WO2010018269A1 - Seismic energy dissipater for a primary resistant structure of a construction - Google Patents

Seismic energy dissipater for a primary resistant structure of a construction Download PDF

Info

Publication number
WO2010018269A1
WO2010018269A1 PCT/ES2009/000419 ES2009000419W WO2010018269A1 WO 2010018269 A1 WO2010018269 A1 WO 2010018269A1 ES 2009000419 W ES2009000419 W ES 2009000419W WO 2010018269 A1 WO2010018269 A1 WO 2010018269A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
energy
heatsink
construction
tube
Prior art date
Application number
PCT/ES2009/000419
Other languages
Spanish (es)
French (fr)
Inventor
Amadeo Benavent Climent
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Publication of WO2010018269A1 publication Critical patent/WO2010018269A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/125Units with a telescopic-like action as one member moves into, or out of a second member
    • F16F7/126Units with a telescopic-like action as one member moves into, or out of a second member against the action of shear pins; one member having protuberances, e.g. dimples, ball bearings which cause the other member to deform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/125Units with a telescopic-like action as one member moves into, or out of a second member

Definitions

  • the present invention falls within the field of home design and construction, non-residential building and civil engineering works, and has its maximum application in building structures (residential or not).
  • the invention is part of the "energy dissipation" devices that are installed in the structures to protect them against earthquakes. These types of devices are included in the so-called "passive control systems”.
  • Earthquakes can introduce a large amount of energy (seismic energy input) into buildings, which if they are not able to absorb or dissipate, will cause them to collapse (collapse).
  • this seismic energy input is dissipated by means of plastic deformations in the primary resistant elements of the construction (mainly beams and pillars), which implies causing significant structural damage.
  • These traditional solutions have the sole objective of preventing the structure from falling apart during the earthquake so that its inhabitants have time to escape, but they assume that after the earthquake the building may be so damaged that it is necessary to demolish it.
  • Passive control systems are increasingly popular, and constitute a solution that allows the construction to be adjusted to the modern seismic regulations of many countries that have adopted the paradigm called "performance based design".
  • the benefits-based project seeks not only to prevent the loss of human life in the face of a severe earthquake, but also to control (minimize or avoid) damage to the primary resistant elements of the construction.
  • Energy dissipators are of several types: hysteretic, viscous or viscoelastic.
  • the invention object of this patent is of the first type.
  • Hysterical energy dissipators consist of a metallic element that deforms inelastically under different types of load.
  • several energy-dissipating elements of the hysteretic type have been developed: X-shaped or triangular steel plates that deform to bending, perforated steel sheets that are deformed to shear, circular section bars subjected to bending or torsion , steel bars that deform in the axial direction etc.
  • auxiliary secondary structure that joins the energy dissipation element to the beams, pillars or beam-pillar nodes of the main structure of the construction.
  • this auxiliary secondary structure normally consists of reinforced concrete or steel walls (see for example the patent Japanese 7-158315A), or also in metallic triangulations.
  • perforated steel plates are installed directly on the beam-pillar node (see for example Japanese patent 2000204788) and the auxiliary secondary structure is reduced to plates welded to the energy dissipating element.
  • the auxiliary secondary structure In the case of bars subjected to axial deformations, the auxiliary secondary structure must ensure that the bar can freely deform without compression buckling. For it
  • the bar that constitutes the energy dissipating element is embedded in concrete walls or in steel tubes filled with concrete that are installed in the primary structure of the construction as conventional diagonal bars (see for example Japanese patent 6-57820A).
  • This solution is known as "bars with restricted buckling"("buckling restrained brace” or “unbonded brace”).
  • the existing solutions cited present several problems.
  • the auxiliary secondary structures of the concrete wall type increase the structure's own weight (and with it the inertia forces generated by the earthquake), reduce the diafanity of the spaces, hinder or not allow the opening of gaps and significantly restrict The flexibility in the design of the building.
  • the invention object of this patent does not require any auxiliary secondary structure because the walls of the Steel tubes that join the main structure of the building constitute the material or energy dissipating element that plasticizes. This reduces costs and extra weights in construction.
  • the new invention can be installed in the main structure of the building as a conventional diagonal bar and therefore has less impact on the diafanity of the spaces and can be incorporated more flexibly in the design of the building.
  • the new heatsink object of this patent does not need any coating or outer tube of steel filled with concrete to avoid the buckling of the element that plasticizes;
  • the telescopic arrangement of the two tubes and the perforations in the walls thereof make the diagonal bar plasticize before panning.
  • Another important advantage of the new heatsink with respect to "bars with restricted buckling" is that in the first part the parts that deform plastically (the walls of the tube) are visible and are therefore easy to inspect since they are not covered by concrete and outer steel tubes as with "bars with restricted buckling".
  • the new heatsink object of this patent is much simpler than existing solutions and allows to reduce costs substantially.
  • the invention relates to a seismic energy dissipator for a primary resistant structure of a construction, that is, the set of beams, columns, slabs or bases that are part of the structure of the construction.
  • Said energy dissipator is applicable in those situations in which the primary resistant structure is subjected to loads due to oscillations or vibrations, due to earthquakes when oscillations and vibrations are high, or may also be due to wind or other agents that may cause oscillations in smaller buildings than those created by earthquakes, said loads being supported, due to their intermittent, sporadic or occasional character, due to elements other than the resistant structure of the construction.
  • said hysterical seismic energy dissipator comprises at least two tubes arranged telescopically and connected to each other at least one point of attachment.
  • at least one wall of at least one of the tubes there will be at least one perforation made around a junction point.
  • perforation made around a junction point.
  • each of them would be located around a different point of attachment.
  • the function of said perforations is to allow the tubes a capacity to plasticize, absorbing an energy, deforming around the Ia drilling. In this way the energy is absorbed by the energy sinks and not by the resistant structure. In case these heatsinks become unusable, they may be replaced by new heatsinks.
  • the control of the dissipated energy is exerted by modifying the number of perforations in the surface of the tube wall, as well as the perforated area.
  • the perforated area also has an impact on the threshold of effort required for the heatsink to start dissipating energy, not being effective for stress values below that threshold.
  • the energy dissipator has closure plates that cover or close the ends of the tubes and connection plates that connect the tubes with the primary resistant structure.
  • the heatsinks made as described allow plasticizing specific and predetermined areas of the walls of the tubes when they are subjected to axial loads in the direction of the tube guideline.
  • an structural element can be installed in a construction such as a simple conventional diagonal bar, but with the advantage that it is able to dissipate energy in a stable way, without buckling, by means of plastic deformations.
  • connection between the different tubes that form the energy dissipator can be carried out by welding, so that there will be no possible relative movement between the different tubes that form the dissipator.
  • the union can be carried out by means of screws. Said screws may be smaller than the housing defined by the attachment points. Therefore, there will be some clearance between the screw and the point of attachment, the larger the smaller the screw or the larger the housing at the point of attachment. In this way it is possible that small oscillations do not have to be absorbed by the energy dissipator, absorbing only those efforts that cause a relative movement between the tubes greater than the clearance mentioned above.
  • the tubes inside may be empty.
  • the thickness of the tube wall is also a parameter that influences the energy that the heatsink can absorb, since, the thicker the tube wall, the more energy the dissipation of the invention can dissipate.
  • At least one elastic element may be placed, such as a spring, spring, or elastomeric material, anchored at a first end to the resistant structure and by a second end to a fixed point inside the tube.
  • a spring, spring, or elastomeric material anchored at a first end to the resistant structure and by a second end to a fixed point inside the tube.
  • Figure 1. Shows the basic version of the heatsink of the invention.
  • Figure 2. Shows a cross section of the basic version of the heatsink of the invention. Said section is made by a plane perpendicular to the axis of the tube, said plane containing one of the perforations that lies between two points of attachment.
  • Figure 3. Shows a longitudinal section of the basic version of the heatsink of the invention, made by a wall of the tube that does not contain perforations.
  • Figure 4. Shows a detailed view of the perforations and junction points of the heatsink of the invention in which the union is carried out by means of screws.
  • Figure 5. Shows a cross section of the heatsink of Figure 4, made by a plane perpendicular to the axis of the tube, said plane containing one of the perforations that is between two junction points.
  • Figure 6. Shows a longitudinal section of the heatsink of Figure 4. The section has been made by one of the walls of the tube that do not have perforations.
  • Figure 7. Shows a longitudinal section of the embodiment of the heatsink comprising springs inside the tubes. The section has been made by a tube walls that have no perforations.
  • Figure 8. Shows a first mode of placement of the heatsink of the invention within a porticoed structure. The heatsink is aligned with the axis that defines the centers of two diametrically opposed beam-pillar knots in the rectangle that form the adjacent beams and pillars.
  • Figure 9. Shows a second mode of placement of the heatsink of the invention within a porticoed structure.
  • the heatsink is aligned with an axis that joins the center of one of the beam-pillar nodes with an intermediate point of the beam.
  • Figure 10. Shows a third way of placing the heatsink of the invention in a triangulated structure or in latticework.
  • the heatsink of the invention introduced by replacing one or more elements of the triangulated or lattice structure.
  • the object of this invention is a new energy sink of simple, cheap and easy to inspect hysteretic type, which can be installed in the primary structure of a construction such as a conventional diagonal bar subjected to axial solicitations, and which is capable of dissipating energy stably and without buckling.
  • the new heatsink see Figure 1, is formed by two tubular profiles, made for example in steel, hereinafter they will be called tubes, of square section, although no other type of section such as circular is excluded, for example, arranged in a way telescopic, that is an inner tube (1) inside an outer tube (2).
  • the connection between both tubes (1, 2) is made at several points of connection (3) by welding.
  • the heatsink of the invention operates under axial tensile / compression loads in the direction of the tube axis (1, 2).
  • the steel of the tube wall (1, 2) located between the perforations deforms plastically and thereby dissipates energy.
  • the above description constitutes an embodiment of the new heatsink, whose Hysteretic behavior is of the elastoplastic type.
  • This embodiment can have the following variants, and all of them form part of the invention: the section of the tube can also be rectangular, circular, rhomboidal, etc .; the number of telescopically arranged tubes can be greater than two; The position of the perforations along the tubes can be centered, at the ends or in one or more areas along the axis of the tubes; the number of faces of the perforated tubes can be one, several or all; the number of tubes that are drilled can be one, several or all; The material of the tubes can be steel, aluminum, special alloys, plastics etc.
  • the invention includes different embodiments of the new heatsink consisting of introducing one or both of the following modifications:
  • the second embodiment is illustrated in Figures 4, 5 and 6 showing an elevation, a cross section and a longitudinal section of the central part of the heatsink, respectively.
  • This second embodiment is based on replacing the welds at the junction points (3) with screws (9), and leaving a controlled clearance between the diameter of the screw and that of the hole (10) made in the center of the joint point (5). ).
  • the heatsink does not work, that is, that the walls of the tubes (1, 2) do not deform, when the relative axial displacement between the ends of the tubes is less than the clearance.
  • This feature may be desirable when it is intended to avoid fatigue problems under low amplitude cyclic loads caused, for example, by wind or vibrations, for which the collaboration of the heatsink may not be desirable.
  • FIG. 7 represents a longitudinal section of the heatsink.
  • This modification consists of incorporating into the tubes (1, 2) two springs (11, 12) joined by one or more central bars (13) and an edge plate (14), which allow adding to the hysterical law of the heatsink a Purely elastic component, and give it recentration properties.
  • the springs (11, 12) and the central bars (13) can be replaced by an elastomeric or viscoelastic material that fulfills a similar function.
  • Figure 8 shows a first mode of placement of the heatsink (15) of the invention, installed within a porticoed structure (16) that can be metal, reinforced concrete, wood etc.
  • the porch consists of beams (17), columns (18) and beam-column knots (19).
  • the heatsink is arranged aligned with the axis defined by the centers of two diametrically opposed beam-column knots (19) in the rectangle that form the beams (17) and adjacent columns (18).
  • the heatsink comprises the tubes (1, 2), with perforations on their faces (22) and arranged telescopically, which are connected at the first and second points of attachment to the structure (23, 24) by means of welds or screws.
  • the connections of the free end of the outer tube (2) at the first point of attachment to the structure (23), or of the free end of the inner tube (1) with the second point of attachment to the structure (24) can be real joints made with pins, or simple standard structural connections made with welded or bolted plates.
  • Figure 9 shows a second mode of placement of the heatsink object of this patent, installed inside a porticoed structure (16) that can be metallic, reinforced concrete, wood etc.
  • a porticoed structure (16) that can be metallic, reinforced concrete, wood etc.
  • the main difference with the embodiment of Figure 8 is that the heatsink is aligned with an axis that joins the center of one of the beam-column nodes (19) with an intermediate point of the beam (17).
  • the configuration of Figure 9 allows to leave an open space in the opening that may be desirable to arrange doors or windows in it.
  • Figure 10 shows a third mode of placement of the heatsink object of the invention, installed in a triangulated or lattice structure that can be metal, reinforced concrete, wood etc.
  • the latticework is generally formed by horizontal (27) or inclined cords, uprights (28) and diagonal bars (29).
  • the new heatsink can be introduced by replacing one or more cords (30), uprights (31) or diagonal bars (32). With this it is possible to significantly increase the energy dissipation capacity of a structural type - the triangulated or lattice structures - which, when constructed with conventional bars, have a very low plastic deformation capacity, being limited by the buckling of the compression bars. .
  • the new heatsink can also be installed in the resistant structure, forming part of diada ("toggle brace") or "scissor” (scissors jack system) systems.

Abstract

The invention relates to a seismic energy dissipater for the primary resistant structure of a construction, which can be installed in a structure as a traditional diagonal bar. In response to axial loading, the invention dissipates energy in a stable manner without buckling. The dissipater is formed by two or more telescopically arranged tubes connected at multiple connection points by means of welds or screws. Two rows of perforations are provided in the areas close to the connection points on the walls of the tubes, the number, shape and separating distance thereof determining the volume of plastic-coated steel and the axial stiffness and resistance of the dissipater. In addition, a larger perforation is provided at either end of the aforementioned two rows of perforations. The end of each tube is joined to the primary structure using plates. Optionally, springs can be provided inside the tubes.

Description

DISIPADOR DE ENERGÍA SÍSMICA PARA UNA ESTRUCTURA RESISTENTE PRIMARIA DE UNA CONSTRUCCIÓN SEISMIC ENERGY SINK FOR A PRIMARY RESISTANT STRUCTURE OF A CONSTRUCTION
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se encuadra dentro del campo del diseño y construcción de viviendas, edificación no residencial y obras de ingeniería civil, y tiene su máxima aplicación en estructuras de edificios (residenciales o no). La invención se enmarca en el ámbito de los dispositivos "disipadores de energía" que se instalan en las estructuras para protegerlas frente a terremotos. Este tipo de dispositivos se engloban dentro de los denominados "sistemas de control pasivo".The present invention falls within the field of home design and construction, non-residential building and civil engineering works, and has its maximum application in building structures (residential or not). The invention is part of the "energy dissipation" devices that are installed in the structures to protect them against earthquakes. These types of devices are included in the so-called "passive control systems".
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Los terremotos pueden introducir en las construcciones una elevada cantidad de energía (input de energía sísmica) que si éstas no son capaces de absorber o disipar, provocarán su derrumbe (colapso). En las soluciones tradicionales de estructuras sismorresistentes este input de energía sísmica se disipa mediante deformaciones plásticas en los elementos resistentes primarios de Ia construcción (fundamentalmente vigas y pilares), Io cual implica provocarles daños estructurales importantes. Estas soluciones tradicionales tienen como objetivo único el evitar que Ia estructura se desmorone durante el sismo para que sus moradores tengan tiempo de escapar, pero dan por hecho que después del terremoto el edificio puede estar tan dañado que sea necesario demolerlo.Earthquakes can introduce a large amount of energy (seismic energy input) into buildings, which if they are not able to absorb or dissipate, will cause them to collapse (collapse). In traditional solutions of seismic-resistant structures, this seismic energy input is dissipated by means of plastic deformations in the primary resistant elements of the construction (mainly beams and pillars), which implies causing significant structural damage. These traditional solutions have the sole objective of preventing the structure from falling apart during the earthquake so that its inhabitants have time to escape, but they assume that after the earthquake the building may be so damaged that it is necessary to demolish it.
En las últimas décadas se han desarrollado soluciones innovadoras denominadas en general "sistemas de control pasivo" que consisten en instalar en Ia estructura unos dispositivos especiales llamados "disipadores de energía" que se encargan de disipar prácticamente toda Ia energía introducida por el terremoto. De esa manera se pueden concentrar los daños en unos puntos concretos de Ia construcción (en los propios disipadores) y evitar que se dañen los elementos resistentes primarios de Ia construcción (fundamentalmente los pilares y vigas que deben soportar las cargas gravitatorias). Los disipadores funcionan como "fusibles sísmicos" que pueden ser fácilmente sustituidos por otros nuevos después del terremoto. En este símil eléctrico, los pilares y vigas de Ia estructura constituirían los "cables" de Ia instalación, y el terremoto una sobrecarga eléctrica en el circuito.In recent decades, innovative solutions have been developed generally called "passive control systems" that consist of installing special devices called "energy dissipators" in the structure that are responsible for dissipating practically all the energy introduced by the earthquake. In this way, the damages can be concentrated in specific points of the construction (in the heatsinks themselves) and avoid damaging the primary resistant elements of the construction (mainly the pillars and beams that must bear the gravitational loads). The heatsinks function as "seismic fuses" that can easily be replaced by new ones after the earthquake. In this electric simile, the pillars and beams of the structure would constitute the "cables" of the installation, and the Earthquake an electrical overload in the circuit.
Los sistemas de control pasivo son cada vez más populares, y constituyen una solución que permite ajustar las construcciones a las modernas normativas sísmicas de muchos países que han adoptado el paradigma denominado "proyecto basado en prestaciones" (performance based design). El proyecto basado en prestaciones busca no sólo evitar Ia pérdida de vidas humanas ante un terremoto severo, sino además controlar (minimizar o evitar) los daños en los elementos resistentes primarios de Ia construcción.Passive control systems are increasingly popular, and constitute a solution that allows the construction to be adjusted to the modern seismic regulations of many countries that have adopted the paradigm called "performance based design". The benefits-based project seeks not only to prevent the loss of human life in the face of a severe earthquake, but also to control (minimize or avoid) damage to the primary resistant elements of the construction.
Los disipadores de energía son de varios tipos: histeréticos, viscosos o viscoelásticos. El invento objeto de esta patente es del primer tipo. Los disipadores de energía de tipo histerético consisten en un elemento metálico que se deforma inelásticamente bajo diferentes tipos de carga. En los últimos años se han desarrollado varios elementos disipadores de energía de tipo histerético: chapas de acero en forma de X o triangular que se deforman a flexión, chapas perforadas de acero que se deforman a cortante, barras de sección circular sometidas a flexión o a torsión, barras de acero que se deforman en Ia dirección axial etc.Energy dissipators are of several types: hysteretic, viscous or viscoelastic. The invention object of this patent is of the first type. Hysterical energy dissipators consist of a metallic element that deforms inelastically under different types of load. In recent years, several energy-dissipating elements of the hysteretic type have been developed: X-shaped or triangular steel plates that deform to bending, perforated steel sheets that are deformed to shear, circular section bars subjected to bending or torsion , steel bars that deform in the axial direction etc.
En todos los casos, para instalar el elemento disipador de energía en el edificio es necesario emplear una estructura secundaria auxiliar que una el elemento disipador de energía a las vigas, pilares o nudos viga-pilar de Ia estructura principal de Ia construcción. En el caso de las chapas de acero en forma de X o triangular, de las chapas perforadas de acero, o de las barras a flexión o torsión, esta estructura secundaria auxiliar consiste normalmente en muros de hormigón armado o acero (véase por ejemplo Ia patente japonesa 7-158315A), o también en triangulaciones metálicas. A veces las chapas perforadas de acero se instalan directamente en el nudo viga-pilar (véase por ejemplo Ia patente japonesa 2000204788) y Ia estructura secundaria auxiliar se reduce a unas chapas soldadas al elemento disipador de energía. En el caso de las barras sometidas a deformaciones axiles, Ia estructura secundaria auxiliar debe garantizar que Ia barra pueda deformar libremente sin pandear a compresión. Para elloIn all cases, to install the energy dissipation element in the building it is necessary to use an auxiliary secondary structure that joins the energy dissipation element to the beams, pillars or beam-pillar nodes of the main structure of the construction. In the case of X-shaped or triangular steel sheets, perforated steel sheets, or bending or torsion bars, this auxiliary secondary structure normally consists of reinforced concrete or steel walls (see for example the patent Japanese 7-158315A), or also in metallic triangulations. Sometimes perforated steel plates are installed directly on the beam-pillar node (see for example Japanese patent 2000204788) and the auxiliary secondary structure is reduced to plates welded to the energy dissipating element. In the case of bars subjected to axial deformations, the auxiliary secondary structure must ensure that the bar can freely deform without compression buckling. For it
Ia barra que constituye el elemento disipador de energía se embebe en muros de hormigón o en tubos de acero rellenos de hormigón que se instalan en Ia estructura primaria de Ia construcción como barras diagonales convencionales (véase por ejemplo Ia patente japonesa 6-57820A). Esta solución se conoce como "barras con pandeo restringido" ("buckling restrained brace" o "unbonded brace"). Las soluciones existentes citadas presentan varios problemas. Primero, las estructuras secundarias auxiliares de tipo muro de hormigón incrementan el peso propio de Ia estructura (y con ello las fuerzas de inercia que genera el terremoto), reducen Ia diafanidad de los espacios, dificultan o no permiten Ia apertura de huecos y restringen notablemente Ia flexibilidad en el diseño del edificio. Estos problemas, un poco menos acusados, se dan también cuando Ia estructura secundaria auxiliar consiste en triangulaciones metálicas en vez de muros de acero u hormigón. La alternativa de instalar elementos disipadores a base de chapas perforadas de acero directamente en los nudos complica significativamente Ia construcción de los mismos. Segundo, el coste de las estructuras secundarias auxiliares o de soluciones complejas para los nudos suele ser mayor que el coste del propio elemento disipador de energía, y ello encarece el sistema de control pasivo completo. Tercero, las uniones (normalmente atornilladas o soldadas) entre los elementos disipadores de energía (chapas o barras) y Ia estructura secundaria auxiliar deben ser muy cuidadas para que no afecten a las propiedades del material que debe deformar plásticamente; Ia ejecución de estas uniones incrementan también el coste del sistema de control pasivo completo. En el caso, de las barras de acero sometidas a deformaciones axiles ("barras con pandeo restringido"), es necesario revestir el elemento disipador de energía con un material que evite Ia adherencia con el hormigón, y después embeberlo dentro de un tubo de acero relleno de hormigón, Io cual encarece Ia solución y además no permite inspeccionar visualmente el elemento disipador de energía tras el terremoto.The bar that constitutes the energy dissipating element is embedded in concrete walls or in steel tubes filled with concrete that are installed in the primary structure of the construction as conventional diagonal bars (see for example Japanese patent 6-57820A). This solution is known as "bars with restricted buckling"("buckling restrained brace" or "unbonded brace"). The existing solutions cited present several problems. First, the auxiliary secondary structures of the concrete wall type increase the structure's own weight (and with it the inertia forces generated by the earthquake), reduce the diafanity of the spaces, hinder or not allow the opening of gaps and significantly restrict The flexibility in the design of the building. These problems, a little less pronounced, also occur when the secondary auxiliary structure consists of metallic triangulations instead of steel or concrete walls. The alternative of installing dissipating elements based on perforated steel sheets directly at the nodes significantly complicates their construction. Second, the cost of auxiliary secondary structures or complex solutions for the nodes is usually greater than the cost of the energy dissipating element itself, and this makes the entire passive control system more expensive. Third, the joints (normally screwed or welded) between the energy dissipating elements (plates or bars) and the auxiliary secondary structure must be very careful so that they do not affect the properties of the material to be deformed plastically; The execution of these unions also increases the cost of the complete passive control system. In the case, of the steel bars subjected to axial deformations ("bars with restricted buckling"), it is necessary to coat the energy dissipating element with a material that prevents adhesion with the concrete, and then embed it inside a steel tube concrete filling, which makes the solution more expensive and also does not allow visually inspect the energy dissipating element after the earthquake.
Estos problemas se minimizan o desaparecen con el nuevo disipador objeto de esta patente. Primero, en comparación con los elementos disipadores del tipo chapa de acero en forma de X o triangular, chapa perforada de acero o barras a flexión o torsión, el invento objeto de esta patente no precisa de ninguna estructura secundaria auxiliar porque las propias paredes de los tubos de acero que se unen a Ia estructura principal del edificio constituyen el material o elemento disipador de energía que plastifica. Ello reduce costes y pesos extra en Ia construcción. El nuevo invento puede instalarse en Ia estructura principal del edificio como una barra diagonal convencional y por Io tanto tiene menos impacto en Ia diafanidad de los espacios y se puede incorporar de forma más flexible en el diseño del edificio. Además, no requiere ningún tipo de unión entre el elemento disipador de energía que plastifica y el tubo de acero que Io une a Ia estructura primaria del edificio, ya que ambas partes están integradas. Todo ello simplifica notablemente el diseño del disipador y reduce significativamente los costes de fabricación e instalación.These problems are minimized or disappear with the new heatsink object of this patent. First, in comparison with the dissipating elements of the X-shaped or triangular steel sheet type, perforated sheet steel or bending or torsion bars, the invention object of this patent does not require any auxiliary secondary structure because the walls of the Steel tubes that join the main structure of the building constitute the material or energy dissipating element that plasticizes. This reduces costs and extra weights in construction. The new invention can be installed in the main structure of the building as a conventional diagonal bar and therefore has less impact on the diafanity of the spaces and can be incorporated more flexibly in the design of the building. In addition, it does not require any type of union between the energy dissipating element that plasticizes and the steel tube that joins it to the primary structure of the building, since both parts are integrated. All this greatly simplifies the design of the heatsink and significantly reduces the costs of Manufacturing and installation
A diferencia de las "barras con pandeo restringido" que también se instalan en Ia estructura principal del edificio como barras diagonales convencionales, el nuevo disipador objeto de esta patente no necesita ningún revestimiento ni tubo exterior de acero relleno de hormigón para evitar el pandeo del elemento que plastifica; Ia propia disposición telescópica de los dos tubos y las perforaciones en las paredes de los mismos hacen que Ia barra diagonal plastifique antes de pandear. Otra ventaja importante del nuevo disipador respecto a las "barras con pandeo restringido" es que en el primero quedan a Ia vista las partes que deforman plásticamente (las paredes del tubo) y son por Io tanto fáciles de inspeccionar ya que no están recubiertos por hormigón y tubos exteriores de acero como ocurre con las "barras con pandeo restringido". En definitiva, el nuevo disipador objeto de esta patente es mucho más simple que las soluciones existentes y permite reducir sustancialmente los costes.Unlike the "bars with restricted buckling" that are also installed in the main structure of the building as conventional diagonal bars, the new heatsink object of this patent does not need any coating or outer tube of steel filled with concrete to avoid the buckling of the element that plasticizes; The telescopic arrangement of the two tubes and the perforations in the walls thereof make the diagonal bar plasticize before panning. Another important advantage of the new heatsink with respect to "bars with restricted buckling" is that in the first part the parts that deform plastically (the walls of the tube) are visible and are therefore easy to inspect since they are not covered by concrete and outer steel tubes as with "bars with restricted buckling". In short, the new heatsink object of this patent is much simpler than existing solutions and allows to reduce costs substantially.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
La invención se refiere a un disipador de energía sísmica para una estructura resistente primaria de una construcción, es decir, el conjunto de vigas, columnas, losas o bases que forman parte de Ia estructura de Ia construcción. Dicho disipador de energía es de aplicación en aquellas situaciones en las cuales Ia estructura resistente primaria está sometida a cargas debidas a oscilaciones o vibraciones, debidas a terremotos cuando las oscilaciones y vibraciones son elevadas, o pudiendo ser también debidas a viento u otros agentes que puedan causar oscilaciones en edificios de menor envergadura que aquellas creadas por terremotos, siendo dichas cargas soportadas, por su carácter de intermitentes, esporádicas u ocasionales, por unos elementos distintos a Ia estructura resistente de Ia construcción.The invention relates to a seismic energy dissipator for a primary resistant structure of a construction, that is, the set of beams, columns, slabs or bases that are part of the structure of the construction. Said energy dissipator is applicable in those situations in which the primary resistant structure is subjected to loads due to oscillations or vibrations, due to earthquakes when oscillations and vibrations are high, or may also be due to wind or other agents that may cause oscillations in smaller buildings than those created by earthquakes, said loads being supported, due to their intermittent, sporadic or occasional character, due to elements other than the resistant structure of the construction.
De acuerdo con Ia invención, dicho disipador de energía sísmica, de tipo histerético, comprende al menos dos tubos dispuestos de forma telescópica y conectados entre sí en al menos un punto de unión. En al menos una pared de al menos uno de los tubos existirá al menos una perforación realizada alrededor de un punto de unión. En el caso de haber más de una perforación, cada una de ellas se situaría alrededor de un punto de unión distinto. La función de dichas perforaciones es permitir a los tubos una capacidad de plastificar, absorbiendo una energía, deformándose alrededor de Ia perforación. De este modo se absorbe Ia energía por los disipadores de energía y no por Ia estructura resistente. En el caso de quedar inutilizados dichos disipadores, podrán ser sustituidos por unos nuevos disipadores. El control de Ia energía disipada se ejerce modificando el número de perforaciones en Ia superficie de Ia pared del tubo, así como el área perforada. El área perforada también tiene impacto en el umbral del esfuerzo necesario para que el disipador empiece a disipar energía, no siendo efectivo para valores de esfuerzo inferiores a dicho umbral. Por último, el disipador de energía cuenta con unas chapas de cierre que tapan o cierran los extremos de los tubos y unas chapas de conexión que conectan los tubos con Ia estructura resistente primaria. Los disipadores realizados según se ha descrito permiten hacer plastificar zonas concretas y predeterminadas de las paredes de los tubos cuando éstos son sometidos a cargas axiles en Ia dirección de Ia directriz de los tubos. Del mismo modo, mediante una configuración sencilla y de fácil ejecución se consigue un elemento estructural instalable en una construcción como una simple barra diagonal convencional, pero con Ia ventaja de que es capaz de disipar energía de forma estable, sin pandear, mediante deformaciones plásticas.In accordance with the invention, said hysterical seismic energy dissipator, comprises at least two tubes arranged telescopically and connected to each other at least one point of attachment. In at least one wall of at least one of the tubes there will be at least one perforation made around a junction point. In the case of more than one perforation, each of them would be located around a different point of attachment. The function of said perforations is to allow the tubes a capacity to plasticize, absorbing an energy, deforming around the Ia drilling. In this way the energy is absorbed by the energy sinks and not by the resistant structure. In case these heatsinks become unusable, they may be replaced by new heatsinks. The control of the dissipated energy is exerted by modifying the number of perforations in the surface of the tube wall, as well as the perforated area. The perforated area also has an impact on the threshold of effort required for the heatsink to start dissipating energy, not being effective for stress values below that threshold. Finally, the energy dissipator has closure plates that cover or close the ends of the tubes and connection plates that connect the tubes with the primary resistant structure. The heatsinks made as described allow plasticizing specific and predetermined areas of the walls of the tubes when they are subjected to axial loads in the direction of the tube guideline. In the same way, by means of a simple configuration and of easy execution, an structural element can be installed in a construction such as a simple conventional diagonal bar, but with the advantage that it is able to dissipate energy in a stable way, without buckling, by means of plastic deformations.
La conexión entre los distintos tubos que forman el disipador de energía podrá llevarse a cabo mediante soldadura, de modo que no existirá ningún movimiento relativo posible entre los distintos tubos que forman el disipador. Alternativamente, Ia unión podrá llevarse a cabo mediante tornillos. Dichos tornillos podrán ser de un tamaño menor al alojamiento que definen los puntos de unión. Por Io tanto, existirá una cierta holgura entre el tornillo y el punto de unión, tanto mayor cuanto menor sea el tornillo o más grande sea el alojamiento en el punto de unión. De este modo se posibilita que pequeñas oscilaciones no tengan que ser absorbidas por el disipador de energía, absorbiendo únicamente aquellos esfuerzos que causan un movimiento relativo entre los tubos mayor que Ia holgura antes comentada.The connection between the different tubes that form the energy dissipator can be carried out by welding, so that there will be no possible relative movement between the different tubes that form the dissipator. Alternatively, the union can be carried out by means of screws. Said screws may be smaller than the housing defined by the attachment points. Therefore, there will be some clearance between the screw and the point of attachment, the larger the smaller the screw or the larger the housing at the point of attachment. In this way it is possible that small oscillations do not have to be absorbed by the energy dissipator, absorbing only those efforts that cause a relative movement between the tubes greater than the clearance mentioned above.
Los tubos en su interior podrán estar vacíos. En este sentido, el grosor de Ia pared de los tubos también es un parámetro que influye en Ia energía que puede llegar a absorber el disipador, dado que, cuanto más gruesa sea Ia pared del tubo, más energía podrá disipar Ia invención.The tubes inside may be empty. In this sense, the thickness of the tube wall is also a parameter that influences the energy that the heatsink can absorb, since, the thicker the tube wall, the more energy the dissipation of the invention can dissipate.
En el interior de los tubos, o de uno solo de ellos, se podrá situar al menos un elemento elástico, como por ejemplo un resorte, muelle, o material elastómero, anclado en un primer extremo a Ia estructura resistente y por un segundo extremo a un punto fijo en el interior del tubo. De este modo se consiguen dos efectos, por un lado el disipador siempre se encontraría en una posición centrada y, más importante, al comportamiento puramente histerético de Ia invención se Ie añadiría un comportamiento elástico en colaboración al anterior. De este modo, por ejemplo, se podría compensar el fallo de los disipadores histeréticos y reaccionar ante cualquier oscilación, independientemente del umbral que definan las perforaciones realizadas.Inside the tubes, or only one of them, at least one elastic element may be placed, such as a spring, spring, or elastomeric material, anchored at a first end to the resistant structure and by a second end to a fixed point inside the tube. In this way two effects are achieved, on the one hand the heatsink would always be in a centered position and, more importantly, an elastic behavior in collaboration with the previous one would be added to the purely hysterical behavior of the invention. In this way, for example, the failure of the hysteretic heatsinks could be compensated and react to any oscillation, regardless of the threshold defined by the perforations performed.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Figura 1.- Muestra Ia versión básica del disipador de Ia invención. Figura 2.- Muestra una sección transversal de Ia versión básica del disipador de Ia invención. Dicha sección está realizada por un plano perpendicular al eje del tubo, conteniendo dicho plano una de las perforaciones que se encuentra entre dos puntos de unión.Figure 1.- Shows the basic version of the heatsink of the invention. Figure 2.- Shows a cross section of the basic version of the heatsink of the invention. Said section is made by a plane perpendicular to the axis of the tube, said plane containing one of the perforations that lies between two points of attachment.
Figura 3.- Muestra una sección longitudinal de Ia versión básica del disipador de Ia invención, realizada por una pared del tubo que no contiene perforaciones. Figura 4.- Muestra una vista de detalle de las perforaciones y puntos de unión del disipador de Ia invención en el que Ia unión se lleva a cabo mediante tornillos.Figure 3.- Shows a longitudinal section of the basic version of the heatsink of the invention, made by a wall of the tube that does not contain perforations. Figure 4.- Shows a detailed view of the perforations and junction points of the heatsink of the invention in which the union is carried out by means of screws.
Figura 5.- Muestra una sección transversal del disipador de Ia figura 4, realizada por un plano perpendicular al eje del tubo, conteniendo dicho plano una de las perforaciones que se encuentra entre dos puntos de unión.Figure 5.- Shows a cross section of the heatsink of Figure 4, made by a plane perpendicular to the axis of the tube, said plane containing one of the perforations that is between two junction points.
Figura 6.- Muestra una sección longitudinal del disipador de Ia figura 4. La sección se ha realizado por una de las paredes del tubo que no tienen perforaciones.Figure 6.- Shows a longitudinal section of the heatsink of Figure 4. The section has been made by one of the walls of the tube that do not have perforations.
Figura 7.- Muestra una sección longitudinal de Ia realización del disipador que comprende muelles en el interior de los tubos. La sección se ha realizado por una paredes del tubo que no tienen perforaciones. Figura 8.- Muestra un primer modo de colocación del disipador de Ia invención dentro de una estructura porticada. El disipador se dispone alineado con el eje que definen los centros de dos nudos viga-pilar diametralmente opuestos en el rectángulo que forman las vigas y pilares contiguos.Figure 7.- Shows a longitudinal section of the embodiment of the heatsink comprising springs inside the tubes. The section has been made by a tube walls that have no perforations. Figure 8.- Shows a first mode of placement of the heatsink of the invention within a porticoed structure. The heatsink is aligned with the axis that defines the centers of two diametrically opposed beam-pillar knots in the rectangle that form the adjacent beams and pillars.
Figura 9.- Muestra un segundo modo de colocación del disipador de Ia invención dentro de una estructura porticada. El disipador está alineado con un eje que une el centro de uno de los nudos viga-pilar con un punto intermedio de Ia viga. Figura 10.- Muestra un tercer modo de colocación del disipador de Ia invención en una estructura triangulada o en celosía. El disipador de Ia invención introducido sustituyendo uno o varios elementos de Ia estructura triangulada o en celosía.Figure 9.- Shows a second mode of placement of the heatsink of the invention within a porticoed structure. The heatsink is aligned with an axis that joins the center of one of the beam-pillar nodes with an intermediate point of the beam. Figure 10.- Shows a third way of placing the heatsink of the invention in a triangulated structure or in latticework. The heatsink of the invention introduced by replacing one or more elements of the triangulated or lattice structure.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
El objeto de esta invención es un nuevo disipador de energía de tipo histerético sencillo, barato y fácil de inspeccionar, que se puede instalar en Ia estructura primaria de una construcción como una barra diagonal convencional sometida a solicitaciones axiles, y que es capaz de disipar energía de forma estable y sin pandear. El nuevo disipador, véase Ia Figura 1 , esta formado por dos perfiles tubulares, realizados por ejemplo en acero, en adelante se denominarán tubos, de sección cuadrada, aunque no se excluyen otro tipo de sección como Ia circular, por ejemplo, dispuestos de forma telescópica, es decir un tubo interior (1 ) dentro de un tubo exterior (2). La conexión entre ambos tubos (1 , 2) se realiza en varios puntos de unión (3) mediante soldaduras. En las paredes de los tubos (1 , 2) y concretamente en zonas próximas a los puntos de unión (3), se practican dos filas preferiblemente paralelas de perforaciones (4), una a cada lado de Ia línea que une los centros de los puntos de unión (5). El número, Ia geometría y Ia separación entre estas perforaciones es variable y con estos tres parámetros se controla el volumen de acero que se desea hacer plastificar, así como Ia resistencia y rigidez axial del disipador. En ambos extremos de las dos filas preferentemente paralelas de perforaciones (4) se realiza una perforación de mayor tamaño (6). El extremo de cada tubo (1 , 2) se une a Ia estructura primaria de Ia construcción como si se tratase de una barra diagonal convencional, preferentemente mediante chapas de conexión (7). Los extremos de los tubos se terminan con una chapa de cierre (8) preferentemente soldada. Las Figuras 2 y 3 muestran una sección transversal y una sección longitudinal del disipador, respectivamente.The object of this invention is a new energy sink of simple, cheap and easy to inspect hysteretic type, which can be installed in the primary structure of a construction such as a conventional diagonal bar subjected to axial solicitations, and which is capable of dissipating energy stably and without buckling. The new heatsink, see Figure 1, is formed by two tubular profiles, made for example in steel, hereinafter they will be called tubes, of square section, although no other type of section such as circular is excluded, for example, arranged in a way telescopic, that is an inner tube (1) inside an outer tube (2). The connection between both tubes (1, 2) is made at several points of connection (3) by welding. In the walls of the tubes (1, 2) and specifically in areas close to the junction points (3), two preferably parallel rows of perforations (4) are made, one on each side of the line that joins the centers of the junction points (5). The number, the geometry and the separation between these perforations is variable and with these three parameters the volume of steel to be plasticized is controlled, as well as the axial strength and rigidity of the heatsink. At both ends of the two preferably parallel rows of perforations (4) a larger perforation (6) is performed. The end of each tube (1, 2) joins the primary structure of the construction as if it were a conventional diagonal bar, preferably by connecting plates (7). The ends of the tubes are terminated with a closure plate (8) preferably welded. Figures 2 and 3 show a cross section and a longitudinal section of the heatsink, respectively.
El disipador de Ia invención funciona bajo cargas axiles de tracción/compresión en Ia dirección del eje de los tubos (1 , 2). Cuando el nuevo disipador se somete a dichas cargas axiles y un tubo (1 , 2) intenta deslizar respecto al otro, el acero de Ia pared de los tubos (1 , 2) situado entre las perforaciones deforma plásticamente y con ello se disipa energía.The heatsink of the invention operates under axial tensile / compression loads in the direction of the tube axis (1, 2). When the new heatsink is subjected to said axial loads and a tube (1, 2) tries to slide with respect to the other, the steel of the tube wall (1, 2) located between the perforations deforms plastically and thereby dissipates energy.
La descripción anterior constituye una realización del nuevo disipador, cuyo comportamiento histerético es del tipo elastoplástico. Esta realización puede tener las siguientes variantes, y todas ellas forman parte de Ia invención: Ia sección del tubo puede ser también rectangular, circular, romboidal, etc.; el número de tubos dispuestos telescópicamente puede ser mayor de dos; Ia posición de las perforaciones a Io largo de los tubos puede ser centrada, en los extremos o en una o varias zonas a Io largo del eje de los tubos; el número de caras de los tubos que se perforan puede ser una, varias o todas; el número de tubos que se perforan puede ser uno, varios o todos; el material de los tubos puede ser acero, aluminio, aleaciones especiales, plásticos etc.The above description constitutes an embodiment of the new heatsink, whose Hysteretic behavior is of the elastoplastic type. This embodiment can have the following variants, and all of them form part of the invention: the section of the tube can also be rectangular, circular, rhomboidal, etc .; the number of telescopically arranged tubes can be greater than two; The position of the perforations along the tubes can be centered, at the ends or in one or more areas along the axis of the tubes; the number of faces of the perforated tubes can be one, several or all; the number of tubes that are drilled can be one, several or all; The material of the tubes can be steel, aluminum, special alloys, plastics etc.
Además de estas variantes, Ia invención incluye diferentes realizaciones del nuevo disipador consistentes en introducir una o las dos modificaciones siguientes:In addition to these variants, the invention includes different embodiments of the new heatsink consisting of introducing one or both of the following modifications:
A) La segunda realización se ilustra en las Figuras 4, 5 y 6 que muestran un alzado, una sección transversal y una sección longitudinal de Ia parte central del disipador, respectivamente. Esta segunda realización se basa en sustituir las soldaduras en los puntos de unión (3) por tornillos (9), y dejar una holgura controlada entre el diámetro del tornillo y el del taladro (10) realizado en el centro del punto de unión (5). Con ello se consigue que el disipador no trabaje, es decir, que las paredes de los tubos (1 , 2) no deformen, cuando el desplazamiento axial relativo entre los extremos de los tubos sean menor que Ia holgura. Esta característica puede ser deseable cuando se pretende evitar problemas de fatiga bajo cargas cíclicas de poca amplitud causadas, por ejemplo, por el viento o vibraciones, para las cuales Ia colaboración del disipador puede no ser deseable.A) The second embodiment is illustrated in Figures 4, 5 and 6 showing an elevation, a cross section and a longitudinal section of the central part of the heatsink, respectively. This second embodiment is based on replacing the welds at the junction points (3) with screws (9), and leaving a controlled clearance between the diameter of the screw and that of the hole (10) made in the center of the joint point (5). ). With this it is achieved that the heatsink does not work, that is, that the walls of the tubes (1, 2) do not deform, when the relative axial displacement between the ends of the tubes is less than the clearance. This feature may be desirable when it is intended to avoid fatigue problems under low amplitude cyclic loads caused, for example, by wind or vibrations, for which the collaboration of the heatsink may not be desirable.
B) La tercera realización se ilustra en Ia Figura 7 que representa una sección longitudinal del disipador. Esta modificación consiste en incorporar dentro de los tubos (1 , 2) dos muelles (11 , 12) unidos mediante una o más barras centrales (13) y una chapa de borde (14), que permitan añadir a Ia ley histerética del disipador una componente puramente elástica, y darle propiedades de recentrado. Los muelles (11 , 12) y las barras centrales (13) pueden sustituirse por un material elastómero o viscoelástico que cumpla una función similar.B) The third embodiment is illustrated in Figure 7 which represents a longitudinal section of the heatsink. This modification consists of incorporating into the tubes (1, 2) two springs (11, 12) joined by one or more central bars (13) and an edge plate (14), which allow adding to the hysterical law of the heatsink a Purely elastic component, and give it recentration properties. The springs (11, 12) and the central bars (13) can be replaced by an elastomeric or viscoelastic material that fulfills a similar function.
Una vez descrito el disipador de energía de Ia invención, a continuación se describen tres posibles alternativas de colocación de dicho disipador de energía en estructuras resistentes. La Figura 8 muestra un primer modo de colocación del disipador (15) de Ia invención, instalado dentro de una estructura porticada (16) que puede ser metálica, de hormigón armado, madera etc. El pórtico esta formado por vigas (17), columnas (18) y nudos viga-columna (19). El disipador se dispone alineado con el eje que definen los centros de dos nudos viga-columna (19) diametralmente opuestos en el rectángulo que forman las vigas (17) y columnas (18) contiguas. El disipador comprende los tubos (1 , 2), con perforaciones en sus caras (22) y dispuestos de forma telescópica, que se conectan en los primer y segundo puntos de unión a Ia estructura (23, 24) mediante soldaduras o tornillos. Las conexiones del extremo libre del tubo exterior (2) en el primer punto de unión a Ia estructura (23), o del extremo libre del tubo interior (1 ) con el segundo punto de unión a Ia estructura (24) pueden ser articulaciones reales realizadas con pasadores, o simples conexiones estructurales estándar realizadas con chapas soldadas o atornilladas.Once the energy dissipator of the invention has been described, three possible alternatives for placing said energy dissipator in resistant structures are described below. Figure 8 shows a first mode of placement of the heatsink (15) of the invention, installed within a porticoed structure (16) that can be metal, reinforced concrete, wood etc. The porch consists of beams (17), columns (18) and beam-column knots (19). The heatsink is arranged aligned with the axis defined by the centers of two diametrically opposed beam-column knots (19) in the rectangle that form the beams (17) and adjacent columns (18). The heatsink comprises the tubes (1, 2), with perforations on their faces (22) and arranged telescopically, which are connected at the first and second points of attachment to the structure (23, 24) by means of welds or screws. The connections of the free end of the outer tube (2) at the first point of attachment to the structure (23), or of the free end of the inner tube (1) with the second point of attachment to the structure (24) can be real joints made with pins, or simple standard structural connections made with welded or bolted plates.
En Ia Figura 9 se muestra un segundo modo de colocación del disipador objeto de esta patente, instalado dentro de una estructura porticada (16) que puede ser metálica, de hormigón armado, madera etc. La diferencia principal con Ia realización de Ia Figura 8 es que el disipador está alineado con un eje que une el centro de uno de los nudos viga-columna (19) con un punto intermedio de Ia viga (17). La configuración de Ia Figura 9 permite dejar un espacio abierto en el vano que puede ser deseable para disponer en él puertas o ventanas.Figure 9 shows a second mode of placement of the heatsink object of this patent, installed inside a porticoed structure (16) that can be metallic, reinforced concrete, wood etc. The main difference with the embodiment of Figure 8 is that the heatsink is aligned with an axis that joins the center of one of the beam-column nodes (19) with an intermediate point of the beam (17). The configuration of Figure 9 allows to leave an open space in the opening that may be desirable to arrange doors or windows in it.
En Ia Figura 10 se muestra un tercer modo de colocación del disipador objeto de Ia invención, instalado en una estructura triangulada o en celosía que puede ser metálica, de hormigón armado, madera etc. La celosía está formada en general por cordones horizontales (27) o inclinados, montantes (28) y barras diagonales (29). El nuevo disipador se puede introducir sustituyendo uno o varios cordones (30), montantes (31 ) o barras diagonales (32). Con ello se consigue aumentar notablemente Ia capacidad de disipación de energía de un tipo estructural — las estructuras trianguladas o en celosía — que cuando se construyen con barras convencionales tienen una capacidad de deformación plástica muy reducida al estar limitada por el pandeo de las barras a compresión.Figure 10 shows a third mode of placement of the heatsink object of the invention, installed in a triangulated or lattice structure that can be metal, reinforced concrete, wood etc. The latticework is generally formed by horizontal (27) or inclined cords, uprights (28) and diagonal bars (29). The new heatsink can be introduced by replacing one or more cords (30), uprights (31) or diagonal bars (32). With this it is possible to significantly increase the energy dissipation capacity of a structural type - the triangulated or lattice structures - which, when constructed with conventional bars, have a very low plastic deformation capacity, being limited by the buckling of the compression bars. .
El nuevo disipador puede instalarse también en Ia estructura resistente formando parte de sistemas tipo diada ("toggle brace") o tipo "tijera" (scissors jack system). The new heatsink can also be installed in the resistant structure, forming part of diada ("toggle brace") or "scissor" (scissors jack system) systems.

Claims

REIVINDICACIONES
1. Disipador de energía sísmica para una estructura resistente primaria de una construcción, caracterizado por que comprende: a) al menos dos tubos dispuestos de forma telescópica y conectados entre sí en al menos un punto de unión, b) al menos una perforación en al menos una pared de al menos un tubo; esta al menos una perforación realizada alrededor de un punto de unión, c) chapas de cierre que tapan los extremos de los tubos y chapas de conexión que conectan los tubos con Ia estructura resistente primaria.1. Seismic energy heatsink for a primary resistant structure of a construction, characterized in that it comprises: a) at least two tubes telescopically arranged and connected to each other at least one junction point, b) at least one hole in the at least one wall of at least one tube; at least one perforation is made around a junction point, c) closing plates that cover the ends of the pipes and connecting plates that connect the tubes with the primary resistant structure.
2. Disipador de energía según Ia reivindicación 1 , caracterizado por que Ia conexión de los tubos se realiza mediante soldadura.2. Energy dissipator according to claim 1, characterized in that the connection of the tubes is carried out by welding.
3. Disipador de energía según Ia reivindicación 1 , caracterizado por que Ia conexión de los tubos se realiza mediante tornillos dejando una holgura entre el tornillo y el punto de unión.3. Energy dissipator according to claim 1, characterized in that the connection of the tubes is made by screws leaving a gap between the screw and the point of attachment.
4. Disipador de energía según cualquiera de las reivindicaciones 1-3, caracterizado por que el interior de los tubos está vacío.4. Energy sink according to any of claims 1-3, characterized in that the inside of the tubes is empty.
5. Disipador de energía según cualquiera de las reivindicaciones 1-4, caracterizado por que el, al menos un, tubo comprende en su interior al menos un elemento elástico unido por un primer extremo unido a Ia estructura resistente y por un segundo extremo a un punto fijo en el interior de dicho tubo.5. Energy dissipator according to any one of claims 1-4, characterized in that the at least one tube comprises at least one elastic element connected by a first end attached to the resistant structure and a second end to a fixed point inside said tube.
6. Disipador de energía según cualquiera de las reivindicaciones 1-4, caracterizado por que los, al menos uno, tubos comprenden en su interior al menos un elemento elástico unido por un primer extremo unido a Ia estructura resistente y por un segundo extremo a un punto fijo en el interior de dichos tubos. 6. Energy dissipator according to any of claims 1-4, characterized in that the at least one of the tubes comprises in its interior at least one elastic element joined by a first end connected to the resistant structure and by a second end to a fixed point inside said tubes.
PCT/ES2009/000419 2008-08-07 2009-07-28 Seismic energy dissipater for a primary resistant structure of a construction WO2010018269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802432 2008-08-07
ES200802432A ES2357591B2 (en) 2008-08-07 2008-08-07 SISMIC ENERGY SINK FOR A PRIMARY RESISTANT STRUCTURE OF A CONSTRUCTION.

Publications (1)

Publication Number Publication Date
WO2010018269A1 true WO2010018269A1 (en) 2010-02-18

Family

ID=41668736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000419 WO2010018269A1 (en) 2008-08-07 2009-07-28 Seismic energy dissipater for a primary resistant structure of a construction

Country Status (3)

Country Link
CR (1) CR20110125A (en)
ES (1) ES2357591B2 (en)
WO (1) WO2010018269A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600127520A1 (en) * 2016-12-16 2018-06-16 Bruno Olearo Anti-seismic heat sink device
ES2920158B2 (en) * 2022-03-01 2023-02-17 Univ Madrid Politecnica Hybrid multiphase energy dissipator for the protection of structures against vibrations due to earthquakes and wind

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU661094A1 (en) * 1977-03-01 1979-05-05 Казахское Отделение Ордена Трудового Красного Знамени Центрального Научно-Исследовательского И Проектного Института Строительных Металлоконструкций Earthquake-proof building framework
US4959934A (en) * 1988-01-27 1990-10-02 Kajima Corporation Elasto-plastic damper for use in structure
JPH03183873A (en) * 1989-12-14 1991-08-09 Kajima Corp Steel damper
JPH09279695A (en) * 1996-04-13 1997-10-28 Konoike Constr Ltd Earthquake-resisting reinforcing structure and viscoelastic damper
JP2003049557A (en) * 2001-08-06 2003-02-21 Toyo Tire & Rubber Co Ltd Vibration control device for building
JP2006283374A (en) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd Seismic-response controlled structure of lightweight steel-framed house
US20080016794A1 (en) * 2004-03-03 2008-01-24 Robert Tremblay Self-Centering Energy Dissipative Brace Apparatus With Tensioning Elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU661094A1 (en) * 1977-03-01 1979-05-05 Казахское Отделение Ордена Трудового Красного Знамени Центрального Научно-Исследовательского И Проектного Института Строительных Металлоконструкций Earthquake-proof building framework
US4959934A (en) * 1988-01-27 1990-10-02 Kajima Corporation Elasto-plastic damper for use in structure
JPH03183873A (en) * 1989-12-14 1991-08-09 Kajima Corp Steel damper
JPH09279695A (en) * 1996-04-13 1997-10-28 Konoike Constr Ltd Earthquake-resisting reinforcing structure and viscoelastic damper
JP2003049557A (en) * 2001-08-06 2003-02-21 Toyo Tire & Rubber Co Ltd Vibration control device for building
US20080016794A1 (en) * 2004-03-03 2008-01-24 Robert Tremblay Self-Centering Energy Dissipative Brace Apparatus With Tensioning Elements
JP2006283374A (en) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd Seismic-response controlled structure of lightweight steel-framed house

Also Published As

Publication number Publication date
CR20110125A (en) 2011-06-03
ES2357591A1 (en) 2011-04-28
ES2357591B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5123378B2 (en) Seismic joint device
KR101733091B1 (en) Buckling Restraint Brace with assembly type steel restraint material
ES2587713T3 (en) Power dissipation device
EP3212861B1 (en) Dissipative connection with optimized stiffness and strength for joining construction elements
JP4625540B1 (en) Hybrid jaw and column beam connection structure using the hybrid jaw
KR101478654B1 (en) Seismic Retrofit Technology using Diagrid Frames
TW201522808A (en) Energy eliminating assembly and shock absorbing structure using the same
KR100944363B1 (en) Iron frame brace having bucking protection part
ES2350217B2 (en) SYSTEM TO DISSIP SISMIC ENERGY IN CONSTRUCTIONS.
JP2000213200A (en) Damping construction
WO2010018269A1 (en) Seismic energy dissipater for a primary resistant structure of a construction
KR101827200B1 (en) Seismic retrofit method of existing building using steel frame with energy dissipation device at disconnected gap of the upper portion
JP2009203783A (en) Vibration control panel and framed structure using the same
JP6635607B2 (en) Energy absorption mechanism and wooden building
KR102092413B1 (en) Seismic reinforcement vibration control device having double-plate intermediary damper
JP2009270388A (en) Vibration control device for building and vibration control structure of building
JP2017198026A (en) building
WO2017192107A1 (en) A hinge cell for beam to column connection
KR101209367B1 (en) Post reinforcing structure for buckling of braces in the steel moment connection frame
KR20200025360A (en) Seismic reinforcement method using steel braces with dampers
Das et al. Performance-based seismic design of an innovative HCW system with shear links based on IDA
ES2920158B2 (en) Hybrid multiphase energy dissipator for the protection of structures against vibrations due to earthquakes and wind
KR102138917B1 (en) A earthquake proof reinforcement structure installed on the outside or interior face of pillars and beams using a steel flame
KR102018098B1 (en) Replaceable rigidity control type hysyeresis damper
JP6161881B2 (en) Earthquake shelter for wooden houses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: CR2011-000125

Country of ref document: CR

122 Ep: pct application non-entry in european phase

Ref document number: 09806461

Country of ref document: EP

Kind code of ref document: A1