20 and the power supply circuit 15 have different grounds, the isolator 51 is used. Then, a microcomputer control signal for controlling switch switching is input from the switch control circuit 20 to the isolator 51.
  • the switch control signal line can be insulated from the switch by the isolator 51.
  • the power V + of the switch unit 23 is supplied from a power circuit.
  • the switch 22 is switched by the microcomputer control signal.
  • the analog voltage range in which the switch 22 can be controlled is -0.5V to + 0.5V.
  • the switch 22 is driven by the electric power of the capacitor 21. That is, the switch 22 is operated by the electric power stored in the capacitor 21. For this reason, the ground GND of the switch unit 23 is connected to COM2 of the capacitor 21, and the power source V + is connected to COM1 of the capacitor 21.
  • the number of capacitors 21 is four, but may be other than four.
  • the number of capacitors 21 is preferably plural. Thereby, the voltage can be boosted. Moreover, as shown in FIGS. 6 and 7, the number of capacitors 21 may be one.
  • the power regulator voltage of the power circuit 15 may be about 0.5 to 1V.
  • the power supply circuit 15 may be configured with a diode, a shunt regulator, a transistor, or the like.
  • the characteristics of the capacitor 21 and the number of stages can be obtained from the operating characteristics and operating cycle of the radio circuit.
  • the capacitance C of the capacitor 21 is approximated below.
  • the intermittent operation has a cycle of 1 second and the wireless communication operation has a duty of 1% (that is, 0.01 seconds).
  • the wireless communication circuit consumes 10 mA, it is necessary to charge 0.1 mq or more for one wireless operation.
  • the capacitor 21 needs only a small divided capacity of about 1 / n.
  • the number of stages and the characteristics (capacitance) of the capacitor 21 can be obtained from the operating characteristics and period of wireless communication. That is, the capacitance of the capacitor can be determined by the operation characteristics (current) of wireless communication and the operation cycle (duty, repetition frequency).

Abstract

Provided is a field device capable of carrying out communication with high power efficiency. The field device comprises a wireless circuit (14) for carrying out wireless communication, an analog signal input unit (13) to which an analog signal is inputted, at least one capacitor (21) provided to supply power to the wireless circuit (14), a power supply circuit (15) provided to charge the capacitor (21) on the basis of the analog signal, a measuring circuit (16) connected in series to the power supply circuit (15), a switch unit (23) for switching between a first (charge) state and a second (discharge) state, and a switch control circuit (20) for controlling the switch unit (23) to intermittently carry out the switching. In the first (charge) state, the capacitor (21) is connected in parallel to the power supply circuit (15), and in the second (discharge) state, the capacitor (21) is connected in parallel to the wireless circuit (14).

Description

フィールド機器Field equipment
 本発明は、フィールド機器に関し、特に詳しくは、無線通信機能を有するフィールド機器に関する。 The present invention relates to a field device, and more particularly to a field device having a wireless communication function.
 プラントや工場などの設備には、各種のフィールド機器が設置されている。そして、フィールド機器は、温度、流量、圧力、位置などの物理量を検出している。そして、このようなフィールド機器からのフィールドデータを収集することで、設備の制御、管理などを行うことができる。 Various field devices are installed in facilities such as plants and factories. The field device detects physical quantities such as temperature, flow rate, pressure, and position. Then, by collecting field data from such field devices, it is possible to control and manage facilities.
 このようなフィールド機器において、無線通信機能を有するものが開示されている(特許文献1参照)。この文献では、フィールド機器であるバルブポジショナが、4-20mAの電流信号を受信している。そして、この電流信号に基づいて、バルブが所定のバルブ位置になるように操作信号を出力している。無線通信を行うことで、配線コストを削減することができる。たとえば、フィールド機器がさらに、特許文献1のフィールド機器では、4-20mA信号(ループ電流)からの余剰電流を蓄電池やコンデンサに畜電している(請求項6)。 Among such field devices, one having a wireless communication function is disclosed (see Patent Document 1). In this document, a valve positioner, which is a field device, receives a 4-20 mA current signal. Based on this current signal, an operation signal is output so that the valve is at a predetermined valve position. By performing wireless communication, wiring costs can be reduced. For example, the field device further supplies the surplus current from the 4-20 mA signal (loop current) to the storage battery or the capacitor in the field device of Patent Document 1. (Claim 6)
特開2006-157865号公報JP 2006-157865 A
 特許文献1のフィールド機器では、ループ電流を分流して、無線回路へ給電している。すなわち、4-20mAのループ電流が計測回路と無線回路の電源回路とに分流されている。ここで、ループ電流による電力は既存の計測回路のほとんど使われてしまうため、コンデンサへの充電を十分に行うことができない。例えば、4-20mAのループ電流のうち、コンデンサへの充電に使うことができる電流は、最大で0.5mA程度になってしまう。 In the field device of Patent Document 1, a loop current is shunted to supply power to the radio circuit. That is, a loop current of 4-20 mA is shunted between the measurement circuit and the power supply circuit of the radio circuit. Here, since the electric power by the loop current is mostly used in the existing measurement circuit, the capacitor cannot be sufficiently charged. For example, of the 4-20 mA loop current, the maximum current that can be used to charge the capacitor is about 0.5 mA.
 本発明は、このような問題点を解決するためになされたもので、電力効率よく無線通信することができるフィールド機器を提供することを目的とする。 The present invention has been made to solve such problems, and an object of the present invention is to provide a field device capable of wirelessly communicating with power efficiently.
 本発明の第1の態様にかかるフィールド機器は、無線通信を行う無線回路と、アナログ信号が入力されるアナログ信号入力部と、前記無線回路に電源を供給するために設けられた1つのキャパシタと、前記アナログ信号に基づいて、前記キャパシタを充電するために設けられた電源回路と、前記電源回路に直列に接続された計測回路と、前記キャパシタが、前記電源回路に並列接続された第1の状態と、前記無線回路に並列接続された第2の状態とを、切り換えるスイッチ部と、前記スイッチ部による切り換えが間欠的に行われるように制御するスイッチ制御部と、を備えるものである。これにより、電力効率よく無線通信することができる。 A field device according to a first aspect of the present invention includes a wireless circuit that performs wireless communication, an analog signal input unit that receives an analog signal, and a single capacitor that is provided to supply power to the wireless circuit. A power circuit provided to charge the capacitor based on the analog signal; a measurement circuit connected in series to the power circuit; and a first capacitor connected in parallel to the power circuit. A switch unit that switches between a state and a second state connected in parallel to the wireless circuit, and a switch control unit that controls the switching by the switch unit to be performed intermittently. As a result, wireless communication can be performed efficiently.
 本発明の第2の態様にかかるフィールド機器は、上記のフィールド機器であって、無線通信を行う無線回路と、アナログ信号が入力されるアナログ信号入力部と、前記無線回路に電源を供給するために設けられた複数のキャパシタと、前記アナログ信号に基づいて、前記キャパシタを充電するために設けられた電源回路と、前記電源回路に直列に接続された計測回路と、前記複数のキャパシタが、前記電源回路に並列接続された第1の状態と、前記複数のキャパシタが並列接続されて、かつ前記無線回路に並列接続された第2の状態とを、切り換えるスイッチ部と、前記スイッチ部による切り換えが間欠的に行われるように制御するスイッチ制御部と、を備えるものである。これにより、電力効率よく無線通信することができる。 A field device according to a second aspect of the present invention is the above-described field device, for supplying a power to the wireless circuit that performs wireless communication, an analog signal input unit that receives an analog signal, and the wireless circuit. A plurality of capacitors, a power supply circuit provided for charging the capacitor based on the analog signal, a measurement circuit connected in series to the power supply circuit, and the plurality of capacitors, A switch unit for switching between a first state connected in parallel to the power supply circuit and a second state where the plurality of capacitors are connected in parallel and connected in parallel to the wireless circuit, and switching by the switch unit And a switch control unit that performs control so as to be performed intermittently. As a result, wireless communication can be performed efficiently.
 本発明の第3の態様にかかるフィールド機器は、上記のフィールド機器であって、第2の状態において、前記キャパシタの+極が前記無線回路の+端子側に接続され、前記キャパシタの-極が前記無線回路及び前記計測回路の共通のグランドに接地されることを特徴とするものである。これにより、ノイズ耐性の強い無線通信をすることができる。 A field device according to a third aspect of the present invention is the above-described field device, and in the second state, the positive pole of the capacitor is connected to the positive terminal side of the wireless circuit, and the negative pole of the capacitor is The wireless circuit and the measurement circuit are grounded to a common ground. Thereby, wireless communication with strong noise tolerance can be performed.
 本発明の第4の態様にかかるフィールド機器は、上記のフィールド機器であって、前記キャパシタの容量値が、前記無線回路の動作特性と、前記スイッチ部の動作周期から求められることを特徴とするものである。これにより、簡便に無線通信に十分な電力を供給することができる。 A field device according to a fourth aspect of the present invention is the field device described above, wherein the capacitance value of the capacitor is obtained from an operating characteristic of the radio circuit and an operating cycle of the switch unit. Is. Thereby, sufficient electric power for wireless communication can be supplied simply.
 本発明の第5の態様にかかるフィールド機器は、上記のフィールド機器であって、前記スイッチが半導体スイッチで構成され、スイッチ制御信号線が前記スイッチと絶縁されていることを特徴とするものである。 A field device according to a fifth aspect of the present invention is the field device described above, wherein the switch is configured by a semiconductor switch, and a switch control signal line is insulated from the switch. .
 本発明によれば、本来の計測機能を損なうことなく、電力効率よく無線通信することができるフィールド機器を提供することができる。 According to the present invention, it is possible to provide a field device that can perform wireless communication efficiently without damaging the original measurement function.
本実施の形態にかかるフィールド機器の構成を示す回路図である。It is a circuit diagram which shows the structure of the field apparatus concerning this Embodiment. 本実施の形態にかかるフィールド機器が充電されている状態を示す図である。It is a figure which shows the state in which the field apparatus concerning this Embodiment is charged. 本実施の形態にかかるフィールド機器が放電されている状態を示す図である。It is a figure which shows the state by which the field apparatus concerning this Embodiment is discharged. 本実施の形態にかかるフィールド機器の動作タイミングを示すタイミングチャートである。It is a timing chart which shows the operation timing of the field device concerning this embodiment. 本実施の形態にかかるフィールド機器に設けられたスイッチ制御回路の構成を示す図である。It is a figure which shows the structure of the switch control circuit provided in the field device concerning this Embodiment. 別構成のフィールド機器が充電されている状態を示す図である。It is a figure which shows the state in which the field apparatus of another structure is charged. 別構成のフィールド機器が放電されている状態を示す図である。It is a figure which shows the state in which the field apparatus of another structure is discharged.
 本実施の形態にかかるフィールド機器について、図1を用いて説明する。図1は、フィールド機器の構成を示す回路図である。フィールド機器は、プラントや工場、その他の設備に設置される。フィールド機器の例としては、例えば、発信器やバルブポジショナなどが挙げられる。もちろん、温度、流量、圧力、位置などの物理量を検出する各種センサであってもよい。 The field device according to this embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram showing a configuration of a field device. Field devices are installed in plants, factories, and other facilities. Examples of field devices include transmitters and valve positioners. Of course, various sensors that detect physical quantities such as temperature, flow rate, pressure, and position may be used.
 フィールド機器10には、アナログ信号入力部13、無線回路14、電源回路15、計測回路16が設けられている。アナログ信号入力部13は、アナログ信号が入力される。アナログ信号は、例えば、4~20mAのループ電流である。従って、アナログ信号入力部13は、端子11と端子12を有している。そして、端子11から端子12に向かって、4~20mAのループ電流が流れる。このループ電流は、計測データの値に応じて変化する。例えば、圧力等のデータ値がループ電流に変換されている。また、アナログ信号入力部13には、例えば、24Vの電源電圧が印加されている。 The field device 10 includes an analog signal input unit 13, a radio circuit 14, a power supply circuit 15, and a measurement circuit 16. The analog signal input unit 13 receives an analog signal. The analog signal is, for example, a loop current of 4 to 20 mA. Therefore, the analog signal input unit 13 has a terminal 11 and a terminal 12. Then, a loop current of 4 to 20 mA flows from the terminal 11 to the terminal 12. This loop current changes according to the value of the measurement data. For example, data values such as pressure are converted into loop currents. Further, for example, a power supply voltage of 24 V is applied to the analog signal input unit 13.
 無線回路14は、外部と無線通信を行うための無線通信機能を有している。無線回路14は、たとえば、アンテナ、変調器、復調器を有している。そして、無線回路14は、収集した計測データなどの各種信号を無線で送信する。この無線信号を外部の情報処理装置が受信して、フィールドデータを収集する。あるいは、設定されるパラーメータのデータが外部から無線で送信される。これにより、外部配線などが不要となる。設備へのフィールド機器の設置、メンテナンスを容易に行うことができるようになる。 The wireless circuit 14 has a wireless communication function for performing wireless communication with the outside. The radio circuit 14 includes, for example, an antenna, a modulator, and a demodulator. The wireless circuit 14 wirelessly transmits various signals such as collected measurement data. This wireless signal is received by an external information processing apparatus, and field data is collected. Alternatively, parameter data to be set is transmitted from the outside wirelessly. This eliminates the need for external wiring or the like. It becomes possible to easily install and maintain field devices in the facility.
 電源回路15は、無線回路14に電源を供給する電源を生成する回路である。そのため、電源回路15には、ループ電流が入力されている。そして、ループ電流に基づいて、無線回路14に所定の電源を供給する。計測回路16には同じくループ電流から自己の電源を供給する回路(レギュレータなど)が内蔵されている。 The power supply circuit 15 is a circuit that generates power to supply power to the wireless circuit 14. Therefore, a loop current is input to the power supply circuit 15. Then, a predetermined power is supplied to the radio circuit 14 based on the loop current. The measurement circuit 16 also has a built-in circuit (such as a regulator) that supplies its own power from a loop current.
 計測回路16は、データの計測を行う。計測回路16は、電源回路15に直列接続されている。すなわち、端子11と端子12の間には、電源回路15と計測回路16が直列接続されている。無線回路14と計測回路16は、共通のグランド19に接続されている。このグランド19は、例えば、フィールド機器10のケース(筐体)に接続されている。これにより、安定に動作させることができる。 The measurement circuit 16 measures data. The measurement circuit 16 is connected in series to the power supply circuit 15. That is, the power supply circuit 15 and the measurement circuit 16 are connected in series between the terminal 11 and the terminal 12. The radio circuit 14 and the measurement circuit 16 are connected to a common ground 19. The ground 19 is connected to a case (housing) of the field device 10, for example. Thereby, it can be operated stably.
 さらに、電源回路15には、本実施形態にかかるフィールド機器10の技術的な特徴の一つであるスイッチ部23が設けられている。スイッチ部23には、キャパシタ21及びスイッチ22が設けられている。ここでは、4つのキャパシタ21が設けられている。そして、4つのキャパシタ21の接続を切り換えるため、8つのスイッチ22が設けられている。すなわち、各キャパシタ21の両側には、それぞれスイッチ22が接続されている。そして、全てのスイッチ22が同じタイミングで切り替わることによって、キャパシタ21の接続状態が変化する。スイッチ22は、例えば、半導体トランジスタなどの半導体スイッチによって構成される。 Furthermore, the power supply circuit 15 is provided with a switch unit 23 that is one of the technical features of the field device 10 according to the present embodiment. The switch unit 23 is provided with a capacitor 21 and a switch 22. Here, four capacitors 21 are provided. In order to switch the connection of the four capacitors 21, eight switches 22 are provided. That is, the switches 22 are connected to both sides of each capacitor 21. And the connection state of the capacitor 21 changes when all the switches 22 are switched at the same timing. The switch 22 is configured by a semiconductor switch such as a semiconductor transistor, for example.
 スイッチ部23と無線回路14の間には、逆流防止用のダイオード17が設けられている。また、計測回路16と無線回路14の間には、逆流防止用の定電流ダイオード18が設けられている。また、無線回路14には、スイッチ制御回路20が設けられている。スイッチ制御回路20は、例えば、マイコンで実装されており、スイッチ部23の切り換えを制御するための制御信号を出力する。さらに、スイッチ制御回路20は、計測回路16の各種計測データの取得を行うこともできる。そして、スイッチ制御回路20は、無線回路14に内蔵されていなくてもよい。すなわち、スイッチ制御回路20は、無線回路14以外の箇所に設けられていてもよい。たとえば、計測回路16にスイッチ制御回路20が設けられていてもよく、その他の箇所に設けられていてもよい。 Between the switch unit 23 and the wireless circuit 14, a diode 17 for preventing backflow is provided. Further, a constant current diode 18 for preventing backflow is provided between the measurement circuit 16 and the radio circuit 14. The wireless circuit 14 is provided with a switch control circuit 20. The switch control circuit 20 is implemented by a microcomputer, for example, and outputs a control signal for controlling switching of the switch unit 23. Further, the switch control circuit 20 can acquire various measurement data of the measurement circuit 16. The switch control circuit 20 may not be built in the wireless circuit 14. That is, the switch control circuit 20 may be provided at a place other than the wireless circuit 14. For example, the switch control circuit 20 may be provided in the measurement circuit 16 or may be provided in other places.
 スイッチ部23は、4つのキャパシタ21の接続状態を切り換える。無線回路14が無線通信を行っている間、スイッチ部23はキャパシタ21を放電状態にする。これにより、キャパシタ21に蓄積された電力によって、無線回路14が駆動する。一方、無線回路14が無線通信を行わない場合は、スイッチ部23は、キャパシタ21を充電状態にする。これにより、無線通信時に使用される電力が、キャパシタ21に蓄積する。スイッチ部23の接続状態の切り換えは、スイッチ制御回路20によって実行される。スイッチ制御回路20は、間欠的に接続状態を切り換える。たとえば、スイッチ制御回路20は、所定の周期でスイッチ22を切り換えるパルス信号を出力する。これにより、全てのスイッチ22が同時に切り換わる。よって、放電状態と充電状態とが間欠的に切り換わる。 The switch unit 23 switches the connection state of the four capacitors 21. While the wireless circuit 14 performs wireless communication, the switch unit 23 places the capacitor 21 in a discharged state. As a result, the radio circuit 14 is driven by the electric power stored in the capacitor 21. On the other hand, when the wireless circuit 14 does not perform wireless communication, the switch unit 23 places the capacitor 21 in a charged state. As a result, the power used during wireless communication is stored in the capacitor 21. Switching of the connection state of the switch unit 23 is executed by the switch control circuit 20. The switch control circuit 20 switches the connection state intermittently. For example, the switch control circuit 20 outputs a pulse signal that switches the switch 22 at a predetermined cycle. Thereby, all the switches 22 are switched simultaneously. Therefore, the discharge state and the charge state are switched intermittently.
 ここで、図2を用いて、キャパシタ21の充電状態について、説明する。図2は、充電状態を示す回路図であり、一部の構成については、適宜省略している。図2に示すように、充電状態では、4つのキャパシタ21が、並列に接続されている。そして、4つのキャパシタ21は電源回路15に接続されて、充電される。なお、充電状態では、無線回路14は、キャパシタ21と切り離されている。このとき、無線回路14はスリープ状態になっている。 Here, the charged state of the capacitor 21 will be described with reference to FIG. FIG. 2 is a circuit diagram showing a state of charge, and a part of the configuration is omitted as appropriate. As shown in FIG. 2, in the charged state, four capacitors 21 are connected in parallel. The four capacitors 21 are connected to the power supply circuit 15 and charged. In the charged state, the radio circuit 14 is disconnected from the capacitor 21. At this time, the radio circuit 14 is in a sleep state.
 次に、図3を用いて、キャパシタ21の放電状態について説明する。図3は、放電状態を示す回路図であり、一部の構成については、適宜省略している。図3に示すように、放電状態では、4つのキャパシタ21が、直列に接続されている。そして、それら4つのキャパシタ21は無線回路14に並列に接続されて、放電される。直列接続されたキャパシタ21のプラス端(正極)は、無線回路14の+端子側に接続され、マイナス端(負極)がグランドに接続される。キャパシタ21に蓄積した電荷がダイオード17を通じて無線回路14に流れ、無線通信用の電力が供給される。無線回路14が無線通信を行う。なお、放電状態では、電源回路15は、キャパシタ21と切り離されている。 Next, the discharge state of the capacitor 21 will be described with reference to FIG. FIG. 3 is a circuit diagram showing a discharge state, and some components are omitted as appropriate. As shown in FIG. 3, in the discharged state, the four capacitors 21 are connected in series. These four capacitors 21 are connected to the radio circuit 14 in parallel and discharged. The plus end (positive electrode) of the capacitor 21 connected in series is connected to the + terminal side of the radio circuit 14, and the minus end (negative electrode) is connected to the ground. The electric charge accumulated in the capacitor 21 flows to the wireless circuit 14 through the diode 17, and power for wireless communication is supplied. The wireless circuit 14 performs wireless communication. In the discharged state, the power supply circuit 15 is disconnected from the capacitor 21.
 このように、無線動作のスリープ時に電源回路15からキャパシタ21を充電する。充電時には、電源回路15と計測回路16が直列接続され、電源回路15に複数のキャパシタ21が並列接続されている。一方、計測回路16の電源から、数μA電流で無線回路のスリープ状態を維持することができる。無線通信動作時に、スイッチ22によって充電済みの複数のキャパシタ21を直列に接続する。さらに、プラス端とマイナス端を無線回路の電源とグランドに接続して、電力を供給する。そして、無線通信動作が完了したら、スイッチ22を元に戻して、キャパシタ21を並列に復元する。これにより、キャパシタ21が充電される。このようにすることで、効率よく、無線電力を供給することができる。よって、AC電源や、バッテリを用いることなく、無線通信を行うことができる。よって、設備への設置を容易に行うことができる。配線コストやバッテリ保守コストなどを削減することができる。 Thus, the capacitor 21 is charged from the power supply circuit 15 at the time of sleep of the wireless operation. During charging, the power supply circuit 15 and the measurement circuit 16 are connected in series, and a plurality of capacitors 21 are connected in parallel to the power supply circuit 15. On the other hand, the sleep state of the wireless circuit can be maintained with a current of several μA from the power source of the measurement circuit 16. During the wireless communication operation, a plurality of charged capacitors 21 are connected in series by the switch 22. Further, the positive end and the negative end are connected to the power supply and ground of the wireless circuit to supply power. When the wireless communication operation is completed, the switch 22 is returned to the original state and the capacitor 21 is restored in parallel. Thereby, the capacitor 21 is charged. By doing in this way, wireless power can be supplied efficiently. Therefore, wireless communication can be performed without using an AC power source or a battery. Therefore, installation in equipment can be easily performed. Wiring costs and battery maintenance costs can be reduced.
 充電状態と放電状態の切り換え動作について、図4を用いて説明する。図4は、切り換え動作を示すタイミングチャートである。 The switching operation between the charged state and the discharged state will be described with reference to FIG. FIG. 4 is a timing chart showing the switching operation.
 図4に示すように、スイッチ制御信号は、所定の周期のパルス信号であり、スイッチ22がON/OFFを繰り返す。すなわち、放電期間と充電期間が一定時間毎に繰り返す。充電期間では、無線回路14のスリープ電流が無線消費電流となる。無線通信機能の停止中に、キャパシタ21が充電される。この状態では、計測回路16が電源回路に直列に接続されている。従って、ループ電流が計測回路16に供給される。このため、計測回路16の電流ロスを低減することができる。たとえば、ループ電流が下限値の4mAであっても、計測回路16に供給される電流値が4mAを下回ることがない。なお、電源回路15にはキャパシタ21が並列接続されているため、電源回路15において、電圧がいくらかドロップする。しかしながら、電流ロスを低減できるため、電圧がドロップした場合でも、計測回路16が問題なく動作する。 As shown in FIG. 4, the switch control signal is a pulse signal having a predetermined cycle, and the switch 22 repeats ON / OFF. That is, the discharge period and the charge period are repeated at regular intervals. In the charging period, the sleep current of the wireless circuit 14 becomes the wireless consumption current. The capacitor 21 is charged while the wireless communication function is stopped. In this state, the measurement circuit 16 is connected in series with the power supply circuit. Therefore, the loop current is supplied to the measurement circuit 16. For this reason, the current loss of the measurement circuit 16 can be reduced. For example, even if the loop current is the lower limit of 4 mA, the current value supplied to the measurement circuit 16 does not fall below 4 mA. Since the capacitor 21 is connected to the power supply circuit 15 in parallel, some voltage drops in the power supply circuit 15. However, since current loss can be reduced, the measurement circuit 16 operates without problems even when the voltage drops.
 一方、放電期間では、まず、マイコン動作電流で流れ、マイコンであるスイッチ制御回路が動作する。無線動作電流が流れ、無線回路14において無線通信を行う。無線動作電流は、例えば、10mA程度である。そして、無線通信が終了した後、マイコン動作が終了する。これを繰り返すことで、無線通信が間欠的に行われる。間欠的に無線動作を行うためのスイッチ制御信号を出力するだけで、無線通信することが可能になる。すなわち、充電状態を監視する必要がなくなり、容易に制御することができる。 On the other hand, in the discharge period, first, it flows with the microcomputer operating current, and the switch control circuit which is the microcomputer operates. A wireless operating current flows, and wireless communication is performed in the wireless circuit 14. The wireless operating current is about 10 mA, for example. Then, after the wireless communication is finished, the microcomputer operation is finished. By repeating this, wireless communication is intermittently performed. Wireless communication can be performed simply by outputting a switch control signal for intermittently performing wireless operation. That is, it is not necessary to monitor the state of charge, and it can be easily controlled.
 次に、スイッチ部23の具体例について、図5を用いて説明する。図5は、スイッチ部23の具体例を示す図である。 Next, a specific example of the switch unit 23 will be described with reference to FIG. FIG. 5 is a diagram illustrating a specific example of the switch unit 23.
 スイッチ部23には、アイソレータ51が接続されている。すなわち、スイッチ制御回路20と、電源回路15は、別々のグランドを持っているので、アイソレータ51が利用されている。そして、スイッチ制御回路20からアイソレータ51にスイッチの切り換えを制御するための、マイコン制御信号が入力される。アイソレータ51によって、スイッチ制御信号線をスイッチと絶縁することができる。また、スイッチ部23の電源V+は、電源回路から供給されている。マイコン制御信号によって、スイッチ22が切り換わる。スイッチ22を制御できるアナログ電圧範囲は-0.5V~+0.5Vである。ここでは、キャパシタ21の電力でスイッチ22を駆動している。すなわち、キャパシタ21に蓄積された電力によって、スイッチ22が動作する。このため、スイッチ部23のグランドGNDは、キャパシタ21のCOM2に接続され、電源V+は、キャパシタ21のCOM1に接続されている。 An isolator 51 is connected to the switch unit 23. That is, since the switch control circuit 20 and the power supply circuit 15 have different grounds, the isolator 51 is used. Then, a microcomputer control signal for controlling switch switching is input from the switch control circuit 20 to the isolator 51. The switch control signal line can be insulated from the switch by the isolator 51. The power V + of the switch unit 23 is supplied from a power circuit. The switch 22 is switched by the microcomputer control signal. The analog voltage range in which the switch 22 can be controlled is -0.5V to + 0.5V. Here, the switch 22 is driven by the electric power of the capacitor 21. That is, the switch 22 is operated by the electric power stored in the capacitor 21. For this reason, the ground GND of the switch unit 23 is connected to COM2 of the capacitor 21, and the power source V + is connected to COM1 of the capacitor 21.
 なお、上記の説明では、キャパシタ21の数を4個としたが、4個以外であってもよい。キャパシタ21の数を複数とすることが好ましい。これにより、昇圧することができる。また、図6、7に示すように、キャパシタ21の数を1つとしてもよい。 In the above description, the number of capacitors 21 is four, but may be other than four. The number of capacitors 21 is preferably plural. Thereby, the voltage can be boosted. Moreover, as shown in FIGS. 6 and 7, the number of capacitors 21 may be one.
 電源回路15の電源レギュレータ電圧は、0.5~1V程度でよい。また、電源回路15は、ダイオード、シャントレギュレータ、トランジスタなどで構成すればよい。 The power regulator voltage of the power circuit 15 may be about 0.5 to 1V. The power supply circuit 15 may be configured with a diode, a shunt regulator, a transistor, or the like.
 なお、キャパシタ21の特性、及び段数は、無線回路の動作特性、及び動作周期によって求めることができる。以下にキャパシタ21の容量Cを概算する。ここでは計算のため、間欠動作が1秒周期で、無線通信動作がデューティ1%(すなわち、0.01秒)とする。また、電源回路15の電圧レギュレータ電圧はV=1とする。 Note that the characteristics of the capacitor 21 and the number of stages can be obtained from the operating characteristics and operating cycle of the radio circuit. The capacitance C of the capacitor 21 is approximated below. Here, for the sake of calculation, it is assumed that the intermittent operation has a cycle of 1 second and the wireless communication operation has a duty of 1% (that is, 0.01 seconds). The voltage regulator voltage of the power supply circuit 15 is V = 1.
 チャージされる電荷は、Q=C×V=C(単位q:クーロン)で求まる(ただし、チャージ時間は微小であるため無視する)。ここで、無線通信回路が10mA消費するとしたら、1回の無線動作には、0.1mq以上チャージする必要がある。 The charge to be charged is obtained by Q = C × V = C (unit q: coulomb) (however, the charge time is negligible and is ignored). Here, if the wireless communication circuit consumes 10 mA, it is necessary to charge 0.1 mq or more for one wireless operation.
 すなわち、キャパシタ21が1つの場合、10mAを0.01秒流すためには、0.1mq必要である。そのためには、C=0.1mF(100μF)以上であればよい。ただし、無線回路14が1Vで動作できる場合である。 That is, in the case where there is one capacitor 21, 0.1 mq is required to flow 10 mA for 0.01 second. For that purpose, C = 0.1 mF (100 μF) or more is sufficient. However, this is a case where the wireless circuit 14 can operate at 1V.
 次に、キャパシタ21がn個の場合、直列キャパシタ電圧は、n×Vに昇圧されるわけであるが、10mAを0.1秒流す必要が変わらなければ、やはりそれぞれのキャパシタに充電する電荷は0.1mq必要となる。この場合、キャパシタ21の容量は、C=0.1mF(100μF)以上である必要がある。
 もちろん、無線回路14がn×V電圧では、消費電流が1/nで動作するような場合には、キャパシタ21は、1/n程度の小さな分割容量で済む。
 以上のように、キャパシタ21の段数及び特性(容量)は、無線通信の動作特性、周期によって求めることができる。すなわち、無線通信の動作特性(電流)と、動作周期(デューティ、繰り返し周波数)によってキャパシタの容量を決定することができる。
Next, when the number of capacitors 21 is n, the series capacitor voltage is boosted to n × V, but if the necessity of flowing 10 mA for 0.1 second does not change, the charge to charge each capacitor is still 0.1 mq is required. In this case, the capacitance of the capacitor 21 needs to be C = 0.1 mF (100 μF) or more.
Of course, when the radio circuit 14 operates at an n × V voltage and consumes a current of 1 / n, the capacitor 21 needs only a small divided capacity of about 1 / n.
As described above, the number of stages and the characteristics (capacitance) of the capacitor 21 can be obtained from the operating characteristics and period of wireless communication. That is, the capacitance of the capacitor can be determined by the operation characteristics (current) of wireless communication and the operation cycle (duty, repetition frequency).
 10 フィールド機器
 11 端子
 12 端子
 14 無線回路
 15 電源回路
 16 計測回路
 17 ダイオード 18 ダイオード
 19 グランド
 20 スイッチ制御部
 21 キャパシタ
 22 スイッチ
 23 スイッチ部
 51 アイソレータ
DESCRIPTION OF SYMBOLS 10 Field apparatus 11 Terminal 12 Terminal 14 Wireless circuit 15 Power supply circuit 16 Measuring circuit 17 Diode 18 Diode 19 Ground 20 Switch control part 21 Capacitor 22 Switch 23 Switch part 51 Isolator

Claims (5)

  1.  無線通信を行う無線回路と、
     アナログ信号が入力されるアナログ信号入力部と、
     前記無線回路に電源を供給するために設けられた1つのキャパシタと、
     前記アナログ信号に基づいて、前記キャパシタを充電するために設けられた電源回路と、
     前記電源回路に直列に接続された計測回路と、
     前記キャパシタが、前記電源回路に並列接続された第1の状態と、前記無線回路に並列接続された第2の状態とを、切り換えるスイッチ部と、
     前記スイッチ部による切り換えが間欠的に行われるように制御するスイッチ制御部と、を備えるフィールド機器。
    A wireless circuit for performing wireless communication;
    An analog signal input section to which an analog signal is input;
    One capacitor provided to supply power to the radio circuit;
    A power supply circuit provided for charging the capacitor based on the analog signal;
    A measurement circuit connected in series to the power supply circuit;
    A switch unit that switches between a first state in which the capacitor is connected in parallel to the power supply circuit and a second state in which the capacitor is connected in parallel to the wireless circuit;
    And a switch control unit that controls the switching by the switch unit to be performed intermittently.
  2.  無線通信を行う無線回路と、
     アナログ信号が入力されるアナログ信号入力部と、
     前記無線回路に電源を供給するために設けられた複数のキャパシタと、
     前記アナログ信号に基づいて、前記キャパシタを充電するために設けられた電源回路と、
     前記電源回路に直列に接続された計測回路と、
     前記複数のキャパシタが、前記電源回路に並列接続された第1の状態と、複数のキャパシタが直列接続されて、かつ前記無線回路に並列接続された第2の状態とを、切り換えるスイッチ部と、
     前記スイッチ部による切り換えが間欠的に行われるように制御するスイッチ制御部と、を備えるフィールド機器。
    A wireless circuit for performing wireless communication;
    An analog signal input section to which an analog signal is input;
    A plurality of capacitors provided to supply power to the radio circuit;
    A power supply circuit provided for charging the capacitor based on the analog signal;
    A measurement circuit connected in series to the power supply circuit;
    A switch unit that switches between a first state in which the plurality of capacitors are connected in parallel to the power supply circuit and a second state in which the plurality of capacitors are connected in series and connected in parallel to the wireless circuit;
    And a switch control unit that controls the switching by the switch unit to be performed intermittently.
  3.  前記第2の状態において、前記キャパシタの+極が前記無線回路の+端子側に接続され、前記キャパシタの-極が前記無線回路及び前記計測回路の共通のグランドに接地されることを特徴とする請求項1、又は2に記載のフィールド機器。 In the second state, a positive pole of the capacitor is connected to a positive terminal side of the wireless circuit, and a negative pole of the capacitor is grounded to a common ground of the wireless circuit and the measurement circuit. The field device according to claim 1 or 2.
  4.  前記キャパシタの容量値が、前記無線回路の動作特性と、前記スイッチ部の動作周期から求められることを特徴とする請求項1、又は2に記載のフィールド機器。 3. The field device according to claim 1, wherein the capacitance value of the capacitor is obtained from an operation characteristic of the wireless circuit and an operation cycle of the switch unit.
  5.  前記スイッチが半導体スイッチで構成され、
     スイッチ制御信号線が前記スイッチと絶縁されていることを特徴とする請求項1、又は2に記載のフィールド機器。
    The switch comprises a semiconductor switch;
    3. The field device according to claim 1, wherein a switch control signal line is insulated from the switch.
PCT/JP2010/054358 2009-03-24 2010-03-15 Field device WO2010110113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-071784 2009-03-24
JP2009071784A JP5358236B2 (en) 2009-03-24 2009-03-24 Field equipment

Publications (1)

Publication Number Publication Date
WO2010110113A1 true WO2010110113A1 (en) 2010-09-30

Family

ID=42780805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054358 WO2010110113A1 (en) 2009-03-24 2010-03-15 Field device

Country Status (2)

Country Link
JP (1) JP5358236B2 (en)
WO (1) WO2010110113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048679A (en) * 2013-03-15 2014-09-17 罗斯蒙德公司 Wireless Interface Within Transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183481A (en) * 1992-01-07 1993-07-23 Toshiba Corp Portable radio equipment
JP2001086657A (en) * 1999-09-10 2001-03-30 Casio Comput Co Ltd Charger and its charge and discharge method
JP2006157865A (en) * 2004-11-01 2006-06-15 Yokogawa Electric Corp Field device, and method for transmitting signal of the field device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183481A (en) * 1992-01-07 1993-07-23 Toshiba Corp Portable radio equipment
JP2001086657A (en) * 1999-09-10 2001-03-30 Casio Comput Co Ltd Charger and its charge and discharge method
JP2006157865A (en) * 2004-11-01 2006-06-15 Yokogawa Electric Corp Field device, and method for transmitting signal of the field device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048679A (en) * 2013-03-15 2014-09-17 罗斯蒙德公司 Wireless Interface Within Transmitter
WO2014143429A1 (en) * 2013-03-15 2014-09-18 Rosemount Inc. Wireless interface within transmitter
US9048901B2 (en) 2013-03-15 2015-06-02 Rosemount Inc. Wireless interface within transmitter
AU2014228706B2 (en) * 2013-03-15 2016-12-01 Rosemount Inc. Wireless interface within transmitter

Also Published As

Publication number Publication date
JP2010226878A (en) 2010-10-07
JP5358236B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5847319B2 (en) Wireless industrial process field device and method for powering a wireless industrial process field device
CN101356717A (en) Power supply device, emission control device and display device
CN103155389A (en) Voltage regulator, envelope tracking power supply system, transmitter module, and integrated circuit device therefor
KR101709886B1 (en) Sensor device and monitoring system
WO2015122230A1 (en) Current measurement device, control method and control program for same, recording medium, and power measurement device
CN102969894A (en) Mode automatic converting circuit for DC-DC (Direct Current to Direct Current) converter
CN104518508A (en) Power supply circuit and control method thereof
US9300205B2 (en) Power supply apparatus, power supply system and power supply method with an on/off operation of supplying power
US8547078B2 (en) Methods for light load efficiency improvement of a buck boost voltage regulator
CN105162325B (en) Pulse frequency modulation circuit based on reference voltage comparison oscillator
Berger et al. High efficient integrated power receiver for a Qi compliant wireless power transfer system
CN204615628U (en) A kind of multi-stage negative pressure produces circuit
JP5358236B2 (en) Field equipment
CN103219883A (en) Charge pump circuit and power supply method for dynamic regulation of voltage of charge pump circuit
US8947062B2 (en) Power supply circuit
CN103248225A (en) Power conversion device, switching method of power conversion units and electronic equipment
CN106208685B (en) Power circuit and its control method
JP2021103939A (en) Power supply circuit and power source built-in device
CN103856046A (en) Voltage-reducing type voltage conversion device
US20210351336A1 (en) Drive circuit, electronic device, and method of controlling drive circuit
CN102843120B (en) Power failure delay circuit and power supply system
CN105991015A (en) Buffer power supply circuit structure based on digital input circuit
CN105278361A (en) Off signal generator and power conveter including the same
CN216904654U (en) Load identification circuit based on PWM control signal detection
CN104143901B (en) The control method of the control circuit and correlation of power supply changeover device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755911

Country of ref document: EP

Kind code of ref document: A1