WO2010107614A1 - Leak-compensated pressure regulated volume control ventilation - Google Patents

Leak-compensated pressure regulated volume control ventilation Download PDF

Info

Publication number
WO2010107614A1
WO2010107614A1 PCT/US2010/026618 US2010026618W WO2010107614A1 WO 2010107614 A1 WO2010107614 A1 WO 2010107614A1 US 2010026618 W US2010026618 W US 2010026618W WO 2010107614 A1 WO2010107614 A1 WO 2010107614A1
Authority
WO
WIPO (PCT)
Prior art keywords
leak
pressure
compensated
lung
ventilation
Prior art date
Application number
PCT/US2010/026618
Other languages
French (fr)
Inventor
Mehdi Jafari
Rhomere Jimenez
Gail Upham
Jeffrey Aviano
Original Assignee
Nellcor Puritan Bennett Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nellcor Puritan Bennett Llc filed Critical Nellcor Puritan Bennett Llc
Publication of WO2010107614A1 publication Critical patent/WO2010107614A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0875Connecting tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0063Compressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs

Definitions

  • PRVC pressure regulated volume control
  • PRVC pressure regulated volume control
  • a selected volume is delivered to a patient by changing the pressure of the respiratory gas.
  • the ventilator will evaluate the volume delivered to the patient and compare it against the desired volume set by the therapist. If delivered volume is less than the desired, therapist-selected volume, then the target pressure for the next breath will be increased proportionally. On the other hand, if the delivered volume exceeded the desired volume, the target pressure will be lowered.
  • the ventilator estimates the compliance of the patient's lungs and uses the estimated lung compliance to calculate the target pressure that will result in the delivery of the pre-selected volume of gas.
  • the magnitude and shape of the inspiratory flow delivered by the ventilator will be a function of the patient lung characteristics, breathing pattern, and other ventilator settings.
  • the lung compliance and lung resistance of a patient may be collectively referred to as the respiratory mechanics of the lung or, simply, the patient's respiratory mechanics. Because PRVC relies on the patient' s respiratory mechanics when determining what pressure to provide for each breath, more accurate determination of respiratory mechanics is essential to performance of the ventilator when providing PRVC ventilation.
  • This disclosure describes systems and methods for compensating for leakage when during delivery of gas to a patient from a medical ventilator in a pressure regulated volume control (PRVC) ventilation mode.
  • PRVC pressure regulated volume control
  • the technology described herein includes systems and methods that compensate the delivery of PRVC ventilation for leakage in the patient circuit by using leak-compensated lung flows as well as respiratory mechanics (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system.
  • this disclosure describes a method of compensating for leakage in a ventilation system during delivery of pressure regulated volume control ventilation to a patient. The method starts with monitoring an instantaneous flow of respiratory gas in the ventilation system based on one or more measurements of pressure and flow in ventilation system.
  • Leakage of gas from the system is modeled as a first leakage component through a first orifice of a fixed size and a second leakage component through a second orifice of a vaiying size, in which the first and second leakage components are different functions of instantaneous pressure in the ventilation system.
  • a leak-compensated delivered lung volume is then estimated for at least one breath based on the one or more measurements, the first leakage component and the second leakage component.
  • the leak-compensated delivered lung volume and a predetermined respiratory mechanics model are then used to estimate a leak-compensated lung compliance.
  • a target pressure to be delivered to the patient for a subsequent pressure-based breath is then calculated based on a desired lung volume, the leak- compensated delivered lung volume and the leak-compensated lung compliance.
  • the target pressure is then delivered to the patient during the inspiratory phase of the next breath.
  • the leak-compensated lung compliance may be estimated based on the leak- compensated delivered lung volume and a pressure difference, such as the difference between an end inspiratory pressure of a first breath and an end expiratory pressure of the first breath.
  • the disclosure also describes a method of compensating for leakage in a ventilation tubing system during delivery of gas from a medical ventilator to a patient.
  • the method includes measuring leakage from the ventilation tubing system during a first breath and calculating a leak-compensated delivered lung volume for the first breath based on the leakage. The method then estimates a lung compliance of the patient based on the leak- compensated delivered lung volume and pressure measurements taken during the first breath. Ventilation is then delivered to the patient in a second breath at a pressure determined based on a desired delivered lung volume, the leak-compensated delivered lung volume and the leak-compensated lung compliance.
  • the method may include identifying an inelastic leakage from the ventilation tubing system as a first function of at least one of a pressure measurement and a flow measurement in the ventilation system and identifying an elastic leakage from the ventilation tubing system as a second function of at least one of the pressure measurement and the flow measurement in the ventilation system.
  • the disclosure further describes a pressure support system, such as a respiratory ventilator.
  • the system includes: a pressure generating system adapted to generate a flow of breathing gas; a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient; one or more sensors operatively coupled to the pressure generating system or the ventilation tubing system, in which each sensor is capable of generating an output indicative of a pressure or flow of the breathing gas in the ventilation tubing system; a leak estimation module that identifies leakage in the ventilation tubing system; a delivered lung volume module that calculates a leak- compensated delivered lung volume for a first breath based on the leakage during the first breath and the flow of the breathing gas in the ventilation tubing system; a respiratory mechanics calculation module that generates a leak-compensated lung compliance based on the leak-compensated delivered lung volume and at least one output indicative of a pressure of the breathing gas during the first breath; and a pressure control module that causes the pressure generating system to deliver a second breath to the patient at
  • the disclosure also describes a controller for a medical ventilator that includes a microprocessor, a module (which may be a software program executed by the microprocessor, or a component comprising software, hardware and/or firmware that is separate from the microprocessor) that calculates leak- compensated delivered lung volume and leak-compensated lung compliance based on instantaneous elastic leakage and instantaneous inelastic leakage of breathing gas from a ventilation system, and a pressure control module that provides pressure regulated volume control ventilation at a pressure determined based on the leak-compensated delivered lung volume and the leak- compensated lung compliance.
  • a module which may be a software program executed by the microprocessor, or a component comprising software, hardware and/or firmware that is separate from the microprocessor
  • FIG. 1 illustrates an embodiment of a ventilator connected to a human patient.
  • FIG. 2 schematically depicts example systems and methods of ventilator control.
  • FIG. 3 illustrates an embodiment of a method of compensating for leakage in a ventilator providing pressure-regulated volume control ventilation to a patient.
  • FIG. 4 illustrates an embodiment of a method for calculated leak-compensated lung flow and delivered lung volume while providing pressure-regulated volume control ventilation to a patient.
  • FIG. 5 illustrates a functional block diagram of modules and other components that may be used in an embodiment of ventilator that compensates for elastic and rigid orifice sources of leaks when determining the target pressure during pressure-regulated volume control ventilation.
  • a ventilator may evaluate the volume delivered to the patient over a breath or a specified time period and compare it against the volume set by the therapist. If the delivered volume is less than the setting, then the pressure target is increased proportionally.
  • FIG. 1 illustrates an embodiment of a ventilator 20 connected to a human patient 24 that is adapted to provide PRVC ventilation.
  • Ventilator 20 includes a pneumatic system 22 (also referred to as a pressure generating system 22) for circulating breathing gases to and from patient 24 via the ventilation tubing system 26, which couples the patient to the pneumatic system via physical patient interface 28 and ventilator circuit 30.
  • Ventilator circuit 30 could be a dual-limb or single-limb circuit for carrying gas to and from the patient.
  • a wye fitting 36 may be provided as shown to couple the patient interface 28 to the inspiratory limb 32 and the expiratory limb 34 of the circuit 30.
  • the present systems and methods have proved particularly advantageous in noninvasive settings, such as with facial breathing masks, as those settings typically are more susceptible to leaks.
  • leaks do occur in a variety of settings, and the present description contemplates that the patient interface may be invasive or non-invasive, and of any configuration suitable for communicating a flow of breathing gas from the patient circuit to an airway of the patient.
  • suitable patient interface devices include a nasal mask, nasal/oral mask (which is shown in FIG. 1), nasal prong, full-face mask, tracheal tube, endotracheal tube, nasal pillow, etc.
  • Pneumatic system 22 may be configured in a variety of ways.
  • system 22 includes an expiratory module 40 coupled with an expiratory limb 34 and an inspiratoiy module 42 coupled with an inspiratory limb 32.
  • Compressor 44 or another source(s) of pressurized gas e.g., air and oxygen
  • the pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc.
  • Controller SO is operatively coupled with pneumatic system 22, signal measurement and acquisition systems, and an operator interface 52 may be provided to enable an operator to interact with the ventilator (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).
  • Controller 50 may include memory 54, one or more processors 56, storage 58, and/or other components of the type commonly found in command and control computing devices.
  • the memoiy 54 is computer-readable storage media that stores software that is executed by the processor 56 and which controls the operation of the ventilator 20.
  • the memoiy 54 comprises one or more solid-state storage devices such as flash memory chips, hi an alternative embodiment, the memory 54 may be mass storage connected to the processor 56 through a mass storage controller (not shown) and a communications bus (not shown).
  • Computer-readable storage media can be any available media that can be accessed by the processor 56.
  • Computer-readable storage media includes volatile and non- volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
  • controller 50 issues commands to pneumatic system 22 in order to control the breathing assistance provided to the patient by the ventilator.
  • the specific commands may be based on inputs received from an operator, the patient 24, the pneumatic system 22 and sensors, the operator interface 52 and/or other components of the ventilator, hi the depicted example, operator interface includes a display 59 that is touch-sensitive, enabling the display to serve both as an input and output device.
  • FIG. 2 schematically depicts exemplary systems and methods of ventilator control.
  • controller 50 issues control commands 60 to drive pneumatic system 22 and thereby circulate breathing gas to and from patient 24.
  • the depicted schematic interaction between pneumatic system 22 and patient 24 may be viewed in terms of pressure and/or flow "signals.”
  • signal 62 may be an increased pressure which is applied to the patient via inspiratory limb 32.
  • Control commands 60 are based upon inputs received at controller 50 which may include, among other things, inputs from operator interface 52, and feedback from pneumatic system 22 (e.g., from pressure/flow sensors) and/or sensed from patient 24.
  • circuit compliance is used to refer to the relationship between the pressure in the ventilator circuit 30 (or ventilator circuit 30 and attached patient interface 28, depending on how the compliance is determined) changes based on changes in volume delivered into the circuit.
  • circuit resistance is used to refer to the amount the pressure changes between two sites upstream and downstream the ventilator circuit as a function of volumetric flow rate through that circuit.
  • Circuit resistance may be modeled as a two- parameter function of flow and several methods for modeling and calculating circuit resistance are known in the art.
  • the circuit resistance may be estimated by passing several fixed flow rates through the circuit and measuring the pressure difference between certain upstream and downstream sites and finding the best curve fit to the collected data.
  • Methods of determining circuit compliance and circuit resistance may be executed by the operator prior to attaching the patient to the ventilator as part of the set up of the ventilator 20 to provide therapy.
  • Other methods of determining circuit compliance and/or resistance during therapy are also known and could be adapted for use with the disclosed leak-compensation systems and methods described herein.
  • the volume of breathing gas delivered to the patient's lung (Lj) and the volume of the gas exhaled by the patient (L 2 ) are measured or determined , and the measured or predicted/estimated leaks are accounted for to ensure accurate delivery and data reporting and monitoring. Accordingly, the more accurate the leak estimation, the better the baseline calculation of delivered and exhaled flow rates and volumes.
  • Ventrors may be introduced due to leaks in the ventilation tubing system 26.
  • the term ventilation tubing system 26 is used herein to describe the ventilator circuit 30, any equipment attached to or used in the ventilator circuit 30 such as water traps, monitors, drag delivery devices, etc. (not shown), and the patient interface 28. Depending on the embodiment, this may include some equipment contained in the inspiration module 42 and/or the expiration module 40.
  • leaks in or from the ventilation tubing system 26 such leaks include leaks within the tubing system 26 and leaks where the tubing system 26 connects to the pressure generator 22 or the patient 24.
  • leaks from the ventilation tubing system 26 include leaks from the ventilator circuit 30, leaks from the patient interface 28 (e.g., masks are often provided with holes or other pressure relief devices through which some leakage may occur), leaks from the point of connection of the patient interface 28 to the patient 24 (e.g., leaks around the edges of a mask due to a poor fit or patient movement), and leaks from the point of connection of the patient interface 28 to the circuit 30 (e.g., due to a poor connection between the patient interface 28 and the circuit 30).
  • the patient interface 28 e.g., masks are often provided with holes or other pressure relief devices through which some leakage may occur
  • leaks from the point of connection of the patient interface 28 to the patient 24 e.g., leaks around the edges of a mask due to a poor fit or patient movement
  • leaks from the point of connection of the patient interface 28 to the circuit 30 e.g., due to a poor connection between the patient interface 28 and the circuit 30.
  • the instantaneous leak may be modeled as a leak through a single rigid orifice or opening of a fixed size in which that size is determined based on comparing the total flow into the inspiratory limb 32 and out of the expiratory limb 34.
  • this leak model does not take into account any elastic component of leak source(s) in the system 26, that is how much of the area of any of the holes or openings in the ventilation tubing system 26 through which leakage occurs may change due to an increase or decrease in pressure.
  • FIG. 3 illustrates an embodiment of a method of compensating PRVC ventilation for leakage during delivery of gas from a medical ventilator to a patient.
  • a medical ventilator such as that described above with reference to FIGS. 1 and 2 is used to provide PRVC ventilation to a patient.
  • the method 300 illustrated starts with a setup operation 301 in which the operator directs the ventilator to provide PRVC ventilation.
  • the operator selects a volume of gas to be delivered to the patient, that is to be delivered into the lung, over a specified time period such as a minute, a number of breaths, etc. This desired delivered volume is received by the ventilator and stored in memory for use during PRVC ventilation.
  • the method 300 includes a circuit compliance and resistance operation 302.
  • the ventilator circuit compliance and resistance are estimated. In an embodiment, this may be performed prior to connecting the ventilator to the patient (as previously described). Alternatively, it may be dynamically determined periodically throughout the delivery of ventilatory support to the patient.
  • the circuit compliance and resistance may be used in the remaining operations to correct for any losses in volume or effects on the volume delivered to the patient introduced due to the patient circuit.
  • the ventilator is connected to the patient and an initialization operation 304 is performed.
  • the ventilator operates for an initialization period in order to generate an initial estimate of lung compliance. If the ventilator already has some knowledge of the respiratory mechanics of the patient (e.g., the respiratory mechanics have been recently determined during provision of a different type of ventilation or an operator has provided initial settings for lung compliance and resistance), this operation 304 may be automatically or manually omitted in favor of the previously determined values.
  • a description of an embodiment of the initialization operation 304 is as follows. Because the ventilator does not know the patient's mechanics when the PRVC breath type is selected, it performs a startup routine to obtain initial data, hi an embodiment, upon startup the ventilator delivers some number (e.g., two, four, etc.) of consecutive pressure- based breaths. One or more of these initial breaths given in the startup period may also include an end-inspiratory or other maneuver that yields estimates of the patient's lung compliance. Using four training breaths for the initialization operation 304 as an example, the first breath is delivered using a predicted resistance for the artificial airway and conservative estimates for patient lung compliance.
  • the predicted values may be determined based on known characteristics of the patient, such as based on the patient's ideal body weight (IBW), height, gender, age, physical condition, etc.
  • IBW ideal body weight
  • Each of the following three pressure-based breaths averages stepwise decreased physiologic values with the estimated lung compliance values from the previous breaths, weighting earlier estimates less with each successive breath, and yielding more reliable estimates for lung compliance.
  • Other methods may be used to find a first estimate of the lung compliance and update it on an ongoing basis as ventilation continues.
  • a leakage estimate may also be done prior to the initialization operation 304.
  • Prior determination of leak parameters allows for estimates of respiratory mechanics to be made. This may include delivering pressure- regulated breaths with specific settings or performing specific "leak maneuvers", that is a specified set of controlled actions on the part of the ventilator that allow leakage parameters to be identified and quantified, such as interrupting the therapeutic delivery of respiratory gas and holding or changing the pressure and flow, so that data concerning the leakage of the system during the controlled actions may be obtained.
  • a leak maneuver may include periodically holding the pressure and flow in the circuit constant while determining (based on a comparison of the measured flow into the inspiratory limb and the measured flow out of the expiratory limb via the exhalation valve) the net leakage from the system.
  • a leak maneuver may be performed during specific parts of the respiratory phase, e.g., at the end of the expiratory phase.
  • a sequence of pressure-based test breaths is delivered with specific settings to determine leak parameters prior to execution of test breaths for respiratory mechanics determinations.
  • the ventilator After the initialization operation 304, the ventilator provides ongoing PRVC ventilation to the patient in a PRVC ventilation operation 306.
  • PRVC ventilation the ventilator calculates a target pressure to be delivered to the patient during inspiration based on the desired lung volume to be delivered and the leak- compensated lung compliance of the patient.
  • the ventilator raises the pressure in the ventilator tubing system so that the target inspiratory pressure is applied.
  • the pressure may be dropped to some pre-selected positive end expiratory pressure (PEEP) level or to atmospheric level depending on the desires of the operator.
  • PEEP positive end expiratory pressure
  • the duration of the inspiratory and expiratory phases may be determined based on patient effort or based on a preselected inspiratory time.
  • the target pressure delivered during each inspiratory phase is determined based on the desired lung volume to be delivered and leak-compensated lung compliance of the patient.
  • the PRVC ventilation operation 306 includes the ongoing calculation of leakage while providing ventilation, as illustrated by the leakage calculation/compensation operation 307.
  • the leakage is calculated and the leak-compensated values for lung flow and current lung volume (i.e., the volume of gas in the lung at that moment) are determined taking into account the calculated leakage.
  • the method 300 also includes determining the leak-compensated delivered lung volume in a delivered volume calculation operation 308.
  • the delivered volume calculation operation 308 uses the leak-compensated lung flow and net lung volume to determine how much gas was delivered to the lungs of the patient during the breath.
  • this operation 308 is an ongoing operation in which the volume of gas delivered to the patient is accumulated over the course of the inspiratory phase, so that upon completion of the inspiratory phase the accumulated volume is the total delivered volume for the breath.
  • this operation 308 may be performed as soon as the inspiratory phase ends, any time during the expiratory phase or at the beginning of the next inspiratory phase using leak-compensated lung flow or volume data collected during the breath.
  • the leak- compensated delivered lung volume for the breath is then used in a lung compliance calculation operation 310 to calculate a leak-compensated lung compliance for the patient.
  • the lung compliance calculation operation 310 includes using the following equation to determine lung compliance:
  • Leak- Compensated Lung Compliance W(EIP-EEP) in which V is the leak-compensated delivered lung volume for the breath, EIP is the pressure at the end of the inspiratory phase of the breath, and EEP is the pressure at the end of the expiratory phase of the breath. As mentioned above, these pressure values are determined from the monitoring of pressure and/or flow during the PRVC ventilation operation 306.
  • the above equation is but one example of a method of determined lung compliance from parameters monitored by a ventilator such as pressure, flow and volume. Any suitable method may be used as long as the monitored parameters are compensated for the leakage identified in the leakage calculation/compensation operation 307 so that a leak- compensated lung compliance is obtained.
  • the delivered volume calculation operation 308 and lung compliance calculation operation 310 may be performed as a single operation at the same time instead of separately as shown.
  • the system calculates a target pressure for the next breath in a calculate target pressure operation 312.
  • This calculation takes into account the leak-compensated volume of gas delivered to the patient's lungs during the last breath to determine if sufficient volume is being delivered relative to the desired volume identified by the operator. This calculation also may take into account the leak-compensated volume of gas delivered during earlier breaths depending on the time period over which the desired volume is to be delivered.
  • the target pressure to be used for the next breath may be raised or lowered relative to the current pressure. The amount the target pressure is raised or lowered is a function of the leak-compensated lung compliance, the predicted or known inspiratory phase duration and ventilator settings as well as patient safety precautions.
  • the newly determined values of lung compliance and lung resistance may be averaged, low-pass filtered or otherwise combined with the previously determined values. These revised values are then stored for use in later delivery of PRVC ventilation.
  • the delivered volume calculation operation 308, lung compliance calculation operation 310 and calculate target pressure operation 312 may be performed as a single operation at the same time instead of separately as shown.
  • the ventilator After calculating the revised target pressure, upon the next inspiration the ventilator then provides the revised target pressure to the patient, illustrated in FIG. 3 by the flow returning to the PRVC ventilation operation 306.
  • the method 300 is then repeated from that point until the delivery of PRVC ventilation is terminated by some outside action, such as, change of mode setting or failure to converge on an acceptable lung compliance value.
  • FIG. 4 illustrates an embodiment of a method for calculating leak-compensated parameters while providing PRVC ventilation to a patient.
  • the method 400 corresponds to the operations performed during the leakage determination operation 306 discussed with reference to FIG. 3.
  • the operations occur repeatedly while the ventilator is providing PRVC ventilation, such as once a sample period or computation cycle, while the ventilator is providing either the target pressure (during the inspiratory phase) or an expiratory pressure such as PEEP (during the expiratory phase).
  • the monitoring operation 402 collects data including the instantaneous pressure and/or flow at or indicative of one or more locations in the ventilation tubing system.
  • the operation 402 may also include making one or more calculations using data from pressure and flow measurements taken by the sensors. For example, a model may require a flow measurement as observed at the patient interface even though the ventilation system may not have a flow sensor at that location in the ventilation tubing system.
  • a measurement from a sensor or sensors located elsewhere in the system may be mathematically manipulated in order to obtain an estimate of the flow observed at the patient interface in order to calculate the leak using the model.
  • the data obtained in the monitoring operation 402 is then used to calculate leakage from the ventilator tubing system in a leakage calculation operation 404.
  • the leakage calculation operation 404 uses the data obtained in the monitoring operation 402, e.g., some or all of the instantaneous pressure and flow data collected during the monitoring operation 402 as well as information about the current respiratory phase (inhalation or exhalation).
  • the leakage calculation operation 404 calculates an instantaneous leakage flow or volume for the sample period.
  • the instantaneous leakage is calculated using a mathematical formula that has been previously determined.
  • the mathematical formula is a leakage model that separates the leak into the sum of two leak components, inelastic leak and elastic leak, in which each component represents a different relationship between the quantity of leakage from the ventilation system and the measured current/instantaneous pressure and/or flow of gas in the ventilation system.
  • the inelastic leak may be modeled as the flow through a rigid orifice of a fixed size while the elastic leak may be modeled as the flow through a different orifice of a size that changes based on the pressure (or flow) of the gas in the ventilation system.
  • the mathematical formula used to calculate leakage may contain several parameters that are empirically determined and that may be periodically or occasionally revised in order to maintain the accuracy of the leakage estimate.
  • the parameters of a leakage formula include a first constant associated with the rigid orifice and a second constant associated with the variable-sized orifice.
  • the calculated leakage may be checked against a measured leakage and, if the estimate is significantly different from the measured leakage, the constants may be revised. This revision of the parameters in a leakage formula may be done as part of the leakage calculation operation 404 or may be done as a separate operation (not shown) that may, or may not, be performed every sample period.
  • instantaneous is used herein to describe a determination made for any particular instant or sampling period based on the measured data for that instant. For example, if a pressure measurement is taken every 5 milliseconds (sample period), the pressure measurement and the leak model can be used to determine an instantaneous leak flow based on the instantaneous pressure measurement. With knowledge of the length of the sample period, the instantaneous flow may then be used to determine an instantaneous volume of gas leaking out of the circuit during that sample period. For longer periods covering multiple sample periods the instantaneous values for each sample period may be summed to obtain a total leakage volume. If a measurement is also the most recent measurement taken, then the instantaneous value may also be referred to as the current value.
  • the method 400 further estimates the leak-compensated instantaneous lung flow to or from the patient in a lung flow estimation operation 406.
  • the estimated lung flow is compensated for the leak flow calculated in the instantaneous leak calculation operation 404 so that it represents a more accurate estimate of the actual flow into (or out of depending on the point of view and period selected) the lungs of the patient.
  • the leak- compensated net and delivered lung volumes are also calculated as part of the lung flow estimation operation 406. In an embodiment, this may be performed by maintaining a running summation of net flow into/out of the lung over the period of a breath and a running summation of the flow delivered to the patient during the inspiratory phase.
  • the ventilator may set a variable corresponding to net lung volume to zero and, each sample period, update this net lung volume to include the detected leak- compensated instantaneous lung flow delivered to the patient during that sample period, Likewise, the ventilator may also set a variable corresponding to delivered lung volume to zero and, each sample period during the inspiratoiy phase, update this net lung volume to include the detected leak-compensated instantaneous lung flow into the patent, if any, during that sample period.
  • the leak-compensated lung flow or delivered lung volume will ultimately be used to calculate a leak- compensated lung compliance as described in FIG. 3. Ultimately, this leak-compensated lung compliance along with other leak-compensated data will be used to determine the target pressure for the next inspiratoiy phase.
  • the method 400 is then repeated every computational cycle or sample period, as illustrated by the feedback loop, so that the leak-compensated instantaneous lung flow and leak-compensated delivered lung flow are continuously determined during PRVC ventilation.
  • the following is a discussion of two embodiments of methods for compensating the estimation of respiratory mechanics for leaks.
  • the first embodiment is that of applying leak compensation to a static compliance and resistance determination.
  • the second embodiment is that of applying leak compensation to a dynamic compliance determination.
  • the ventilator 500 includes pressure sensors 506 (two are shown placed at different locations in the system), flow sensors (one is shown), and a ventilator control system 502.
  • the ventilator control system 502 controls the operation of the ventilator and includes a plurality of modules described by their function.
  • the ventilator control system 502 includes a processor 508, memoiy 514 which may include mass storage as described above, a leak estimation module 512 incorporating a parametric leak model accounting for both elastic and rigid orifice leak sources such as that described in U.S.
  • a target pressure calculation module 516 a pressure and flow control module 518, a monitoring module 522, a leak-compensated lung compliance module 524, and a leak-compensated lung flow and volume estimation module 526.
  • the processor 508 and memory 514 have been discussed above. Each of the other modules will be discussed in turn below.
  • the main functions of the ventilator such as receiving and inteipreting operator inputs and providing therapy via changing pressure and flow of gas in the ventilator circuit are performed by the control module 518.
  • the module 518 will perform one or more actions upon the determination that a patient receiving therapy is inhaling or exhaling.
  • the control module 518 determines and provides the appropriate pressure to the patient when in PRVC ventilation mode, This may include performing one or more calculations based on leak-compensated lung flow, leak-compensated lung volume, leak-compensated lung compliance and leak-compensated lung resistance.
  • the calculation of the target pressure to provide during the inspiratory phase of a breath is performed by the target pressure calculation module 516.
  • the target pressure is calculated based on the therapist-selected desired lung volume and the leak- compensated delivered lung volume.
  • the module 516 utilizes one or more respiratory models suitable for determination of target pressure based on monitored parameters and/or leak- compensated respiratory mechanics such as lung compliance.
  • the module 516 uses leak- compensated values for one or both of lung flow and delivered lung volume when calculating the target pressure, depending on the method used by the module. Leak- compensated values may be retrieved if they have already been calculated or may be calculated as needed from leakage information received from the leak-compensated lung flow and net lung volume estimation module 526.
  • the dynamic calculation of lung compliance is performed by the leak-compensated lung compliance calculation module 524.
  • the module 524 utilizes one or more dynamic respiratoiy models, such as that described above with reference to lung compliance calculation operation 310 of FIG. 3, to calculate leak-compensated lung compliance.
  • the module 524 uses leak-compensated values for one or both of lung flows and delivered lung volume when calculating lung compliance. Leak-compensated values may be retrieved if they have already been calculated or may be calculated from leakage information received from the leak- compensated lung flow and delivered lung volume estimation module 526. The current conditions in the ventilation system are monitored by the monitoring module 522.
  • This module 522 collects the data generated by the sensors 504, 506 and may also perform certain calculations on the data to make the data more readily usable by other modules or may process the current data and or previously acquired data or operator input to derive auxiliary parameters or attributes of interest.
  • the monitoring module 522 receives data and provides it to each of the other modules in the ventilator control system 502 that need the current pressure or flow data for trie system.
  • leak-compensated lung flow and delivered lung volume are calculated by the lung flow module 526.
  • the lung flow module 526 uses a quantitative model for lung flow of the patient during both inhalation and exhalation and from this characterization and pressure and flow measurements generates an estimate for instantaneous lung flow.
  • lung flow may be simply determined based on subtracting the estimated leak flow and measured outflow via the expiratory limb from the flow into the inspiratory limb, thereby generating a leak-compensated net flow into (or out of) the lung.
  • the lung flow module 526 may or may not also calculate a leak- compensated delivered lung volume for a patient's breath as described above. Compression in the circuits and accessories may also be accounted for to improve the accuracy of estimated lung flow.
  • the leak model parameters are generated by the leak estimation module 512 which creates one or more quantitative mathematical models, equations or correlations that uses pressure and flow observed in the ventilation system over regular periods of respiratory cycles (inhalation and exhalation) and apply physical and mathematical principles derived from mass balance and characteristic waveform settings of ventilation modalities (regulated pressure or flow trajectories) to derive the parameters of the leak model incorporating both rigid and elastic (variable pressure-dependent) orifices.
  • the group Ri * Pj X represents flow through an orifice of fixed size as a function of instantaneous pressure Pj and the group R 2 * Pi y represents flow through a different orifice that varies in size based on the instantaneous pressure.
  • the equations above presuppose that there will always be an elastic component and an inelastic component of leakage from the ventilation system. In the absence of an elastic component or a leak source of varying size, R 2 would turn out be zero.
  • the current or instantaneous elastic leak is calculated by the leak estimation module 512.
  • the calculation is made using the elastic leak portion of the leak model developed by the leak estimation module 512 and the pressure data obtained by the monitoring module 522.
  • the leak estimation module 512 may calculate a new instantaneous elastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 522. The calculated elastic leak may then be provided to any other module as needed.
  • the current or instantaneous inelastic leak is also calculated by the leak estimation module 512. The calculation is made using the inelastic leak portion of the leak model and the pressure data obtained by the monitoring module 522.
  • the leak estimation module 512 may calculate a new instantaneous inelastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 522. The calculated inelastic leak may then be provided to any other module as needed.
  • the system 500 illustrated will compensate lung flow for leaks due to elastic and inelastic leaks in the ventilation system. Furthermore, the system may perform a dynamic compensation of lung flow based on the changing leak conditions of the ventilation system and the instantaneous pressure and flow measurements. The system then compensates the lung compliance and target pressure calculations based on the estimated leakage in the system. By compensating for the inelastic as well as the elastic components of dynamic leaks, the medical ventilator can more accurately and precisely a target pressure so that the desired lung volume selected by the therapist is achieved. Furthermore, embodiments of the systems and methods described above may also include checks and balances based on patient type and known characteristics (e.g., Ideal Body Weight, etc.). For example, a calculated pressure target (or change between the current and the newly calculated pressure target to be used in the next inspiration) may be compared against a safety criteria based on Ideal Body Weight, age, gender, patient parameters determined during ventilation or operator provided safety thresholds.
  • a calculated pressure target or change between the current and the newly calculated pressure target to be used in the next
  • the ventilator may perform one or more safety actions.
  • safety actions may include limiting stepwise changes in desired pressure target and generating alarms or warnings. Delivery of PRVC may also be terminated in situations deemed unsafe for the patient or when acceptable data are not available (e.g, when the process of lung compliance estimation fails to converge to an acceptable value). In such a situation the ventilator may switch to some other mode, such as a pressure support mode or volume control mode, than PRVC. The mode switched may be determined by the operator when setting up the PRVC ventilation or may be a default mode selected by the manufacturer. It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein.

Abstract

This disclosure describes systems and methods for compensating for leakage when during delivery of gas to a patient from a medical ventilator (20) in a pressure regulated volume control (PRVC) ventilation mode. The technology described herein includes systems and methods that compensate the delivery of PRVC ventilation for leakage in the patient circuit (30) by using leak-compensated lung flows as well as respiratory mechanics (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system (26).

Description

LEAK-COMPENSATED PRESSURE REGULATED VOLUME CONTROL VENTILATION
Introduction
In mechanical ventilation, pressure regulated volume control (PRVC) ventilation is a type of pressure regulated treatment that provides the capability to control the volume of gas delivered to the patient's lungs by adjusting the inspiratory target pressure. In PRVC, a selected volume is delivered to a patient by changing the pressure of the respiratory gas. During PRVC ventilation, the ventilator will evaluate the volume delivered to the patient and compare it against the desired volume set by the therapist. If delivered volume is less than the desired, therapist-selected volume, then the target pressure for the next breath will be increased proportionally. On the other hand, if the delivered volume exceeded the desired volume, the target pressure will be lowered. hi one implementation of PRVC, the ventilator estimates the compliance of the patient's lungs and uses the estimated lung compliance to calculate the target pressure that will result in the delivery of the pre-selected volume of gas. The magnitude and shape of the inspiratory flow delivered by the ventilator will be a function of the patient lung characteristics, breathing pattern, and other ventilator settings.
The lung compliance and lung resistance of a patient may be collectively referred to as the respiratory mechanics of the lung or, simply, the patient's respiratory mechanics, Because PRVC relies on the patient' s respiratory mechanics when determining what pressure to provide for each breath, more accurate determination of respiratory mechanics is essential to performance of the ventilator when providing PRVC ventilation.
Leak-Compensated Pressure Regulated Volume Control Ventilation
This disclosure describes systems and methods for compensating for leakage when during delivery of gas to a patient from a medical ventilator in a pressure regulated volume control (PRVC) ventilation mode. The technology described herein includes systems and methods that compensate the delivery of PRVC ventilation for leakage in the patient circuit by using leak-compensated lung flows as well as respiratory mechanics (lung compliance and lung resistance) estimated in a manner that compensates for elastic and inelastic leaks from the ventilation system. In part, this disclosure describes a method of compensating for leakage in a ventilation system during delivery of pressure regulated volume control ventilation to a patient. The method starts with monitoring an instantaneous flow of respiratory gas in the ventilation system based on one or more measurements of pressure and flow in ventilation system. Leakage of gas from the system is modeled as a first leakage component through a first orifice of a fixed size and a second leakage component through a second orifice of a vaiying size, in which the first and second leakage components are different functions of instantaneous pressure in the ventilation system. A leak-compensated delivered lung volume is then estimated for at least one breath based on the one or more measurements, the first leakage component and the second leakage component. The leak-compensated delivered lung volume and a predetermined respiratory mechanics model are then used to estimate a leak-compensated lung compliance. A target pressure to be delivered to the patient for a subsequent pressure-based breath is then calculated based on a desired lung volume, the leak- compensated delivered lung volume and the leak-compensated lung compliance. The target pressure is then delivered to the patient during the inspiratory phase of the next breath. The leak-compensated lung compliance may be estimated based on the leak- compensated delivered lung volume and a pressure difference, such as the difference between an end inspiratory pressure of a first breath and an end expiratory pressure of the first breath. The disclosure also describes a method of compensating for leakage in a ventilation tubing system during delivery of gas from a medical ventilator to a patient. The method includes measuring leakage from the ventilation tubing system during a first breath and calculating a leak-compensated delivered lung volume for the first breath based on the leakage. The method then estimates a lung compliance of the patient based on the leak- compensated delivered lung volume and pressure measurements taken during the first breath. Ventilation is then delivered to the patient in a second breath at a pressure determined based on a desired delivered lung volume, the leak-compensated delivered lung volume and the leak-compensated lung compliance. As part of measuring the leakage, the method may include identifying an inelastic leakage from the ventilation tubing system as a first function of at least one of a pressure measurement and a flow measurement in the ventilation system and identifying an elastic leakage from the ventilation tubing system as a second function of at least one of the pressure measurement and the flow measurement in the ventilation system.
The disclosure further describes a pressure support system, such as a respiratory ventilator. The system includes: a pressure generating system adapted to generate a flow of breathing gas; a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient; one or more sensors operatively coupled to the pressure generating system or the ventilation tubing system, in which each sensor is capable of generating an output indicative of a pressure or flow of the breathing gas in the ventilation tubing system; a leak estimation module that identifies leakage in the ventilation tubing system; a delivered lung volume module that calculates a leak- compensated delivered lung volume for a first breath based on the leakage during the first breath and the flow of the breathing gas in the ventilation tubing system; a respiratory mechanics calculation module that generates a leak-compensated lung compliance based on the leak-compensated delivered lung volume and at least one output indicative of a pressure of the breathing gas during the first breath; and a pressure control module that causes the pressure generating system to deliver a second breath to the patient at a target pressure calculated based on the leak-compensated lung compliance and the leak- compensated delivered lung volume.
The disclosure also describes a controller for a medical ventilator that includes a microprocessor, a module (which may be a software program executed by the microprocessor, or a component comprising software, hardware and/or firmware that is separate from the microprocessor) that calculates leak- compensated delivered lung volume and leak-compensated lung compliance based on instantaneous elastic leakage and instantaneous inelastic leakage of breathing gas from a ventilation system, and a pressure control module that provides pressure regulated volume control ventilation at a pressure determined based on the leak-compensated delivered lung volume and the leak- compensated lung compliance.
These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
Brief Description of the Drawings
The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto, FIG. 1 illustrates an embodiment of a ventilator connected to a human patient.
FIG. 2 schematically depicts example systems and methods of ventilator control. FIG. 3 illustrates an embodiment of a method of compensating for leakage in a ventilator providing pressure-regulated volume control ventilation to a patient.
FIG. 4 illustrates an embodiment of a method for calculated leak-compensated lung flow and delivered lung volume while providing pressure-regulated volume control ventilation to a patient.
FIG. 5 illustrates a functional block diagram of modules and other components that may be used in an embodiment of ventilator that compensates for elastic and rigid orifice sources of leaks when determining the target pressure during pressure-regulated volume control ventilation.
Detailed Description
Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator providing pressure regulated volume control (PRVC) ventilation to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems in which leaks may cause a degradation of performance. In PRVC ventilation, a ventilator may evaluate the volume delivered to the patient over a breath or a specified time period and compare it against the volume set by the therapist. If the delivered volume is less than the setting, then the pressure target is increased proportionally.
FIG. 1 illustrates an embodiment of a ventilator 20 connected to a human patient 24 that is adapted to provide PRVC ventilation. Ventilator 20 includes a pneumatic system 22 (also referred to as a pressure generating system 22) for circulating breathing gases to and from patient 24 via the ventilation tubing system 26, which couples the patient to the pneumatic system via physical patient interface 28 and ventilator circuit 30. Ventilator circuit 30 could be a dual-limb or single-limb circuit for carrying gas to and from the patient. In a dual-limb embodiment as shown, a wye fitting 36 may be provided as shown to couple the patient interface 28 to the inspiratory limb 32 and the expiratory limb 34 of the circuit 30.
The present systems and methods have proved particularly advantageous in noninvasive settings, such as with facial breathing masks, as those settings typically are more susceptible to leaks. However, leaks do occur in a variety of settings, and the present description contemplates that the patient interface may be invasive or non-invasive, and of any configuration suitable for communicating a flow of breathing gas from the patient circuit to an airway of the patient. Examples of suitable patient interface devices include a nasal mask, nasal/oral mask (which is shown in FIG. 1), nasal prong, full-face mask, tracheal tube, endotracheal tube, nasal pillow, etc. Pneumatic system 22 may be configured in a variety of ways. In the present example, system 22 includes an expiratory module 40 coupled with an expiratory limb 34 and an inspiratoiy module 42 coupled with an inspiratory limb 32. Compressor 44 or another source(s) of pressurized gas (e.g., air and oxygen) is coupled with inspiratory module 42 to provide a gas source for ventilatory support via inspiratory limb 32. The pneumatic system may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller SO is operatively coupled with pneumatic system 22, signal measurement and acquisition systems, and an operator interface 52 may be provided to enable an operator to interact with the ventilator (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). Controller 50 may include memory 54, one or more processors 56, storage 58, and/or other components of the type commonly found in command and control computing devices. The memoiy 54 is computer-readable storage media that stores software that is executed by the processor 56 and which controls the operation of the ventilator 20. In an embodiment, the memoiy 54 comprises one or more solid-state storage devices such as flash memory chips, hi an alternative embodiment, the memory 54 may be mass storage connected to the processor 56 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 56. Computer-readable storage media includes volatile and non- volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
As described in more detail below, controller 50 issues commands to pneumatic system 22 in order to control the breathing assistance provided to the patient by the ventilator. The specific commands may be based on inputs received from an operator, the patient 24, the pneumatic system 22 and sensors, the operator interface 52 and/or other components of the ventilator, hi the depicted example, operator interface includes a display 59 that is touch-sensitive, enabling the display to serve both as an input and output device.
FIG. 2 schematically depicts exemplary systems and methods of ventilator control. As shown, controller 50 issues control commands 60 to drive pneumatic system 22 and thereby circulate breathing gas to and from patient 24. The depicted schematic interaction between pneumatic system 22 and patient 24 may be viewed in terms of pressure and/or flow "signals." For example, signal 62 may be an increased pressure which is applied to the patient via inspiratory limb 32. Control commands 60 are based upon inputs received at controller 50 which may include, among other things, inputs from operator interface 52, and feedback from pneumatic system 22 (e.g., from pressure/flow sensors) and/or sensed from patient 24. In an embodiment, before the respiratory mechanics of a patient can be determined, the mechanics of the ventilation tubing system may be determined, For example, when modeling the delivery of gas to and from a patient 24 via a closed-circuit ventilator, one simple assumption is that compliance of the ventilator circuit 30 (the "circuit compliance") is fixed and that all gas injected into the ventilator circuit 30 that does not exit the circuit 30 via the expiratory limb 34 (in a dual-limb embodiment) fills the circuit as well as the patient's lungs and causes an increase in pressure. As gas is injected (Li), the lung responds to the increased gas pressure in the circuit 30 by expanding. The amount the lung expands is proportional to the lung compliance and is defined as a function of gas pressure differential (e.g., lung compliance = volume delivered/pressure difference). As discussed in greater detail below, this assumption is not valid when leaks are present.
The term circuit compliance is used to refer to the relationship between the pressure in the ventilator circuit 30 (or ventilator circuit 30 and attached patient interface 28, depending on how the compliance is determined) changes based on changes in volume delivered into the circuit. In an embodiment, the circuit compliance may be estimated by pressurizing the ventilator circuit 30 (or circuit 30 and interface 28 combination) when flow to the patient is blocked and measuring the volume of additional gas introduced to cause the pressure change (compliance = volume delivered/pressure difference).
The term circuit resistance is used to refer to the amount the pressure changes between two sites upstream and downstream the ventilator circuit as a function of volumetric flow rate through that circuit. Circuit resistance may be modeled as a two- parameter function of flow and several methods for modeling and calculating circuit resistance are known in the art. For example, in an embodiment, the circuit resistance may be estimated by passing several fixed flow rates through the circuit and measuring the pressure difference between certain upstream and downstream sites and finding the best curve fit to the collected data.
Methods of determining circuit compliance and circuit resistance (such as those described above) may be executed by the operator prior to attaching the patient to the ventilator as part of the set up of the ventilator 20 to provide therapy. Other methods of determining circuit compliance and/or resistance during therapy are also known and could be adapted for use with the disclosed leak-compensation systems and methods described herein. In many cases, it may be desirable to establish a baseline pressure and/or flow trajectoiy for a given respiratory therapy session. The volume of breathing gas delivered to the patient's lung (Lj) and the volume of the gas exhaled by the patient (L2) are measured or determined , and the measured or predicted/estimated leaks are accounted for to ensure accurate delivery and data reporting and monitoring. Accordingly, the more accurate the leak estimation, the better the baseline calculation of delivered and exhaled flow rates and volumes.
Errors may be introduced due to leaks in the ventilation tubing system 26. The term ventilation tubing system 26 is used herein to describe the ventilator circuit 30, any equipment attached to or used in the ventilator circuit 30 such as water traps, monitors, drag delivery devices, etc. (not shown), and the patient interface 28. Depending on the embodiment, this may include some equipment contained in the inspiration module 42 and/or the expiration module 40. When referring to leaks in or from the ventilation tubing system 26, such leaks include leaks within the tubing system 26 and leaks where the tubing system 26 connects to the pressure generator 22 or the patient 24. Thus, leaks from the ventilation tubing system 26 include leaks from the ventilator circuit 30, leaks from the patient interface 28 (e.g., masks are often provided with holes or other pressure relief devices through which some leakage may occur), leaks from the point of connection of the patient interface 28 to the patient 24 (e.g., leaks around the edges of a mask due to a poor fit or patient movement), and leaks from the point of connection of the patient interface 28 to the circuit 30 (e.g., due to a poor connection between the patient interface 28 and the circuit 30).
For the purpose of estimating how a leak flow rate changes based on changes in pressure in the ventilation tubing system 26, the instantaneous leak may be modeled as a leak through a single rigid orifice or opening of a fixed size in which that size is determined based on comparing the total flow into the inspiratory limb 32 and out of the expiratory limb 34. However, this leak model does not take into account any elastic component of leak source(s) in the system 26, that is how much of the area of any of the holes or openings in the ventilation tubing system 26 through which leakage occurs may change due to an increase or decrease in pressure.
It has been determined that not accounting for elastic leakage from the ventilation tubing system 26 can cause many problems. First, if only the inelastic/fixed orifice model is used to estimate leak, the subsequent errors caused by ignoring the elastic effects of any actual leaks end up generating inaccurate estimates of flow rates into the lung. This can cause the ventilator 20 to estimate gas volume delivered into the lung inaccurately when, in fact, the elastic leaks in the system 26 have let more gas escape than estimated. Second, if the elasticity of the leak source is ignored, any other calculation, estimate, or action that the ventilator 20 may perform which is affected by the leak estimate will be less accurate. In the systems and methods described herein, the provision of PRVC ventilation is made more accurate by compensating for leakage from the ventilation tubing system. In the embodiments described herein fixed (rigid) and elastic components of the system leakage are used when determining the lung flow, net lung volume, lung compliance and lung resistance of the patient. This results in a more accurate determination of lung compliance and lung resistance and, therefore, ventilation of patients based on respiratory mechanics. While the systems and methods are presented in the context of specific leakage models, the technology described herein could be used to compensate the respiratory mechanics determined by any model for leakage using any type of mechanical ventilator or other device that provides gas.
FIG. 3 illustrates an embodiment of a method of compensating PRVC ventilation for leakage during delivery of gas from a medical ventilator to a patient. In the method 300 shown, a medical ventilator such as that described above with reference to FIGS. 1 and 2 is used to provide PRVC ventilation to a patient.
The method 300 illustrated starts with a setup operation 301 in which the operator directs the ventilator to provide PRVC ventilation. In the setup operation 301, the operator selects a volume of gas to be delivered to the patient, that is to be delivered into the lung, over a specified time period such as a minute, a number of breaths, etc. This desired delivered volume is received by the ventilator and stored in memory for use during PRVC ventilation.
In the embodiment shown, the method 300 includes a circuit compliance and resistance operation 302. In that operation 302, the ventilator circuit compliance and resistance are estimated. In an embodiment, this may be performed prior to connecting the ventilator to the patient (as previously described). Alternatively, it may be dynamically determined periodically throughout the delivery of ventilatory support to the patient. The circuit compliance and resistance may be used in the remaining operations to correct for any losses in volume or effects on the volume delivered to the patient introduced due to the patient circuit.
After the circuit compliance and resistance have been determined, the ventilator is connected to the patient and an initialization operation 304 is performed. In the initialization operation 304 the ventilator operates for an initialization period in order to generate an initial estimate of lung compliance. If the ventilator already has some knowledge of the respiratory mechanics of the patient (e.g., the respiratory mechanics have been recently determined during provision of a different type of ventilation or an operator has provided initial settings for lung compliance and resistance), this operation 304 may be automatically or manually omitted in favor of the previously determined values.
A description of an embodiment of the initialization operation 304 is as follows. Because the ventilator does not know the patient's mechanics when the PRVC breath type is selected, it performs a startup routine to obtain initial data, hi an embodiment, upon startup the ventilator delivers some number (e.g., two, four, etc.) of consecutive pressure- based breaths. One or more of these initial breaths given in the startup period may also include an end-inspiratory or other maneuver that yields estimates of the patient's lung compliance. Using four training breaths for the initialization operation 304 as an example, the first breath is delivered using a predicted resistance for the artificial airway and conservative estimates for patient lung compliance. The predicted values may be determined based on known characteristics of the patient, such as based on the patient's ideal body weight (IBW), height, gender, age, physical condition, etc. Each of the following three pressure-based breaths averages stepwise decreased physiologic values with the estimated lung compliance values from the previous breaths, weighting earlier estimates less with each successive breath, and yielding more reliable estimates for lung compliance. Other methods may be used to find a first estimate of the lung compliance and update it on an ongoing basis as ventilation continues.
In an embodiment of the method 300, a leakage estimate may also be done prior to the initialization operation 304. Prior determination of leak parameters allows for estimates of respiratory mechanics to be made. This may include delivering pressure- regulated breaths with specific settings or performing specific "leak maneuvers", that is a specified set of controlled actions on the part of the ventilator that allow leakage parameters to be identified and quantified, such as interrupting the therapeutic delivery of respiratory gas and holding or changing the pressure and flow, so that data concerning the leakage of the system during the controlled actions may be obtained. For example, a leak maneuver may include periodically holding the pressure and flow in the circuit constant while determining (based on a comparison of the measured flow into the inspiratory limb and the measured flow out of the expiratory limb via the exhalation valve) the net leakage from the system. In an embodiment, such a leak maneuver may be performed during specific parts of the respiratory phase, e.g., at the end of the expiratory phase. In yet another embodiment, a sequence of pressure-based test breaths is delivered with specific settings to determine leak parameters prior to execution of test breaths for respiratory mechanics determinations.
After the initialization operation 304, the ventilator provides ongoing PRVC ventilation to the patient in a PRVC ventilation operation 306. As discussed above, during PRVC ventilation the ventilator calculates a target pressure to be delivered to the patient during inspiration based on the desired lung volume to be delivered and the leak- compensated lung compliance of the patient. When in an inspiratory phase, the ventilator raises the pressure in the ventilator tubing system so that the target inspiratory pressure is applied. During exhalation, the pressure may be dropped to some pre-selected positive end expiratory pressure (PEEP) level or to atmospheric level depending on the desires of the operator. The duration of the inspiratory and expiratory phases may be determined based on patient effort or based on a preselected inspiratory time.
As described above, the target pressure delivered during each inspiratory phase is determined based on the desired lung volume to be delivered and leak-compensated lung compliance of the patient. In order to compensate for leakage in the circuit, in the method 300 shown the PRVC ventilation operation 306 includes the ongoing calculation of leakage while providing ventilation, as illustrated by the leakage calculation/compensation operation 307. As discussed in greater detail below with reference to FIG. 4, the leakage is calculated and the leak-compensated values for lung flow and current lung volume (i.e., the volume of gas in the lung at that moment) are determined taking into account the calculated leakage. The method 300 also includes determining the leak-compensated delivered lung volume in a delivered volume calculation operation 308. The delivered volume calculation operation 308 uses the leak-compensated lung flow and net lung volume to determine how much gas was delivered to the lungs of the patient during the breath. In an embodiment, this operation 308 is an ongoing operation in which the volume of gas delivered to the patient is accumulated over the course of the inspiratory phase, so that upon completion of the inspiratory phase the accumulated volume is the total delivered volume for the breath. Alternatively, this operation 308 may be performed as soon as the inspiratory phase ends, any time during the expiratory phase or at the beginning of the next inspiratory phase using leak-compensated lung flow or volume data collected during the breath.
The leak- compensated delivered lung volume for the breath is then used in a lung compliance calculation operation 310 to calculate a leak-compensated lung compliance for the patient. In an embodiment, the lung compliance calculation operation 310 includes using the following equation to determine lung compliance:
Leak- Compensated Lung Compliance = W(EIP-EEP) in which V is the leak-compensated delivered lung volume for the breath, EIP is the pressure at the end of the inspiratory phase of the breath, and EEP is the pressure at the end of the expiratory phase of the breath. As mentioned above, these pressure values are determined from the monitoring of pressure and/or flow during the PRVC ventilation operation 306.
The above equation is but one example of a method of determined lung compliance from parameters monitored by a ventilator such as pressure, flow and volume. Any suitable method may be used as long as the monitored parameters are compensated for the leakage identified in the leakage calculation/compensation operation 307 so that a leak- compensated lung compliance is obtained.
In an embodiment, the delivered volume calculation operation 308 and lung compliance calculation operation 310 may be performed as a single operation at the same time instead of separately as shown.
Based on the leak-compensated lung compliance, the system then calculates a target pressure for the next breath in a calculate target pressure operation 312. This calculation takes into account the leak-compensated volume of gas delivered to the patient's lungs during the last breath to determine if sufficient volume is being delivered relative to the desired volume identified by the operator. This calculation also may take into account the leak-compensated volume of gas delivered during earlier breaths depending on the time period over which the desired volume is to be delivered. Depending on the comparison of the leak-compensated delivered lung volume and the desired delivered lung volume, the target pressure to be used for the next breath may be raised or lowered relative to the current pressure. The amount the target pressure is raised or lowered is a function of the leak-compensated lung compliance, the predicted or known inspiratory phase duration and ventilator settings as well as patient safety precautions.
The newly determined values of lung compliance and lung resistance may be averaged, low-pass filtered or otherwise combined with the previously determined values. These revised values are then stored for use in later delivery of PRVC ventilation. In an embodiment, the delivered volume calculation operation 308, lung compliance calculation operation 310 and calculate target pressure operation 312 may be performed as a single operation at the same time instead of separately as shown. After calculating the revised target pressure, upon the next inspiration the ventilator then provides the revised target pressure to the patient, illustrated in FIG. 3 by the flow returning to the PRVC ventilation operation 306. The method 300 is then repeated from that point until the delivery of PRVC ventilation is terminated by some outside action, such as, change of mode setting or failure to converge on an acceptable lung compliance value.
FIG. 4 illustrates an embodiment of a method for calculating leak-compensated parameters while providing PRVC ventilation to a patient. In an embodiment, the method 400 corresponds to the operations performed during the leakage determination operation 306 discussed with reference to FIG. 3. In the embodiment of the method 400 illustrated, the operations occur repeatedly while the ventilator is providing PRVC ventilation, such as once a sample period or computation cycle, while the ventilator is providing either the target pressure (during the inspiratory phase) or an expiratory pressure such as PEEP (during the expiratory phase).
During PRVC ventilation, the pressure and flow and other parameters of the system are monitored, illustrated by the monitoring operation 402. In an embodiment, the monitoring operation 402 collects data including the instantaneous pressure and/or flow at or indicative of one or more locations in the ventilation tubing system. Depending upon how a particular leak model is defined, the operation 402 may also include making one or more calculations using data from pressure and flow measurements taken by the sensors. For example, a model may require a flow measurement as observed at the patient interface even though the ventilation system may not have a flow sensor at that location in the ventilation tubing system. Thus, a measurement from a sensor or sensors located elsewhere in the system (or data from a different type of sensor at the location) may be mathematically manipulated in order to obtain an estimate of the flow observed at the patient interface in order to calculate the leak using the model.
The data obtained in the monitoring operation 402 is then used to calculate leakage from the ventilator tubing system in a leakage calculation operation 404. In an embodiment, the leakage calculation operation 404 uses the data obtained in the monitoring operation 402, e.g., some or all of the instantaneous pressure and flow data collected during the monitoring operation 402 as well as information about the current respiratory phase (inhalation or exhalation).
The leakage calculation operation 404 calculates an instantaneous leakage flow or volume for the sample period. The instantaneous leakage is calculated using a mathematical formula that has been previously determined. In an embodiment, the mathematical formula is a leakage model that separates the leak into the sum of two leak components, inelastic leak and elastic leak, in which each component represents a different relationship between the quantity of leakage from the ventilation system and the measured current/instantaneous pressure and/or flow of gas in the ventilation system. As discussed above, the inelastic leak may be modeled as the flow through a rigid orifice of a fixed size while the elastic leak may be modeled as the flow through a different orifice of a size that changes based on the pressure (or flow) of the gas in the ventilation system.
An example of a method and system for modeling leak in a ventilation system as a combination of an elastic leak component and an inelastic leak component can be found in commonly-assigned U.S. Provisional Patent Application Serial Number 61/041,070, filed March 31, 2008, titled VENTILATOR LEAK COMPENSATION, which application is hereby incorporated by reference herein. The VENTILATOR LEAK COMPENSATION represents one way of characterizing the leak from a ventilation system as a combination of elastic and inelastic components. Other methods and models are also possible and may be adapted for use with this technology.
The mathematical formula used to calculate leakage may contain several parameters that are empirically determined and that may be periodically or occasionally revised in order to maintain the accuracy of the leakage estimate. For example, in an embodiment the parameters of a leakage formula include a first constant associated with the rigid orifice and a second constant associated with the variable-sized orifice. At various times during ventilation, the calculated leakage may be checked against a measured leakage and, if the estimate is significantly different from the measured leakage, the constants may be revised. This revision of the parameters in a leakage formula may be done as part of the leakage calculation operation 404 or may be done as a separate operation (not shown) that may, or may not, be performed every sample period.
The term instantaneous is used herein to describe a determination made for any particular instant or sampling period based on the measured data for that instant. For example, if a pressure measurement is taken every 5 milliseconds (sample period), the pressure measurement and the leak model can be used to determine an instantaneous leak flow based on the instantaneous pressure measurement. With knowledge of the length of the sample period, the instantaneous flow may then be used to determine an instantaneous volume of gas leaking out of the circuit during that sample period. For longer periods covering multiple sample periods the instantaneous values for each sample period may be summed to obtain a total leakage volume. If a measurement is also the most recent measurement taken, then the instantaneous value may also be referred to as the current value. After the current leak has been calculated, the method 400 further estimates the leak-compensated instantaneous lung flow to or from the patient in a lung flow estimation operation 406. The estimated lung flow is compensated for the leak flow calculated in the instantaneous leak calculation operation 404 so that it represents a more accurate estimate of the actual flow into (or out of depending on the point of view and period selected) the lungs of the patient.
Ln the embodiment illustrated, the leak- compensated net and delivered lung volumes are also calculated as part of the lung flow estimation operation 406. In an embodiment, this may be performed by maintaining a running summation of net flow into/out of the lung over the period of a breath and a running summation of the flow delivered to the patient during the inspiratory phase. For example, upon triggering inhalation, the ventilator may set a variable corresponding to net lung volume to zero and, each sample period, update this net lung volume to include the detected leak- compensated instantaneous lung flow delivered to the patient during that sample period, Likewise, the ventilator may also set a variable corresponding to delivered lung volume to zero and, each sample period during the inspiratoiy phase, update this net lung volume to include the detected leak-compensated instantaneous lung flow into the patent, if any, during that sample period.
In the PRVC ventilation method 40Θ illustrated, the leak-compensated lung flow or delivered lung volume will ultimately be used to calculate a leak- compensated lung compliance as described in FIG. 3. Ultimately, this leak-compensated lung compliance along with other leak-compensated data will be used to determine the target pressure for the next inspiratoiy phase.
The method 400 is then repeated every computational cycle or sample period, as illustrated by the feedback loop, so that the leak-compensated instantaneous lung flow and leak-compensated delivered lung flow are continuously determined during PRVC ventilation. The following is a discussion of two embodiments of methods for compensating the estimation of respiratory mechanics for leaks. The first embodiment is that of applying leak compensation to a static compliance and resistance determination. The second embodiment is that of applying leak compensation to a dynamic compliance determination. FIG. 5 illustrates a functional block diagram of modules and other components that may be used in an embodiment of ventilator that compensates for elastic and rigid orifice sources of leaks when determining the target pressure during PRVC ventilation, hi the embodiment shown, the ventilator 500 includes pressure sensors 506 (two are shown placed at different locations in the system), flow sensors (one is shown), and a ventilator control system 502. The ventilator control system 502 controls the operation of the ventilator and includes a plurality of modules described by their function. In the embodiment shown, the ventilator control system 502 includes a processor 508, memoiy 514 which may include mass storage as described above, a leak estimation module 512 incorporating a parametric leak model accounting for both elastic and rigid orifice leak sources such as that described in U.S. Provisional Application 61/041 ,070 previously incorporated herein, a target pressure calculation module 516, a pressure and flow control module 518, a monitoring module 522, a leak-compensated lung compliance module 524, and a leak-compensated lung flow and volume estimation module 526. The processor 508 and memory 514 have been discussed above. Each of the other modules will be discussed in turn below.
The main functions of the ventilator such as receiving and inteipreting operator inputs and providing therapy via changing pressure and flow of gas in the ventilator circuit are performed by the control module 518. In the context of the methods and systems described herein, the module 518 will perform one or more actions upon the determination that a patient receiving therapy is inhaling or exhaling. hi the embodiment described herein, the control module 518 determines and provides the appropriate pressure to the patient when in PRVC ventilation mode, This may include performing one or more calculations based on leak-compensated lung flow, leak-compensated lung volume, leak-compensated lung compliance and leak-compensated lung resistance.
The calculation of the target pressure to provide during the inspiratory phase of a breath is performed by the target pressure calculation module 516. The target pressure is calculated based on the therapist-selected desired lung volume and the leak- compensated delivered lung volume. The module 516 utilizes one or more respiratory models suitable for determination of target pressure based on monitored parameters and/or leak- compensated respiratory mechanics such as lung compliance. The module 516 uses leak- compensated values for one or both of lung flow and delivered lung volume when calculating the target pressure, depending on the method used by the module. Leak- compensated values may be retrieved if they have already been calculated or may be calculated as needed from leakage information received from the leak-compensated lung flow and net lung volume estimation module 526. The dynamic calculation of lung compliance is performed by the leak-compensated lung compliance calculation module 524. The module 524 utilizes one or more dynamic respiratoiy models, such as that described above with reference to lung compliance calculation operation 310 of FIG. 3, to calculate leak-compensated lung compliance. The module 524 uses leak-compensated values for one or both of lung flows and delivered lung volume when calculating lung compliance. Leak-compensated values may be retrieved if they have already been calculated or may be calculated from leakage information received from the leak- compensated lung flow and delivered lung volume estimation module 526. The current conditions in the ventilation system are monitored by the monitoring module 522. This module 522 collects the data generated by the sensors 504, 506 and may also perform certain calculations on the data to make the data more readily usable by other modules or may process the current data and or previously acquired data or operator input to derive auxiliary parameters or attributes of interest. In an embodiment, the monitoring module 522 receives data and provides it to each of the other modules in the ventilator control system 502 that need the current pressure or flow data for trie system.
In the embodiment shown, leak-compensated lung flow and delivered lung volume are calculated by the lung flow module 526. The lung flow module 526 uses a quantitative model for lung flow of the patient during both inhalation and exhalation and from this characterization and pressure and flow measurements generates an estimate for instantaneous lung flow. In an embodiment, lung flow may be simply determined based on subtracting the estimated leak flow and measured outflow via the expiratory limb from the flow into the inspiratory limb, thereby generating a leak-compensated net flow into (or out of) the lung. The lung flow module 526 may or may not also calculate a leak- compensated delivered lung volume for a patient's breath as described above. Compression in the circuits and accessories may also be accounted for to improve the accuracy of estimated lung flow.
The leak model parameters are generated by the leak estimation module 512 which creates one or more quantitative mathematical models, equations or correlations that uses pressure and flow observed in the ventilation system over regular periods of respiratory cycles (inhalation and exhalation) and apply physical and mathematical principles derived from mass balance and characteristic waveform settings of ventilation modalities (regulated pressure or flow trajectories) to derive the parameters of the leak model incorporating both rigid and elastic (variable pressure-dependent) orifices. In an embodiment, the mathematical model may be a model such as: ϋmelastw = ^l ' "i Qelastic = ^2 "ι wherein Qelastic is the instantaneous leak flow due to elastic leaks in the ventilation system, Qmciastic is the instantaneous leak flow due to inelastic leaks in the ventilation system, Ri is the inelastic leak constant, R2 is the elastic leak constant, Pj is the current or instantaneous pressure measurement, x is an exponent for use when determining the inelastic leak and y is an exponent different than x for use when determining the elastic leak. The group Ri * PjX represents flow through an orifice of fixed size as a function of instantaneous pressure Pj and the group R2 * Piy represents flow through a different orifice that varies in size based on the instantaneous pressure. The equations above presuppose that there will always be an elastic component and an inelastic component of leakage from the ventilation system. In the absence of an elastic component or a leak source of varying size, R2 would turn out be zero.
In the embodiment shown, the current or instantaneous elastic leak is calculated by the leak estimation module 512. The calculation is made using the elastic leak portion of the leak model developed by the leak estimation module 512 and the pressure data obtained by the monitoring module 522. The leak estimation module 512 may calculate a new instantaneous elastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 522. The calculated elastic leak may then be provided to any other module as needed. In the embodiment shown, the current or instantaneous inelastic leak is also calculated by the leak estimation module 512. The calculation is made using the inelastic leak portion of the leak model and the pressure data obtained by the monitoring module 522. The leak estimation module 512 may calculate a new instantaneous inelastic leak flow or volume for each pressure sample taken (i.e., for each sampling period) by the monitoring module 522. The calculated inelastic leak may then be provided to any other module as needed.
The system 500 illustrated will compensate lung flow for leaks due to elastic and inelastic leaks in the ventilation system. Furthermore, the system may perform a dynamic compensation of lung flow based on the changing leak conditions of the ventilation system and the instantaneous pressure and flow measurements. The system then compensates the lung compliance and target pressure calculations based on the estimated leakage in the system. By compensating for the inelastic as well as the elastic components of dynamic leaks, the medical ventilator can more accurately and precisely a target pressure so that the desired lung volume selected by the therapist is achieved. Furthermore, embodiments of the systems and methods described above may also include checks and balances based on patient type and known characteristics (e.g., Ideal Body Weight, etc.). For example, a calculated pressure target (or change between the current and the newly calculated pressure target to be used in the next inspiration) may be compared against a safety criteria based on Ideal Body Weight, age, gender, patient parameters determined during ventilation or operator provided safety thresholds.
If the comparison indicates the newly calculated pressure is unsafe, the ventilator may perform one or more safety actions. In an embodiment, such safety actions may include limiting stepwise changes in desired pressure target and generating alarms or warnings. Delivery of PRVC may also be terminated in situations deemed unsafe for the patient or when acceptable data are not available (e.g, when the process of lung compliance estimation fails to converge to an acceptable value). In such a situation the ventilator may switch to some other mode, such as a pressure support mode or volume control mode, than PRVC. The mode switched may be determined by the operator when setting up the PRVC ventilation or may be a default mode selected by the manufacturer. It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. For example, the operations and steps of the embodiments of methods described herein may be combined or the sequence of the operations may be changed while still achieving the goals of the technology. In addition, specific functions and/or actions may also be allocated in such as a way as to be performed by a different module or method step without deviating from the overall disclosure. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications, hi this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible.
While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the technology described herein. For example, the systems and methods described herein could be adapted to periodically perform a static respiratory mechanics maneuver to obtain a more accurate lung compliance estimate in order to check the dynamically determined leak-compensated lung compliance. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims

ClaimsWhat is claimed is:
1. A method of compensating for leakage in a ventilation system during delivery of pressure regulated volume control ventilation to a patient comprising: monitoring an instantaneous flow in the ventilation system based on one or more measurements of pressure and flow in ventilation system; modeling leakage as a first leakage component through a first orifice of a fixed size and a second leakage component through a second orifice of a vaiying size, wherein the first and second leakage components are different functions of instantaneous pressure in the ventilation system; estimating a leak-compensated delivered lung volume for at least one breath based on the one or more measurements, the first leakage component and the second leakage component; using the leak-compensated delivered lung volume and a predetermined respiratory mechanics model to estimate a leak-compensated lung compliance; and calculating a target pressure to be delivered to the patient for a subsequent breath based on a desired lung volume, the leak-compensated delivered lung volume and the leak- compensated lung compliance.
2. The method of claim 1 further comprising: estimating the leak-compensated lung compliance based on the leak-compensated delivered lung volume and a pressure difference.
3. The method of claim 2 wherein the pressure difference is a difference between an end inspiratory pressure of a first breath and an end expiratory pressure of the first breath.
4. The method of claim 1 wherein the method further comprises: calculating the target pressure based on a difference between the desired lung volume and the leak-compensated delivered lung volume.
5. The method of claim 1 wherein the method further comprises: determining a circuit compliance of ventilation system; and estimating a leak-compensated delivered lung volume for at least one breath based on the one or more measurements, the circuit compliance, the first leakage component and the second leakage component.
6. The method of claim 1 wherein the method further comprises: upon initiation of pressure regulated volume control ventilation, calculating an initial lung compliance from data obtained during a startup period; and determining an initial target pressure to be delivered to the patient for at least one breath after the startup period.
7. A method of compensating for leakage in a ventilation tubing system during delivery of gas from a medical ventilator to a patient comprising: measuring leakage from the ventilation tubing system during a first breath; calculating a leak-compensated delivered lung volume for the first breath based on the leakage; estimating a lung compliance of the patient based on the leak-compensated delivered lung volume and pressure measurements taken during the first breath; and delivering ventilation to the patient in a second breath at a pressure determined based on a desired delivered lung volume, the leak-compensated delivered lung volume and the leak-compensated lung compliance.
8. The method of claim 7 wherein measuring leakage further comprises: identifying an inelastic leakage from the ventilation tubing system as a first function of at least one of a pressure measurement and a flow measurement in the ventilation system; and identifying an elastic leakage from the ventilation tubing system as a second function of at least one of the pressure measurement and the flow measurement in the ventilation system.
9. The method of claim 7 wherein calculating the leak-compensated delivered lung volume further comprises: generating a plurality leak-compensated lung flows each associated with a different period of time within the first breath; generating the leak-compensated delivered lung volume for the first breath based on the leak-compensated lung flows.
10. The method of claim 7 wherein estimating the lung compliance further comprises: receiving the desired lung volume from an operator.
11. A pressure support system comprising: a pressure generating system adapted to generate a flow of breathing gas; a ventilation tubing system including a patient interface device for connecting the pressure generating system to a patient; one or more sensors operatively coupled to the pressure generating system or the ventilation tubing system, each sensor capable of generating an output indicative of a pressure or flow of the breathing gas in the ventilation tubing system; a leak estimation module that identifies leakage in the ventilation tubing system; a delivered lung volume module that calculates a leak-compensated delivered lung volume for a first breath based on the leakage during the first breath and the flow of the breathing gas in the ventilation tubing system; a respiratory mechanics calculation module that generates a leak-compensated lung compliance based on the leak-compensated delivered lung volume and at least one output indicative of a pressure of the breathing gas during the first breath; and a pressure control module that causes the pressure generating system to deliver a second breath to the patient at a target pressure calculated based on the leak-compensated lung compliance and the leak- compensated delivered lung volume.
12. The system of claim 11 further comprising: a memoiy storing a desired delivered lung volume provided by a user.
13. The system of claim 12 wherein the pressure regulated volume control module calculates the target pressure based on the desired delivered lung volume, the leak- compensated lung compliance and the leak-compensated delivered lung volume.
14. The system of claim 11 wherein the respiratory mechanics calculation module generates the leak- compensated lung compliance based on the leak-compensated delivered lung volume and a pressure difference.
15. The method of claim 14 wherein the pressure difference is a difference between an end inspiratory pressure of the first breath and an end expiratoiy pressure of the first breath.
16. The system of claim 11 wherein the leak estimation module further identifies an elastic leakage and an inelastic leakage in the ventilation tubing system.
17. The system of claim 16 wherein the delivered lung volume module calculates the leak-compensated delivered lung volume for a first breath based on the elastic and inelastic leakage during the first breath and the flow of the breathing gas in the ventilation tubing system.
18. A controller for a medical ventilator comprising: a microprocessor; a module that calculates leak-compensated delivered lung volume and leak- compensated lung compliance based on instantaneous elastic leakage and instantaneous inelastic leakage of breathing gas from a ventilation system; and a pressure control module that provides pressure regulated volume control ventilation at a pressure determined based on the leak-compensated delivered lung volume and the leak-compensated lung compliance.
19. The controller of claim 18 further comprising: a leak estimation module that identifies the instantaneous inelastic leakage and the instantaneous elastic leakage in the ventilator.
20. The controller of claim 18 further comprising: a memory that stores an identification of a target volume of gas to be delivered during pressure regulated volume control ventilation; and wherein the pressure control module provides pressure regulated volume control ventilation at a pressure determined based on the leak-compensated delivered lung volume, the leak-compensated lung compliance, and the target volume of gas.
PCT/US2010/026618 2009-03-20 2010-03-09 Leak-compensated pressure regulated volume control ventilation WO2010107614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/408,414 US8418691B2 (en) 2009-03-20 2009-03-20 Leak-compensated pressure regulated volume control ventilation
US12/408,414 2009-03-20

Publications (1)

Publication Number Publication Date
WO2010107614A1 true WO2010107614A1 (en) 2010-09-23

Family

ID=42229204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/026618 WO2010107614A1 (en) 2009-03-20 2010-03-09 Leak-compensated pressure regulated volume control ventilation

Country Status (2)

Country Link
US (2) US8418691B2 (en)
WO (1) WO2010107614A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3549628A1 (en) * 2012-04-13 2019-10-09 ResMed Pty Ltd Apparatus for ventilatory treatment
WO2020215301A1 (en) 2019-04-26 2020-10-29 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) Attenuated african swine fever virus with deleted gene and use of same as vaccine
WO2024069315A1 (en) * 2022-09-26 2024-04-04 Covidien Lp Hybrid single-limb medical ventilation

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915379A (en) 1997-03-14 1999-06-29 Nellcor Puritan Bennett Incorporated Graphic user interface for a patient ventilator
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8640700B2 (en) 2008-03-27 2014-02-04 Covidien Lp Method for selecting target settings in a medical device
US8267085B2 (en) * 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US8792949B2 (en) 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
EP2313138B1 (en) 2008-03-31 2018-09-12 Covidien LP System and method for determining ventilator leakage during stable periods within a breath
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US8528554B2 (en) 2008-09-04 2013-09-10 Covidien Lp Inverse sawtooth pressure wave train purging in medical ventilators
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
EP2349420B1 (en) 2008-09-25 2016-08-31 Covidien LP Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) * 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
JP5770186B2 (en) * 2009-09-01 2015-08-26 コーニンクレッカ フィリップス エヌ ヴェ System and method for quantifying lung compliance in a spontaneously breathing subject
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434481B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with dip tube
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US20110132369A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Ventilation System With System Status Display
US9814851B2 (en) 2009-12-04 2017-11-14 Covidien Lp Alarm indication system
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US20110180063A1 (en) * 2010-01-28 2011-07-28 General Electric Company Compensation for unmeasurable inspiratory flow in a critical care ventilator
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
WO2012014106A1 (en) * 2010-07-27 2012-02-02 Koninklijke Philips Electronics N.V. Leak estimation using function estimation.
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
CN102441209B (en) * 2010-10-09 2016-04-13 深圳迈瑞生物医疗电子股份有限公司 A kind of ventilating mode switching device, method and anesthetic machine, respirator
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9038633B2 (en) 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
WO2013027137A1 (en) * 2011-08-25 2013-02-28 Koninklijke Philips Electronics N.V. Non-invasive ventilation measurement.
US20130047989A1 (en) * 2011-08-31 2013-02-28 Nellcor Puritan Bennett Llc Methods and systems for adjusting tidal volume during ventilation
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
CN104080503B (en) * 2011-12-27 2017-07-18 皇家飞利浦有限公司 Breathe the compensation of delivering
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US9993604B2 (en) * 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
BR112015007682A2 (en) * 2012-10-10 2017-07-04 Koninklijke Philips Nv system configured to deliver respiratory therapy to an individual during a therapy session, method for estimating a pressure drop during delivery of respiratory therapy to an individual
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US10064583B2 (en) 2013-08-07 2018-09-04 Covidien Lp Detection of expiratory airflow limitation in ventilated patient
WO2015051143A2 (en) * 2013-10-02 2015-04-09 Heck Louis John System and methods for respiratory support using limited-leak cannulas
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US20150114395A1 (en) * 2013-10-29 2015-04-30 General Electric Company Method and arrangement for determining a ventilation need specific for a patient
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
WO2016140980A1 (en) 2015-03-02 2016-09-09 Covidien Lp Medical ventilator, method for replacing an oxygen sensor on a medical ventilator, and medical ventilator assembly
US10315002B2 (en) 2015-03-24 2019-06-11 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US11247015B2 (en) 2015-03-24 2022-02-15 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
EP3552649B1 (en) 2015-04-02 2023-08-23 Hill-Rom Services PTE. LTD. Pressure control of respiratory device
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
EP3319672A1 (en) * 2015-07-07 2018-05-16 Koninklijke Philips N.V. Methods and systems for patient airway and leak flow estimation for non-invasive ventilation
WO2017055195A1 (en) 2015-09-28 2017-04-06 Koninklijke Philips N.V. Methods and systems to estimate compliance of a patient circuit in the presence of leak
US10765822B2 (en) 2016-04-18 2020-09-08 Covidien Lp Endotracheal tube extubation detection
US10773049B2 (en) 2016-06-21 2020-09-15 Ventec Life Systems, Inc. Cough-assist systems with humidifier bypass
US10286169B2 (en) 2017-02-02 2019-05-14 General Electric Company Ventilator system and method for controlling the same to provide spontaneous breathing support
JP2020519375A (en) * 2017-05-12 2020-07-02 レスメド・プロプライエタリー・リミテッド Methods and devices for the treatment of respiratory disorders
DE102017008791A1 (en) * 2017-09-20 2019-03-21 Drägerwerk AG & Co. KGaA Method of operating a ventilator and ventilator operating on the procedure
EP3525857B1 (en) 2017-11-14 2020-01-29 Covidien LP Systems for drive pressure spontaneous ventilation
WO2019156616A1 (en) * 2018-02-06 2019-08-15 Maquet Critical Care Ab Ventilator arrangement
CN114504714A (en) 2018-05-13 2022-05-17 万泰生命系统公司 Portable medical ventilator system using portable oxygen concentrator
US10780239B2 (en) 2018-05-24 2020-09-22 General Electric Company Method and system for controlling patient sedation and spontaneous breathing intensity
US11517691B2 (en) 2018-09-07 2022-12-06 Covidien Lp Methods and systems for high pressure controlled ventilation
CN110537917A (en) * 2019-08-15 2019-12-06 郴州市第一人民医院 mechanical ventilation intelligent monitoring system and monitoring method based on respiratory mechanics
DE102020003419A1 (en) 2020-06-05 2021-12-09 W.O.M. World Of Medicine Gmbh Method for determining cavity volume in minimally invasive operations
DE102020003418A1 (en) 2020-06-05 2021-12-09 W.O.M. World Of Medicine Gmbh Method for determining the cavity volume of elastic medical devices for leak testing
CN114099880B (en) * 2021-11-24 2023-11-03 黄燕华 Automatic ventilation mode switching method and system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107008A (en) 1975-06-16 1978-08-15 Beeston Company Limited Electrolysis method for producing hydrogen and oxygen
US5433193A (en) * 1989-09-22 1995-07-18 Respironics Inc. Breathing gas delivery method and apparatus
US6257234B1 (en) * 1998-08-21 2001-07-10 Respironics, Inc. Apparatus and method for determining respiratory mechanics of a patient and for controlling a ventilator based thereon
EP1270036A2 (en) * 1994-12-02 2003-01-02 Respironics Inc. Breathing gas delivery method and apparatus
WO2005105189A1 (en) * 2004-04-28 2005-11-10 Newcastle-Upon-Tyne Hospitals Nhs Trust Leak measurement around an uncuffed endo-tracheal tube
US7000612B2 (en) * 2000-10-06 2006-02-21 Ric Investments, Llc. Medical ventilator triggering and cycling method and mechanism
US20060249150A1 (en) * 2003-03-24 2006-11-09 Florian Dietz Method and device for detecting leaks in respiratory gas supply systems

Family Cites Families (479)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941124A (en) * 1969-01-21 1976-03-02 Rodewald Newell C Recirculating breathing apparatus and method
US3805780A (en) * 1972-06-09 1974-04-23 Bendix Corp Mine rescue breathing apparatus
FR2297642A1 (en) 1975-01-17 1976-08-13 France Etat SELF-CONTAINED DIVING RESPIRATORY
US4305388A (en) 1979-10-30 1981-12-15 Respiratory Care, Inc. Automatic inhalation temperature control
US4340044A (en) 1980-03-20 1982-07-20 Berkshire Research Partners Volume ventilator
US4448192A (en) 1982-03-05 1984-05-15 Hewlett Packard Company Medical ventilator device parametrically controlled for patient ventilation
US5150291A (en) 1986-03-31 1992-09-22 Puritan-Bennett Corporation Respiratory ventilation apparatus
FR2597202A1 (en) 1986-04-15 1987-10-16 Mms Sa METHOD AND DEVICE FOR SIGNALING INCIDENTS IN THE OPERATION OF A RESPIRATOR
US4752089A (en) 1987-01-29 1988-06-21 Puritan-Bennett Corporation Connector means providing fluid-tight but relatively rotatable joint
GB2208203B (en) 1987-07-03 1991-11-13 Carmellan Research Limited Diving systems
US4921642A (en) 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
US4986268A (en) * 1988-04-06 1991-01-22 Tehrani Fleur T Method and apparatus for controlling an artificial respirator
US4972842A (en) 1988-06-09 1990-11-27 Vital Signals, Inc. Method and apparatus for precision monitoring of infants on assisted ventilation
EP0352938B1 (en) 1988-07-26 1993-10-06 RACAL HEALTH & SAFETY LIMITED Breathing apparatus
US5072737A (en) 1989-04-12 1991-12-17 Puritan-Bennett Corporation Method and apparatus for metabolic monitoring
US5325861A (en) 1989-04-12 1994-07-05 Puritan-Bennett Corporation Method and apparatus for measuring a parameter of a gas in isolation from gas pressure fluctuations
US5094235A (en) * 1989-05-10 1992-03-10 Dragerwerk Aktiengesellschaft Anesthesia ventilating apparatus having a breathing circuit and control loops for anesthetic gas components
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US4954799A (en) 1989-06-02 1990-09-04 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
US5299568A (en) 1989-06-22 1994-04-05 Puritan-Bennett Corporation Method for controlling mixing and delivery of respiratory gas
DE3930362A1 (en) 1989-09-12 1991-03-21 Draegerwerk Ag CIRCUIT BREATH PROTECTOR
US5239995A (en) 1989-09-22 1993-08-31 Respironics, Inc. Sleep apnea treatment apparatus
US5161525A (en) 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
US5390666A (en) 1990-05-11 1995-02-21 Puritan-Bennett Corporation System and method for flow triggering of breath supported ventilation
US5237987A (en) 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
US5407174A (en) 1990-08-31 1995-04-18 Puritan-Bennett Corporation Proportional electropneumatic solenoid-controlled valve
US5057822A (en) 1990-09-07 1991-10-15 Puritan-Bennett Corporation Medical gas alarm system
JP2688453B2 (en) 1990-09-19 1997-12-10 ザ ユニバーシティ オブ メルボルン CO2 monitoring in arterial blood and closed loop control device
US5279549A (en) 1991-01-04 1994-01-18 Sherwood Medical Company Closed ventilation and suction catheter system
US5365922A (en) 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
US5542415A (en) 1991-05-07 1996-08-06 Infrasonics, Inc. Apparatus and process for controlling the ventilation of the lungs of a patient
JP2582010B2 (en) 1991-07-05 1997-02-19 芳嗣 山田 Monitoring device for respiratory muscle activity
US6629527B1 (en) 1991-10-17 2003-10-07 Respironics, Inc. Sleep apnea treatment apparatus
US5687715A (en) 1991-10-29 1997-11-18 Airways Ltd Inc Nasal positive airway pressure apparatus and method
US7013892B2 (en) * 1991-11-01 2006-03-21 Ric Investments, Llc Sleep apnea treatment apparatus
EP0612257B1 (en) * 1991-11-14 2000-06-07 University Technologies International Inc. Auto cpap system
US5315989A (en) 1991-12-09 1994-05-31 Boc Health Care, Inc. Medical ventilator
US5271389A (en) 1992-02-12 1993-12-21 Puritan-Bennett Corporation Ventilator control system that generates, measures, compares, and corrects flow rates
US5385142A (en) 1992-04-17 1995-01-31 Infrasonics, Inc. Apnea-responsive ventilator system and method
US5333606A (en) 1992-04-24 1994-08-02 Sherwood Medical Company Method for using a respirator accessory access port and adaptor therefore
US5645048A (en) 1992-05-06 1997-07-08 The Kendall Company Patient ventilating apparatus with modular components
FR2692152B1 (en) 1992-06-15 1997-06-27 Pierre Medical Sa BREATHING AID, PARTICULARLY FOR TREATING SLEEP APNEA.
DE69331951T2 (en) * 1992-08-19 2003-01-09 Lawrence A Lynn DEVICE FOR DISPLAYING APNOE WHILE SLEEPING
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US6342039B1 (en) * 1992-08-19 2002-01-29 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
US7081095B2 (en) 2001-05-17 2006-07-25 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US6609016B1 (en) 1997-07-14 2003-08-19 Lawrence A. Lynn Medical microprocessor system and method for providing a ventilation indexed oximetry value
US20050062609A9 (en) 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6223064B1 (en) * 1992-08-19 2001-04-24 Lawrence A. Lynn Microprocessor system for the simplified diagnosis of sleep apnea
FR2695830B1 (en) 1992-09-18 1994-12-30 Pierre Medical Sa Breathing aid device.
US5339807A (en) 1992-09-22 1994-08-23 Puritan-Bennett Corporation Exhalation valve stabilizing apparatus
US5388575A (en) * 1992-09-25 1995-02-14 Taube; John C. Adaptive controller for automatic ventilators
US5357946A (en) 1992-10-19 1994-10-25 Sherwood Medical Company Ventilator manifold with accessory access port and adaptors therefore
US5517983A (en) 1992-12-09 1996-05-21 Puritan Bennett Corporation Compliance meter for respiratory therapy
US5368019A (en) 1992-12-16 1994-11-29 Puritan-Bennett Corporation System and method for operating a respirator compressor system under low voltage conditions
US5438980A (en) 1993-01-12 1995-08-08 Puritan-Bennett Corporation Inhalation/exhalation respiratory phase detection circuit
US5443075A (en) 1993-03-01 1995-08-22 Puritan-Bennett Corporation Flow measuring apparatus
US5813399A (en) 1993-03-16 1998-09-29 Puritan Bennett Corporation System and method for closed loop airway pressure control during the inspiratory cycle of a breath in a patient ventilator using the exhalation valve as a microcomputer-controlled relief valve
US5623923A (en) * 1993-06-09 1997-04-29 Intertechnique Respiratory equipment with comfort adjustment
FR2706311B1 (en) * 1993-06-09 1995-09-22 Intertechnique Sa Respiratory protection equipment.
US5685296A (en) * 1993-07-30 1997-11-11 Respironics Inc. Flow regulating valve and method
US5351522A (en) 1993-11-02 1994-10-04 Aequitron Medical, Inc. Gas sensor
US5429123A (en) 1993-12-15 1995-07-04 Temple University - Of The Commonwealth System Of Higher Education Process control and apparatus for ventilation procedures with helium and oxygen mixtures
US5401135A (en) 1994-01-14 1995-03-28 Crow River Industries Foldable platform wheelchair lift with safety barrier
US5555880A (en) 1994-01-31 1996-09-17 Southwest Research Institute High frequency oscillatory ventilator and respiratory measurement system
US6932084B2 (en) 1994-06-03 2005-08-23 Ric Investments, Inc. Method and apparatus for providing positive airway pressure to a patient
US5535738A (en) 1994-06-03 1996-07-16 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing
US6105575A (en) 1994-06-03 2000-08-22 Respironics, Inc. Method and apparatus for providing positive airway pressure to a patient
US5794615A (en) 1994-06-03 1998-08-18 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat congestive heart failure
US5524615A (en) 1994-09-08 1996-06-11 Puritan-Bennett Corporation Ventilator airway fluid collection system
US5596984A (en) 1994-09-12 1997-01-28 Puritan-Bennett Corporation Lung ventilator safety circuit
US5531221A (en) 1994-09-12 1996-07-02 Puritan Bennett Corporation Double and single acting piston ventilators
FR2724322A1 (en) 1994-09-12 1996-03-15 Pierre Medical Sa PRESSURE CONTROLLED BREATHING AID
US5632270A (en) 1994-09-12 1997-05-27 Puritan-Bennett Corporation Method and apparatus for control of lung ventilator exhalation circuit
US6866040B1 (en) 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
US5794986A (en) 1994-09-15 1998-08-18 Infrasonics, Inc. Semi-disposable ventilator breathing circuit tubing with releasable coupling
US5520071A (en) 1994-09-30 1996-05-28 Crow River Industries, Incorporated Steering wheel control attachment apparatus
US5503146A (en) * 1994-10-26 1996-04-02 Devilbiss Health Care, Inc. Standby control for CPAP apparatus
US5540220A (en) 1994-12-08 1996-07-30 Bear Medical Systems, Inc. Pressure-limited, time-cycled pulmonary ventilation with volume-cycle override
US5551419A (en) 1994-12-15 1996-09-03 Devilbiss Health Care, Inc. Control for CPAP apparatus
US5672041A (en) 1994-12-22 1997-09-30 Crow River Industries, Inc. Collapsible, powered platform for lifting wheelchair
WO1996024402A1 (en) 1995-02-08 1996-08-15 Puritan-Bennett Corporation Gas mixing apparatus for a ventilator
DE69622017T2 (en) 1995-02-09 2002-12-05 Puritan Bennett Corp VENTILATOR OF THE PISTON DESIGN
US5598838A (en) 1995-04-07 1997-02-04 Healthdyne Technologies, Inc. Pressure support ventilatory assist system
WO1996040337A1 (en) 1995-06-07 1996-12-19 Nellcor Puritan Bennett Incorporated Pressure control for constant minute volume
SE9502543D0 (en) 1995-07-10 1995-07-10 Lachmann Burkhardt Artificial ventilation system
US5544674A (en) 1995-07-14 1996-08-13 Infrasonics, Inc. Gas mixing apparatus for respirator
US5513631A (en) 1995-07-21 1996-05-07 Infrasonics, Inc. Triggering of patient ventilator responsive to a precursor signal
RU2072241C1 (en) * 1995-09-20 1997-01-27 Панина Елена Владимировна Method and device for preparing inhalation gas mixture
US6158432A (en) 1995-12-08 2000-12-12 Cardiopulmonary Corporation Ventilator control system and method
US6148814A (en) 1996-02-08 2000-11-21 Ihc Health Services, Inc Method and system for patient monitoring and respiratory assistance control through mechanical ventilation by the use of deterministic protocols
US5762480A (en) 1996-04-16 1998-06-09 Adahan; Carmeli Reciprocating machine
US5692497A (en) 1996-05-16 1997-12-02 Children's Medical Center Corporation Microprocessor-controlled ventilator system and methods
US6725447B1 (en) 1996-05-31 2004-04-20 Nellcor Puritan Bennett Incorporated System and method for graphic creation of a medical logical module in the arden syntax file format
AUPO163896A0 (en) 1996-08-14 1996-09-05 Resmed Limited Determination of respiratory airflow
US5701883A (en) 1996-09-03 1997-12-30 Respironics, Inc. Oxygen mixing in a blower-based ventilator
AUPO247496A0 (en) 1996-09-23 1996-10-17 Resmed Limited Assisted ventilation to match patient respiratory need
US5921920A (en) 1996-12-12 1999-07-13 The Trustees Of The University Of Pennsylvania Intensive care information graphical display
US5884622A (en) * 1996-12-20 1999-03-23 University Of Manitoba Automatic determination of passive elastic and resistive properties of the respiratory system during assisted mechanical ventilation
DK0973443T3 (en) 1997-01-17 2006-07-24 Ino Therapeutics Gmbh Controlled gas supply system
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US20060155207A1 (en) 1997-01-27 2006-07-13 Lynn Lawrence A System and method for detection of incomplete reciprocation
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US5826575A (en) 1997-03-13 1998-10-27 Nellcor Puritan Bennett, Incorporated Exhalation condensate collection system for a patient ventilator
US5791339A (en) 1997-03-13 1998-08-11 Nellcor Puritan Bennettt Incorprated Spring piloted safety valve with jet venturi bias
US5915379A (en) 1997-03-14 1999-06-29 Nellcor Puritan Bennett Incorporated Graphic user interface for a patient ventilator
US5865168A (en) 1997-03-14 1999-02-02 Nellcor Puritan Bennett Incorporated System and method for transient response and accuracy enhancement for sensors with known transfer characteristics
US5881717A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated System and method for adjustable disconnection sensitivity for disconnection and occlusion detection in a patient ventilator
US5771884A (en) 1997-03-14 1998-06-30 Nellcor Puritan Bennett Incorporated Magnetic exhalation valve with compensation for temperature and patient airway pressure induced changes to the magnetic field
SE513969C2 (en) 1997-05-17 2000-12-04 Draegerwerk Ag Apparatus and method for determining the mechanical properties of the respiratory system
US5979440A (en) 1997-06-16 1999-11-09 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US5829441A (en) 1997-06-24 1998-11-03 Nellcor Puritan Bennett Customizable dental device for snoring and sleep apnea treatment
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US6532958B1 (en) * 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US6371114B1 (en) * 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US6325785B1 (en) 1997-08-14 2001-12-04 Sherwood Services Ag Sputum trap manifold with nested caps
US6135106A (en) 1997-08-22 2000-10-24 Nellcor Puritan-Bennett, Inc. CPAP pressure and flow transducer
CA2303970C (en) * 1997-09-19 2009-09-08 Respironics, Inc. Medical ventilator
US6123073A (en) 1997-10-01 2000-09-26 Nellcor Puritan Bennett Switch overlay in a piston ventilator
US6099481A (en) * 1997-11-03 2000-08-08 Ntc Technology, Inc. Respiratory profile parameter determination method and apparatus
US6076523A (en) 1998-01-15 2000-06-20 Nellcor Puritan Bennett Oxygen blending in a piston ventilator
US5918597A (en) 1998-01-15 1999-07-06 Nellcor Puritan Bennett Peep control in a piston ventilator
US6321748B1 (en) 1998-03-10 2001-11-27 Nellcor Puritan Bennett Closed loop control in a piston ventilator
US6055981A (en) 1998-03-16 2000-05-02 O-Two Systems International, Inc. Automatic transport ventilator with monitoring alarms
US6142150A (en) 1998-03-24 2000-11-07 Nellcor Puritan-Bennett Compliance compensation in volume control ventilator
SE9801175D0 (en) 1998-04-03 1998-04-03 Innotek Ab Method and apparatus for optimizing mechanical ventilation based on simulation of the ventilation process after studying the physiology of the respiratory organs
AUPP366398A0 (en) * 1998-05-22 1998-06-18 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
MXPA00011835A (en) * 1998-06-03 2002-10-17 Scott Lab Inc Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures.
US6047860A (en) 1998-06-12 2000-04-11 Sanders Technology, Inc. Container system for pressurized fluids
SE9802122D0 (en) 1998-06-15 1998-06-15 Siemens Elema Ab Volume determination method
SE9802827D0 (en) * 1998-08-25 1998-08-25 Siemens Elema Ab ventilator
US6564797B1 (en) 1998-09-30 2003-05-20 Respironics, Inc. Interactive pressure support system and method
US6360741B2 (en) * 1998-11-25 2002-03-26 Respironics, Inc. Pressure support system with a low leak alarm and method of using same
AUPP783198A0 (en) 1998-12-21 1999-01-21 Resmed Limited Determination of mask fitting pressure and correct mask fit
US6220245B1 (en) 1999-02-03 2001-04-24 Mallinckrodt Inc. Ventilator compressor system having improved dehumidification apparatus
US6390091B1 (en) 1999-02-03 2002-05-21 University Of Florida Method and apparatus for controlling a medical ventilator
ATE401038T1 (en) * 1999-02-03 2008-08-15 Mermaid Care As AUTOMATIC LUNG PARAMETERS ESTIMATION
CA2362164A1 (en) 1999-02-03 2000-08-10 Paul Bradford Blanch Method and apparatus for nullifying the imposed work of breathing
US6752150B1 (en) 1999-02-04 2004-06-22 John E. Remmers Ventilatory stabilization technology
US7073501B2 (en) 1999-02-04 2006-07-11 Univerity Technologies International Inc. Ventilatory stabilization technology
FR2789592A1 (en) 1999-02-12 2000-08-18 Mallinckrodt Dev France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
FR2789594A1 (en) 1999-05-21 2000-08-18 Nellcor Puritan Bennett France APPARATUS FOR PROVIDING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND ITS CONTROL METHODS
FR2789593B1 (en) 1999-05-21 2008-08-22 Mallinckrodt Dev France APPARATUS FOR SUPPLYING AIR PRESSURE TO A PATIENT WITH SLEEP DISORDERS AND METHODS OF CONTROLLING THE SAME
US6273444B1 (en) 1999-03-31 2001-08-14 Mallinckrodt Inc. Apparatus for coupling wheelchairs to ventilator carts
US6723055B2 (en) * 1999-04-23 2004-04-20 Trustees Of Tufts College System for measuring respiratory function
US6920875B1 (en) 1999-06-15 2005-07-26 Respironics, Inc. Average volume ventilation
US20070000494A1 (en) 1999-06-30 2007-01-04 Banner Michael J Ventilator monitor system and method of using same
US6796305B1 (en) 1999-06-30 2004-09-28 University Of Florida Research Foundation, Inc. Ventilator monitor system and method of using same
US6962155B1 (en) 1999-07-30 2005-11-08 Universite De Montreal Target drive ventilation gain controller and method
US7422584B2 (en) 2002-07-05 2008-09-09 Broncus Technologies, Inc. Extrapleural airway device and method
AU778469B2 (en) 1999-09-15 2004-12-09 Resmed Limited Patient-ventilator synchronization using dual phase sensors
US6910480B1 (en) 1999-09-15 2005-06-28 Resmed Ltd. Patient-ventilator synchronization using dual phase sensors
US6758216B1 (en) 1999-09-15 2004-07-06 Resmed Limited Ventilatory assistance using an external effort sensor
US6644316B2 (en) 1999-10-12 2003-11-11 Mallinckrodt Inc. Variable aperture venting for respiratory mask
US20040089561A1 (en) 1999-11-23 2004-05-13 Herman Craig Steven Method and package for storing a pressurized container containing a drug
SE513696C2 (en) * 1999-12-08 2000-10-23 Microdrug Ag Method and apparatus for transporting and mixing a fine powder with a gas
NO311186B1 (en) 1999-12-13 2001-10-22 Techwood As Valve device for controlled supply of a pressure fluid
US7204250B1 (en) 1999-12-16 2007-04-17 Compumedics Limited Bio-mask
US6761165B2 (en) 2000-02-29 2004-07-13 The Uab Research Foundation Medical ventilator system
US6553992B1 (en) 2000-03-03 2003-04-29 Resmed Ltd. Adjustment of ventilator pressure-time profile to balance comfort and effectiveness
US6644312B2 (en) 2000-03-07 2003-11-11 Resmed Limited Determining suitable ventilator settings for patients with alveolar hypoventilation during sleep
JP3713240B2 (en) * 2000-04-26 2005-11-09 ユニヴァーシティ オブ マニトーバ Device for determining the resistance of the respiratory system during ventilation support
CA2350356C (en) 2000-06-14 2009-09-08 Fisher And Paykel Limited A nasal mask
US6701926B2 (en) * 2000-06-14 2004-03-09 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
US6789541B2 (en) 2000-06-14 2004-09-14 Fisher & Paykel Healthcare Limited Breathing assistance apparatus
DE10031079A1 (en) 2000-06-30 2002-02-07 Map Gmbh Measuring patient breathing and state, correlates present respiration signals with prior reference measurements, to adjust CPAP therapy pressure accordingly
US6532960B1 (en) * 2000-07-10 2003-03-18 Respironics, Inc. Automatic rise time adjustment for bi-level pressure support system
US6439229B1 (en) 2000-08-08 2002-08-27 Newport Medical Instruments, Inc. Pressure support ventilation control system and method
JP2002075040A (en) * 2000-08-31 2002-03-15 Ichikoh Ind Ltd Light source bulb for headlamp
US6557553B1 (en) 2000-09-05 2003-05-06 Mallinckrodt, Inc. Adaptive inverse control of pressure based ventilation
US6752151B2 (en) 2000-09-25 2004-06-22 Respironics, Inc. Method and apparatus for providing variable positive airway pressure
US6644310B1 (en) 2000-09-29 2003-11-11 Mallinckrodt Inc. Apparatus and method for providing a breathing gas employing a bi-level flow generator with an AC synchronous motor
US6546930B1 (en) 2000-09-29 2003-04-15 Mallinckrodt Inc. Bi-level flow generator with manual standard leak adjustment
US6718974B1 (en) 2000-10-06 2004-04-13 Mallinckrodt, Inc. CPAP humidifier having sliding access door
US6622726B1 (en) 2000-10-17 2003-09-23 Newport Medical Instruments, Inc. Breathing apparatus and method
US6357438B1 (en) 2000-10-19 2002-03-19 Mallinckrodt Inc. Implantable sensor for proportional assist ventilation
JP2004511311A (en) 2000-10-19 2004-04-15 マリンクロッド・インコーポレイテッド Ventilator with dual gas supply
US6758824B1 (en) 2000-11-06 2004-07-06 Suros Surgical Systems, Inc. Biopsy apparatus
US6512938B2 (en) * 2000-12-12 2003-01-28 Nelson R. Claure System and method for closed loop controlled inspired oxygen concentration
US6811538B2 (en) 2000-12-29 2004-11-02 Ares Medical, Inc. Sleep apnea risk evaluation
JP4336496B2 (en) 2000-12-29 2009-09-30 レスメド・リミテッド Characterizing the mask system
WO2002056818A2 (en) 2001-01-16 2002-07-25 Universite De Montreal Myoelectrically activated respiratory leak sealing
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
IL142228A (en) * 2001-03-23 2006-12-31 Hospitec Inc Method and system for intubation
US20070093721A1 (en) * 2001-05-17 2007-04-26 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
SE0102400D0 (en) * 2001-07-04 2001-07-04 Siemens Elema Ab Fluid flow regulation system
CN1313172C (en) 2001-07-19 2007-05-02 雷斯姆德公司 Method and equipment for pressure support ventilation of patients
WO2003011358A2 (en) 2001-07-31 2003-02-13 Scott Laboratories, Inc. Apparatuses and methods for titrating drug delivery
US7107991B2 (en) 2001-09-28 2006-09-19 The United States Of America As Represented By The Department Of Health & Human Services Endotracheal tube using leak hole to lower dead space
US7168429B2 (en) * 2001-10-12 2007-01-30 Ric Investments, Llc Auto-titration pressure support system and method of using same
US7938114B2 (en) * 2001-10-12 2011-05-10 Ric Investments Llc Auto-titration bi-level pressure support system and method of using same
FR2832770B1 (en) 2001-11-27 2004-01-02 Mallinckrodt Dev France CENTRIFUGAL TURBINE FOR BREATHING ASSISTANCE DEVICES
DE10164313A1 (en) 2001-12-28 2003-07-10 Muefa Ag breathing device
US7855716B2 (en) 2002-03-27 2010-12-21 Nellcor Puritan Bennett Llc Infrared touchframe system
DE10217762C1 (en) 2002-04-20 2003-04-10 Draeger Medical Ag Respiration gas supply control method for artificial respirator compares actual respiration path pressure with intial respiration path pressure for regulation of respiration gas supply parameter
US20080200775A1 (en) 2007-02-20 2008-08-21 Lynn Lawrence A Maneuver-based plethysmographic pulse variation detection system and method
EP1513574A1 (en) 2002-05-28 2005-03-16 Scoresnow Inc. Breathing device
US6909912B2 (en) * 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
CA2489808C (en) 2002-06-20 2016-04-19 Richard Melker Perfusion monitor and system, including specifically configured oximeter probes and covers for oximeter probes
US6723132B2 (en) * 2002-06-26 2004-04-20 Karim Salehpoor Artificial lung device
US20060249148A1 (en) 2002-06-27 2006-11-09 Magdy Younes Method and device for monitoring and improving patient-ventilator interaction
US7092757B2 (en) 2002-07-12 2006-08-15 Cardiac Pacemakers, Inc. Minute ventilation sensor with dynamically adjusted excitation current
US8672858B2 (en) 2002-08-30 2014-03-18 University Of Florida Research Foundation, Inc. Method and apparatus for predicting work of breathing
CA2492528C (en) 2002-08-30 2014-03-18 University Of Florida Method and apparatus for predicting work of breathing
JP3691473B2 (en) 2002-09-17 2005-09-07 安西メディカル株式会社 Respiratory control device
US6868346B2 (en) * 2002-11-27 2005-03-15 Cardiac Pacemakers, Inc. Minute ventilation sensor with automatic high pass filter adjustment
US7886740B2 (en) * 2003-01-28 2011-02-15 Beth Israel Deaconess Medical Center, Inc. Gas systems and methods for enabling respiratory stability
CN1767785B (en) 2003-01-30 2015-08-26 康普麦迪克斯有限公司 For the algorithm of automatic positive air pressure titration
CA2520326C (en) * 2003-03-24 2013-01-22 Societe D'applications Industrielles Medicales Et Electroniques (Saime) Breathing assistance apparatus
US6910481B2 (en) 2003-03-28 2005-06-28 Ric Investments, Inc. Pressure support compliance monitoring system
ATE439801T1 (en) 2003-04-08 2009-09-15 Pp Technologies Ag DEVICE FOR MEASURING PRESSURE RESULTING FROM LEAKAGE CURRENT
CN1777454A (en) 2003-04-22 2006-05-24 医疗物理有限公司 MRI/NMR-compatible,tidal volume control and measurement systems,methods,and devices for respiratory and hyperpolarized gas delivery
US8105310B2 (en) 2003-05-21 2012-01-31 Klein Jeffrey A Infiltration cannula
US7717112B2 (en) 2003-06-04 2010-05-18 Jianguo Sun Positive airway pressure therapy management module
US8020555B2 (en) 2003-06-18 2011-09-20 New York University System and method for improved treatment of sleeping disorders using therapeutic positive airway pressure
US7152598B2 (en) 2003-06-23 2006-12-26 Invacare Corporation System and method for providing a breathing gas
JP2007518451A (en) * 2003-07-28 2007-07-12 サルター ラブス Inhalation therapy system including a nasal cannula assembly
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
FR2858606B1 (en) * 2003-08-04 2006-01-20 Air Liquide AUTONOMOUS OXYGEN GENERATOR
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
EP1680155B2 (en) 2003-10-28 2015-11-04 Baxter International Inc. Dialysis machine with improved integrity test
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US20050124866A1 (en) * 2003-11-12 2005-06-09 Joseph Elaz Healthcare processing device and display system
US7802571B2 (en) 2003-11-21 2010-09-28 Tehrani Fleur T Method and apparatus for controlling a ventilator
US8011365B2 (en) 2003-12-29 2011-09-06 Resmed Limited Mechanical ventilation in the presence of sleep disordered breathing
US7353824B1 (en) * 2004-08-30 2008-04-08 Forsyth David E Self contained breathing apparatus control system for atmospheric use
FR2875138B1 (en) 2004-09-15 2008-07-11 Mallinckrodt Dev France Sa CONTROL METHOD FOR A HEATING HUMIDIFIER
US7487773B2 (en) 2004-09-24 2009-02-10 Nellcor Puritan Bennett Llc Gas flow control method in a blower based ventilation system
JP5074191B2 (en) * 2004-10-06 2012-11-14 レスメド・リミテッド Non-invasive monitoring method and apparatus for respiratory parameters of sleep disordered breathing
US8211128B1 (en) 2004-10-15 2012-07-03 Facundus Edward C Multifunction gastric bypass apparatus and method
US7984712B2 (en) * 2004-10-25 2011-07-26 Bird Products Corporation Patient circuit disconnect system for a ventilator and method of detecting patient circuit disconnect
US20070068530A1 (en) * 2004-11-19 2007-03-29 Pacey John A Secretion clearing ventilation catheter and airway management system
US7428902B2 (en) 2004-12-15 2008-09-30 Newport Medical Instruments, Inc. Humidifier system for artificial respiration
US7406870B2 (en) 2005-01-06 2008-08-05 Ricoh Company, Ltd. Semiconductor sensor
US20060174883A1 (en) 2005-02-09 2006-08-10 Acoba, Llc Method and system of leak detection in application of positive airway pressure
US20060264762A1 (en) 2005-03-28 2006-11-23 Ric Investments, Llc. PC-based physiologic monitor and system for resolving apnea episodes during sedation
US20060241708A1 (en) 2005-04-22 2006-10-26 Willem Boute Multiple sensors for sleep apnea with probability indication for sleep diagnosis and means for automatic activation of alert or therapy
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
CN101171049B (en) * 2005-05-02 2011-04-20 Saime公司 Breathing assistance device comprising a gas regulating valve and breathing assistance method
CN101171050B (en) 2005-05-02 2013-03-27 瑞思迈巴黎公司 Breathing assistance device comprising a gas regulating valve and associated breathing assistance method
ITRM20050217A1 (en) 2005-05-06 2006-11-07 Ginevri S R L PROCEDURE FOR NASAL VENTILATION AND ITS APPARATUS, IN PARTICULAR FOR NEONATAL FLOW-SYNCHRONIZED ASSISTED VENTILATION.
US20060278218A1 (en) 2005-05-20 2006-12-14 Hoffman Andrew M Non-invasive restrained whole body plethysmography for measurement of airway function in conscious mice
US20100024819A1 (en) * 2005-06-21 2010-02-04 Breas Medical Ab Apparatus, method, system and computer program for leakage compensation for a ventilator
WO2007008825A2 (en) 2005-07-11 2007-01-18 Emory University System and method for optimized delivery of an aerosol to the respiratory tract
FR2888822B1 (en) 2005-07-21 2010-04-02 Valois Sas FLUID PRODUCT DELIVERY VALVE
MX2008002397A (en) 2005-08-24 2008-09-23 Hospitech Respiration Ltd Adjustment of endotracheal tube cuff filling.
JP3787636B1 (en) 2005-08-26 2006-06-21 国立大学法人 岡山大学 Nostril plug for improving articulation disorder
WO2007038170A1 (en) * 2005-09-23 2007-04-05 Daniels William B Passive ventilation control system
US20070077200A1 (en) * 2005-09-30 2007-04-05 Baker Clark R Method and system for controlled maintenance of hypoxia for therapeutic or diagnostic purposes
US7455583B2 (en) 2005-10-04 2008-11-25 Panasonic Corporation Ventilator including a control unit and human sensor
US7886739B2 (en) * 2005-10-11 2011-02-15 Carefusion 207, Inc. System and method for circuit compliance compensated volume control in a patient respiratory ventilator
US8602987B2 (en) 2005-10-18 2013-12-10 Pneumoflex Systems, Llc Techniques for evaluating stress urinary incontinence (SUI) using involuntary reflex cough test
US7918223B2 (en) 2005-11-09 2011-04-05 Carefusion 207, Inc. System and method for circuit compliance compensated pressure-regulated volume control in a patient respiratory ventilator
US20070227537A1 (en) 2005-12-02 2007-10-04 Nellcor Puritan Bennett Incorporated Systems and Methods for Facilitating Management of Respiratory Care
EP1956970A4 (en) 2005-12-09 2010-01-13 Pneumoflex Systems Llc Involuntary contraction induced pressure as a medical diagnostic tool
WO2007068132A1 (en) * 2005-12-16 2007-06-21 Hamilton Medical Ag Tube system for ventilation appliances
US7654802B2 (en) 2005-12-22 2010-02-02 Newport Medical Instruments, Inc. Reciprocating drive apparatus and method
DE102005061439B3 (en) * 2005-12-22 2007-05-16 Draeger Medical Ag Determination of leakage in respiration apparatus uses pressure sensor to measure initial inspiration pressure, pressure being altered during subsequent inspirations and leakage volume calculated
CN100998902B (en) 2006-01-13 2010-12-08 深圳迈瑞生物医疗电子股份有限公司 Method and device for mornitering and controlling flow
US7641612B1 (en) 2006-01-17 2010-01-05 Mccall Kenneth Shawn Blood loss detection for hemodialysis system
US7694677B2 (en) 2006-01-26 2010-04-13 Nellcor Puritan Bennett Llc Noise suppression for an assisted breathing device
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US7509957B2 (en) * 2006-02-21 2009-03-31 Viasys Manufacturing, Inc. Hardware configuration for pressure driver
US7861716B2 (en) 2006-03-15 2011-01-04 Carefusion 207, Inc. Closed loop control system for a high frequency oscillation ventilator
US7810497B2 (en) 2006-03-20 2010-10-12 Ric Investments, Llc Ventilatory control system
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US8181643B2 (en) 2006-04-28 2012-05-22 Friedberg Joseph S System and method for detection and repair of pulmonary air leaks
US20070272241A1 (en) 2006-05-12 2007-11-29 Sanborn Warren G System and Method for Scheduling Pause Maneuvers Used for Estimating Elastance and/or Resistance During Breathing
PT103481B (en) 2006-05-16 2008-08-01 Hovione Farmaciencia S A INHALER OF SIMPLE USE AND INHALATION METHOD
US20070283958A1 (en) 2006-05-23 2007-12-13 Ray Naghavi Positive airway pressure device
EP2026723B1 (en) 2006-05-23 2018-11-21 Theravent, Inc. Nasal respiratory devices
US7369757B2 (en) 2006-05-24 2008-05-06 Nellcor Puritan Bennett Incorporated Systems and methods for regulating power in a medical device
US7918222B2 (en) 2006-05-30 2011-04-05 Industrial Technology Research Institute Method and apparatus for treating obstructive sleep apnea by using negative oral pressure to a patient
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US7460959B2 (en) 2006-06-02 2008-12-02 Nellcor Puritan Bennett Llc System and method for estimating oxygen concentration in a mixed gas experiencing pressure fluctuations
WO2007140512A1 (en) 2006-06-05 2007-12-13 Resmed Ltd Systems and/or methods for calibration-less devices or less expensive calibration devices for treating sleep-disordered breathing
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
DE102006030520B3 (en) * 2006-07-01 2007-06-21 Dräger Medical AG & Co. KG Respiratory gas supplying device for patient, has control device that is provided for controlling inspiration pressure based on pulmonary inner pressure and pulmonary target pressure
US7527056B2 (en) 2006-08-16 2009-05-05 Rescure Air Systems, Inc. Breathable air safety system and method having an air storage sub-system
US8733355B2 (en) 2006-08-16 2014-05-27 Rescue Air Systems, Inc. Breathable air safety system and method
US7673629B2 (en) * 2006-08-16 2010-03-09 Rescue Air Systems, Inc Safety system and method of a tunnel structure
US7694678B2 (en) 2006-08-16 2010-04-13 Rescue Air Systems, Inc. Breathable air safety system and method having a fill station
US7621269B2 (en) 2006-08-16 2009-11-24 Rescue Air Systems, Inc. Breathable air safety system and method having at least one fill site
US7677247B2 (en) * 2006-08-16 2010-03-16 Rescue Air Systems, Inc Safety system and method of an underground mine
CN102727976B (en) 2006-08-30 2017-03-01 瑞思迈有限公司 Determine the leakage during CPAP therapy
US8322339B2 (en) 2006-09-01 2012-12-04 Nellcor Puritan Bennett Llc Method and system of detecting faults in a breathing assistance device
US20080066752A1 (en) * 2006-09-20 2008-03-20 Nellcor Puritan Bennett Inc. Method and system for circulatory delay compensation in closed-loop control of a medical device
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8902568B2 (en) 2006-09-27 2014-12-02 Covidien Lp Power supply interface system for a breathing assistance system
US20080072902A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Preset breath delivery therapies for a breathing assistance system
US20080072896A1 (en) 2006-09-27 2008-03-27 Nellcor Puritan Bennett Incorporated Multi-Level User Interface for a Breathing Assistance System
US8210174B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Systems and methods for providing noise leveling in a breathing assistance system
FR2906450B3 (en) * 2006-09-29 2009-04-24 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR DETECTING RESPIRATORY EVENTS
US7891354B2 (en) 2006-09-29 2011-02-22 Nellcor Puritan Bennett Llc Systems and methods for providing active noise control in a breathing assistance system
US8160668B2 (en) * 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
FR2906474B3 (en) 2006-09-29 2009-01-09 Nellcor Puritan Bennett Incorp SYSTEM AND METHOD FOR CONTROLLING RESPIRATORY THERAPY BASED ON RESPIRATORY EVENTS
US8210173B2 (en) 2006-09-29 2012-07-03 Nellcor Puritan Bennett Llc Breathing assistance system having integrated electrical conductors communicating data
US20080078390A1 (en) 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Providing predetermined groups of trending parameters for display in a breathing assistance system
US7984714B2 (en) 2006-09-29 2011-07-26 Nellcor Puritan Bennett Llc Managing obstructive sleep apnea and/or snoring using local time released agents
US20100081958A1 (en) * 2006-10-02 2010-04-01 She Christy L Pulse-based feature extraction for neural recordings
US20080168988A1 (en) 2007-01-12 2008-07-17 Hsueh-Yu Lu Medication-saving device for inhalation therapy
US8020558B2 (en) 2007-01-26 2011-09-20 Cs Medical, Inc. System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
US20080200819A1 (en) 2007-02-20 2008-08-21 Lynn Lawrence A Orthostasis detection system and method
DE602007003800D1 (en) 2007-02-23 2010-01-28 Gen Electric Anesthesia ventilation system and leak detection method for the anesthesia ventilation system
US20080221469A1 (en) 2007-03-08 2008-09-11 George John Shevchuk Fitting and fluid-conveying device connected thereto
AU2008240290A1 (en) 2007-04-13 2008-10-23 Invacare Corporation Apparatus and method for providing positive airway pressure
US7920067B2 (en) 2007-04-16 2011-04-05 American Air Liquide, Inc. Wireless medical gases management system
US20080295837A1 (en) 2007-05-29 2008-12-04 Mccormick Timothy P Method to limit leak compensation based on a breathing circuit leak alarm
FR2918284B1 (en) 2007-07-02 2009-08-28 Vygon Sa DEVICE FOR INTRODUCING A CATHETER GUIDE WIRE IN A VESSEL
US9782553B2 (en) * 2007-07-13 2017-10-10 Resmed Limited Patient interface and non-invasive positive pressure ventilating method
US8328720B2 (en) * 2007-08-10 2012-12-11 Infotonics Technology Center, Inc. MEMS interstitial prothrombin time test
GB2452776A (en) 2007-09-17 2009-03-18 Internat Patents Inc Method for monitoring an airway device such as an endotrachael tube
US8187184B2 (en) 2007-09-21 2012-05-29 Baxter International, Inc. Access disconnect system with optical and other sensors
US8083677B2 (en) * 2007-09-24 2011-12-27 Baxter International Inc. Access disconnect detection using glucose
US8360977B2 (en) 2007-09-27 2013-01-29 Baxter International Inc. Continuity circuits for detecting access disconnection
US8216159B1 (en) 2007-10-08 2012-07-10 Tools For Surgery, Llc Anastomosis leak testing apparatus and methods
US20090149730A1 (en) 2007-12-06 2009-06-11 Neotech Products, Inc. Temperature probe unit
US20090171176A1 (en) 2007-12-28 2009-07-02 Nellcor Puritan Bennett Llc Snapshot Sensor
US20090171226A1 (en) 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc System and method for evaluating variation in the timing of physiological events
US20090165795A1 (en) 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Method and apparatus for respiratory therapy
CA2713012A1 (en) 2008-01-25 2009-07-30 Salter Labs Respiratory therapy system including a nasal cannula assembly
US20090205663A1 (en) 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Configuring the operation of an alternating pressure ventilation mode
US20090205661A1 (en) 2008-02-20 2009-08-20 Nellcor Puritan Bennett Llc Systems and methods for extended volume range ventilation
US8152116B2 (en) 2008-02-27 2012-04-10 Baxter International Inc. Dialysate bag seal breakage sensor incorporated in dialysate bag management
DE102008011822A1 (en) 2008-02-29 2009-09-10 Fresenius Medical Care Deutschland Gmbh Method for checking and / or monitoring the tightness of several pneumatically or hydraulically actuated actuators and machine, in particular medical treatment machine
US8603009B2 (en) 2008-03-07 2013-12-10 Becton, Dickinson And Company Flashback blood collection needle
US7766879B2 (en) 2008-03-07 2010-08-03 Becton, Dickinson And Company Flashback blood collection needle
FR2928550A1 (en) * 2008-03-14 2009-09-18 Gambro Lundia Ab PROBE FOR FLUID LEAK DETECTION WITH SPECIFIC DISTAL PART
FR2928551A1 (en) 2008-03-14 2009-09-18 Gambro Lundia Ab PROBE FOR LEAK DETECTION OF MULTI-LAYER FLUID
US8640700B2 (en) 2008-03-27 2014-02-04 Covidien Lp Method for selecting target settings in a medical device
EP2363163A1 (en) 2008-03-27 2011-09-07 Nellcor Puritan Bennett LLC Device for controlled delivery of breathing gas to a patient using multiple ventilation parameters
US8425428B2 (en) 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
EP2313138B1 (en) 2008-03-31 2018-09-12 Covidien LP System and method for determining ventilator leakage during stable periods within a breath
EP2259823A1 (en) 2008-03-31 2010-12-15 Nellcor Puritan Bennett LLC Ventilator based on a fluid equivalent of the "digital to analog voltage" concept
EP2106818B1 (en) 2008-03-31 2013-12-25 Nellcor Puritan Bennett Llc System for compensating for pressure drop in a breathing assistance system
EP2259820B1 (en) 2008-03-31 2013-03-13 Nellcor Puritan Bennett LLC Leak-compensated proportional assist ventilation
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US20090241953A1 (en) 2008-03-31 2009-10-01 Nellcor Puritan Bennett Llc Ventilator with piston-cylinder and buffer volume
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US20090250061A1 (en) 2008-04-02 2009-10-08 Marasigan Brian L Resuscitation Face Mask
JP2011523363A (en) 2008-05-01 2011-08-11 スピレーション インコーポレイテッド Direct lung sensor system, method and apparatus
US8366684B2 (en) 2008-05-12 2013-02-05 Becton, Dickinson And Company Intravenous catheter blood control device
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
JP5076065B2 (en) * 2008-06-13 2012-11-21 国立大学法人福井大学 Optic nerve activity measurement support device
US20090308398A1 (en) 2008-06-16 2009-12-17 Arthur Ferdinand Adjustable resistance nasal devices
US8285392B2 (en) 2008-06-19 2012-10-09 Thermage, Inc. Leakage-resistant tissue treatment apparatus and methods of using such tissue treatment apparatus
US20100011307A1 (en) 2008-07-08 2010-01-14 Nellcor Puritan Bennett Llc User interface for breathing assistance system
US8528554B2 (en) 2008-09-04 2013-09-10 Covidien Lp Inverse sawtooth pressure wave train purging in medical ventilators
US7893560B2 (en) 2008-09-12 2011-02-22 Nellcor Puritan Bennett Llc Low power isolation design for a multiple sourced power bus
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US20100071695A1 (en) 2008-09-23 2010-03-25 Ron Thiessen Patient wye with flow transducer
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US8342177B2 (en) 2008-09-24 2013-01-01 Covidien Lp Spill resistant humidifier for use in a breathing assistance system
US20100071696A1 (en) * 2008-09-25 2010-03-25 Nellcor Puritan Bennett Llc Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
EP2349420B1 (en) 2008-09-25 2016-08-31 Covidien LP Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
EP2168623B1 (en) * 2008-09-26 2011-09-21 General Electric Company Arrangement for detecting a leak in anesthesia system
US8585412B2 (en) 2008-09-30 2013-11-19 Covidien Lp Configurable respiratory muscle pressure generator
WO2010039884A1 (en) 2008-09-30 2010-04-08 Nellcor Puritan Bennett Llc Pneumatic tilt sensor for use with respiratory flow sensing device
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8439032B2 (en) 2008-09-30 2013-05-14 Covidien Lp Wireless communications for a breathing assistance system
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US20100116276A1 (en) 2008-11-07 2010-05-13 Mohamed Ghiath Bayasi Ventilation mask
US8303276B2 (en) 2008-12-10 2012-11-06 Covidien Lp Pump and exhalation valve control for respirator apparatus
US8240684B2 (en) 2008-12-12 2012-08-14 Nellcor Puritan Bennett Llc Medical ventilator cart
USD632797S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
USD632796S1 (en) 2008-12-12 2011-02-15 Nellcor Puritan Bennett Llc Medical cart
US20100186741A1 (en) 2009-01-29 2010-07-29 Aylsworth Alonzo C Method and System for Detecting Mouth Leak During Application of Positive Airway Pressure
NZ594185A (en) 2009-02-11 2013-12-20 Resmed Ltd Acoustic detection for respiratory treatment apparatus
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US20100218766A1 (en) 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Customizable mandatory/spontaneous closed loop mode selection
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8360989B2 (en) 2009-03-13 2013-01-29 Laborie Medical Technologies Canada Ulc Valsalva lung pressure monitoring system and method
US8418691B2 (en) * 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US20100242961A1 (en) 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc Systems and methods for preventing water damage in a breathing assistance system
US20100288283A1 (en) 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Dynamic adjustment of tube compensation factor based on internal changes in breathing tube
US20100300446A1 (en) 2009-05-26 2010-12-02 Nellcor Puritan Bennett Llc Systems and methods for protecting components of a breathing assistance system
AU2009346989B2 (en) 2009-05-29 2013-08-15 Gambro Lundia Ab Electrical connector clip for medical sensors
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US20110023880A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Multi-Breath, Low Flow Recruitment Maneuver
US20110023881A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Generating A Pressure Volume Loop Of A Low Flow Recruitment Maneuver
US20110023878A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver
US20110029910A1 (en) 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Providing A Graphical User Interface For Delivering A Low Flow Recruitment Maneuver
US8100881B2 (en) * 2009-08-04 2012-01-24 Cook Medical Technologies Llc Flexible medical device for clot removal from small vessels
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8596270B2 (en) 2009-08-20 2013-12-03 Covidien Lp Systems and methods for controlling a ventilator
US20110290246A1 (en) 2009-10-27 2011-12-01 Oron Zachar Method and apparatus for protection of trachea during ventilation
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US20110126832A1 (en) 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434481B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with dip tube
US20110138311A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Display Of Respiratory Data On A Ventilator Graphical User Interface
US20110132369A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Ventilation System With System Status Display
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
USD649157S1 (en) 2009-12-04 2011-11-22 Nellcor Puritan Bennett Llc Ventilator display screen with a user interface
USD643535S1 (en) 2009-12-04 2011-08-16 Nellcor Puritan Bennett Llc Medical ventilator
USD638852S1 (en) 2009-12-04 2011-05-31 Nellcor Puritan Bennett Llc Ventilator display screen with an alarm icon
US9814851B2 (en) 2009-12-04 2017-11-14 Covidien Lp Alarm indication system
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
US20110138323A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Visual Indication Of Alarms On A Ventilator Graphical User Interface
USD618356S1 (en) 2009-12-04 2010-06-22 Nellcor Puritan Bennett Llc Tank holder
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110146683A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Sensor Model
US20110146681A1 (en) 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US20110209707A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Method And Apparatus For Oxygen Reprocessing Of Expiratory Gases In Mechanical Ventilation
US20110213215A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Spontaneous Breathing Trial Manager
US20110209702A1 (en) 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US8327851B2 (en) 2010-03-15 2012-12-11 Sleepnea Llc Respiratory mask with user interface
US9339626B2 (en) 2010-03-16 2016-05-17 Carefusion 207, Inc. Seal for variable compression interfaces
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
USD645158S1 (en) 2010-04-27 2011-09-13 Nellcor Purtian Bennett LLC System status display
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US20110271960A1 (en) 2010-05-07 2011-11-10 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt Regarding Auto-PEEP Detection During Volume Ventilation Of Triggering Patient
US20120065533A1 (en) 2010-05-28 2012-03-15 Carrillo Jr Oscar Positive Airway Pressure System and Method
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US9364168B2 (en) 2010-07-01 2016-06-14 Pulmonx Corporation Methods and systems for endobronchial diagnosis
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US20120060835A1 (en) 2010-09-13 2012-03-15 General Electric Company Anesthesia system and method
US20120060841A1 (en) 2010-09-15 2012-03-15 Newport Medical Instruments, Inc. Oxygen enrichment device for ventilator
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US20120090611A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Systems And Methods For Controlling An Amount Of Oxygen In Blood Of A Ventilator Patient
US20120096381A1 (en) 2010-10-13 2012-04-19 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt In Response To Proposed Setting Adjustment
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US20120136222A1 (en) 2010-11-30 2012-05-31 Nellcor Puritan Bennett Llc Methods And Systems For Monitoring A Ventilator Patient With A Capnograph
US20120167885A1 (en) 2010-12-29 2012-07-05 Nellcor Puritan Bennett Llc Systems And Methods For Ventilation To Obtain A Predetermined Patient Effort
US20120185792A1 (en) 2011-01-13 2012-07-19 Nellcor Puritan Bennett Llc Pictorial Representation Of Patient Condition Trending
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US20120216809A1 (en) 2011-02-27 2012-08-30 Nellcor Puritan Bennett Llc Ventilator-Initiated Prompt Regarding Detection Of Inadequate Flow During Ventilation
US20120216811A1 (en) 2011-02-28 2012-08-30 Nellcor Puritan Bennett Llc Use of Multiple Spontaneous Breath Types To Promote Patient Ventilator Synchrony
US9038633B2 (en) 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US20120272962A1 (en) 2011-04-29 2012-11-01 Nellcor Puritan Bennett Llc Methods and systems for managing a ventilator patient with a capnometer
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US20120304995A1 (en) 2011-05-31 2012-12-06 Nellcor Puritan Bennett Llc Previous Set Up Mode Parameter Retention
US20130000644A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Systems and methods for providing ventilation based on patient need
US20130006134A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Methods and systems for monitoring volumetric carbon dioxide
US20130006133A1 (en) 2011-06-30 2013-01-03 Nellcor Puritan Bennett Llc Methods and systems for monitoring volumetric carbon dioxide
US20130025596A1 (en) 2011-07-27 2013-01-31 Nellcor Puritan Bennett Llc Methods and systems for model-based transformed proportional assist ventilation
US20130025597A1 (en) 2011-07-29 2013-01-31 Nellcor Puritan Bennett Llc Methods and systems for monitoring a ventilated patient with an oximeter
US20130053717A1 (en) 2011-08-30 2013-02-28 Nellcor Puritan Bennett Llc Automatic ventilator challenge to induce spontaneous breathing efforts
US20130047989A1 (en) 2011-08-31 2013-02-28 Nellcor Puritan Bennett Llc Methods and systems for adjusting tidal volume during ventilation
US20130074844A1 (en) 2011-09-23 2013-03-28 Nellcor Puritan Bennett Llc Use of multiple breath types
US20130081536A1 (en) 2011-09-30 2013-04-04 Newport Medical Instruments, Inc. Pump piston assembly with acoustic dampening device
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US20130167843A1 (en) 2011-12-31 2013-07-04 Nellcor Puritan Bennett Llc Piezoelectric blower piloted valve
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US20130220324A1 (en) 2012-02-29 2013-08-29 Nellcor Puritan Bennett Llc Systems and methods for providing oscillatory pressure control ventilation
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US20140000606A1 (en) 2012-07-02 2014-01-02 Nellcor Puritan Bennett Llc Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107008A (en) 1975-06-16 1978-08-15 Beeston Company Limited Electrolysis method for producing hydrogen and oxygen
US5433193A (en) * 1989-09-22 1995-07-18 Respironics Inc. Breathing gas delivery method and apparatus
EP1270036A2 (en) * 1994-12-02 2003-01-02 Respironics Inc. Breathing gas delivery method and apparatus
US6257234B1 (en) * 1998-08-21 2001-07-10 Respironics, Inc. Apparatus and method for determining respiratory mechanics of a patient and for controlling a ventilator based thereon
US7000612B2 (en) * 2000-10-06 2006-02-21 Ric Investments, Llc. Medical ventilator triggering and cycling method and mechanism
US20060249150A1 (en) * 2003-03-24 2006-11-09 Florian Dietz Method and device for detecting leaks in respiratory gas supply systems
WO2005105189A1 (en) * 2004-04-28 2005-11-10 Newcastle-Upon-Tyne Hospitals Nhs Trust Leak measurement around an uncuffed endo-tracheal tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3549628A1 (en) * 2012-04-13 2019-10-09 ResMed Pty Ltd Apparatus for ventilatory treatment
WO2020215301A1 (en) 2019-04-26 2020-10-29 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) Attenuated african swine fever virus with deleted gene and use of same as vaccine
WO2024069315A1 (en) * 2022-09-26 2024-04-04 Covidien Lp Hybrid single-limb medical ventilation

Also Published As

Publication number Publication date
US8973577B2 (en) 2015-03-10
US8418691B2 (en) 2013-04-16
US20100236555A1 (en) 2010-09-23
US20130186401A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
US8973577B2 (en) Leak-compensated pressure regulated volume control ventilation
US8978650B2 (en) Leak-compensated proportional assist ventilation
US11027080B2 (en) System and method for determining ventilator leakage during stable periods within a breath
US8424521B2 (en) Leak-compensated respiratory mechanics estimation in medical ventilators
EP2259820B1 (en) Leak-compensated proportional assist ventilation
US11235114B2 (en) Methods and systems for leak estimation
US8272379B2 (en) Leak-compensated flow triggering and cycling in medical ventilators
US8746248B2 (en) Determination of patient circuit disconnect in leak-compensated ventilatory support
US10543327B2 (en) Methods and systems for adaptive base flow
CA2736528C (en) Model-predictive online identification of patient respiratory effort dynamics in medical ventilators
EP3525857A1 (en) Methods and systems for drive pressure spontaneous ventilation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10709334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10709334

Country of ref document: EP

Kind code of ref document: A1