WO2010098101A1 - Transistor, transistor manufacturing method, and manufacturing device thereof - Google Patents

Transistor, transistor manufacturing method, and manufacturing device thereof Download PDF

Info

Publication number
WO2010098101A1
WO2010098101A1 PCT/JP2010/001270 JP2010001270W WO2010098101A1 WO 2010098101 A1 WO2010098101 A1 WO 2010098101A1 JP 2010001270 W JP2010001270 W JP 2010001270W WO 2010098101 A1 WO2010098101 A1 WO 2010098101A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transistor
insulating layer
layer
active layer
Prior art date
Application number
PCT/JP2010/001270
Other languages
French (fr)
Japanese (ja)
Inventor
武井応樹
赤松泰彦
小林大士
湯川富之
清田淳也
石橋暁
清水美穂
倉田敬臣
中村久三
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011501508A priority Critical patent/JPWO2010098101A1/en
Publication of WO2010098101A1 publication Critical patent/WO2010098101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Definitions

  • the present invention relates to a transistor having an active layer made of an oxide semiconductor, a method for manufacturing the transistor, and an apparatus for manufacturing the transistor.
  • An active matrix liquid crystal display has a field effect thin film transistor (TFT) as a switching element for each pixel.
  • TFT thin film transistor
  • a polysilicon thin film transistor in which an active layer is made of polysilicon and an amorphous silicon thin film transistor in which an active layer is made of amorphous silicon are known.
  • An amorphous silicon thin film transistor has an advantage that it can be uniformly formed on a substrate having a relatively large area because an active layer can be easily produced as compared with a polysilicon thin film transistor.
  • Patent Document 2 discloses that various metal oxides, silicon oxides, and silicon nitrides can be applied as a constituent material of a gate dielectric in a transistor having a channel made of an oxide semiconductor. .
  • JP 2004-103957 A (paragraph [0010]) JP-T-2007-529119 (paragraphs [0014] to [0016])
  • the electrical conductivity of the active layer made of an oxide semiconductor is affected by the amount of oxygen contained. Therefore, depending on the type of constituent material of the gate insulating film and the film forming method, the oxygen concentration ratio of the active layer varies due to the interface reaction between the active layer and the gate insulating film, and the electrical conductivity of the active layer is reduced. May change. For example, when a silicon nitride film formed by a CVD method is used as the gate insulating film, oxygen in the active layer may be reduced due to residual hydrogen in the film. In this case, the electrical conductivity of the active layer is increased, which causes a problem that the off-current characteristics (current characteristics between the source and drain in the off state of the transistor) are degraded.
  • an object of the present invention is to provide a transistor capable of suppressing variation in electric conductivity of an active layer and ensuring a gate dielectric strength, a method for manufacturing the transistor, and a device for manufacturing the transistor. It is in.
  • a transistor according to one embodiment of the present invention includes a gate electrode, an active layer, a gate insulating film, and a source electrode and a drain electrode.
  • the gate electrode is made of copper or an alloy material containing copper.
  • the active layer is made of an oxide semiconductor.
  • the gate insulating film includes a first insulating layer and a second insulating layer. The first insulating layer is disposed between the gate electrode and the active layer and is made of silicon nitride. The second insulating layer is disposed between the first insulating layer and the active layer and is made of silicon oxide.
  • the source electrode and the drain electrode are electrically connected to the active layer, respectively.
  • a method for manufacturing a transistor according to one embodiment of the present invention includes forming a gate electrode made of copper or an alloy material containing copper on a base material.
  • a first insulating layer made of silicon nitride is formed on the gate electrode by a CVD method.
  • a second insulating layer made of silicon oxide is formed on the first insulating layer by a sputtering method or a CVD method.
  • An active layer made of an oxide semiconductor is formed on the second insulating layer.
  • a source electrode and a drain electrode are formed on the active layer.
  • a transistor manufacturing apparatus is an apparatus for manufacturing a thin film transistor over a base material on which a gate electrode made of copper or an alloy material containing copper is formed, and includes a first CVD chamber. And a first sputtering chamber or a second CVD chamber, a second sputtering chamber, and a transport mechanism.
  • the first CVD chamber forms a first insulating layer made of silicon nitride on the base material.
  • a second insulating layer made of silicon oxide is formed on the substrate.
  • an active layer made of an oxide semiconductor is formed on the base material.
  • the transport mechanism can transport the base material in a vacuum atmosphere between the first CVD chamber, the first sputter chamber or the second CVD chamber, and the second sputter chamber.
  • a transistor according to an embodiment of the present invention includes a gate electrode, an active layer, a gate insulating film, and a source electrode and a drain electrode.
  • the gate electrode is made of copper or an alloy material containing copper.
  • the active layer is made of an oxide semiconductor.
  • the gate insulating film includes a first insulating layer and a second insulating layer. The first insulating layer is disposed between the gate electrode and the active layer and is made of silicon nitride. The second insulating layer is disposed between the first insulating layer and the active layer and is made of silicon oxide.
  • the source electrode and the drain electrode are electrically connected to the active layer, respectively.
  • the gate insulating film has a stacked structure of a first insulating layer and a second insulating layer.
  • the second insulating layer located on the active layer side is made of silicon oxide, and the film formation method may be a sputtering method or a CVD method.
  • the silicon oxide film formed by the sputtering method does not contain hydrogen. Therefore, reduction of oxygen in the active layer by the hydrogen is avoided, and an increase in off-current value between the source and drain is prevented. As a result, it is possible to obtain a transistor having stable electrical characteristics while suppressing variations in the electrical conductivity of the active layer.
  • the silicon oxide film formed by the CVD method has a lower hydrogen content than the silicon nitride film, and the same characteristics as the silicon oxide film formed by the sputtering method have been confirmed.
  • the first insulating layer formed between the gate electrode and the second insulating layer is made of silicon nitride.
  • the first insulating layer functions as a barrier layer that prevents diffusion of copper atoms constituting the gate electrode into the second insulating layer made of silicon oxide. As a result, it is possible to prevent a decrease in the breakdown voltage of the gate insulating film and obtain a highly reliable transistor.
  • the method for forming the first insulating layer is not particularly limited, and a CVD method, a sputtering method, a vapor deposition method, or the like can be employed. Due to the presence of the second insulating layer at the interface with the active layer, the gate insulating film can be formed without adversely affecting the electric conduction characteristics of the active layer even if the film forming method can contain hydrogen in the film. Because it can be done.
  • the first insulating layer can be formed of a silicon nitride CVD film.
  • the CVD method has a higher film formation rate than the sputtering method. Thereby, productivity can be improved as compared with the case where the first insulating layer is formed by sputtering.
  • the silicon nitride film contains hydrogen in the film by using a silane-based gas containing hydrogen as a source gas.
  • the second insulating layer is interposed between the first insulating layer and the active layer, the reduction reaction of the active layer due to the hydrogen contained in the first insulating layer is effectively prevented. .
  • the transistor may further include a glass substrate that supports the gate electrode, and an adhesion layer that closely contacts the substrate and the gate electrode. Thereby, a gate electrode can be supported with high adhesiveness with respect to a base material.
  • the adhesion layer can be an oxide film of an alloy material containing copper. Thereby, the adhesiveness outstanding with respect to the glass-made base materials can be obtained, preventing the oxidation of a gate electrode.
  • the oxide semiconductor constituting the active layer can be made of, for example, an oxide material of In, Ga, or Zn. Thereby, a thin film transistor with high mobility can be obtained.
  • Examples of In, Ga, or Zn oxide-based materials include ZnO, ZnO 2 , GaO, Ga 2 O, Ga 2 O 3 , InO, In 2 O 3 , In—Zn—O-based materials, and Ga—Zn—O. Material, In—Ga—O material, In—Ga—Zn—O material, and the like are included.
  • the oxide semiconductor which comprises an active layer is not limited to said example, For example, other oxide semiconductors, such as CdO, can also be used.
  • a transistor manufacturing method includes forming a gate electrode made of copper or an alloy material containing copper on a base material.
  • a first insulating layer made of silicon nitride is formed on the gate electrode by a CVD method.
  • a second insulating layer made of silicon oxide is formed on the first insulating layer by a sputtering method or a CVD method.
  • An active layer made of an oxide semiconductor is formed on the second insulating layer.
  • a source electrode and a drain electrode are formed on the active layer.
  • the second insulating layer located on the active layer side is formed by a sputtering method or a CVD method.
  • a silicon oxide sputtered film does not contain hydrogen. Therefore, reduction of oxygen in the active layer by the hydrogen is avoided, and an increase in off-current value between the source and drain is prevented. Thereby, it is possible to suppress variation in the electric conductivity of the active layer.
  • the silicon oxide film formed by the CVD method has a lower hydrogen content than the silicon nitride film, and the same characteristics as the silicon oxide film formed by the sputtering method have been confirmed.
  • the first insulating layer is formed of a silicon nitride CVD film, productivity can be improved.
  • the silicon nitride film contains hydrogen in the film by using a silane-based gas containing hydrogen as a source gas.
  • the second insulating layer is interposed between the first insulating layer and the active layer, the reduction reaction of the active layer due to the hydrogen contained in the first insulating layer is effectively prevented.
  • the first insulating layer prevents an interfacial reaction between the gate electrode made of copper or a copper alloy and the second insulating layer made of silicon oxide. Thereby, the reliability of the gate insulating film can be ensured.
  • the method for manufacturing the transistor may further include a step of forming an adhesion layer that closely contacts the base material and the gate electrode before the step of forming the gate electrode. Thereby, the oxidation of the gate electrode can be prevented and excellent adhesion between the gate electrode and the substrate can be obtained.
  • an adhesion layer for example, an oxide film of an alloy material containing copper is used.
  • the first insulating layer, the second insulating layer, and the active layer may be continuously formed in a common vacuum processing apparatus. Thereby, the film quality and productivity can be improved.
  • An apparatus for manufacturing a transistor according to an embodiment of the present invention is an apparatus for manufacturing a thin film transistor on a base material on which a gate electrode made of copper or an alloy material containing copper is formed.
  • the first CVD chamber forms a first insulating layer made of silicon nitride on the base material.
  • a second insulating layer made of silicon oxide is formed on the substrate.
  • an active layer made of an oxide semiconductor is formed on the base material.
  • the transport mechanism can transport the base material in a vacuum atmosphere between the first CVD chamber, the first sputter chamber or the second CVD chamber, and the second sputter chamber.
  • the first insulating layer made of a silicon nitride CVD film and the second insulating layer made of a silicon oxide sputtered film or a CVD film are included without exposing the base material to the atmosphere.
  • a gate insulating film can be formed on a base material.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a transistor according to an embodiment of the present invention.
  • a so-called bottom gate type field effect transistor will be described as an example.
  • the transistor 1 of this embodiment includes a gate electrode 11, an active layer 15, a gate insulating film 14, a source electrode 17S, and a drain electrode 17D.
  • the gate electrode 11 is made of a conductive film formed on the surface of the substrate 10.
  • the base material 10 is a transparent glass substrate.
  • the gate electrode 11 is made of copper (Cu) or an alloy material containing copper, and is formed by, for example, a sputtering method or a CVD method.
  • the thickness of the gate electrode 11 is not specifically limited, For example, it is 300 nm.
  • the gate electrode 11 is formed on the surface of the base material 10 via the adhesion layer 24.
  • the adhesion layer 24 is provided in order to improve the adhesion between the gate electrode 11 and the substrate 10.
  • the adhesion layer 24 can be formed of a metal single layer film such as titanium (Ti) or molybdenum (Mo) or a laminated film thereof. Further, the adhesion layer 24 can be composed of an oxide film of an alloy such as copper and magnesium or chromium. Thereby, the oxidation of the gate electrode 11 can be prevented and the low resistance value can be maintained while ensuring the adhesion between the gate electrode 11 and the glass substrate 10.
  • the active layer 15 functions as a channel layer of the transistor 1.
  • the active layer 14 is made of an oxide semiconductor and is formed by a sputtering method.
  • the active layer 15 is formed of an oxide semiconductor material having an In—Ga—Zn—O-based composition, and the thickness thereof is, for example, 50 nm to 200 nm.
  • the gate insulating film 14 is formed between the gate electrode 11 and the active layer 15.
  • the gate electrode 14 has a stacked structure of a first insulating layer 14A and a second insulating layer 14B.
  • the first insulating layer 14A is located on the gate electrode 11 side
  • the second insulating layer 14B is located on the active layer 15 side.
  • the first insulating layer 14A is composed of a silicon nitride film (SiNx).
  • the first insulating layer 14A can be manufactured by a plasma CVD method.
  • the second insulating layer 14B is formed of a sputtered film of silicon oxide (SiO 2 or SiOx).
  • the second insulating layer 14B has a function of electrically insulating between the gate electrode 11 and the active layer 15 and a function of preventing an interface reaction between the first insulating layer 14A and the active layer 15. .
  • the interfacial reaction includes a reduction reaction of the active layer 15 by hydrogen when the first insulating layer 14A contains hydrogen.
  • the reduction reaction of the active layer 15 causes a decrease in the oxygen content of the film constituting the active layer 15, and this causes the electrical conductivity of the active layer 15 to increase.
  • Lowering the resistance of the active layer can contribute to improvements in responsiveness and on-current characteristics, but can cause an increase in off-current value when the transistor is not in operation, which can contribute to lowering the transistor characteristics.
  • the material composition of the active layer is optimized according to the required transistor characteristics, and is designed and manufactured so as to obtain the required electrical conductivity.
  • the material composition of the active layer changes due to an interfacial reaction with the gate insulating film that is the base layer after film formation, the desired transistor characteristics cannot be obtained, and variations in characteristics tend to occur from element to element.
  • the first insulating layer 14A a material that does not originally require hydrogen as a constituent element is used.
  • silicon nitride is formed by plasma CVD, silane (SiH 4 ) -based gas, ammonia (NH 3 ) -based gas, or the like is used as a source gas. Therefore, the silicon nitride film formed by the plasma CVD method contains a considerable amount of hydrogen generated during the reaction process. Therefore, when an oxide semiconductor layer is formed on the surface of a silicon nitride film formed by plasma CVD, the oxide semiconductor layer is reduced due to the presence of hydrogen, and the oxygen composition of the oxide semiconductor layer is reduced. Decrease. This makes it difficult to ensure the electrical characteristics of the target oxide semiconductor layer.
  • the first insulating layer 14A by a film forming method other than the CVD method such as a sputtering method or a vacuum evaporation method.
  • a film forming method other than the CVD method such as a sputtering method or a vacuum evaporation method.
  • the sputtering method and the like have a lower film formation rate than the CVD method, and thus it takes a lot of time to secure the target film thickness. For this reason, in order to ensure industrial productivity, it is practical to employ the plasma CVD method for forming the insulating layer.
  • the first insulating layer 14A is formed by a plasma CVD method to ensure productivity. Then, in order to avoid an interfacial reaction between the silicon nitride thin film produced by the plasma CVD method and the active layer 15, the silicon oxide film formed by the sputtering method is used as the second insulating layer 14B for the first insulation. It is interposed between the layer 14A and the active layer 15.
  • the sputtered silicon oxide film can be formed by a sputtering process in an inert gas atmosphere with respect to a silicon oxide target or a reactive sputtering process in an oxygen atmosphere with respect to a silicon target.
  • the silicon oxide film manufactured by such a sputtering process can avoid mixing of hydrogen into the film. Therefore, by stacking the sputtered silicon oxide film as the second insulating layer 14B on the first insulating layer 14A, the mutual reaction between the first insulating layer 14A and the active layer 15 is effectively prevented. As a result, desired electrical characteristics of the active layer 15 can be ensured.
  • the first insulating layer 14A formed between the gate electrode 11 and the second insulating layer 14B is made of silicon nitride.
  • the first insulating layer 14B functions as a barrier layer that prevents diffusion of copper atoms constituting the gate electrode 11 into the second insulating layer 14B made of silicon oxide. As a result, it is possible to obtain a highly reliable transistor by improving the responsiveness and preventing the breakdown voltage of the gate insulating film 14 from decreasing.
  • the thickness of the gate insulating film 14 is not particularly limited and is, for example, 200 nm to 400 nm.
  • the film thicknesses of the first and second insulating layers 14A and 14B are appropriately set within the range of the film thickness of the gate insulating film 14 which is the laminated thickness thereof.
  • the first insulating layer 14A is formed by a plasma CVD method
  • the first insulating layer 14 is made thicker than the second insulating layer 14B, thereby increasing the process time of the gate insulating film 14. Can be suppressed.
  • the film thickness of the second insulating layer 14B is not particularly limited as long as the interface reaction between the first insulating layer 14A and the active layer 15 can be suppressed.
  • the source electrode 17S and the drain electrode 17D are formed on the active layer 15 so as to be separated from each other.
  • the source electrode 17S and the drain electrode 17D can be composed of, for example, a metal single layer film such as aluminum, molybdenum, copper, titanium, or a multilayer film of these metals. As will be described later, the source electrode 17S and the drain electrode 17D can be simultaneously formed by patterning a metal film.
  • the thickness of the metal film is, for example, 100 nm to 500 nm.
  • a stopper layer 16 is formed on the active layer 15.
  • the stopper layer 16 is provided to protect the active layer 15 from the etchant during pattern etching of the source electrode 17S and the drain electrode 17D.
  • the stopper layer 16 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof.
  • the stopper layer 16 is formed by a film formation method (for example, sputtering method) in which hydrogen is not mixed into the film in order to avoid an interface reaction with the active layer.
  • the source electrode 17S and the drain electrode 17D are covered with a protective film 19.
  • the protective film 19 is made of an electrically insulating material such as a silicon nitride film.
  • the protective film 19 is for shielding the element part including the active layer 15 from the outside air.
  • the protective film 19 is provided with interlayer connection holes for connecting the source / drain electrodes 17S, 17D to the wiring layer 21 at appropriate positions.
  • the wiring layer 21 is for connecting the transistor 1 to a peripheral circuit (not shown), and is made of a metal film such as aluminum or copper.
  • FIG. 1 is a cross-sectional views of the main part of each step for explaining the manufacturing method of the transistor 1.
  • FIG. 2 to 6 are cross-sectional views of the main part of each step for explaining the manufacturing method of the transistor 1.
  • a gate electrode film 11F is formed on the oxide film 24F.
  • the base material 10 is typically a glass substrate.
  • the oxide film 24F is composed of an oxide film of an alloy such as copper, manganese, and chromium, and is formed by, for example, a sputtering method.
  • the oxide film 24F may be oxidized after the film formation, or may be formed directly by reactive sputtering.
  • the gate electrode film 11F is made of copper or an alloy material containing copper, and is formed by, for example, a sputtering method.
  • the thickness of the adhesion layer 24F is not particularly limited, and is, for example, 50 nm to 300 nm.
  • the thickness of the gate electrode film 11F is not particularly limited, and is, for example, 300 nm.
  • a resist mask 12 for patterning the gate electrode film 11F into a predetermined shape is formed.
  • This step includes a step of forming a photoresist film 12F (FIG. 2B), an exposure step (FIG. 2C), and a development step (FIG. 2D).
  • the photoresist film 12F is formed by applying a liquid photosensitive material on the gate electrode film 11F and then drying it.
  • a dry film resist may be used as the photoresist film 12F.
  • the formed photoresist film 12F is exposed through the mask 13 and then developed. Thereby, a resist mask 12 is formed on the gate electrode film 11F.
  • the gate electrode film 11F and the oxide film 24F are etched using the resist mask 12 as a mask. Thereby, the gate electrode 11 and the adhesion layer 24 are formed on the surface of the substrate 10 (FIG. 2F).
  • the etching method of the gate electrode film 11F is not particularly limited, and may be a wet etching method or a dry etching method. After the etching, the resist mask 12 is removed.
  • the method for removing the resist mask 12 is an ashing process using oxygen gas plasma, but is not limited to this, and may be dissolved and removed using a chemical solution.
  • a gate insulating film 14 is formed on the surface of the base material 10 so as to cover the gate electrode 11.
  • the thickness of the gate insulating film 14 is, for example, 200 nm to 500 nm.
  • the step of forming the gate insulating film 14 includes a step of forming the first insulating layer 14A and a step of forming the second insulating layer 14B.
  • the first insulating layer 14A is made of a silicon nitride film and is formed so as to cover the gate electrode 11 by plasma CVD.
  • a silane-based gas such as monosilane, disilane, or tetraethoxysilane (TEOS)
  • a source gas such as ammonia or nitrogen
  • a reactive gas is used.
  • the second insulating layer 14B is made of a silicon oxide film and is formed so as to cover the first insulating layer 14A by a sputtering method.
  • the second insulating layer 14B is formed by sputtering a target made of silicon oxide in an inert gas atmosphere such as argon under reduced pressure.
  • the film is formed by sputtering a target made of silicon in a mixed gas atmosphere of argon and oxygen under reduced pressure.
  • the thickness of the first insulating layer 14A and the second insulating layer 14B can be set as appropriate.
  • the CVD method has a higher deposition rate and coverage than the sputtering method, so that the first insulating layer 14A is thicker than the second insulating layer 14B to ensure good productivity. Can do.
  • the second insulating layer 14B may have a thickness that can suppress the interface reaction between the first insulating layer 14A and the active layer 15.
  • IGZO film 15F having an In—Ga—Zn—O-based composition and a stopper layer forming film 16F are formed. Are formed in order.
  • the IGZO film 15F and the stopper layer forming film 16F are formed by, for example, a sputtering method.
  • the IGZO film 15F and the stopper layer forming film 16F can be continuously formed.
  • the sputtering target for forming the IGZO film 15F and the sputtering target for forming the stopper layer forming film 16F may be disposed in the same sputtering chamber. By switching the target to be used, the IGZO film 15F and the stopper layer forming film 16F can be formed independently.
  • the IGZO film 15F can be formed by, for example, a reactive sputtering method in which a reaction product with oxygen is deposited on the substrate 10 by sputtering a target in an oxygen gas atmosphere.
  • the discharge type may be any of DC discharge, AC discharge, and RF discharge.
  • the IGZO film 15F may be formed with the substrate 10 heated to a predetermined temperature, or may be formed without heating.
  • the degree of oxidation of the IGZO film 15F is controlled by the oxygen partial pressure in the deposition chamber. That is, as the oxygen partial pressure is higher, the IGZO film 15F having a higher degree of oxidation (higher electrical resistance) is formed.
  • each of the IGZO film 15F and the stopper layer forming film 16F is not particularly limited.
  • the thickness of the IGZO film 15F is 50 nm to 200 nm, and the thickness of the stopper layer forming film 16F is 30 nm to 300 nm.
  • the IGZO film 15F constitutes an active layer (carrier layer) 15 of the transistor.
  • the stopper layer forming film 16F is an etching protection that protects the channel region of the IGZO film from the etchant in the patterning process of the metal film constituting the source electrode and the drain electrode, which will be described later, and the process of etching away the unnecessary area of the IGZO film 15F. Acts as a layer.
  • the stopper layer forming film 16F is made of, for example, a silicon nitride film.
  • a resist mask 23 for patterning the stopper layer forming film 16F into a predetermined shape is formed, and then the stopper layer forming film 16F is interposed through the resist mask 23. Etch. Thereby, the stopper layer 16 facing the gate electrode 11 is formed with the gate insulating film 14 and the IGZO film 15F interposed therebetween.
  • a metal film 17F is formed so as to cover the IGZO film 15F and the stopper layer 16, as shown in FIG.
  • the metal film 17F is typically composed of a metal single layer film or a metal multilayer film such as molybdenum, chromium, aluminum, or copper, and is formed by, for example, a sputtering method.
  • the thickness of the metal film 17F is not particularly limited, and is, for example, 100 nm to 500 nm.
  • the metal film 17F is patterned.
  • the patterning process of the metal film 17F includes a resist mask 18 formation process (FIG. 3A) and a metal film 17F etching process (FIG. 3B).
  • the resist mask 18 has a mask pattern that opens the region immediately above the stopper layer 16 and the peripheral region of each transistor. After the formation of the resist mask 18, the metal film 17F is etched by wet etching. Thus, the metal film 17F is separated into the source electrode 17S and the drain electrode 17D that are electrically connected to the active layer 15, respectively.
  • the stopper layer 16 functions as an etching stopper layer for the metal film 17F. That is, the stopper layer 16 has a function of protecting the IGZO film 15F from an etchant (for example, phosphorous nitric acid) with respect to the metal film 17F.
  • the stopper layer 16 is formed so as to cover a region (hereinafter referred to as “channel region”) located between the source electrode 17S and the drain electrode 17D of the IGZO film 15F. Therefore, the channel region of the IGZO film 15F is not affected by the etching process of the metal film 17F.
  • the IGZO thin film 15F is etched using the resist mask 18 as a mask.
  • the etching method is not particularly limited, and may be a wet etching method or a dry etching method.
  • the IGZO film 15F is isolated in element units and an active layer 15 made of the IGZO film 15F is formed.
  • the stopper layer 16 functions as an etching protective film for the IGZO film 15F located in the channel region. That is, the stopper layer 16 has a function of protecting the channel region immediately below the stopper layer 16 from an etchant (for example, oxalic acid type) for the IGZO film 15F. Thereby, the channel region of the active layer 15 is not affected by the etching process of the IGZO film 15F.
  • an etchant for example, oxalic acid type
  • the resist mask 18 is removed from the source electrode 17S and the drain electrode 17D by ashing or the like (FIG. 4D).
  • a protective film (passivation film) is formed so as to cover the surface of the substrate 10 with the source electrode 17S, the drain electrode 17D, the stopper layer 16, the active layer 15, and the gate insulating film 14. ) 19 is formed.
  • the protective film 19 is for securing predetermined electrical and material characteristics by blocking the transistor element including the active layer 15 from the outside air.
  • the protective film 19 is typically composed of an oxide film or nitride film such as a silicon oxide film (SiO 2 ) or a silicon nitride film (SiNx), and is formed by, for example, a CVD method or a sputtering method.
  • the thickness of the protective film 19 is not particularly limited, and is, for example, 200 nm to 500 nm.
  • contact holes 19a communicating with the source / drain electrodes are formed in the protective film 19.
  • This step includes a step of forming a resist mask 20 on the protective film 19 (FIG. 5B) and a step of etching the protective film 19 exposed from the opening 20a of the resist mask 20 (FIG. 5C). And a step of removing the resist mask 20 (FIG. 5D).
  • the contact hole 19a is formed by a dry etching method, but may be a wet etching method. Although not shown, a contact hole that communicates with the source electrode 17S is also formed at an arbitrary position.
  • a transparent conductive film 21 in contact with the source / drain electrode is formed through the contact hole 19a.
  • This step includes the step of forming the transparent conductive film 21F (FIG. 6A), the step of forming the resist mask 22 on the transparent conductive film 21F (FIG. 6B), and the step of covering with the resist mask 22. It has a step (FIG. 6C) of etching the transparent conductive film 21F that has not been removed and a step of removing the resist mask 20 (FIG. 6D).
  • the transparent conductive film 21F is typically composed of an ITO film or an IZO film, and is formed by, for example, a sputtering method or a CVD method.
  • the etching of the transparent conductive film 21F employs a wet etching method, but is not limited thereto, and a dry etching method may be employed.
  • This annealing step may be performed immediately after the formation of the active layer 15 (for example, before the formation of the stopper layer 16).
  • a constant forward voltage (source-drain voltage: Vds) is applied between the source electrode 17S and the drain electrode 17D.
  • Vgs gate voltage
  • Vth threshold voltage
  • Ids source-drain current
  • the source-drain current at this time is also called an on-state current, and a larger current value is obtained as the mobility of the active layer 15 is higher.
  • the active layer 15 is made of an oxide semiconductor, the mobility is higher than that of an active layer made of amorphous silicon. Therefore, according to the present embodiment, the field effect transistor 1 having a high on-current value can be obtained.
  • the source-drain current at this time is also called an off-state current and is determined by the electric resistance value of the active layer 15 and the source-drain voltage. The smaller the off-current value, the larger the ratio between the on-current value and the off-current value (on-off current ratio), so that better characteristics as a transistor can be obtained.
  • the gate insulating film 14 includes the first insulating layer 14A made of a silicon nitride film formed by a plasma CVD method and the second insulating layer made of a silicon oxide film formed by a sputtering method.
  • 14B has a laminated structure. Since the second insulating layer 14B is interposed between the active layer 15 and the first insulating layer 14A, the reduction reaction of the active layer 15 is prevented by the influence of hydrogen contained in the first insulating layer 14A. . Thereby, fluctuations in the electrical characteristics of the active layer 15 are avoided, and excellent transistor characteristics with a high on-off current ratio can be obtained.
  • FIG. 7 and 8 show the experimental results showing the transistor characteristics of various samples manufactured by changing the structure of the gate insulating film in the transistor structure shown in FIG.
  • the configuration of the active layer and the film formation conditions for each sample were the same. Two conditions were set for the oxygen partial pressure, and each sample was produced under each condition.
  • FIG. 7 shows the experimental results when the oxygen partial pressure is 0.05 Pa
  • FIG. 8 shows the experimental results when the oxygen partial pressure is 0.15 Pa.
  • the active layer was 50 nm thick, and the annealing conditions were 15 minutes at 300 ° C. in air.
  • the configuration of the gate insulating film of each sample is as follows.
  • Sample 1 A laminated film of a silicon nitride film having a thickness of 3500 mm (angstrom) produced by the CVD method and a silicon oxide film having a thickness of 250 mm produced thereon by a sputtering method.
  • Sample 2 produced by the CVD method Laminated film of 3500 mm thick silicon nitride film and 500 mm thick silicon oxide film formed thereon by sputtering method
  • Sample 3 Silicon oxide film (single layer film) 2150 mm thick produced by sputtering method
  • Sample 4 ( ⁇ ): 3500 mm thick silicon nitride film (single layer film) produced by CVD
  • the transistor characteristics schematically show the on-current characteristics on the right side and the off-current characteristics on the left side with respect to the position of the gate voltage (Vgs) 0.
  • samples 1 to 3 have substantially the same on-current value and off-current value, whereas sample 4 has a higher off-current value than the other samples.
  • the interface between the gate insulating film and the active layer is composed of a silicon nitride CVD film. For this reason, an interface reaction occurs between the gate insulating film and the active layer, and it is considered that the electrical resistance value of the active layer has decreased due to a decrease in the oxidation degree of the active layer compared to other samples.
  • FIGS. 9 and 10 are schematic configuration diagrams of a vacuum processing apparatus for carrying out a part of the above-described transistor manufacturing process.
  • the vacuum processing apparatus 200 shown in FIG. 9 is configured as a single wafer type (cluster type) vacuum processing apparatus.
  • the vacuum processing apparatus 200 forms a transfer chamber 210, a loading chamber 211, a heat treatment chamber 212, a CVD chamber 213A for forming the first gate insulating layer 14A, and a second gate insulating layer 14B.
  • the transfer chamber 210 is evacuated to a predetermined reduced-pressure atmosphere, and a transfer robot for transferring the base material between the chambers is installed therein.
  • the second gate insulating layer 14B is formed of a silicon oxide CVD film
  • the sputtering chamber 213B is configured as a CVD chamber.
  • a vacuum processing apparatus 300 shown in FIG. 10 is configured as an in-line type vacuum processing apparatus.
  • the vacuum processing apparatus 300 includes a loading chamber 311, a heat treatment chamber 312, a CVD chamber 313A for forming the first gate insulating layer 14A, and a sputtering chamber 313B for forming the second gate insulating layer 14B.
  • the vacuum processing apparatus 300 includes a transport mechanism (not shown) for vacuum transporting the substrate from the loading chamber 311 to the unload chamber 317 via the various processing chambers 312 to 316.
  • a transport mechanism (not shown) for vacuum transporting the substrate from the loading chamber 311 to the unload chamber 317 via the various processing chambers 312 to 316.
  • the sputtering chamber 313B is configured as a CVD chamber.
  • the gate insulating film 14, the IGZO film 15F, and the stopper layer 16 can be continuously formed without exposing the base material to the atmosphere. Thereby, it is possible to prevent film quality deterioration due to adhesion of moisture and impurities in the atmosphere to the surface of each layer. In addition, since various functional layers can be formed consistently in a vacuum, the process time required for forming each layer can be shortened, and productivity can be improved.
  • the gate insulating film 14 has a stacked structure of a first insulating layer 14A made of a silicon nitride CVD film and a second insulating layer 14B made of a silicon oxide CVD film. Have. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted here.
  • FIG. 11 shows another experimental result showing the transistor characteristics of various samples manufactured by changing the structure of the gate insulating film in the transistor structure shown in FIG.
  • the configuration of the active layer and the film formation conditions of each sample were common, the oxygen partial pressure was 0.05 Pa, the thickness of the active layer was 50 nm, and the annealing conditions were 15 minutes at a temperature of 400 ° C. in air.
  • the configuration of the gate insulating film of each sample is as follows.
  • sample 5 had a smaller off-current value than sample 4. This indicates that even in the same CVD method, the degree of interfacial reaction with the active layer varies depending on the type of film formed. Further, as described with reference to FIG. 7, the sample 5 has an off-current value similar to that of the silicon oxide films (samples 1 to 3) formed by the sputtering method.
  • the silicon oxide film when the silicon oxide film is formed by the CVD method, a silane-based gas is typically used as the reaction gas, as in the case of forming the silicon nitride film by the CVD method. Therefore, it is considered that the formed film contains hydrogen. Even in the same CVD method, the silicon oxide film can obtain higher transistor characteristics than the silicon nitride film because the amount of hydrogen contained in the film and the internal stress / dehydration in the heat treatment (for example, annealing treatment for the active layer 15) The degree of element is expected.
  • FIG. 12 shows an experimental result indicating transistor characteristics when the annealing temperature of the active layer is 400 ° C. and the gate insulating film is Sample 3 ( ⁇ : sputtered film of silicon oxide). Compared with the above-described sample 4 ( ⁇ ⁇ ), a high on-off current ratio can be obtained as in the example shown in FIG. On the other hand, it was confirmed that the characteristics could be further improved by increasing the annealing temperature. When FIG. 11 and FIG. 12 are compared, it was confirmed that a sputtered film can obtain a higher on-off current ratio than a CVD film even under the same annealing conditions, even with the same silicon oxide film.
  • the stopper layer 16 is constituted by a single layer, but it may be a multilayer structure like the gate insulating film.
  • the first layer constituting the interface with the active layer is a silicon oxide sputtered film, so that reduction of the active layer can be avoided and fluctuations in the electrical conductivity characteristics can be prevented.
  • the transistor 1 described above can be used as a TFT for an active matrix display panel such as a liquid crystal display or an organic EL display.
  • the transistor 1 can be used as a transistor element of various semiconductor devices or electronic devices.

Abstract

Provided are a transistor and a manufacturing method thereof with which variations in the electrical conductivity of an active layer can be suppressed and responsiveness can be improved while assuring the gate withstand voltage. The transistor is provided with a gate insulating film (14) having a laminated structure, which comprises a first insulating layer (14A) made of a silicon nitride film and a second insulating layer (14B) made of a silicon oxide film between a gate electrode (11) made of copper and an active layer (15) made of an oxide semiconductor. The second insulating layer (14B) prevents fluctuation in the electrical conductivity of the active layer (15) caused by the interfacial reaction between the first insulating layer (14A) and the active layer (15). The first insulating layer (14A) functions as a barrier layer for preventing dispersion of the copper atoms which constitute the gate electrode (11) into the second insulating layer (14B).

Description

トランジスタ、トランジスタの製造方法及びその製造装置Transistor, transistor manufacturing method and manufacturing apparatus thereof
 本発明は、酸化物半導体からなる活性層を有するトランジスタ、トランジスタの製造方法及びその製造装置に関する。 The present invention relates to a transistor having an active layer made of an oxide semiconductor, a method for manufacturing the transistor, and an apparatus for manufacturing the transistor.
 近年、アクティブマトリクス型の液晶ディスプレイが広く用いられている。アクティブマトリクス型液晶ディスプレイは、画素ごとにスイッチング素子として電界効果型の薄膜トランジスタ(TFT)を有している。 In recent years, active matrix liquid crystal displays have been widely used. An active matrix liquid crystal display has a field effect thin film transistor (TFT) as a switching element for each pixel.
 薄膜トランジスタとしては、活性層がポリシリコンで構成されたポリシリコン型薄膜トランジスタ、活性層がアモルファスシリコンで構成されたアモルファスシリコン型薄膜トランジスタが知られている。 As a thin film transistor, a polysilicon thin film transistor in which an active layer is made of polysilicon and an amorphous silicon thin film transistor in which an active layer is made of amorphous silicon are known.
 アモルファスシリコン型薄膜トランジスタは、ポリシリコン型薄膜トランジスタに比べて、活性層の作製が容易であるため、比較的大面積の基板に均一に成膜できるという利点がある。 An amorphous silicon thin film transistor has an advantage that it can be uniformly formed on a substrate having a relatively large area because an active layer can be easily produced as compared with a polysilicon thin film transistor.
 一方、アモルファスシリコンよりもキャリア(電子、ホール)の高移動度を実現できる活性層材料として、透明アモルファス酸化物薄膜の開発が進められている。例えば、特許文献1には、ホモロガス化合物InMO3(ZnO)m(M=In、Fe、Ga又はAl、m=1以上50未満の整数)を活性層として用いる電界効果型トランジスタが記載されている。また、特許文献2には、酸化物半導体からなるチャネルを有するトランジスタにおいて、ゲート誘電体の構成材料として、各種金属酸化物、シリコン酸化物、シリコン窒化物が適用可能であることが開示されている。 On the other hand, a transparent amorphous oxide thin film is being developed as an active layer material capable of realizing higher carrier (electron, hole) mobility than amorphous silicon. For example, Patent Document 1 describes a field effect transistor using a homologous compound InMO 3 (ZnO) m (M = In, Fe, Ga or Al, m = 1 or more and an integer less than 50) as an active layer. . Patent Document 2 discloses that various metal oxides, silicon oxides, and silicon nitrides can be applied as a constituent material of a gate dielectric in a transistor having a channel made of an oxide semiconductor. .
 また、近年においてはTFTの更なる高速応答性が要求されており、この要求を満たすため、配線材料の低抵抗化が望まれている。例えば、ゲート電極用の配線材料としてアルミニウムが広く用いられているが、アルミニウムよりも比抵抗の小さい銅でゲート電極を構成する例も知られている(特許文献2参照)。 In recent years, further high-speed response of TFT has been demanded. In order to satisfy this demand, it is desired to reduce the resistance of the wiring material. For example, aluminum is widely used as a wiring material for the gate electrode, but an example in which the gate electrode is made of copper having a specific resistance smaller than that of aluminum is also known (see Patent Document 2).
特開2004-103957号公報(段落[0010])JP 2004-103957 A (paragraph [0010]) 特表2007-529119号公報(段落[0014]~[0016])JP-T-2007-529119 (paragraphs [0014] to [0016])
 酸化物半導体からなる活性層の電気伝導性は、含有する酸素の量に影響される。したがって、ゲート絶縁膜の構成材料の種類及びその成膜方法によっては、活性層とゲート絶縁膜の界面反応に起因して、活性層の酸素濃度比に変動をもたらし、活性層の電気伝導性を変化させるおそれがある。例えば、ゲート絶縁膜としてCVD法で形成されたシリコン窒化膜を用いると、膜中の残存水素が原因で活性層中の酸素が還元される場合がある。この場合、活性層の電気伝導性が高まり、オフ電流特性(トランジスタのオフ状態におけるソース-ドレイン間の電流特性)が低下するという問題を発生させる。 The electrical conductivity of the active layer made of an oxide semiconductor is affected by the amount of oxygen contained. Therefore, depending on the type of constituent material of the gate insulating film and the film forming method, the oxygen concentration ratio of the active layer varies due to the interface reaction between the active layer and the gate insulating film, and the electrical conductivity of the active layer is reduced. May change. For example, when a silicon nitride film formed by a CVD method is used as the gate insulating film, oxygen in the active layer may be reduced due to residual hydrogen in the film. In this case, the electrical conductivity of the active layer is increased, which causes a problem that the off-current characteristics (current characteristics between the source and drain in the off state of the transistor) are degraded.
 また、銅は、シリコン酸化物中での拡散係数が比較的高い。したがって、ゲート電極を銅で構成し、かつ、ゲート絶縁膜をシリコン酸化物で構成すると、ゲート絶縁膜の絶縁耐圧が低下し、目的とするトランジスタ特性が得られなくなる。このため、TFTの高速化を図るためにゲート電極を銅で構成すると、ゲート絶縁膜の構成材料の選択性が狭められるという問題が発生する。 Also, copper has a relatively high diffusion coefficient in silicon oxide. Therefore, when the gate electrode is made of copper and the gate insulating film is made of silicon oxide, the withstand voltage of the gate insulating film is lowered and the intended transistor characteristics cannot be obtained. For this reason, when the gate electrode is made of copper in order to increase the speed of the TFT, there arises a problem that the selectivity of the constituent material of the gate insulating film is narrowed.
 以上のような事情に鑑み、本発明の目的は、活性層の電気伝導度のばらつきを抑制できるとともに、ゲート絶縁耐圧を確保することができるトランジスタ、トランジスタの製造方法及びその製造装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a transistor capable of suppressing variation in electric conductivity of an active layer and ensuring a gate dielectric strength, a method for manufacturing the transistor, and a device for manufacturing the transistor. It is in.
 本発明の一形態に係るトランジスタは、ゲート電極と、活性層と、ゲート絶縁膜と、ソース電極及びドレイン電極とを具備する。
 上記ゲート電極は、銅、又は銅を含む合金材料からなる。
 上記活性層は、酸化物半導体からなる。
 上記ゲート絶縁膜は、第1の絶縁層と、第2の絶縁層とを含む。上記第1の絶縁層は、上記ゲート電極と上記活性層との間に配置され、シリコン窒化物からなる。上記第2の絶縁層は、上記第1の絶縁層と上記活性層との間に配置され、シリコン酸化物からなる。
 上記ソース電極及びドレイン電極は、上記活性層とそれぞれ電気的に接続される。
A transistor according to one embodiment of the present invention includes a gate electrode, an active layer, a gate insulating film, and a source electrode and a drain electrode.
The gate electrode is made of copper or an alloy material containing copper.
The active layer is made of an oxide semiconductor.
The gate insulating film includes a first insulating layer and a second insulating layer. The first insulating layer is disposed between the gate electrode and the active layer and is made of silicon nitride. The second insulating layer is disposed between the first insulating layer and the active layer and is made of silicon oxide.
The source electrode and the drain electrode are electrically connected to the active layer, respectively.
 本発明の一形態に係るトランジスタの製造方法は、基材の上に銅、又は銅を含む合金材料からなるゲート電極を形成することを含む。上記ゲート電極上には、シリコン窒化物からなる第1の絶縁層がCVD法によって形成される。上記第1の絶縁層上には、シリコン酸化物からなる第2の絶縁層がスパッタリング法またはCVD法によって形成される。上記第2の絶縁層上には、酸化物半導体からなる活性層が形成される。上記活性層上にはソース電極及びドレイン電極が形成される。 A method for manufacturing a transistor according to one embodiment of the present invention includes forming a gate electrode made of copper or an alloy material containing copper on a base material. A first insulating layer made of silicon nitride is formed on the gate electrode by a CVD method. A second insulating layer made of silicon oxide is formed on the first insulating layer by a sputtering method or a CVD method. An active layer made of an oxide semiconductor is formed on the second insulating layer. A source electrode and a drain electrode are formed on the active layer.
 本発明の一形態に係るトランジスタの製造装置は、銅又は銅を含む合金材料からなるゲート電極が形成された基材の上に、薄膜トランジスタを製造するための装置であって、第1のCVD室と、第1のスパッタ室又は第2のCVD室と、第2のスパッタ室と、搬送機構とを具備する。
 上記第1のCVD室は、上記基材の上に、シリコン窒化物からなる第1の絶縁層を成膜する。上記第1のスパッタ室又は上記第2のCVD室は、上記基材の上に、シリコン酸化物からなる第2の絶縁層を成膜する。上記第2のスパッタ室は、上記基材の上に、酸化物半導体からなる活性層を成膜する。上記搬送機構は、上記第1のCVD室、上記第1のスパッタ室又は上記第2のCVD室、及び上記第2のスパッタ室の間で上記基材を真空雰囲気中で搬送可能である。
A transistor manufacturing apparatus according to an embodiment of the present invention is an apparatus for manufacturing a thin film transistor over a base material on which a gate electrode made of copper or an alloy material containing copper is formed, and includes a first CVD chamber. And a first sputtering chamber or a second CVD chamber, a second sputtering chamber, and a transport mechanism.
The first CVD chamber forms a first insulating layer made of silicon nitride on the base material. In the first sputtering chamber or the second CVD chamber, a second insulating layer made of silicon oxide is formed on the substrate. In the second sputtering chamber, an active layer made of an oxide semiconductor is formed on the base material. The transport mechanism can transport the base material in a vacuum atmosphere between the first CVD chamber, the first sputter chamber or the second CVD chamber, and the second sputter chamber.
本発明の一実施形態に係るトランジスタの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the transistor which concerns on one Embodiment of this invention. 上記トランジスタの製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the said transistor. 上記トランジスタの製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the said transistor. 上記トランジスタの製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the said transistor. 上記トランジスタの製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the said transistor. 上記トランジスタの製造方法を説明する工程断面図である。It is process sectional drawing explaining the manufacturing method of the said transistor. 上記トランジスタの作用を説明する一実験結果である。It is one experimental result explaining the effect | action of the said transistor. 上記トランジスタの作用を説明する他の実験結果である。It is another experimental result explaining the effect | action of the said transistor. 上記トランジスタの製造装置の一構成例を説明する概略図である。It is the schematic explaining the example of 1 structure of the manufacturing apparatus of the said transistor. 上記トランジスタの製造装置の他の構成例を説明する概略図である。It is the schematic explaining the other structural example of the manufacturing apparatus of the said transistor. 上記トランジスタの作用を説明する更に他の実験結果である。It is another experimental result explaining the effect | action of the said transistor. 本発明の他の実施形態に係るトランジスタの作用を説明する一実験結果である。It is one experimental result explaining the effect | action of the transistor which concerns on other embodiment of this invention.
 本発明の一実施形態に係るトランジスタは、ゲート電極と、活性層と、ゲート絶縁膜と、ソース電極及びドレイン電極とを具備する。
 上記ゲート電極は、銅、又は銅を含む合金材料からなる。
 上記活性層は、酸化物半導体からなる。
 上記ゲート絶縁膜は、第1の絶縁層と、第2の絶縁層とを含む。上記第1の絶縁層は、上記ゲート電極と上記活性層との間に配置され、シリコン窒化物からなる。上記第2の絶縁層は、上記第1の絶縁層と上記活性層との間に配置され、シリコン酸化物からなる。
 上記ソース電極及びドレイン電極は、上記活性層とそれぞれ電気的に接続される。
A transistor according to an embodiment of the present invention includes a gate electrode, an active layer, a gate insulating film, and a source electrode and a drain electrode.
The gate electrode is made of copper or an alloy material containing copper.
The active layer is made of an oxide semiconductor.
The gate insulating film includes a first insulating layer and a second insulating layer. The first insulating layer is disposed between the gate electrode and the active layer and is made of silicon nitride. The second insulating layer is disposed between the first insulating layer and the active layer and is made of silicon oxide.
The source electrode and the drain electrode are electrically connected to the active layer, respectively.
 上記トランジスタにおいて、ゲート絶縁膜は、第1の絶縁層と第2の絶縁層の積層構造を有する。活性層側に位置する第2の絶縁層は、シリコン酸化物で構成されており、その成膜方法はスパッタリング法でもよいし、CVD法でもよい。スパッタリング法で形成されたシリコン酸化膜は、CVD法で形成されたシリコン窒化膜と異なり、膜中に水素を含有しない。したがって、当該水素による活性層中の酸素の還元が回避され、ソース-ドレイン間のオフ電流値の増加が防止される。これにより、活性層の電気伝導度のばらつきを抑制して、安定した電気的特性を有するトランジスタを得ることができる。なお、CVD法で形成されたシリコン酸化膜に関しては、シリコン窒化膜よりも水素含有量が低く、スパッタリング法で形成されたシリコン酸化膜と同様な特性が確認されている。 In the above transistor, the gate insulating film has a stacked structure of a first insulating layer and a second insulating layer. The second insulating layer located on the active layer side is made of silicon oxide, and the film formation method may be a sputtering method or a CVD method. Unlike the silicon nitride film formed by the CVD method, the silicon oxide film formed by the sputtering method does not contain hydrogen. Therefore, reduction of oxygen in the active layer by the hydrogen is avoided, and an increase in off-current value between the source and drain is prevented. As a result, it is possible to obtain a transistor having stable electrical characteristics while suppressing variations in the electrical conductivity of the active layer. Note that the silicon oxide film formed by the CVD method has a lower hydrogen content than the silicon nitride film, and the same characteristics as the silicon oxide film formed by the sputtering method have been confirmed.
 また、ゲート電極と第2の絶縁層との間に形成される第1の絶縁層は、シリコン窒化物からなる。第1の絶縁層は、ゲート電極を構成する銅原子のシリコン酸化物からなる第2の絶縁層への拡散を阻止するバリア層として機能する。これにより、ゲート絶縁膜の耐圧低下を防止して、信頼性の高いトランジスタを得ることが可能となる。 Further, the first insulating layer formed between the gate electrode and the second insulating layer is made of silicon nitride. The first insulating layer functions as a barrier layer that prevents diffusion of copper atoms constituting the gate electrode into the second insulating layer made of silicon oxide. As a result, it is possible to prevent a decrease in the breakdown voltage of the gate insulating film and obtain a highly reliable transistor.
 第1の絶縁層の成膜方法は特に限定されず、CVD法、スパッタリング法、蒸着法などが採用可能である。活性層との界面に上記第2の絶縁層が存在することで、膜中に水素を含み得る成膜方法であっても、活性層の電気伝導特性に悪影響を及ぼすことなくゲート絶縁膜を構成することができるからである。 The method for forming the first insulating layer is not particularly limited, and a CVD method, a sputtering method, a vapor deposition method, or the like can be employed. Due to the presence of the second insulating layer at the interface with the active layer, the gate insulating film can be formed without adversely affecting the electric conduction characteristics of the active layer even if the film forming method can contain hydrogen in the film. Because it can be done.
 上記第1の絶縁層は、シリコン窒化物のCVD膜で構成することができる。
 CVD法は、スパッタリング法に比べて、成膜レートが高い。これにより、第1の絶縁層をスパッタリング法で形成するよりも、生産性の向上を図ることができる。一方、当該シリコン窒化膜は、原料ガスに水素を含むシラン系ガスが用いられることで、膜中に水素を含有する。しかし、この第1の絶縁層と活性層との間に上記第2の絶縁層が介在するため、第1の絶縁層中の含有水素に起因する活性層の還元反応は効果的に阻止される。
The first insulating layer can be formed of a silicon nitride CVD film.
The CVD method has a higher film formation rate than the sputtering method. Thereby, productivity can be improved as compared with the case where the first insulating layer is formed by sputtering. On the other hand, the silicon nitride film contains hydrogen in the film by using a silane-based gas containing hydrogen as a source gas. However, since the second insulating layer is interposed between the first insulating layer and the active layer, the reduction reaction of the active layer due to the hydrogen contained in the first insulating layer is effectively prevented. .
 前記トランジスタは、前記ゲート電極を支持するガラス製の基材と、前記基材と前記ゲート電極との間を密着させる密着層をさらに具備してもよい。
 これにより、ゲート電極を基材に対して高い密着性でもって支持させることができる。
The transistor may further include a glass substrate that supports the gate electrode, and an adhesion layer that closely contacts the substrate and the gate electrode.
Thereby, a gate electrode can be supported with high adhesiveness with respect to a base material.
 前記密着層は、銅を含む合金材料の酸化膜とすることができる。
 これにより、ゲート電極の酸化を防止しつつ、ガラス製の基材に対して優れた密着性を得ることができる。
The adhesion layer can be an oxide film of an alloy material containing copper.
Thereby, the adhesiveness outstanding with respect to the glass-made base materials can be obtained, preventing the oxidation of a gate electrode.
 活性層を構成する酸化物半導体は、例えば、In、Ga、又はZnの酸化物系材料で構成することができる。
 これにより、高移動度の薄膜トランジスタを得ることができる。In、Ga、又はZnの酸化物系材料としては、ZnO、ZnO2、GaO、Ga2O、Ga23、InO、In23、In-Zn-O系材料、Ga-Zn-O系材料、In-Ga-O系材料、In-Ga-Zn-O系材料等が含まれる。また、活性層を構成する酸化物半導体は、上記の例に限定されず、例えば、CdO等の他の酸化物半導体を用いることも可能である。
The oxide semiconductor constituting the active layer can be made of, for example, an oxide material of In, Ga, or Zn.
Thereby, a thin film transistor with high mobility can be obtained. Examples of In, Ga, or Zn oxide-based materials include ZnO, ZnO 2 , GaO, Ga 2 O, Ga 2 O 3 , InO, In 2 O 3 , In—Zn—O-based materials, and Ga—Zn—O. Material, In—Ga—O material, In—Ga—Zn—O material, and the like are included. Moreover, the oxide semiconductor which comprises an active layer is not limited to said example, For example, other oxide semiconductors, such as CdO, can also be used.
 本発明の一実施形態に係るトランジスタの製造方法は、基材の上に銅、又は銅を含む合金材料からなるゲート電極を形成することを含む。上記ゲート電極上には、シリコン窒化物からなる第1の絶縁層がCVD法によって形成される。上記第1の絶縁層上には、シリコン酸化物からなる第2の絶縁層がスパッタリング法またはCVD法によって形成される。上記第2の絶縁層上には、酸化物半導体からなる活性層が形成される。上記活性層上にはソース電極及びドレイン電極が形成される。 A transistor manufacturing method according to an embodiment of the present invention includes forming a gate electrode made of copper or an alloy material containing copper on a base material. A first insulating layer made of silicon nitride is formed on the gate electrode by a CVD method. A second insulating layer made of silicon oxide is formed on the first insulating layer by a sputtering method or a CVD method. An active layer made of an oxide semiconductor is formed on the second insulating layer. A source electrode and a drain electrode are formed on the active layer.
 上記トランジスタの製造方法において、活性層側に位置する第2の絶縁層は、スパッタリング法またはCVD法で形成される。シリコン酸化物のスパッタ膜は、CVD法で形成されたシリコン窒化膜などと異なり、膜中に水素を含有しない。したがって、当該水素による活性層中の酸素の還元が回避され、ソース-ドレイン間のオフ電流値の増加が防止される。これにより、活性層の電気伝導度のばらつきを抑制することが可能となる。なお、CVD法で形成されたシリコン酸化膜に関しては、シリコン窒化膜よりも水素含有量が低く、スパッタリング法で形成されたシリコン酸化膜と同様な特性が確認されている。 In the transistor manufacturing method, the second insulating layer located on the active layer side is formed by a sputtering method or a CVD method. Unlike a silicon nitride film formed by a CVD method, a silicon oxide sputtered film does not contain hydrogen. Therefore, reduction of oxygen in the active layer by the hydrogen is avoided, and an increase in off-current value between the source and drain is prevented. Thereby, it is possible to suppress variation in the electric conductivity of the active layer. Note that the silicon oxide film formed by the CVD method has a lower hydrogen content than the silicon nitride film, and the same characteristics as the silicon oxide film formed by the sputtering method have been confirmed.
 また、上記第1の絶縁層は、シリコン窒化物のCVD膜で形成されるため、生産性の向上を図ることができる。一方、当該シリコン窒化膜は、原料ガスに水素を含むシラン系ガスが用いられることで、膜中に水素を含有する。しかし、この第1の絶縁層と活性層との間に上記第2の絶縁層が介在するため、第1の絶縁層中の含有水素に起因する活性層の還元反応は効果的に阻止される。同時に、この第1の絶縁層によって、銅又は銅合金からなるゲート電極とシリコン酸化物からなる第2の絶縁層との間の界面反応が阻止される。これにより、ゲート絶縁膜の信頼性を確保することができる。 In addition, since the first insulating layer is formed of a silicon nitride CVD film, productivity can be improved. On the other hand, the silicon nitride film contains hydrogen in the film by using a silane-based gas containing hydrogen as a source gas. However, since the second insulating layer is interposed between the first insulating layer and the active layer, the reduction reaction of the active layer due to the hydrogen contained in the first insulating layer is effectively prevented. . At the same time, the first insulating layer prevents an interfacial reaction between the gate electrode made of copper or a copper alloy and the second insulating layer made of silicon oxide. Thereby, the reliability of the gate insulating film can be ensured.
 上記トランジスタの製造方法は、上記ゲート電極を形成する工程の前に、上記基材と上記ゲート電極との間を密着させる密着層を形成する工程をさらに有してもよい。
 これにより、ゲート電極の酸化を防止できるとともに、ゲート電極と基材との間の優れた密着性を得ることができる。上記密着層としては、例えば、銅を含む合金材料の酸化膜が用いられる。
The method for manufacturing the transistor may further include a step of forming an adhesion layer that closely contacts the base material and the gate electrode before the step of forming the gate electrode.
Thereby, the oxidation of the gate electrode can be prevented and excellent adhesion between the gate electrode and the substrate can be obtained. As the adhesion layer, for example, an oxide film of an alloy material containing copper is used.
 上記第1の絶縁層、上記第2の絶縁層及び上記活性層は、共通の真空処理装置内で連続して成膜されてもよい。
 これにより、膜質及び生産性の向上を図ることができる。
The first insulating layer, the second insulating layer, and the active layer may be continuously formed in a common vacuum processing apparatus.
Thereby, the film quality and productivity can be improved.
 本発明の一実施形態に係るトランジスタの製造装置は、銅又は銅を含む合金材料からなるゲート電極が形成された基材の上に、薄膜トランジスタを製造するための装置であって、第1のCVD室と、第1のスパッタ室又は第2のCVD室と、第2のスパッタ室と、搬送機構とを具備する。
 上記第1のCVD室は、上記基材の上に、シリコン窒化物からなる第1の絶縁層を成膜する。上記第1のスパッタ室又は上記第2のCVD室は、上記基材の上に、シリコン酸化物からなる第2の絶縁層を成膜する。上記第2のスパッタ室は、上記基材の上に、酸化物半導体からなる活性層を成膜する。上記搬送機構は、上記第1のCVD室、上記第1のスパッタ室又は上記第2のCVD室、及び上記第2のスパッタ室の間で上記基材を真空雰囲気中で搬送可能である。
An apparatus for manufacturing a transistor according to an embodiment of the present invention is an apparatus for manufacturing a thin film transistor on a base material on which a gate electrode made of copper or an alloy material containing copper is formed. A chamber, a first sputtering chamber or a second CVD chamber, a second sputtering chamber, and a transport mechanism.
The first CVD chamber forms a first insulating layer made of silicon nitride on the base material. In the first sputtering chamber or the second CVD chamber, a second insulating layer made of silicon oxide is formed on the substrate. In the second sputtering chamber, an active layer made of an oxide semiconductor is formed on the base material. The transport mechanism can transport the base material in a vacuum atmosphere between the first CVD chamber, the first sputter chamber or the second CVD chamber, and the second sputter chamber.
 上記製造装置によれば、基材を大気に曝すことなく、シリコン窒化物のCVD膜からなる第1の絶縁層と、シリコン酸化物のスパッタ膜又はCVD膜からなる第2の絶縁層とを含むゲート絶縁膜を基材上に形成することができる。これにより、所望の電気伝導特性を有する活性層を安定して形成できると共に、信頼性の高いトランジスタを製造することができる。 According to the manufacturing apparatus, the first insulating layer made of a silicon nitride CVD film and the second insulating layer made of a silicon oxide sputtered film or a CVD film are included without exposing the base material to the atmosphere. A gate insulating film can be formed on a base material. As a result, an active layer having desired electric conduction characteristics can be stably formed, and a highly reliable transistor can be manufactured.
 以下、本発明の実施形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1は、本発明の実施形態によるトランジスタの構成を示す概略断面図である。本実施形態では、いわゆるボトムゲート型の電界効果型トランジスタを例に挙げて説明する。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a configuration of a transistor according to an embodiment of the present invention. In this embodiment, a so-called bottom gate type field effect transistor will be described as an example.
 本実施形態のトランジスタ1は、ゲート電極11と、活性層15と、ゲート絶縁膜14と、ソース電極17Sと、ドレイン電極17Dとを有する。 The transistor 1 of this embodiment includes a gate electrode 11, an active layer 15, a gate insulating film 14, a source electrode 17S, and a drain electrode 17D.
 ゲート電極11は、基材10の表面に形成された導電膜からなる。基材10は、透明なガラス基板である。ゲート電極11は、銅(Cu)又は銅を含む合金材料で構成され、例えばスパッタリング法、CVD法によって形成される。ゲート電極11の厚さは特に限定されず、例えば、300nmである。 The gate electrode 11 is made of a conductive film formed on the surface of the substrate 10. The base material 10 is a transparent glass substrate. The gate electrode 11 is made of copper (Cu) or an alloy material containing copper, and is formed by, for example, a sputtering method or a CVD method. The thickness of the gate electrode 11 is not specifically limited, For example, it is 300 nm.
 ゲート電極11は、密着層24を介して、基材10の表面に形成されている。密着層24は、ゲート電極11と基材10との間の密着性を高めるために設けられる。密着層24は、チタン(Ti)、モリブデン(Mo)などの金属単層膜またはこれらの積層膜で構成することができる。また、密着層24は、銅とマグネシウムあるいはクロムなどの合金の酸化膜で構成することも可能である。これにより、ゲート電極11とガラス基材10との間の密着性を確保しつつ、ゲート電極11の酸化を防止して低抵抗値を維持することができる。 The gate electrode 11 is formed on the surface of the base material 10 via the adhesion layer 24. The adhesion layer 24 is provided in order to improve the adhesion between the gate electrode 11 and the substrate 10. The adhesion layer 24 can be formed of a metal single layer film such as titanium (Ti) or molybdenum (Mo) or a laminated film thereof. Further, the adhesion layer 24 can be composed of an oxide film of an alloy such as copper and magnesium or chromium. Thereby, the oxidation of the gate electrode 11 can be prevented and the low resistance value can be maintained while ensuring the adhesion between the gate electrode 11 and the glass substrate 10.
 活性層15は、トランジスタ1のチャネル層として機能する。活性層14は、酸化物半導体からなり、スパッタリング法によって形成される。本実施形態では、活性層15は、In-Ga-Zn-O系組成を有する酸化物半導体材料で形成され、その膜厚は、例えば50nm~200nmである。 The active layer 15 functions as a channel layer of the transistor 1. The active layer 14 is made of an oxide semiconductor and is formed by a sputtering method. In the present embodiment, the active layer 15 is formed of an oxide semiconductor material having an In—Ga—Zn—O-based composition, and the thickness thereof is, for example, 50 nm to 200 nm.
 ゲート絶縁膜14は、ゲート電極11と活性層15の間に形成される。ゲート電極14は、第1の絶縁層14Aと第2の絶縁層14Bとの積層構造を有する。第1の絶縁層14Aは、ゲート電極11側に位置し、第2の絶縁層14Bは、活性層15側に位置する。 The gate insulating film 14 is formed between the gate electrode 11 and the active layer 15. The gate electrode 14 has a stacked structure of a first insulating layer 14A and a second insulating layer 14B. The first insulating layer 14A is located on the gate electrode 11 side, and the second insulating layer 14B is located on the active layer 15 side.
 第1の絶縁層14Aは、シリコン窒化膜(SiNx)で構成されている。第1の絶縁層14Aは、プラズマCVD法で作製することができる。 The first insulating layer 14A is composed of a silicon nitride film (SiNx). The first insulating layer 14A can be manufactured by a plasma CVD method.
 一方、第2の絶縁層14Bは、シリコン酸化物(SiO2またはSiOx)のスパッタ膜で構成される。第2の絶縁層14Bは、ゲート電極11と活性層15との間を電気的に絶縁する機能のほか、第1の絶縁層14Aと活性層15との間における界面反応を阻止する機能を有する。 On the other hand, the second insulating layer 14B is formed of a sputtered film of silicon oxide (SiO 2 or SiOx). The second insulating layer 14B has a function of electrically insulating between the gate electrode 11 and the active layer 15 and a function of preventing an interface reaction between the first insulating layer 14A and the active layer 15. .
 ここでいう界面反応とは、第1の絶縁層14Aが水素を含有する場合に、当該水素による活性層15の還元反応を含む。活性層15の還元反応は、活性層15を構成する膜の酸素含有量の低下をもたらし、これが原因で活性層15の電気伝導度が上昇する。活性層の低抵抗化は、応答性やオン電流特性などの向上に貢献し得るが、トランジスタの非動作時におけるオフ電流値の上昇を招き、トランジスタ特性を低下させる一因になり得る。このため、活性層の材料組成は、要求されるトランジスタ特性に応じて最適化され、必要な電気伝導度が得られるように設計、製造される。しかし、成膜後、下地層であるゲート絶縁膜との界面反応によって活性層の材料組成が変化すると、目的とするトランジスタ特性が得られず、また、素子ごとに特性のばらつきが生じ易くなる。 Here, the interfacial reaction includes a reduction reaction of the active layer 15 by hydrogen when the first insulating layer 14A contains hydrogen. The reduction reaction of the active layer 15 causes a decrease in the oxygen content of the film constituting the active layer 15, and this causes the electrical conductivity of the active layer 15 to increase. Lowering the resistance of the active layer can contribute to improvements in responsiveness and on-current characteristics, but can cause an increase in off-current value when the transistor is not in operation, which can contribute to lowering the transistor characteristics. For this reason, the material composition of the active layer is optimized according to the required transistor characteristics, and is designed and manufactured so as to obtain the required electrical conductivity. However, if the material composition of the active layer changes due to an interfacial reaction with the gate insulating film that is the base layer after film formation, the desired transistor characteristics cannot be obtained, and variations in characteristics tend to occur from element to element.
 第1の絶縁層14Aとしては、本来、水素を構成元素として必要としない材料が用いられる。しかし、シリコン窒化物をプラズマCVD法で成膜する場合、原料ガスにシラン(SiH4)系ガス、アンモニア(NH3)系ガスなどが使用される。したがって、プラズマCVD法で成膜されたシリコン窒化膜は、反応の過程で生成された水素を少なからず含有する。このため、プラズマCVD法で成膜されたシリコン窒化膜の表面に酸化物半導体層を成膜すると、上記水素の存在に起因して酸化物半導体層が還元され、その酸化物半導体層の酸素組成が減少する。これにより、目的とする酸化物半導体層の電気特性を確保することが困難となる。 As the first insulating layer 14A, a material that does not originally require hydrogen as a constituent element is used. However, when silicon nitride is formed by plasma CVD, silane (SiH 4 ) -based gas, ammonia (NH 3 ) -based gas, or the like is used as a source gas. Therefore, the silicon nitride film formed by the plasma CVD method contains a considerable amount of hydrogen generated during the reaction process. Therefore, when an oxide semiconductor layer is formed on the surface of a silicon nitride film formed by plasma CVD, the oxide semiconductor layer is reduced due to the presence of hydrogen, and the oxygen composition of the oxide semiconductor layer is reduced. Decrease. This makes it difficult to ensure the electrical characteristics of the target oxide semiconductor layer.
 その一方で、第1の絶縁層14Aをスパッタリング法や真空蒸着法などのCVD法以外の成膜方法によって形成することも考えられる。しかし、スパッタリング法などはCVD法に比べて成膜レートが低いため、目的とする膜厚を確保するのに多大な時間を要する。このため、工業的な生産性を確保するために、絶縁層の成膜にプラズマCVD法を採用することが現実的である。 On the other hand, it is also conceivable to form the first insulating layer 14A by a film forming method other than the CVD method such as a sputtering method or a vacuum evaporation method. However, the sputtering method and the like have a lower film formation rate than the CVD method, and thus it takes a lot of time to secure the target film thickness. For this reason, in order to ensure industrial productivity, it is practical to employ the plasma CVD method for forming the insulating layer.
 上記のような事情に鑑み、本実施形態では、第1の絶縁層14AはプラズマCVD法で成膜することで生産性を確保する。そして、プラズマCVD法で作製したシリコン窒化物の薄膜と活性層15との間の界面反応を回避するために、スパッタリング法で成膜したシリコン酸化膜を第2の絶縁層14Bとして第1の絶縁層14Aと活性層15の間に介在させる。シリコン酸化物のスパッタ膜は、シリコン酸化物ターゲットに対する不活性ガス雰囲気中でのスパッタリングプロセス、あるいは、シリコンターゲットに対する酸素雰囲気中での反応性スパッタリングプロセスによって形成することができる。 In view of the circumstances as described above, in the present embodiment, the first insulating layer 14A is formed by a plasma CVD method to ensure productivity. Then, in order to avoid an interfacial reaction between the silicon nitride thin film produced by the plasma CVD method and the active layer 15, the silicon oxide film formed by the sputtering method is used as the second insulating layer 14B for the first insulation. It is interposed between the layer 14A and the active layer 15. The sputtered silicon oxide film can be formed by a sputtering process in an inert gas atmosphere with respect to a silicon oxide target or a reactive sputtering process in an oxygen atmosphere with respect to a silicon target.
 このようなスパッタリングプロセスで作製されるシリコン酸化膜は、膜中への水素の混入を回避することができる。したがって、シリコン酸化物のスパッタ膜を第2の絶縁層14Bとして第1の絶縁層14A上に積層することにより、第1の絶縁層14Aと活性層15との間における相互反応を効果的に防止し、活性層15の所望の電気的特性を確保することが可能となる。 The silicon oxide film manufactured by such a sputtering process can avoid mixing of hydrogen into the film. Therefore, by stacking the sputtered silicon oxide film as the second insulating layer 14B on the first insulating layer 14A, the mutual reaction between the first insulating layer 14A and the active layer 15 is effectively prevented. As a result, desired electrical characteristics of the active layer 15 can be ensured.
 また、ゲート電極11と第2の絶縁層14Bとの間に形成される第1の絶縁層14Aは、シリコン窒化物からなる。この第1の絶縁層14Bは、ゲート電極11を構成する銅原子のシリコン酸化物からなる第2の絶縁層14Bへの拡散を阻止するバリア層として機能する。これにより、応答性の向上を図りつつ、ゲート絶縁膜14の耐圧低下を防止して、信頼性の高いトランジスタを得ることが可能となる。 Further, the first insulating layer 14A formed between the gate electrode 11 and the second insulating layer 14B is made of silicon nitride. The first insulating layer 14B functions as a barrier layer that prevents diffusion of copper atoms constituting the gate electrode 11 into the second insulating layer 14B made of silicon oxide. As a result, it is possible to obtain a highly reliable transistor by improving the responsiveness and preventing the breakdown voltage of the gate insulating film 14 from decreasing.
 ゲート絶縁膜14の膜厚は特に限定されず、例えば、200nm~400nmとされる。第1及び第2の絶縁層14A、14Bの膜厚は、これらの積層厚であるゲート絶縁膜14の膜厚の範囲内で適宜設定される。例えば、第1の絶縁層14AがプラズマCVD法で作製される場合、第1の絶縁層14は第2の絶縁層14Bよりも膜厚を大きくすることで、ゲート絶縁膜14の工程時間の増加を抑制することができる。第2の絶縁層14Bの膜厚は、第1の絶縁層14Aと活性層15との間の界面反応を抑制できる限りにおいて、特に限定されない。 The thickness of the gate insulating film 14 is not particularly limited and is, for example, 200 nm to 400 nm. The film thicknesses of the first and second insulating layers 14A and 14B are appropriately set within the range of the film thickness of the gate insulating film 14 which is the laminated thickness thereof. For example, when the first insulating layer 14A is formed by a plasma CVD method, the first insulating layer 14 is made thicker than the second insulating layer 14B, thereby increasing the process time of the gate insulating film 14. Can be suppressed. The film thickness of the second insulating layer 14B is not particularly limited as long as the interface reaction between the first insulating layer 14A and the active layer 15 can be suppressed.
 ソース電極17S及びドレイン電極17Dは、活性層15の上に相互に離間して形成される。ソース電極17S及びドレイン電極17Dは、例えば、アルミニウム、モリブデン、銅、チタンなどの金属単層膜あるいはこれら金属の多層膜で構成することができる。後述するように、ソース電極17S及びドレイン電極17Dは、金属膜をパターニングすることで同時に形成することができる。当該金属膜の厚さは、例えば、100nm~500nmである。 The source electrode 17S and the drain electrode 17D are formed on the active layer 15 so as to be separated from each other. The source electrode 17S and the drain electrode 17D can be composed of, for example, a metal single layer film such as aluminum, molybdenum, copper, titanium, or a multilayer film of these metals. As will be described later, the source electrode 17S and the drain electrode 17D can be simultaneously formed by patterning a metal film. The thickness of the metal film is, for example, 100 nm to 500 nm.
 活性層15の上には、ストッパ層16が形成されている。ストッパ層16は、ソース電極17S及びドレイン電極17Dのパターンエッチングする際に、エッチャントから活性層15を保護するために設けられる。ストッパ層16は、例えば、シリコン酸化膜、シリコン窒化膜またはこれらの積層膜で構成することができる。この場合、ストッパ層16は、活性層との界面反応を回避するため、膜中に水素が混入しない成膜法(例えばスパッタリング法)によって形成される。 A stopper layer 16 is formed on the active layer 15. The stopper layer 16 is provided to protect the active layer 15 from the etchant during pattern etching of the source electrode 17S and the drain electrode 17D. The stopper layer 16 can be composed of, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof. In this case, the stopper layer 16 is formed by a film formation method (for example, sputtering method) in which hydrogen is not mixed into the film in order to avoid an interface reaction with the active layer.
 ソース電極17S及びドレイン電極17Dは、保護膜19によって被覆される。保護膜19は、例えばシリコン窒化膜などの電気絶縁性材料で構成される。保護膜19は、活性層15を含む素子部を外気から遮蔽するためのものである。保護膜19には適宜の位置にソース/ドレイン電極17S、17Dを配線層21と接続するための層間接続孔が設けられている。配線層21は、トランジスタ1を図示しない周辺回路へ接続するためのもので、アルミニウム、銅などの金属膜で構成されている。 The source electrode 17S and the drain electrode 17D are covered with a protective film 19. The protective film 19 is made of an electrically insulating material such as a silicon nitride film. The protective film 19 is for shielding the element part including the active layer 15 from the outside air. The protective film 19 is provided with interlayer connection holes for connecting the source / drain electrodes 17S, 17D to the wiring layer 21 at appropriate positions. The wiring layer 21 is for connecting the transistor 1 to a peripheral circuit (not shown), and is made of a metal film such as aluminum or copper.
 次に、以上のように構成される本実施形態のトランジスタ1の製造方法について説明する。図2~図6は、トランジスタ1の製造方法を説明する各工程の要部断面図である。 Next, a method for manufacturing the transistor 1 of the present embodiment configured as described above will be described. 2 to 6 are cross-sectional views of the main part of each step for explaining the manufacturing method of the transistor 1. FIG.
 まず、図2(A)に示すように、基材10の一表面に密着層を形成する酸化膜24Fを形成した後、酸化膜24Fの上にゲート電極膜11Fを形成する。 First, as shown in FIG. 2A, after forming an oxide film 24F that forms an adhesion layer on one surface of the substrate 10, a gate electrode film 11F is formed on the oxide film 24F.
 基材10は、典型的には、ガラス基板である。酸化膜24Fは、銅とマンガン、クロム等の合金の酸化膜で構成され、例えばスパッタリング法によって形成される。酸化膜24Fは、成膜後、酸化処理されてもよいし、反応性スパッタによって直接形成されてもよい。ゲート電極膜11Fは、銅、又は銅を含む合金材料で構成され、例えば、スパッタリング法によって形成される。密着層24Fの厚さは特に限定されず、例えば、50nm~300nmである。ゲート電極膜11Fの厚さも特に限定されず、例えば、300nmである。 The base material 10 is typically a glass substrate. The oxide film 24F is composed of an oxide film of an alloy such as copper, manganese, and chromium, and is formed by, for example, a sputtering method. The oxide film 24F may be oxidized after the film formation, or may be formed directly by reactive sputtering. The gate electrode film 11F is made of copper or an alloy material containing copper, and is formed by, for example, a sputtering method. The thickness of the adhesion layer 24F is not particularly limited, and is, for example, 50 nm to 300 nm. The thickness of the gate electrode film 11F is not particularly limited, and is, for example, 300 nm.
 次に、図2(B)~(D)に示すように、ゲート電極膜11Fを所定形状にパターニングするためのレジストマスク12を形成する。この工程は、フォトレジスト膜12Fの形成工程(図2(B))と、露光工程(図2(C))と、現像工程(図2(D))とを有する。 Next, as shown in FIGS. 2B to 2D, a resist mask 12 for patterning the gate electrode film 11F into a predetermined shape is formed. This step includes a step of forming a photoresist film 12F (FIG. 2B), an exposure step (FIG. 2C), and a development step (FIG. 2D).
 フォトレジスト膜12Fは、液状の感光性材料をゲート電極膜11Fの上に塗布後、乾燥させることによって形成される。フォトレジスト膜12Fとしてドライフィルムレジストを用いてもよい。形成されたフォトレジスト膜12Fはマスク13を介して露光された後、現像される。これにより、ゲート電極膜11Fの上にレジストマスク12が形成される。 The photoresist film 12F is formed by applying a liquid photosensitive material on the gate electrode film 11F and then drying it. A dry film resist may be used as the photoresist film 12F. The formed photoresist film 12F is exposed through the mask 13 and then developed. Thereby, a resist mask 12 is formed on the gate electrode film 11F.
 続いて、図2(E)に示すように、レジストマスク12をマスクとしてゲート電極膜11F及び酸化膜24Fをエッチングする。これにより、基材10の表面にゲート電極11及び密着層24が形成される(図2F)。 Subsequently, as shown in FIG. 2E, the gate electrode film 11F and the oxide film 24F are etched using the resist mask 12 as a mask. Thereby, the gate electrode 11 and the adhesion layer 24 are formed on the surface of the substrate 10 (FIG. 2F).
 ゲート電極膜11Fのエッチング方法は特に限定されず、ウェットエッチング法でもよいし、ドライエッチング法でもよい。エッチング後、レジストマスク12は除去される。レジストマスク12の除去方法は、酸素ガスのプラズマを用いたアッシング処理が適用されるが、これに限られず、薬液を用いた溶解除去であってもよい。 The etching method of the gate electrode film 11F is not particularly limited, and may be a wet etching method or a dry etching method. After the etching, the resist mask 12 is removed. The method for removing the resist mask 12 is an ashing process using oxygen gas plasma, but is not limited to this, and may be dissolved and removed using a chemical solution.
 次に、図3(A)に示すように、基材10の表面に、ゲート電極11を覆うようにゲート絶縁膜14を形成する。ゲート絶縁膜14の厚さは、例えば、200nm~500nmである。ゲート絶縁膜14を形成する工程は、第1の絶縁層14Aを形成する工程と、第2の絶縁層14Bを形成する工程とを含む。 Next, as shown in FIG. 3A, a gate insulating film 14 is formed on the surface of the base material 10 so as to cover the gate electrode 11. The thickness of the gate insulating film 14 is, for example, 200 nm to 500 nm. The step of forming the gate insulating film 14 includes a step of forming the first insulating layer 14A and a step of forming the second insulating layer 14B.
 第1の絶縁層14Aは、シリコン窒化膜からなり、プラズマCVD法によってゲート電極11を被覆するように成膜される。プロセスガスとしては、モノシラン、ジシラン、テトラエトキシシラン(TEOS))などのシラン系ガス、アンモニア、窒素などの原料ガスあるいは反応性ガスが用いられる。これらのガスのプラズマにより生成されるシリコンの窒素化合物を基板10上に堆積させることで、第1の絶縁層14Aが成膜される。 The first insulating layer 14A is made of a silicon nitride film and is formed so as to cover the gate electrode 11 by plasma CVD. As the process gas, a silane-based gas such as monosilane, disilane, or tetraethoxysilane (TEOS)), a source gas such as ammonia or nitrogen, or a reactive gas is used. By depositing a silicon nitrogen compound generated by the plasma of these gases on the substrate 10, the first insulating layer 14A is formed.
 一方、第2の絶縁層14Bは、シリコン酸化膜からなり、スパッタリング法によって第1の絶縁層14Aを被覆するように成膜される。第2の絶縁層14Bは、例えば、減圧下におけるアルゴンなどの不活性ガス雰囲気中で、シリコン酸化物からなるターゲットをスパッタすることで成膜される。あるいは、減圧下におけるアルゴンと酸素の混合ガス雰囲気中で、シリコンからなるターゲットをスパッタすることで成膜される。 On the other hand, the second insulating layer 14B is made of a silicon oxide film and is formed so as to cover the first insulating layer 14A by a sputtering method. For example, the second insulating layer 14B is formed by sputtering a target made of silicon oxide in an inert gas atmosphere such as argon under reduced pressure. Alternatively, the film is formed by sputtering a target made of silicon in a mixed gas atmosphere of argon and oxygen under reduced pressure.
 第1の絶縁層14A及び第2の絶縁層14Bの厚みは適宜設定可能である。一般に、CVD法は、スパッタリング法と比較して、成膜レート及びカバレージ性が高いため、第1の絶縁層14Aを2の絶縁層14Bよりも厚くすることで、良好な生産性を確保することができる。第2の絶縁層14Bは、第1の絶縁層14Aと活性層15との間の界面反応を抑制できる厚みであればよい。 The thickness of the first insulating layer 14A and the second insulating layer 14B can be set as appropriate. In general, the CVD method has a higher deposition rate and coverage than the sputtering method, so that the first insulating layer 14A is thicker than the second insulating layer 14B to ensure good productivity. Can do. The second insulating layer 14B may have a thickness that can suppress the interface reaction between the first insulating layer 14A and the active layer 15.
 続いて、図3(B)に示すように、ゲート絶縁膜14の上に、In-Ga-Zn-O系組成を有する薄膜(以下単に「IGZO膜」という。)15F及びストッパ層形成膜16Fを順に形成する。 Subsequently, as shown in FIG. 3B, on the gate insulating film 14, a thin film (hereinafter simply referred to as “IGZO film”) 15F having an In—Ga—Zn—O-based composition and a stopper layer forming film 16F are formed. Are formed in order.
 IGZO膜15F及びストッパ層形成膜16Fは、例えばスパッタリング法によって形成される。IGZO膜15Fとストッパ層形成膜16Fは連続的に成膜することができる。この場合、IGZO膜15Fを成膜するためのスパッタリングターゲットと、ストッパ層形成膜16Fを成膜するためのスパッタリングターゲットを同一のスパッタリングチャンバ内に配置してもよい。使用するターゲットを切り替えることで、IGZO膜15Fとストッパ層形成膜16Fとをそれぞれ独立して形成することができる。 The IGZO film 15F and the stopper layer forming film 16F are formed by, for example, a sputtering method. The IGZO film 15F and the stopper layer forming film 16F can be continuously formed. In this case, the sputtering target for forming the IGZO film 15F and the sputtering target for forming the stopper layer forming film 16F may be disposed in the same sputtering chamber. By switching the target to be used, the IGZO film 15F and the stopper layer forming film 16F can be formed independently.
 IGZO膜15Fは、例えば、酸素ガス雰囲気中でターゲットをスパッタリングすることで酸素との反応物を基材10の上に堆積させる反応性スパッタリング法によって、形成することができる。放電形式は、DC放電、AC放電、RF放電のいずれでもよい。また、ターゲットの背面側に永久磁石を配置するマグネトロン放電方式を採用してもよい。IGZO膜15Fは、基材10を所定温度に加熱した状態で成膜されてもよいし、無加熱状態で成膜されてもよい。 The IGZO film 15F can be formed by, for example, a reactive sputtering method in which a reaction product with oxygen is deposited on the substrate 10 by sputtering a target in an oxygen gas atmosphere. The discharge type may be any of DC discharge, AC discharge, and RF discharge. Moreover, you may employ | adopt the magnetron discharge system which arrange | positions a permanent magnet in the back side of a target. The IGZO film 15F may be formed with the substrate 10 heated to a predetermined temperature, or may be formed without heating.
 なお、IGZO膜15Fの酸化度は、成膜室内の酸素分圧によって制御される。すなわち、酸素分圧が高いほど、酸化度の大きい(電気抵抗が高い)IGZO膜15Fが成膜されることになる。 Note that the degree of oxidation of the IGZO film 15F is controlled by the oxygen partial pressure in the deposition chamber. That is, as the oxygen partial pressure is higher, the IGZO film 15F having a higher degree of oxidation (higher electrical resistance) is formed.
 IGZO膜15F及びストッパ層形成膜16Fの各々の膜厚は特に限定されず、例えば、IGZO膜15Fの膜厚は50nm~200nm、ストッパ層形成膜16Fの膜厚は30nm~300nmである。 The thickness of each of the IGZO film 15F and the stopper layer forming film 16F is not particularly limited. For example, the thickness of the IGZO film 15F is 50 nm to 200 nm, and the thickness of the stopper layer forming film 16F is 30 nm to 300 nm.
 IGZO膜15Fは、トランジスタの活性層(キャリア層)15を構成する。ストッパ層形成膜16Fは、後述するソース電極及びドレイン電極を構成する金属膜のパターニング工程、及び、IGZO膜15Fの不要領域をエッチング除去する工程において、IGZO膜のチャネル領域をエッチャントから保護するエッチング保護層として機能する。ストッパ層形成膜16Fは、例えば、シリコン窒化膜で構成される。 The IGZO film 15F constitutes an active layer (carrier layer) 15 of the transistor. The stopper layer forming film 16F is an etching protection that protects the channel region of the IGZO film from the etchant in the patterning process of the metal film constituting the source electrode and the drain electrode, which will be described later, and the process of etching away the unnecessary area of the IGZO film 15F. Acts as a layer. The stopper layer forming film 16F is made of, for example, a silicon nitride film.
 次に、図3(C)及び(D)に示すように、ストッパ層形成膜16Fを所定形状にパターニングするためのレジストマスク23を形成した後、このレジストマスク23を介してストッパ層形成膜16Fをエッチングする。これにより、ゲート絶縁膜14とIGZO膜15Fを挟んでゲート電極11と対向するストッパ層16が形成される。 Next, as shown in FIGS. 3C and 3D, a resist mask 23 for patterning the stopper layer forming film 16F into a predetermined shape is formed, and then the stopper layer forming film 16F is interposed through the resist mask 23. Etch. Thereby, the stopper layer 16 facing the gate electrode 11 is formed with the gate insulating film 14 and the IGZO film 15F interposed therebetween.
 レジストマスク23を除去した後、図3(E)に示すように、IGZO膜15F及びストッパ層16を覆うように金属膜17Fを形成する。 After removing the resist mask 23, a metal film 17F is formed so as to cover the IGZO film 15F and the stopper layer 16, as shown in FIG.
 金属膜17Fは、典型的には、モリブデンやクロム、アルミニウム、銅等の金属単層膜又は金属多層膜で構成され、例えば、スパッタリング法によって形成される。金属膜17Fの厚さは特に限定されず、例えば、100nm~500nmである。 The metal film 17F is typically composed of a metal single layer film or a metal multilayer film such as molybdenum, chromium, aluminum, or copper, and is formed by, for example, a sputtering method. The thickness of the metal film 17F is not particularly limited, and is, for example, 100 nm to 500 nm.
 続いて、図4(A)及び(B)に示すように、金属膜17Fをパターニングする。 Subsequently, as shown in FIGS. 4A and 4B, the metal film 17F is patterned.
 金属膜17Fのパターニング工程は、レジストマスク18の形成工程(図3(A))と、金属膜17Fのエッチング工程(図3(B))とを有する。レジストマスク18は、ストッパ層16の直上領域と、個々のトランジスタの周辺領域とを開口させるマスクパターンを有する。レジストマスク18の形成後、ウェットエッチング法によって、金属膜17Fがエッチングされる。これにより、金属膜17Fは、活性層15とそれぞれ電気的に接続されるソース電極17Sとドレイン電極17Dとに分離される。 The patterning process of the metal film 17F includes a resist mask 18 formation process (FIG. 3A) and a metal film 17F etching process (FIG. 3B). The resist mask 18 has a mask pattern that opens the region immediately above the stopper layer 16 and the peripheral region of each transistor. After the formation of the resist mask 18, the metal film 17F is etched by wet etching. Thus, the metal film 17F is separated into the source electrode 17S and the drain electrode 17D that are electrically connected to the active layer 15, respectively.
 ソース電極17S及びドレイン電極17Dの形成工程において、ストッパ層16は、金属膜17Fのエッチングストッパ層として機能する。すなわち、ストッパ層16は、金属膜17Fに対するエッチャント(例えばリン硝酢酸)からIGZO膜15Fを保護する機能を有する。ストッパ層16は、IGZO膜15Fのソース電極17Sとドレイン電極17Dとの間に位置する領域(以下「チャネル領域」という。)を覆うように形成されている。したがって、IGZO膜15Fのチャネル領域は、金属膜17Fのエッチング工程によっては影響を受けることはない。 In the step of forming the source electrode 17S and the drain electrode 17D, the stopper layer 16 functions as an etching stopper layer for the metal film 17F. That is, the stopper layer 16 has a function of protecting the IGZO film 15F from an etchant (for example, phosphorous nitric acid) with respect to the metal film 17F. The stopper layer 16 is formed so as to cover a region (hereinafter referred to as “channel region”) located between the source electrode 17S and the drain electrode 17D of the IGZO film 15F. Therefore, the channel region of the IGZO film 15F is not affected by the etching process of the metal film 17F.
 次に、図4(C)及び(D)に示すように、レジストマスク18をマスクとしてIGZO薄膜15Fをエッチングする。 Next, as shown in FIGS. 4C and 4D, the IGZO thin film 15F is etched using the resist mask 18 as a mask.
 エッチング方法は特に限定されず、ウェットエッチング法でもよいし、ドライエッチング法でもよい。このIGZO膜15Fのエッチング工程により、IGZO膜15Fは素子単位でアイソレーション化されるとともに、IGZO膜15Fからなる活性層15が形成される。 The etching method is not particularly limited, and may be a wet etching method or a dry etching method. By this etching process of the IGZO film 15F, the IGZO film 15F is isolated in element units and an active layer 15 made of the IGZO film 15F is formed.
 このとき、ストッパ層16は、チャネル領域に位置するIGZO膜15Fのエッチング保護膜として機能する。すなわち、ストッパ層16は、IGZO膜15Fに対するエッチャント(例えばシュウ酸系)からストッパ層16直下のチャネル領域を保護する機能を有する。これにより、活性層15のチャネル領域は、IGZO膜15Fのエッチング工程によっては影響を受けることはない。 At this time, the stopper layer 16 functions as an etching protective film for the IGZO film 15F located in the channel region. That is, the stopper layer 16 has a function of protecting the channel region immediately below the stopper layer 16 from an etchant (for example, oxalic acid type) for the IGZO film 15F. Thereby, the channel region of the active layer 15 is not affected by the etching process of the IGZO film 15F.
 IGZO膜15Fのパターニング後、レジストマスク18はアッシング処理等によってソース電極17S及びドレイン電極17Dから除去される(図4(D))。 After patterning the IGZO film 15F, the resist mask 18 is removed from the source electrode 17S and the drain electrode 17D by ashing or the like (FIG. 4D).
 次に、図5(A)に示すように、基材10の表面に、ソース電極17S、ドレイン電極17D、ストッパ層16、活性層15、ゲート絶縁膜14を被覆するように保護膜(パッシベーション膜)19が形成される。 Next, as shown in FIG. 5A, a protective film (passivation film) is formed so as to cover the surface of the substrate 10 with the source electrode 17S, the drain electrode 17D, the stopper layer 16, the active layer 15, and the gate insulating film 14. ) 19 is formed.
 保護膜19は、活性層15を含むトランジスタ素子を外気から遮断することで、所定の電気的、材料的特性を確保するためのものである。保護膜19としては、典型的には、シリコン酸化膜(SiO2)、シリコン窒化膜(SiNx)等の酸化膜又は窒化膜で構成され、例えば、CVD法、スパッタリング法によって形成される。保護膜19の厚さは特に限定されず、例えば、200nm~500nmである。 The protective film 19 is for securing predetermined electrical and material characteristics by blocking the transistor element including the active layer 15 from the outside air. The protective film 19 is typically composed of an oxide film or nitride film such as a silicon oxide film (SiO 2 ) or a silicon nitride film (SiNx), and is formed by, for example, a CVD method or a sputtering method. The thickness of the protective film 19 is not particularly limited, and is, for example, 200 nm to 500 nm.
 続いて、図5(B)~(D)に示すように、保護膜19にソース/ドレイン電極と連通するコンタクトホール19aを形成する。この工程は、保護膜19の上にレジストマスク20を形成する工程(図5(B))と、レジストマスク20の開口部20aから露出する保護膜19をエッチングする工程(図5(C))と、レジストマスク20を除去する工程(図5(D))とを有する。 Subsequently, as shown in FIGS. 5B to 5D, contact holes 19a communicating with the source / drain electrodes are formed in the protective film 19. This step includes a step of forming a resist mask 20 on the protective film 19 (FIG. 5B) and a step of etching the protective film 19 exposed from the opening 20a of the resist mask 20 (FIG. 5C). And a step of removing the resist mask 20 (FIG. 5D).
 コンタクトホール19aの形成は、ドライエッチング法が採用されるが、ウェットエッチング法が採用されてもよい。また、図示は省略しているが、任意の位置にソース電極17Sと連絡するコンタクトホールも同様に形成される。 The contact hole 19a is formed by a dry etching method, but may be a wet etching method. Although not shown, a contact hole that communicates with the source electrode 17S is also formed at an arbitrary position.
 次に、図6(A)~(D)に示すように、コンタクトホール19aを介してソース/ドレイン電極にコンタクトする透明導電膜21を形成する。この工程は、透明導電膜膜21Fを形成する工程(図6(A))と、透明導電膜21Fの上にレジストマスク22を形成する工程(図6(B))と、レジストマスク22で覆われていない透明導電膜21Fをエッチングする工程(図6(C))と、レジストマスク20を除去する工程(図6(D))とを有する。 Next, as shown in FIGS. 6A to 6D, a transparent conductive film 21 in contact with the source / drain electrode is formed through the contact hole 19a. This step includes the step of forming the transparent conductive film 21F (FIG. 6A), the step of forming the resist mask 22 on the transparent conductive film 21F (FIG. 6B), and the step of covering with the resist mask 22. It has a step (FIG. 6C) of etching the transparent conductive film 21F that has not been removed and a step of removing the resist mask 20 (FIG. 6D).
 透明導電膜21Fは、典型的には、ITO膜やIZO膜で構成され、例えば、スパッタ法、CVD法によって形成される。透明導電膜21Fのエッチングは、ウェットエッチング法が採用されるが、これに限られず、ドライエッチング法が採用されてもよい。 The transparent conductive film 21F is typically composed of an ITO film or an IZO film, and is formed by, for example, a sputtering method or a CVD method. The etching of the transparent conductive film 21F employs a wet etching method, but is not limited thereto, and a dry etching method may be employed.
 図6(D)に示す透明導電膜21の形成されたトランジスタ1は、その後、活性層15の構造緩和を目的としたアニール工程が実施される。これにより、活性層15のトランジスタ特性を向上させることができる。なお、このアニール工程は、活性層15の成膜直後(例えばストッパ層16の形成前)に実施されてもよい。 6D is then subjected to an annealing process for the purpose of relaxing the structure of the active layer 15. Thereby, the transistor characteristics of the active layer 15 can be improved. This annealing step may be performed immediately after the formation of the active layer 15 (for example, before the formation of the stopper layer 16).
 以上のように構成される本実施形態のトランジスタ1は、ソース電極17Sとドレイン電極17Dとの間に一定の順方向電圧(ソース-ドレイン電圧:Vds)が印加される。この状態において、ゲート電極11とソース電極17Sの間に閾値電圧(Vth)以上のゲート電圧(Vgs)が印加されることで、活性層15中にキャリア(電子、正孔)が生成されるとともに、ソース-ドレイン間の順方向電圧によって、ソース-ドレイン間に電流(ソース-ドレイン電流:Ids)が発生する。ゲート電圧が大きくなるほど、ソース-ドレイン電流(Ids)も大きくなる。 In the transistor 1 of the present embodiment configured as described above, a constant forward voltage (source-drain voltage: Vds) is applied between the source electrode 17S and the drain electrode 17D. In this state, when a gate voltage (Vgs) equal to or higher than the threshold voltage (Vth) is applied between the gate electrode 11 and the source electrode 17S, carriers (electrons and holes) are generated in the active layer 15. A current (source-drain current: Ids) is generated between the source and the drain due to the forward voltage between the source and the drain. As the gate voltage increases, the source-drain current (Ids) also increases.
 このときのソース-ドレイン電流は、オン電流(on-state current)とも呼ばれ、活性層15の移動度が高いほど、大きな電流値が得られる。本実施形態では、活性層15が酸化物半導体で構成されているため、アモルファスシリコンで構成される活性層と比較して、移動度が高い。したがって、本実施形態によれば、オン電流値が高い電界効果トランジスタ1を得ることができる。 The source-drain current at this time is also called an on-state current, and a larger current value is obtained as the mobility of the active layer 15 is higher. In this embodiment, since the active layer 15 is made of an oxide semiconductor, the mobility is higher than that of an active layer made of amorphous silicon. Therefore, according to the present embodiment, the field effect transistor 1 having a high on-current value can be obtained.
 一方、ゲート電極11への印加電圧がオフ(0)の場合、ソース-ドレイン間に発生する電流は、ほとんどゼロとなる。このときのソース-ドレイン電流は、オフ電流(off-state current)とも呼ばれ、活性層15の電気抵抗値とソース-ドレイン電圧とで決まる。オフ電流値が小さいほど、オン電流値とオフ電流値との比(オン-オフ電流比)が大きくなるため、トランジスタとしては良好な特性が得られることになる。 On the other hand, when the voltage applied to the gate electrode 11 is off (0), the current generated between the source and the drain is almost zero. The source-drain current at this time is also called an off-state current and is determined by the electric resistance value of the active layer 15 and the source-drain voltage. The smaller the off-current value, the larger the ratio between the on-current value and the off-current value (on-off current ratio), so that better characteristics as a transistor can be obtained.
 そこで本実施形態において、ゲート絶縁膜14は、プラズマCVD法で成膜されたシリコン窒化膜からなる第1の絶縁層14Aと、スパッタリング法で成膜されたシリコン酸化膜からなる第2の絶縁層14Bの積層構造を有する。第2の絶縁層14Bが活性層15と第1の絶縁層14Aとの間に介在することで、第1の絶縁層14Aが含有する水素の影響により、活性層15の還元反応が防止される。これにより、活性層15の電気的特性の変動が回避され、オン-オフ電流比の高い優れたトランジスタ特性を得ることができる。 Therefore, in the present embodiment, the gate insulating film 14 includes the first insulating layer 14A made of a silicon nitride film formed by a plasma CVD method and the second insulating layer made of a silicon oxide film formed by a sputtering method. 14B has a laminated structure. Since the second insulating layer 14B is interposed between the active layer 15 and the first insulating layer 14A, the reduction reaction of the active layer 15 is prevented by the influence of hydrogen contained in the first insulating layer 14A. . Thereby, fluctuations in the electrical characteristics of the active layer 15 are avoided, and excellent transistor characteristics with a high on-off current ratio can be obtained.
 図7及び図8は、図1に示したトランジスタ構造において、ゲート絶縁膜の構成を異ならせて作製した各種サンプルのトランジスタ特性を示す実験結果である。各サンプルの活性層の構成及び成膜条件は共通とした。酸素分圧は2つの条件を設定し、それぞれの条件にて各サンプルを作製した。図7は、酸素分圧が0.05Paのときの実験結果、図8は、酸素分圧が0.15Paのときの実験結果である。活性層は厚み50nmとし、アニール条件は、空気中300℃の温度で15分間とした。各サンプルのゲート絶縁膜の構成は以下のとおりである。 7 and 8 show the experimental results showing the transistor characteristics of various samples manufactured by changing the structure of the gate insulating film in the transistor structure shown in FIG. The configuration of the active layer and the film formation conditions for each sample were the same. Two conditions were set for the oxygen partial pressure, and each sample was produced under each condition. FIG. 7 shows the experimental results when the oxygen partial pressure is 0.05 Pa, and FIG. 8 shows the experimental results when the oxygen partial pressure is 0.15 Pa. The active layer was 50 nm thick, and the annealing conditions were 15 minutes at 300 ° C. in air. The configuration of the gate insulating film of each sample is as follows.
 サンプル1(◆):CVD法で作製した厚み3500Å(オングストローム)のシリコン窒化膜と、その上にスパッタ法で作製した厚み250Åのシリコン酸化膜との積層膜
 サンプル2(■):CVD法で作製した厚み3500Åのシリコン窒化膜と、その上にスパッタ法で作製した厚み500Åのシリコン酸化膜との積層膜
 サンプル3(●):スパッタ法で作製した厚み2150Åのシリコン酸化膜(単層膜)
 サンプル4(▲):CVD法で作製した厚み3500Åのシリコン窒化膜(単層膜)
Sample 1 (♦): A laminated film of a silicon nitride film having a thickness of 3500 mm (angstrom) produced by the CVD method and a silicon oxide film having a thickness of 250 mm produced thereon by a sputtering method. Sample 2 (■): produced by the CVD method Laminated film of 3500 mm thick silicon nitride film and 500 mm thick silicon oxide film formed thereon by sputtering method Sample 3 (●): Silicon oxide film (single layer film) 2150 mm thick produced by sputtering method
Sample 4 (▲): 3500 mm thick silicon nitride film (single layer film) produced by CVD
 図7及び図8に示すように、トランジスタ特性は、概略的に、ゲート電圧(Vgs)0の位置を境に右側がオン電流特性、左側がオフ電流特性を示している。図7を参照すると、サンプル1~3はほぼ同様なオン電流値及びオフ電流値を有しているのに対して、サンプル4はオフ電流値が他のサンプルに比べて高い。サンプル4は、ゲート絶縁膜の活性層との界面がシリコン窒化物のCVD膜で構成されている。このため、当該ゲート絶縁膜と活性層との間に界面反応が生じ、活性層の酸化度が他のサンプルに比べて低下したことによって、活性層の電気抵抗値が低下したものと考えられる。酸素分圧を高めて活性層を作製した場合も、図8に示すように同様の結果が得られた。図7の実験結果に比べて、サンプル4のオフ電流特性の低下は目立たないが、ゲート絶縁膜と活性層の界面構造の違いがオフ電流特性に大きく影響することが明らかとなった。 As shown in FIGS. 7 and 8, the transistor characteristics schematically show the on-current characteristics on the right side and the off-current characteristics on the left side with respect to the position of the gate voltage (Vgs) 0. Referring to FIG. 7, samples 1 to 3 have substantially the same on-current value and off-current value, whereas sample 4 has a higher off-current value than the other samples. In Sample 4, the interface between the gate insulating film and the active layer is composed of a silicon nitride CVD film. For this reason, an interface reaction occurs between the gate insulating film and the active layer, and it is considered that the electrical resistance value of the active layer has decreased due to a decrease in the oxidation degree of the active layer compared to other samples. Similar results were obtained when the active layer was fabricated by increasing the oxygen partial pressure, as shown in FIG. Compared with the experimental results of FIG. 7, the decrease in the off-current characteristics of sample 4 is not noticeable, but it has been clarified that the difference in the interface structure between the gate insulating film and the active layer greatly affects the off-current characteristics.
 以上述べたように、本実施形態のトランジスタ1によれば、活性層15の電気伝導度の変動を防止できるので、信頼性の向上を図ることができる。 As described above, according to the transistor 1 of the present embodiment, fluctuations in the electrical conductivity of the active layer 15 can be prevented, so that reliability can be improved.
 また、本実施形態のトランジスタの製造方法によれば、活性層15の電気伝導度のばらつきを抑えることができるので、信頼性の高い薄膜トランジスタを安定して製造することが可能となる。 Further, according to the method for manufacturing a transistor of the present embodiment, variation in the electric conductivity of the active layer 15 can be suppressed, so that a highly reliable thin film transistor can be stably manufactured.
 図9及び図10は、上述したトランジスタの製造工程の一部を実施するための真空処理装置の概略構成図である。 9 and 10 are schematic configuration diagrams of a vacuum processing apparatus for carrying out a part of the above-described transistor manufacturing process.
 図9に示す真空処理装置200は、枚葉型(クラスター型)の真空処理装置として構成されている。真空処理装置200は、搬送室210と、ローディング室211と、熱処理室212と、第1のゲート絶縁層14Aを成膜するためのCVD室213Aと、第2のゲート絶縁層14Bを成膜するためのスパッタ室213Bと、活性層15を構成するIGZO膜15Fを成膜するためのスパッタ室214と、ストッパ層16を成膜するためのスパッタ室215と、アンロード室216とを備えている。搬送室210は、所定の減圧雰囲気に真空排気されており、その内部には、各室間で基材を搬送する搬送ロボットが設置されている。なお、後述するように、第2のゲート絶縁層14Bをシリコン酸化物のCVD膜で構成する場合、スパッタ室213BはCVD室として構成される。 The vacuum processing apparatus 200 shown in FIG. 9 is configured as a single wafer type (cluster type) vacuum processing apparatus. The vacuum processing apparatus 200 forms a transfer chamber 210, a loading chamber 211, a heat treatment chamber 212, a CVD chamber 213A for forming the first gate insulating layer 14A, and a second gate insulating layer 14B. A sputtering chamber 213B for forming the IGZO film 15F constituting the active layer 15, a sputtering chamber 215 for forming the stopper layer 16, and an unloading chamber 216. . The transfer chamber 210 is evacuated to a predetermined reduced-pressure atmosphere, and a transfer robot for transferring the base material between the chambers is installed therein. As will be described later, when the second gate insulating layer 14B is formed of a silicon oxide CVD film, the sputtering chamber 213B is configured as a CVD chamber.
 図10に示す真空処理装置300は、インライン型の真空処理装置として構成されている。真空処理装置300は、ローディング室311と、熱処理室312と、第1のゲート絶縁層14Aを成膜するためのCVD室313Aと、第2のゲート絶縁層14Bを成膜するためのスパッタ室313Bと、活性層15を構成するIGZO膜15Fを成膜するためのスパッタ室314と、加熱室315と、ストッパ層16を成膜するためのスパッタ室316と、アンロード室317とを備えている。真空処理装置300は、ローディング室311から上記各種処理室312~316を介してアンロード室317へ基材を真空搬送する搬送機構(図示略)を備えている。なお、後述するように、第2のゲート絶縁層14Bをシリコン酸化物のCVD膜で構成する場合、スパッタ室313BはCVD室として構成される。 A vacuum processing apparatus 300 shown in FIG. 10 is configured as an in-line type vacuum processing apparatus. The vacuum processing apparatus 300 includes a loading chamber 311, a heat treatment chamber 312, a CVD chamber 313A for forming the first gate insulating layer 14A, and a sputtering chamber 313B for forming the second gate insulating layer 14B. A sputtering chamber 314 for forming the IGZO film 15F constituting the active layer 15, a heating chamber 315, a sputtering chamber 316 for forming the stopper layer 16, and an unload chamber 317. . The vacuum processing apparatus 300 includes a transport mechanism (not shown) for vacuum transporting the substrate from the loading chamber 311 to the unload chamber 317 via the various processing chambers 312 to 316. As will be described later, when the second gate insulating layer 14B is formed of a silicon oxide CVD film, the sputtering chamber 313B is configured as a CVD chamber.
 真空処理装置200、300によれば、基材を大気に曝すことなく、ゲート絶縁膜14、IGZO膜15F及びストッパ層16連続して形成することが可能となる。これにより、各層の表面への大気中の水分や不純物の付着に起因する膜質の劣化を防止することができる。また、真空中で一貫して各種機能層の形成が可能となるので、各層の成膜に必要な工程時間を短縮でき、生産性の向上を図ることができる。 According to the vacuum processing apparatuses 200 and 300, the gate insulating film 14, the IGZO film 15F, and the stopper layer 16 can be continuously formed without exposing the base material to the atmosphere. Thereby, it is possible to prevent film quality deterioration due to adhesion of moisture and impurities in the atmosphere to the surface of each layer. In addition, since various functional layers can be formed consistently in a vacuum, the process time required for forming each layer can be shortened, and productivity can be improved.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
 上述の第1の実施形態においては、第2の絶縁層14Bをシリコン酸化物のスパッタ膜で構成した例を説明した。本実施形態では、この第2の絶縁層14Bがシリコン酸化物のCVD膜で構成された例を説明する。すなわち、本実施形態のトランジスタにおいて、ゲート絶縁膜14は、シリコン窒化物のCVD膜からなる第1の絶縁層14Aと、シリコン酸化物のCVD膜からなる第2の絶縁層14Bとの積層構造を有している。なお、これ以外の構成は第1の実施形態と同様であるので、ここではその説明を省略する。 In the above-described first embodiment, the example in which the second insulating layer 14B is formed of a sputtered film of silicon oxide has been described. In the present embodiment, an example in which the second insulating layer 14B is formed of a silicon oxide CVD film will be described. That is, in the transistor of this embodiment, the gate insulating film 14 has a stacked structure of a first insulating layer 14A made of a silicon nitride CVD film and a second insulating layer 14B made of a silicon oxide CVD film. Have. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted here.
 図11は、図1に示したトランジスタ構造において、ゲート絶縁膜の構成を異ならせて作製した各種サンプルのトランジスタ特性を示す他の実験結果である。各サンプルの活性層の構成及び成膜条件は共通であり、酸素分圧は0.05Pa、活性層の厚みは50nmとし、アニール条件は、空気中400℃の温度で15分間とした。各サンプルのゲート絶縁膜の構成は以下のとおりである。 FIG. 11 shows another experimental result showing the transistor characteristics of various samples manufactured by changing the structure of the gate insulating film in the transistor structure shown in FIG. The configuration of the active layer and the film formation conditions of each sample were common, the oxygen partial pressure was 0.05 Pa, the thickness of the active layer was 50 nm, and the annealing conditions were 15 minutes at a temperature of 400 ° C. in air. The configuration of the gate insulating film of each sample is as follows.
 サンプル4(▲):CVD法で作製した厚み3500Åのシリコン窒化膜
 サンプル5(○):CVD法で作製した厚み2150Åのシリコン酸化膜
Sample 4 (▲): Silicon nitride film with a thickness of 3500 mm produced by CVD method Sample 5 (◯): Silicon oxide film with a thickness of 2150 mm produced by CVD method
 図11に示すように、サンプル4に比べて、サンプル5の方がオフ電流値が小さいことが確認された。これは、同じCVD法でも、形成される膜種によって活性層との間の界面反応の程度が異なることを示している。また、サンプル5は、図7を参照して説明したように、スパッタリング法で形成されたシリコン酸化膜(サンプル1~3)と同様なオフ電流値を有している。 As shown in FIG. 11, it was confirmed that sample 5 had a smaller off-current value than sample 4. This indicates that even in the same CVD method, the degree of interfacial reaction with the active layer varies depending on the type of film formed. Further, as described with reference to FIG. 7, the sample 5 has an off-current value similar to that of the silicon oxide films (samples 1 to 3) formed by the sputtering method.
 以上のことから、第2の絶縁層14Bとしてシリコン酸化物のCVD膜を用いても、活性層の電気的特性の変動が回避され、オン-オフ電流比の高い優れたトランジスタ特性が得られる。 From the above, even when a silicon oxide CVD film is used as the second insulating layer 14B, fluctuations in the electrical characteristics of the active layer are avoided, and excellent transistor characteristics with a high on-off current ratio can be obtained.
 ここで、シリコン酸化膜をCVD法で形成する場合、シリコン窒化膜をCVD法で形成する場合と同様に、典型的には、反応ガスとしてシラン系ガスが用いられる。したがって、形成される膜には水素が含まれると考えられる。同じCVD法でも、シリコン酸化膜の方がシリコン窒化膜に比べて高いトランジスタ特性が得られる理由は、膜中の含有水素の量、熱処理(例えば活性層15に対するアニール処理など)における内部応力・脱水素の程度などが予想される。 Here, when the silicon oxide film is formed by the CVD method, a silane-based gas is typically used as the reaction gas, as in the case of forming the silicon nitride film by the CVD method. Therefore, it is considered that the formed film contains hydrogen. Even in the same CVD method, the silicon oxide film can obtain higher transistor characteristics than the silicon nitride film because the amount of hydrogen contained in the film and the internal stress / dehydration in the heat treatment (for example, annealing treatment for the active layer 15) The degree of element is expected.
 図12は、活性層のアニール温度が400℃、ゲート絶縁膜が上記サンプル3(●:シリコン酸化物のスパッタ膜)のときのトランジスタ特性を示す一実験結果である。上述のサンプル4(▲)と比較して、高いオン-オフ電流比が得られることは、図7に示した例と同様である。その一方で、アニール温度を高めることで、特性の更なる改善を図れることが確認された。図11と図12とを比較すると、同じアニール条件の場合、同じシリコン酸化膜であってもCVD膜よりもスパッタ膜の方が、高いオン-オフ電流比が得られることが確認された。 FIG. 12 shows an experimental result indicating transistor characteristics when the annealing temperature of the active layer is 400 ° C. and the gate insulating film is Sample 3 (●: sputtered film of silicon oxide). Compared with the above-described sample 4 (高 い), a high on-off current ratio can be obtained as in the example shown in FIG. On the other hand, it was confirmed that the characteristics could be further improved by increasing the annealing temperature. When FIG. 11 and FIG. 12 are compared, it was confirmed that a sputtered film can obtain a higher on-off current ratio than a CVD film even under the same annealing conditions, even with the same silicon oxide film.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation is possible based on the technical idea of this invention.
 例えば以上の実施形態では、ストッパ層16を単層で構成したが、これをゲート絶縁膜と同様に多層構造としてもよい。この場合、活性層との界面を構成する第1の層をシリコン酸化物のスパッタ膜とすることにより、活性層の還元を回避し、電気伝導度の特性の変動を防止することができる。 For example, in the above embodiment, the stopper layer 16 is constituted by a single layer, but it may be a multilayer structure like the gate insulating film. In this case, the first layer constituting the interface with the active layer is a silicon oxide sputtered film, so that reduction of the active layer can be avoided and fluctuations in the electrical conductivity characteristics can be prevented.
 また、上述したトランジスタ1は、液晶ディスプレイや有機ELディスプレイ等のアクティブマトリクス型表示パネル用のTFTとして用いることができる。これ以外に、上記トランジスタ1は、各種半導体装置あるいは電子機器のトランジスタ素子として用いることができる。 Further, the transistor 1 described above can be used as a TFT for an active matrix display panel such as a liquid crystal display or an organic EL display. In addition, the transistor 1 can be used as a transistor element of various semiconductor devices or electronic devices.
 1…トランジスタ
 10…基材
 11…ゲート電極
 14…ゲート絶縁膜
 14A…第1のゲート絶縁層
 14B…第2のゲート絶縁層
 15…活性層
 16…ストッパ層
 17S…ソース電極
 17D…ドレイン電極
 24…密着層
 200、300…真空処理装置
DESCRIPTION OF SYMBOLS 1 ... Transistor 10 ... Base material 11 ... Gate electrode 14 ... Gate insulating film 14A ... 1st gate insulating layer 14B ... 2nd gate insulating layer 15 ... Active layer 16 ... Stopper layer 17S ... Source electrode 17D ... Drain electrode 24 ... Adhesion layer 200, 300 ... Vacuum processing apparatus

Claims (10)

  1.  銅、又は銅を含む合金材料からなるゲート電極と、
     酸化物半導体からなる活性層と、
     前記ゲート電極と前記活性層との間に配置されシリコン窒化物からなる第1の絶縁層と、前記第1の絶縁層と前記活性層との間に配置されシリコン酸化物からなる第2の絶縁層とを含むゲート絶縁膜と、
     前記活性層とそれぞれ電気的に接続されたソース電極及びドレイン電極と
     を具備するトランジスタ。
    A gate electrode made of copper or an alloy material containing copper;
    An active layer made of an oxide semiconductor;
    A first insulating layer made of silicon nitride and disposed between the gate electrode and the active layer; and a second insulating layer made of silicon oxide and disposed between the first insulating layer and the active layer. A gate insulating film including a layer;
    A transistor comprising a source electrode and a drain electrode each electrically connected to the active layer.
  2.  請求項1に記載のトランジスタであって、
     前記第1の絶縁層は、シリコン窒化物のCVD膜からなる
     トランジスタ。
    The transistor of claim 1,
    The first insulating layer is a transistor made of a silicon nitride CVD film.
  3.  請求項2に記載のトランジスタであって、
     前記ゲート電極を支持するガラス製の基材と、
     前記基材と前記ゲート電極との間を密着させる密着層とをさらに具備する
     トランジスタ。
    A transistor according to claim 2, wherein
    A glass substrate supporting the gate electrode;
    A transistor further comprising an adhesion layer for closely adhering between the base material and the gate electrode.
  4.  請求項3に記載のトランジスタであって、
     前記密着層は、銅を含む合金材料の酸化膜である
     トランジスタ。
    A transistor according to claim 3, wherein
    The adhesion layer is an oxide film of an alloy material containing copper.
  5.  請求項1に記載のトランジスタであって、
     前記酸化物半導体は、In、Ga、又はZnの酸化物系材料からなる
     トランジスタ。
    The transistor of claim 1,
    The oxide semiconductor is a transistor made of an oxide-based material of In, Ga, or Zn.
  6.  基材の上に銅、又は銅を含む合金材料からなるゲート電極を形成し、
     前記ゲート電極上に、シリコン窒化物からなる第1の絶縁層をCVD法によって形成し、
     前記第1の絶縁層上に、シリコン酸化物からなる第2の絶縁層をスパッタリング法またはCVD法によって形成し、
     前記第2の絶縁層上に、酸化物半導体からなる活性層を形成し、
     前記活性層上にソース電極及びドレイン電極を形成する
     トランジスタの製造方法。
    Form a gate electrode made of copper or an alloy material containing copper on the base material,
    A first insulating layer made of silicon nitride is formed on the gate electrode by a CVD method,
    Forming a second insulating layer made of silicon oxide on the first insulating layer by a sputtering method or a CVD method;
    Forming an active layer made of an oxide semiconductor on the second insulating layer;
    A method for manufacturing a transistor, comprising forming a source electrode and a drain electrode on the active layer.
  7.  請求項6に記載のトランジスタの製造方法であって、
     前記ゲート電極を形成する工程の前に、前記基材と前記ゲート電極との間を密着させる密着層を形成する工程をさらに有する
     トランジスタの製造方法。
    A method of manufacturing a transistor according to claim 6,
    Prior to the step of forming the gate electrode, the method further includes a step of forming an adhesion layer that closely contacts the base material and the gate electrode.
  8.  請求項7に記載のトランジスタの製造方法であって、
     前記密着層として、銅を含む合金材料の酸化膜を形成する
     トランジスタの製造方法。
    A method of manufacturing a transistor according to claim 7,
    A method for manufacturing a transistor, wherein an oxide film of an alloy material containing copper is formed as the adhesion layer.
  9.  請求項6に記載のトランジスタの製造方法であって、
     前記第1の絶縁層、前記第2の絶縁層及び前記活性層は、共通の真空処理装置内で連続して成膜される
     トランジスタの製造方法。
    A method of manufacturing a transistor according to claim 6,
    The first insulating layer, the second insulating layer, and the active layer are successively formed in a common vacuum processing apparatus.
  10.  銅又は銅を含む合金材料からなるゲート電極が形成された基材の上に、薄膜トランジスタを製造するための装置であって、
     前記基材の上に、シリコン窒化物からなる第1の絶縁層を成膜する第1のCVD室と、
     前記基材の上に、シリコン酸化物からなる第2の絶縁層を成膜する第1のスパッタ室又は第2のCVD室と、
     前記基材の上に、酸化物半導体からなる活性層を成膜する第2のスパッタ室と、
     前記第1のCVD室、前記第1のスパッタ室又は前記第2のCVD室、及び前記第2のスパッタ室の間で前記基材を真空雰囲気中で搬送可能な搬送機構と
     を具備するトランジスタの製造装置。
    An apparatus for manufacturing a thin film transistor on a base material on which a gate electrode made of copper or an alloy material containing copper is formed,
    A first CVD chamber for forming a first insulating layer made of silicon nitride on the substrate;
    A first sputtering chamber or a second CVD chamber for forming a second insulating layer made of silicon oxide on the substrate;
    A second sputtering chamber for forming an active layer made of an oxide semiconductor on the substrate;
    A transfer mechanism capable of transferring the base material in a vacuum atmosphere between the first CVD chamber, the first sputtering chamber or the second CVD chamber, and the second sputtering chamber. Manufacturing equipment.
PCT/JP2010/001270 2009-02-27 2010-02-25 Transistor, transistor manufacturing method, and manufacturing device thereof WO2010098101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501508A JPWO2010098101A1 (en) 2009-02-27 2010-02-25 Transistor, transistor manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009046407 2009-02-27
JP2009-046407 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098101A1 true WO2010098101A1 (en) 2010-09-02

Family

ID=42665316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001270 WO2010098101A1 (en) 2009-02-27 2010-02-25 Transistor, transistor manufacturing method, and manufacturing device thereof

Country Status (3)

Country Link
JP (1) JPWO2010098101A1 (en)
TW (1) TW201041140A (en)
WO (1) WO2010098101A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122241A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Method for packaging target material and method for mounting target
WO2012029596A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2012057020A1 (en) * 2010-10-28 2012-05-03 富士フイルム株式会社 Thin film transistor and method for manufacturing same
JP2012104811A (en) * 2010-10-14 2012-05-31 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
JP2012124463A (en) * 2010-12-08 2012-06-28 Samsung Electronics Co Ltd Thin film transistor array panel
JP2013541192A (en) * 2010-09-03 2013-11-07 アプライド マテリアルズ インコーポレイテッド Staggered thin film transistor and method for forming the same
JP2015119175A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
CN104851790A (en) * 2014-02-13 2015-08-19 上海和辉光电有限公司 Method for manufacturing gate insulation layer
KR20150101404A (en) * 2014-02-24 2015-09-03 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Display Using The Same
JP2017126794A (en) * 2012-05-10 2017-07-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2017228800A (en) * 2012-05-10 2017-12-28 株式会社半導体エネルギー研究所 Semiconductor device
JP2022173216A (en) * 2012-05-31 2022-11-18 株式会社半導体エネルギー研究所 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471946B (en) 2010-11-17 2015-02-01 Innolux Corp Thin film transistors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246564A (en) * 1996-03-10 1997-09-19 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JP2001244266A (en) * 2000-02-28 2001-09-07 Lg Philips Lcd Co Ltd Substrate for electronic element and its manufacturing apparatus
JP2001318626A (en) * 2000-05-09 2001-11-16 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003086808A (en) * 2001-09-10 2003-03-20 Masashi Kawasaki Thin film transistor and matrix display
JP2007023380A (en) * 2005-07-19 2007-02-01 Applied Materials Inc Hybrid pvd-cvd system
JP2008072011A (en) * 2006-09-15 2008-03-27 Toppan Printing Co Ltd Method of manufacturing thin-film transistor
JP2008283046A (en) * 2007-05-11 2008-11-20 Canon Inc Insulated gate transistor, and display device
JP2009010089A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Wiring base film with good adhesiveness, and double-structure wiring film with good adhesiveness including the same
JP2010056541A (en) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2010056539A (en) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057098A (en) * 2003-08-06 2005-03-03 Sony Corp Thin film transistor and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246564A (en) * 1996-03-10 1997-09-19 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JP2001244266A (en) * 2000-02-28 2001-09-07 Lg Philips Lcd Co Ltd Substrate for electronic element and its manufacturing apparatus
JP2001318626A (en) * 2000-05-09 2001-11-16 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003086808A (en) * 2001-09-10 2003-03-20 Masashi Kawasaki Thin film transistor and matrix display
JP2007023380A (en) * 2005-07-19 2007-02-01 Applied Materials Inc Hybrid pvd-cvd system
JP2008072011A (en) * 2006-09-15 2008-03-27 Toppan Printing Co Ltd Method of manufacturing thin-film transistor
JP2008283046A (en) * 2007-05-11 2008-11-20 Canon Inc Insulated gate transistor, and display device
JP2009010089A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Wiring base film with good adhesiveness, and double-structure wiring film with good adhesiveness including the same
JP2010056541A (en) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2010056539A (en) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122241A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Method for packaging target material and method for mounting target
US8728860B2 (en) 2010-09-03 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2012029596A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10269563B2 (en) 2010-09-03 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9355844B2 (en) 2010-09-03 2016-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2013541192A (en) * 2010-09-03 2013-11-07 アプライド マテリアルズ インコーポレイテッド Staggered thin film transistor and method for forming the same
US9276124B2 (en) 2010-10-14 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with sidewall
JP2012104811A (en) * 2010-10-14 2012-05-31 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
WO2012057020A1 (en) * 2010-10-28 2012-05-03 富士フイルム株式会社 Thin film transistor and method for manufacturing same
JP2012124463A (en) * 2010-12-08 2012-06-28 Samsung Electronics Co Ltd Thin film transistor array panel
JP2017126794A (en) * 2012-05-10 2017-07-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2017228800A (en) * 2012-05-10 2017-12-28 株式会社半導体エネルギー研究所 Semiconductor device
US9966475B2 (en) 2012-05-10 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2022173216A (en) * 2012-05-31 2022-11-18 株式会社半導体エネルギー研究所 Semiconductor device
JP7362861B2 (en) 2012-05-31 2023-10-17 株式会社半導体エネルギー研究所 semiconductor equipment
JP2015119175A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
CN104851790A (en) * 2014-02-13 2015-08-19 上海和辉光电有限公司 Method for manufacturing gate insulation layer
KR20150101404A (en) * 2014-02-24 2015-09-03 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Display Using The Same
KR101679956B1 (en) * 2014-02-24 2016-12-07 엘지디스플레이 주식회사 Thin Film Transistor Substrate And Display Using The Same
US10186528B2 (en) 2014-02-24 2019-01-22 Lg Display Co., Ltd. Thin film transistor substrate and display using the same

Also Published As

Publication number Publication date
TW201041140A (en) 2010-11-16
JPWO2010098101A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
WO2010098101A1 (en) Transistor, transistor manufacturing method, and manufacturing device thereof
JP5417332B2 (en) Method for manufacturing field effect transistor
JP6990289B2 (en) Display device
JP5584960B2 (en) Thin film transistor and display device
US10615266B2 (en) Thin-film transistor, manufacturing method thereof, and array substrate
JP5099740B2 (en) Thin film transistor
JP6006558B2 (en) Semiconductor device and manufacturing method thereof
KR101980196B1 (en) Transistor, method of manufacturing the same and electronic device including transistor
US8704267B2 (en) Light-emitting display device
WO2010098100A1 (en) Transistor, method for manufacturing transistor, and apparatus for manufacturing transistor
JP5552440B2 (en) Method for manufacturing transistor
JP5291105B2 (en) Method for manufacturing field effect transistor
TWI508171B (en) Semiconductor device structure and manufacturing method for the same
WO2020228180A1 (en) Array substrate and preparation method for array substrate
US11049976B2 (en) Thin-film transistor, oxide semiconductor film, and sputtering target
US20230395616A1 (en) Method of manufacturing array substrate, array substrate, and display device
KR20220090871A (en) High mobility transistor device using crystallization of igto oxide semiconductor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501508

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745986

Country of ref document: EP

Kind code of ref document: A1