WO2009098346A1 - Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases - Google Patents

Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases Download PDF

Info

Publication number
WO2009098346A1
WO2009098346A1 PCT/ES2009/070016 ES2009070016W WO2009098346A1 WO 2009098346 A1 WO2009098346 A1 WO 2009098346A1 ES 2009070016 W ES2009070016 W ES 2009070016W WO 2009098346 A1 WO2009098346 A1 WO 2009098346A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
gas
afm
voltage
atomic force
Prior art date
Application number
PCT/ES2009/070016
Other languages
Spanish (es)
French (fr)
Inventor
Ricardo Garcia Garcia
Francesco Zerbetto
Original Assignee
Consejo Superior De Investigaciones Cientificas
Alma Mater Studiorum-Universita Di Bologna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Alma Mater Studiorum-Universita Di Bologna filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2009098346A1 publication Critical patent/WO2009098346A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • the present invention generally concerns a method and system for reducing or eliminating the content of greenhouse gases in a gas or gas mixture by applying an electric field on said gas or gas mixture, and in particular to a method and a system that use a microscope of atomic forces, or AFM, for the application of said electric field.
  • Patent documents are also known that propose applying electric fields to treat gases in order to ionize their molecules, to transform them into other compounds, or to reduce them when it comes to greenhouse gases, such as carbon dioxide or methane.
  • One such document is the US5019355A1 patent, which proposes an electrical device for the conversion of molecules of a certain molecular weight, such as methane, into molecules of a different molecular weight, such as heptane or octane.
  • the device comprises a reaction chamber with a series of tubes with semiconductor surfaces through which an electric current flows. Inside the tubes the gas to be treated is circulated, whose molecules are ionized, accelerated and combined with other molecules to form other larger molecules, which can be segmented into smaller ones.
  • said voltage of such a high value implies a great variety of problems, both as regards the complexity and high cost of generating it, as well as the dangerous effects that can be caused in a user of the exhaust system that incorporates the device proposed in said patent.
  • a voltage between two conductive surfaces can lead to the creation of a plasma that in turn favors the deposition of insulating or semiconductor films.
  • M represents a metallic substrate (see Figure 1).
  • the electric fields used are of the same order as the existing electric fields inside the atoms and molecules. Therefore, they are strong enough to induce the reordering of the orbitals. molecular.
  • to perform the above experiments it is necessary to have a sophisticated ultra-high vacuum equipment, in addition to very sharp metal tips and high power electrical sources. Therefore, the previous experiments are not economically viable for the large-scale transformation of molecules.
  • the group that directs the present co-inventor has conducted experiments to develop a nanolithography based on the local confinement of chemical reactions in a liquid meniscus (R. Garc ⁇ a et al. J. Appl. Phys. 86, 1898 ( 1999); R. Garc ⁇ a, RV Mart ⁇ nez and J. Mart ⁇ nez, Chem. Soc. Rev. 35, 29 (2006)).
  • the process requires the application of a voltage pulse between the tip of a microscope of atomic forces and a sample. Initially it was shown that it was possible to decompose water molecules (the water has a heat of formation of -293 kJ / mol or 3.05 eV).
  • the structures formed exhibited resistance to chemical attack by acids such as HF.
  • the experiments also indicated that it is necessary to apply a threshold voltage to start the decomposition process.
  • US6508991A1 allows a large electric field to be applied to an unwanted gas in order to decompose it, but by means of a voltage of very low values compared to those used in said background.
  • the present invention concerns, in a first aspect, a method for reducing or eliminating the content of greenhouse gases in a gas or gas mixture, which comprises applying a electric field between a first and second at least partially conductive elements among which a volume of a greenhouse gas or a mixture of gases containing one or more greenhouse gases, such as carbon dioxide, methane, is arranged etc.
  • the method proposed by the present invention comprises using a microscope of atomic forces for the application of said electric field, by means of the application of a corresponding voltage through at least one tip, or protrusion used as a tip, of said atomic forces microscope, said tip being said first element.
  • the method comprises providing a predetermined distance to a conductive or semiconductor surface of said second element and separated from said tip, within a range from 0 to several microns, although preferably of the order of nanometers, and more preferably between 1 and 50 nm, since these very small distances are those usually obtained by the use of an AFM, which makes it possible to apply a very high electric field, such as 0.2- by applying a low value voltage, such as 10 V. 10V / nm
  • the method is carried out at room temperature, at temperatures below 0 o C, at temperatures above 5O 0 C or at temperatures equal to or below 5O 0 C.
  • the method it comprises introducing said gas or mixture of gases into a closed chamber inside which said tip and said substrate are arranged.
  • the method comprises a previous stage of reducing the humidity inside said chamber, which for an exemplary embodiment is carried out by pumping in said closed chamber of dry air.
  • the microscope tip of atomic forces is for one embodiment an metal tip, such as Au, Pt, Ti, W or any other metal, for another embodiment a tip of a semiconductor material, such as silicon or silicon nitride, and for a further embodiment, the method comprises using an insulating tip covered by a conductive film as the tip of said atomic force microscope.
  • an metal tip such as Au, Pt, Ti, W or any other metal
  • a tip of a semiconductor material such as silicon or silicon nitride
  • the method comprises using an insulating tip covered by a conductive film as the tip of said atomic force microscope.
  • the method comprises, depending on the embodiment example, carrying it out by applying a continuous voltage or voltage pulses with a predetermined frequency, in general rectangular pulses .
  • the proposed method comprises using said atomic force microscope operating in its contact modes and / or in its dynamic modes.
  • the method comprises using feedback mechanisms of said atomic force microscope, or using said AFM regardless of the use of feedback mechanisms.
  • the method comprises using one or both of said first and second elements possessing a respective surface formed by multiple protrusions or structures, in order to locally increase the electric field applied between both elements, and thus be able to treat the a greater volume of gas, with the consequent increase in productivity.
  • the present invention also concerns, in a second aspect, a system for reducing or eliminating the content of greenhouse gases in a gas or gas mixture, comprising:
  • a voltage source in connection with one or both of said elements to apply a voltage across at least one of said elements, generating an electric field between them affecting a volume of said greenhouse gas or said mixture of gases arranged between both electrodes.
  • the proposed system comprises a microscope of atomic forces in connection with said voltage source, said first element being at least one tip, or protrusion used as a tip, of said atomic forces microscope.
  • the proposed system is adapted to apply the method proposed by the first aspect of the invention.
  • the present invention comprises the use of the very high electric fields (1-10 V / nm.) That can be established between a tip of a microscope of atomic forces and a substrate S to decompose greenhouse gas molecules such as carbon dioxide or methane .
  • Fig. 2 part of the system proposed by the second aspect of the invention and used according to the method proposed by the first aspect is schematically illustrated. For this, a flow of corresponding G gas molecules is injected into the microscope chamber C (see
  • Said gas G can be, as it has been said above, a mixture of gases that include one or more greenhouse gases, or directly one or more of said greenhouse gases, such as CO2.
  • N2 dry air
  • the P-tip of the AFM is positioned at a distance between 1-5 nm. of the surface of the substrate S.
  • a pulse of intensity voltage between 10 and 100 V is applied and its duration can be variable between microseconds and seconds. This pulse will cause the activation of the molecules and the subsequent deposition D on the substrate S ( Figure 3).
  • Carbon dioxide and methane are compounds with negative formation energies at room temperature and atmospheric pressure, therefore their transformation into other compounds requires an external energy input.
  • This energy can be supplied by applying moderate voltages (10-40 V) between two very close surfaces.
  • the proximity between the P-tip of the AFM and the substrate reduces the energy barrier for the emission of electrons.
  • the generated electric field is very intense due to the proximity between the surfaces (1-5 nm.) Since the tip P of the microscope has a radius of curvature of approximately 5 nm., Which magnifies the electric field in the vicinity of the tip P,
  • the method comprises continuously moving the tip P of the atomic forces microscope on said facing surface of said substrate S while applying a voltage V to chemically activate a plurality of molecules of said gas or greenhouse gases.
  • the method comprises performing the process step by step, that is to say displacing step by step the tip P of the microscope of atomic forces on the facing surface of the substrate S while applying a voltage V to chemically activate a plurality of molecules of said gas or greenhouse gases.
  • the distance between the tip P and the sample S is first established by the feedback system of the AFM, then a voltage pulse is applied, once the feedback is reactivated and the tip P of the AFM moves laterally. The entire previous process is repeated at the new point or location, and so on.
  • the lateral displacement will be smaller than the diameter of the structures generated, in this way the formation of continuous lines is ensured.
  • the method comprises carrying out the following steps sequentially: a) firstly establishing the distance between the tip and said facing surface by means of using the mechanism or microscope feedback system, b) apply a first voltage pulse, c) move the tip P laterally to a second area of the facing surface of the substrate S, d) establish the distance between the tip P and said second zone of
  • the surface facing through the use of the microscope feedback mechanism or system, e) applying a second voltage pulse, and performing a plurality of groups of stages c) to e) for a plurality of areas of the facing surface of the substrate S.
  • the proposed method comprises extrapolating the steps described above on a macroscopic scale, for which it comprises using a plurality of protrusions Pr as a plurality of joined ends to apply said electrical field between said plurality of protrusions Pr and said conductive or semiconductor surface of said second element, or substrate S, of macroscopic dimensions.
  • the method comprises using a common part Pc integrating said Pr protrusions, in general a Se seal with a plurality of motifs, of those used in stamping processes, each of said motifs being a respective one of said Pr protrusions acting as a tip of an AFM.
  • the protrusions Rc of said Figures 5 are insulators, so they are covered by a conductive film Rc.
  • the seal appears. It is separated from the substrate S, in the view (b) once it has generally approached a few nanometers and during the application of the voltage V, and in the view ( c) once solid products D have been formed on the substrate S as a result of the reaction of the decomposed molecules of the greenhouse gases included in the mixture of treated G gases.
  • Figure 1 shows the potential energy curves that an adsorbed methane molecule would experience on an AFM tip in the presence of an electric field (F).
  • F electric field
  • the diagrams on the left show Ia potential energy without electric field.
  • the curves on the right show the situation when there is an applied electric field.
  • Figure 2 is a schematic representation of the system proposed by the second aspect of the invention, or experimental equipment used to effect the chemical decomposition of greenhouse gases in the presence of an electric field according to the method proposed by the first aspect.
  • Figure 3 presents several schemes that illustrate the process of decomposition of greenhouse gas molecules in the presence of electric fields.
  • first step the gas molecules are introduced into the chamber (illustrated in Figure 2) of the microscope.
  • second step the application of a voltage at the interface generates an electric field that initiates the activation of the molecules and their transformation into carbonaceous products, which are deposited on the substrate.
  • Figure 4 is a schematic perspective view illustrating the process of generating multiple structures by means of the sequential application of voltages between the tip of the AFM and the surface in the presence of the gas molecules.
  • Figure 5 illustrates through a series of schematic views the process of decomposition of gas molecules on macroscopic surfaces by using prefabricated seals with multiple protrusions. This type of seals allows the simultaneous decomposition on a surface of several square centimeters, which increases the ability to transform a large number of molecules of greenhouse gases.

Abstract

The method comprises the use of an atomic force microscope (AFM) for the application of a high electric field (~10 V/nm) by means of the application of a corresponding moderate (10-100 V) voltage (V) across a point (P) of the microscope and a semiconductor or conducting substrate (S) between which there is a volume of greenhouse gas or mixture of gases (G) containing same, such as carbon dioxide or methane, the molecules of which are thus chemically activated and subsequently react with one another to form carbon-derived products (D) that will be deposited, in solid phase, on the surface of the substrate (S). The system is adapted for applying the proposed method, providing the various elements inside a closed chamber (C).

Description

MÉTODO Y SISTEMA PARA REDUCIR O ELIMINAR EL CONTENIDO DE GASES DE EFECTO INVERNADERO EN UN GAS O MEZCLA DE METHOD AND SYSTEM TO REDUCE OR ELIMINATE THE CONTENT OF GREENHOUSE GASES IN A GAS OR MIXTURE
GASES SECTOR DE LA TÉCNICA La presente invención concierne en general a un método y un sistema para reducir o eliminar el contenido de gases de efecto invernadero en un gas o mezcla de gases mediante Ia aplicación de un campo eléctrico sobre dicho gas o mezcla de gases, y en particular a un método y un sistema que utilizan un microscopio de fuerzas atómicas, o AFM, para Ia aplicación de dicho campo eléctrico.TECHNICAL SECTOR GASES The present invention generally concerns a method and system for reducing or eliminating the content of greenhouse gases in a gas or gas mixture by applying an electric field on said gas or gas mixture, and in particular to a method and a system that use a microscope of atomic forces, or AFM, for the application of said electric field.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
La información científica más solvente reunida hasta Ia fecha confirma el origen antropomórfico del cambio climático (Climate Change 2007, The physical science basis, The IPCC Fourth assesment report). Este cambio es en gran medida debido a Ia emisión de gases de efecto invernadero proveniente del uso de combustibles fósiles (petróleo, gas natural, carbón, madera, alcohol) para Ia producción de energía o el transporte. Debido a que esos procesos involucran Ia emisión de dióxido de carbono (CO2), Ia proporción del mismo a aumentado considerablemente en los últimos 100 años desde aproximadamente 300 ppm a 379 ppm (2005). Se estima que aproximadamente 2/3 del CO2 liberado a Ia atmósfera proviene de procesos de combustión. Aunque el dióxido de carbono no es el gas de efecto invernadero más poderoso, sí es el más abundante, por Io tanto se señala a este como el gran responsable del cambio climático. Diversos procesos o mecanismos se han propuesto para detener o ralentizar este proceso. Unos pasan por mejorar Ia eficiencia en el uso de energía, otros por aumentar Ia masa forestal o por el desarrollo de combustibles basados en productos vegetales. También se ha propuesto secuestrar directamente CO2 desde las centrales térmicas e inyectarlo en depósitos naturales subterráneos. Además se han propuesto diversos caminos catalíticos para activar el CO2. Al ser el CO2 una molécula con un calor de formación elevado y negativo (-394 kJ mol-1 o 4.1 eV) es muy inerte, por Io tanto es difícil de activarlo y mucho más a bajas temperaturas. La naturaleza provee de un complejo mecanismo pero a Ia vez muy efectivo para transformar el CO2 en glucosa mediante el ciclo de Calvin. Este mecanismo permite fijar y reducir el número de moléculas de CO2. Sin embargo, este mecanismo además de ser muy complejo requiere de Ia presencia de una fuente de energía externa para iniciar Ia secuencia de reacciones químicas. También se conocen documentos de patente que proponen aplicar campos eléctricos para tratar gases con el fin de ionizar sus moléculas, para transformarlos en otros compuestos, o reducirlos cuando se trata de gases de efecto invernadero, tales como el dióxido de carbono o el metano. Uno de tales documentos es Ia patente US5019355A1 , Ia cual propone un dispositivo eléctrico para Ia conversión de moléculas de un peso molecular determinado, tales como metano, en moléculas de un peso molecular distinto, como por ejemplo en heptano u octano. El dispositivo comprende una cámara de reacción con una serie de tubos con superficies semiconductoras por las cuales circula una corriente eléctrica. Por el interior de los tubos se hace circular el gas a tratar, cuyas moléculas se ionizan, aceleran y combinan con otras moléculas para formar otras moléculas mayores, las cuales pueden segmentarse en otras menores.The most solvent scientific information gathered to date confirms the anthropomorphic origin of climate change (Climate Change 2007, The physical science basis, The IPCC Fourth assesment report). This change is largely due to the emission of greenhouse gases from the use of fossil fuels (oil, natural gas, coal, wood, alcohol) for energy production or transportation. Because these processes involve the emission of carbon dioxide (CO2), the proportion thereof has increased considerably in the last 100 years from approximately 300 ppm to 379 ppm (2005). It is estimated that approximately 2/3 of the CO2 released into the atmosphere comes from combustion processes. Although carbon dioxide is not the most powerful greenhouse gas, it is the most abundant, therefore it is pointed out to this as the major responsible for climate change. Various processes or mechanisms have been proposed to stop or slow down this process. Some go through improving the efficiency in the use of energy, others by increasing the forest mass or by the development of fuels based on plant products. It has also been proposed to directly sequester CO2 from thermal power plants and inject it into underground natural deposits. They have also proposed various catalytic paths to activate CO2. Since CO2 is a molecule with a high and negative formation heat (-394 kJ mol-1 or 4.1 eV) it is very inert, therefore it is difficult to activate it and much more at low temperatures. Nature provides a complex mechanism but at the same time very effective in transforming CO2 into glucose through the Calvin cycle. This mechanism allows to fix and reduce the number of CO2 molecules. However, this mechanism, in addition to being very complex, requires the presence of an external energy source to initiate the sequence of chemical reactions. Patent documents are also known that propose applying electric fields to treat gases in order to ionize their molecules, to transform them into other compounds, or to reduce them when it comes to greenhouse gases, such as carbon dioxide or methane. One such document is the US5019355A1 patent, which proposes an electrical device for the conversion of molecules of a certain molecular weight, such as methane, into molecules of a different molecular weight, such as heptane or octane. The device comprises a reaction chamber with a series of tubes with semiconductor surfaces through which an electric current flows. Inside the tubes the gas to be treated is circulated, whose molecules are ionized, accelerated and combined with other molecules to form other larger molecules, which can be segmented into smaller ones.
Otro de dichos documentos es Ia patente US6508991 B2, Ia cual propone un dispositivo y un método para tratar gases de escape con el fin de reducir Ia contaminación. El gas se hace pasar por una cámara a través de dos rejillas metálicas separadas entre sí una distancia que describen que puede ir desde 0,317 hasta 2,54 cm., a una de las cuales se Ie aplica un voltaje pulsado con una frecuencia predeterminada en función de Ia aplicación. Se propone eliminar así dióxido de carbono, monóxido de carbono, etc. Opcionalmente se hace pasar al gas ionizado por una segunda cámara a través de un estrato adecuado. Los valores de voltaje que se proponen en dicha patente son muy elevados (de un valor que va desde 10.000 hasta 100.000V), pero necesarios para crear un campo eléctrico que sea efectivo a Ia hora de ionizar las moléculas del gas de escape. Obviamente dicho voltaje de tan alto valor implica una gran variedad de problemas, tanto por Io que se refiere a Ia complejidad y alto coste de generación del mismo, como a los efectos peligrosos que puede provocar en un usuario del sistema de escape que incorpore el dispositivo propuesto en dicha patente. Por otra parte desde hace varias décadas es notorio que bajo ciertas circunstancias Ia aplicación de un voltaje entre dos superficies conductoras puede dar lugar a Ia creación de un plasma que a su vez favorece Ia deposición de películas aislantes o semiconductoras. Esto ha dado lugar a un método muy usado en microelectrónica conocido como 'plasma enhanced chemical vapor deposition' (ver Principies of plasma discharges and materials processing, M.A. Lieberman and AJ. Lichtenberg, Wiley-lnterscience, 2005). Aunque este proceso implica Ia generación de corrientes electroiónicas elevadas. Asimismo mediante el empleo del microscopio de ionización de campo ha sido posible generar campos eléctricos muy intensos (-10-40 V/nm.). Esta técnica ha permitido inducir una gran variedad de reacciones químicas como Ia protonación o Ia eliminación de hidrógeno (R. Gomer, Field emission and field ionization, American Institute of Physics, New York 1993). Por ejemplo se puede considerar Ia reacciónAnother such document is the US6508991 B2 patent, which proposes a device and a method for treating exhaust gases in order to reduce contamination. The gas is passed through a chamber through two metal grilles separated from each other a distance that describes that it can range from 0.317 to 2.54 cm., At one of which a pulsed voltage is applied with a predetermined frequency depending on of the application. It is proposed to eliminate carbon dioxide, carbon monoxide, etc. Optionally, the ionized gas is passed through a second chamber through a suitable stratum. The voltage values proposed in said patent are very high (with a value ranging from 10,000 to 100,000V), but necessary to create an electric field that is effective when ionizing the exhaust gas molecules. Obviously, said voltage of such a high value implies a great variety of problems, both as regards the complexity and high cost of generating it, as well as the dangerous effects that can be caused in a user of the exhaust system that incorporates the device proposed in said patent. On the other hand, for several decades it is notorious that under certain circumstances the application of a voltage between two conductive surfaces can lead to the creation of a plasma that in turn favors the deposition of insulating or semiconductor films. This has resulted in a method widely used in microelectronics known as 'plasma enhanced chemical vapor deposition' (see Principles of plasma discharges and materials processing, MA Lieberman and AJ. Lichtenberg, Wiley-lnterscience, 2005). Although this process involves the generation of high electrionic currents. Also by using the field ionization microscope it has been possible to generate very intense electric fields (-10-40 V / nm.). This technique has allowed to induce a great variety of chemical reactions such as protonation or the elimination of hydrogen (R. Gomer, Field emission and field ionization, American Institute of Physics, New York 1993). For example, the reaction can be considered
M + CH4 -e > M~ + CH4 → M~ + H* + CH¡M + CH 4 - e > M ~ + CH 4 → M ~ + H * + CH¡
donde M representa un substrato metálico (ver Figura 1 ). Los campos eléctricos empleados son del mismo orden que los campos eléctricos existentes en el interior de los átomos y moléculas. Por Io tanto son Io suficientemente fuertes para inducir Ia reordenación de los orbitales moleculares. Sin embargo, para efectuar los experimentos anteriores es necesario de disponer de un sofisticado equipo de ultra alto vacío, además de puntas metálicas muy afiladas y fuentes eléctricas de mucha potencia. Por todo ello los experimentos anteriores no son económicamente viables para Ia transformación a gran escala de moléculas.where M represents a metallic substrate (see Figure 1). The electric fields used are of the same order as the existing electric fields inside the atoms and molecules. Therefore, they are strong enough to induce the reordering of the orbitals. molecular. However, to perform the above experiments it is necessary to have a sophisticated ultra-high vacuum equipment, in addition to very sharp metal tips and high power electrical sources. Therefore, the previous experiments are not economically viable for the large-scale transformation of molecules.
El grupo que dirige el presente co-inventor (R. García) ha realizado experimentos para desarrollar un nanolitografía basada en el confinamiento local de reacciones químicas en un menisco líquido (R. García et al. J. Appl. Phys. 86, 1898 (1999); R. García, R.V. Martínez and J. Martínez, Chem. Soc. Rev. 35, 29 (2006)). El proceso requiere Ia aplicación de un pulso de voltaje entre Ia punta de un microscopio de fuerzas atómicas y una muestra. Inicialmente se demostró que era posible descomponer moléculas de agua (el agua posee un calor de formación de -293 kJ/mol o 3.05 eV). Las estructuras formadas presentaban resistencia al ataque químico mediante ácidos como HF. Los experimentos también indicaron que es necesario aplicar un voltaje umbral para iniciar el proceso de Ia descomposición.The group that directs the present co-inventor (R. García) has conducted experiments to develop a nanolithography based on the local confinement of chemical reactions in a liquid meniscus (R. García et al. J. Appl. Phys. 86, 1898 ( 1999); R. García, RV Martínez and J. Martínez, Chem. Soc. Rev. 35, 29 (2006)). The process requires the application of a voltage pulse between the tip of a microscope of atomic forces and a sample. Initially it was shown that it was possible to decompose water molecules (the water has a heat of formation of -293 kJ / mol or 3.05 eV). The structures formed exhibited resistance to chemical attack by acids such as HF. The experiments also indicated that it is necessary to apply a threshold voltage to start the decomposition process.
Experimentos de reactividad química y espectroscopia de rayos-X de las estructuras generadas mediante Ia utilización de moléculas de agua reveló Ia formación de depósitos de óxido de silicio (M. Lazzarino et al., Appl. Phys. Lett. 81 , 2842 (2002)).Experiments of chemical reactivity and X-ray spectroscopy of the structures generated by the use of water molecules revealed the formation of silicon oxide deposits (M. Lazzarino et al., Appl. Phys. Lett. 81, 2842 (2002) ).
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Parece necesario ofrecer una alternativa al estado de Ia técnica, que cubra las lagunas halladas en el mismo y que igual que enIt seems necessary to offer an alternative to the state of the art, which covers the gaps found therein and as in
US6508991A1 permita aplicar un gran campo eléctrico a un gas indeseado con el fin de descomponerlo, pero mediante un voltaje de valores muy bajos en comparación con los utilizados en dicho antecedente.US6508991A1 allows a large electric field to be applied to an unwanted gas in order to decompose it, but by means of a voltage of very low values compared to those used in said background.
La presente invención concierne, en un primer aspecto, a un método para reducir o eliminar el contenido de gases de efecto invernadero en un gas o mezcla de gases, que comprende aplicar un campo eléctrico entre un primer y un segundo elementos al menos parcialmente conductores entre los cuales se dispone un volumen de un gas de efecto invernadero o de una mezcla de gases contenedora de uno o más gases de efecto invernadero, tales como dióxido de carbono, metano, etc.The present invention concerns, in a first aspect, a method for reducing or eliminating the content of greenhouse gases in a gas or gas mixture, which comprises applying a electric field between a first and second at least partially conductive elements among which a volume of a greenhouse gas or a mixture of gases containing one or more greenhouse gases, such as carbon dioxide, methane, is arranged etc.
El método propuesto por Ia presente invención comprende utilizar un microscopio de fuerzas atómicas para Ia aplicación de dicho campo eléctrico, mediante Ia aplicación de un correspondiente voltaje a través de cómo mínimo una punta, o protrusión utilizada como punta, de dicho microscopio de fuerzas atómicas, siendo dicha punta dicho primer elemento.The method proposed by the present invention comprises using a microscope of atomic forces for the application of said electric field, by means of the application of a corresponding voltage through at least one tip, or protrusion used as a tip, of said atomic forces microscope, said tip being said first element.
El método comprende disponer a una superficie conductora o semiconductora de dicho segundo elemento enfrentada y separada de dicha punta una distancia predeterminada, dentro de un rango que va desde 0 hasta varias mieras, aunque preferentemente del orden de nanómetros, y con mayor preferencia entre 1 y 50 nm, ya que dichas distancias tan pequeñas son las conseguidas habitualmente mediante Ia utilización de un AFM, Io que posibilita que aplicando un voltaje de bajo valor, tal como 10 V, se consiga aplicar un campo eléctrico muy elevado, tal como de 0.2-10V/nm.The method comprises providing a predetermined distance to a conductive or semiconductor surface of said second element and separated from said tip, within a range from 0 to several microns, although preferably of the order of nanometers, and more preferably between 1 and 50 nm, since these very small distances are those usually obtained by the use of an AFM, which makes it possible to apply a very high electric field, such as 0.2- by applying a low value voltage, such as 10 V. 10V / nm
La mencionada aplicación de un campo eléctrico se lleva a cabo mediante el método propuesto por Ia invención para activar químicamente las moléculas de dicho gas o gases de efecto invernadero para su posterior reacción para formar productos que se depositarán en fase sólida sobre dicha superficie conductora o semiconductora de dicho segundo elemento, o substrato, sin el paso por ninguna fase líquida.The mentioned application of an electric field is carried out by the method proposed by the invention to chemically activate the molecules of said gas or greenhouse gases for its subsequent reaction to form products that will be deposited in solid phase on said conductive or semiconductor surface. of said second element, or substrate, without going through any liquid phase.
En función del ejemplo de realización el método se lleva a cabo a temperatura ambiente, a temperaturas por debajo de 0o C, a temperaturas superiores a 5O0C o a temperaturas iguales o inferiores a 5O0C. Con el fin de trabajar en un ambiente controlado, por ejemplo en Io que se refiere a Ia mencionada temperatura de trabajo, el método comprende introducir dicho gas o mezcla de gases en una cámara cerrada en el interior de Ia cual se hallan dispuestas dicha punta y dicho substrato.Depending on the embodiment, the method is carried out at room temperature, at temperatures below 0 o C, at temperatures above 5O 0 C or at temperatures equal to or below 5O 0 C. In order to work in an environment controlled, for example in what refers to the mentioned working temperature, the method it comprises introducing said gas or mixture of gases into a closed chamber inside which said tip and said substrate are arranged.
El método comprende una etapa previa de reducción de Ia humedad en el interior de dicha cámara, que para un ejemplo de realización se lleva a cabo mediante el bombeo en dicha cámara cerrada de aire seco.The method comprises a previous stage of reducing the humidity inside said chamber, which for an exemplary embodiment is carried out by pumping in said closed chamber of dry air.
Por Io que se refiere a Ia punta del microscopio de fuerzas atómicas a utilizar, ésta es para un ejemplo de realización una punta metálica, tal como Au, Pt, Ti, W o cualquier otro metal, para otro ejemplo de realización una punta de un material semiconductor, tal como silicio o nitruro de silicio, y para otro ejemplo de realización más el método comprende utilizar como punta de dicho microscopio de fuerzas atómicas una punta aislante recubierta por una película conductora.As regards the microscope tip of atomic forces to be used, this is for one embodiment an metal tip, such as Au, Pt, Ti, W or any other metal, for another embodiment a tip of a semiconductor material, such as silicon or silicon nitride, and for a further embodiment, the method comprises using an insulating tip covered by a conductive film as the tip of said atomic force microscope.
En cuanto a Ia mencionada aplicación de dicho voltaje a través de dicha punta el método comprende, en función del ejemplo de realización, llevarla a cabo mediante Ia aplicación de una tensión continua o de unos pulsos de voltaje con una frecuencia predeterminada, en general pulsos rectangulares.Regarding the mentioned application of said voltage through said tip, the method comprises, depending on the embodiment example, carrying it out by applying a continuous voltage or voltage pulses with a predetermined frequency, in general rectangular pulses .
El método propuesto comprende utilizar dicho microscopio de fuerzas atómicas operando en sus modos de contacto y/o en sus modos dinámicos.The proposed method comprises using said atomic force microscope operating in its contact modes and / or in its dynamic modes.
En función de Ia aplicación el método comprende utilizar unos mecanismos de realimentación de dicho microscopio de fuerzas atómicas, o utilizar dicho AFM prescindiendo de Ia utilización de mecanismos de realimentación. Para un ejemplo de realización el método comprende utilizar uno o ambos de dichos primer y segundo elementos poseedores de una respectiva superficie formada por múltiples protrusiones o estructuras, con el fin de aumentar localmente el campo eléctrico aplicado entre ambos elementos, y poder así tratar a Ia vez un mayor volumen de gas, con el consiguiente aumento de productividad. La presente invención concierne también, en un segundo aspecto, a un sistema para reducir o eliminar el contenido de gases de efecto invernadero en un gas o mezcla de gases, que comprende:Depending on the application, the method comprises using feedback mechanisms of said atomic force microscope, or using said AFM regardless of the use of feedback mechanisms. For an embodiment, the method comprises using one or both of said first and second elements possessing a respective surface formed by multiple protrusions or structures, in order to locally increase the electric field applied between both elements, and thus be able to treat the a greater volume of gas, with the consequent increase in productivity. The present invention also concerns, in a second aspect, a system for reducing or eliminating the content of greenhouse gases in a gas or gas mixture, comprising:
- una cámara cerrada con una entrada para Ia introducción de un gas de efecto invernadero o de una mezcla de gases contenedora de al menos un gas de efecto invernadero,- a closed chamber with an entrance for the introduction of a greenhouse gas or a mixture of gases containing at least one greenhouse gas,
- un primer y un segundo elementos como mínimo parcialmente conductores dispuestos en el interior dicha cámara, y- a first and second at least partially conductive elements arranged inside said chamber, and
- una fuente de tensión en conexión con uno o ambos de dichos elementos para aplicar un voltaje a través de cómo mínimo uno de dichos elementos, generando un campo eléctrico entre los mismos afectando a un volumen de dicho gas de efecto invernadero o de dicha mezcla de gases dispuesto entre ambos electrodos.- a voltage source in connection with one or both of said elements to apply a voltage across at least one of said elements, generating an electric field between them affecting a volume of said greenhouse gas or said mixture of gases arranged between both electrodes.
El sistema propuesto comprende un microscopio de fuerzas atómicas en conexión con dicha fuente de tensión, siendo dicho primer elemento como mínimo una punta, o protrusión utilizada como punta, de dicho microscopio de fuerzas atómicas.The proposed system comprises a microscope of atomic forces in connection with said voltage source, said first element being at least one tip, or protrusion used as a tip, of said atomic forces microscope.
El sistema propuesto está adaptado para aplicar el método propuesto por el primer aspecto de Ia invención.The proposed system is adapted to apply the method proposed by the first aspect of the invention.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNEXAMPLES OF EMBODIMENT OF THE INVENTION
La presente invención comprende el uso de los altísimos campos eléctricos (1-10 V/nm.) que pueden establecerse entre una punta de un microscopio de fuerzas atómicas y un substrato S para descomponer moléculas de gases de efecto invernadero como dióxido de carbono o metano.The present invention comprises the use of the very high electric fields (1-10 V / nm.) That can be established between a tip of a microscope of atomic forces and a substrate S to decompose greenhouse gas molecules such as carbon dioxide or methane .
En Ia Fig. 2 se ilustra de manera esquemática parte del sistema propuesto por el segundo aspecto de Ia invención y utilizado según el método propuesto por el primer aspecto. Para ello un flujo de moléculas del gas G correspondiente se inyecta en Ia cámara C del microscopio (verIn Fig. 2 part of the system proposed by the second aspect of the invention and used according to the method proposed by the first aspect is schematically illustrated. For this, a flow of corresponding G gas molecules is injected into the microscope chamber C (see
Fig. 2) a través de una entrada. Dicho gas G puede ser, tal y como se ha dicho anteriormente, una mezcla de gases que incluyan uno o más gases de efecto invernadero, o directamente uno o más de dichos gases de efecto invernadero, tal como CO2. Previamente en Ia cámara C del AFM se habrá reducido Ia humedad relativa por debajo del 1 % mediante el bombeo de aire seco (N2) (situación ilustrada por Ia referencia H2O y Ia flecha que señala hacia fuera de Ia cámara 2). Con ello se quiere evitar las reacciones del campo eléctrico con moléculas de agua. Una vez establecido el flujo del gas, Ia punta P del AFM se posiciona a una distancia entre 1-5 nm. de Ia superficie del substrato S. Entonces se aplica un pulso de voltaje de intensidad entre 10 y 100 V y su duración puede ser variable entre los microsegundos y los segundos. Este pulso provocará Ia activación de las moléculas y Ia posterior deposición D sobre el substrato S (Figura 3).Fig. 2) through an entrance. Said gas G can be, as it has been said above, a mixture of gases that include one or more greenhouse gases, or directly one or more of said greenhouse gases, such as CO2. Previously, in the C chamber of the AFM, the relative humidity will have been reduced below 1% by pumping dry air (N2) (situation illustrated by the reference H2O and the arrow pointing out of the chamber 2). This is to avoid the reactions of the electric field with water molecules. Once the gas flow is established, the P-tip of the AFM is positioned at a distance between 1-5 nm. of the surface of the substrate S. Then a pulse of intensity voltage between 10 and 100 V is applied and its duration can be variable between microseconds and seconds. This pulse will cause the activation of the molecules and the subsequent deposition D on the substrate S (Figure 3).
Un posible esquema en términos de las energías potenciales del proceso está ilustrado en Ia Figura 1.A possible scheme in terms of the potential energies of the process is illustrated in Figure 1.
El dióxido de carbono y el metano son compuestos con energías de formación negativas a temperatura ambiente y presión atmosférica, por Io tanto su transformación en otros compuestos necesita de un aporte externo de energía. Esa energía puede ser suministrada mediante Ia aplicación de voltajes moderados (10-40 V) entre dos superficies muy próximas. La proximidad entre Ia punta P del AFM y el substrato reduce Ia barrera de energía para Ia emisión de electrones. Además, el campo eléctrico generado es muy intenso debido a Ia proximidad entre las superficies (1-5 nm.) y a que Ia punta P del microscopio tiene un radio de curvatura de aproximadamente 5 nm., Io cual magnifica el campo eléctrico en las proximidades de Ia punta P,Carbon dioxide and methane are compounds with negative formation energies at room temperature and atmospheric pressure, therefore their transformation into other compounds requires an external energy input. This energy can be supplied by applying moderate voltages (10-40 V) between two very close surfaces. The proximity between the P-tip of the AFM and the substrate reduces the energy barrier for the emission of electrons. In addition, the generated electric field is very intense due to the proximity between the surfaces (1-5 nm.) Since the tip P of the microscope has a radius of curvature of approximately 5 nm., Which magnifies the electric field in the vicinity of the tip P,
K R Donde V es el voltaje aplicado, R es el radio efectivo de Ia punta y K una constante que depende de Ia geometría de Ia punta P (cónica, paraboloide, esférica...)- Para un paraboloide K adopta Ia formaKr Where V is the applied voltage, R is the effective radius of the tip and K a constant that depends on the geometry of the tip P (conical, paraboloid, spherical ...) - For a paraboloid K adopts the form
v 1 Ad K = — In —v 1 Ad K = - In -
2 R2 R
donde d es Ia separación entre las superficies.where d is the separation between the surfaces.
Para descomponer un gran número de moléculas sin modificar las condiciones iniciales, para un ejemplo de realización el método comprende desplazar de forma continua Ia punta P del microscopio de fuerzas atómicas sobre dicha superficie enfrentada de dicho substrato S mientras se aplica un voltaje V para activar químicamente una pluralidad de moléculas de dicho gas o gases de efecto invernadero.To decompose a large number of molecules without modifying the initial conditions, for one embodiment the method comprises continuously moving the tip P of the atomic forces microscope on said facing surface of said substrate S while applying a voltage V to chemically activate a plurality of molecules of said gas or greenhouse gases.
Para un ejemplo de realización alternativo, aplicable especialmente si se observase que el desplazamiento continuo provoca cambios en Ia separación entre Ia punta P y Ia muestra S y un deterioro de proceso de activación, el método comprende realizar el proceso paso a paso, es decir desplazar paso a paso Ia punta P del microscopio de fuerzas atómicas sobre Ia superficie enfrentada del substrato S mientras se aplica un voltaje V para activar químicamente una pluralidad de moléculas de dicho gas o gases de efecto invernadero.For an alternative embodiment, especially applicable if it is observed that the continuous displacement causes changes in the separation between the tip P and the sample S and a deterioration of the activation process, the method comprises performing the process step by step, that is to say displacing step by step the tip P of the microscope of atomic forces on the facing surface of the substrate S while applying a voltage V to chemically activate a plurality of molecules of said gas or greenhouse gases.
Para ello primero se establece Ia distancia entre Ia punta P y Ia muestra S mediante el sistema de realimentación del AFM, posteriormente se aplica un pulso de voltaje, una vez finalizado se reactiva Ia realimentación y Ia punta P del AFM se desplaza lateralmente. Todo el proceso anterior se repite en el nuevo punto o ubicación, y así sucesivamente. El desplazamiento lateral será menor que el diámetro de las estructuras generadas, de esta forma se asegura Ia formación de líneas continuas. En otras palabras, para llevar a cabo dicho desplazamiento paso a paso de Ia punta, el método comprende Ia realización de las siguientes etapas de manera secuencial: a) establecer en primer lugar Ia distancia entre Ia punta y dicha superficie enfrentada mediante Ia utilización del mecanismo o sistema de realimentación del microscopio, b) aplicar un primer pulso de voltaje, c) desplazar Ia punta P lateralmente hasta una segunda zona de Ia superficie enfrentada del substrato S, d) establecer Ia distancia entre Ia punta P y dicha segunda zona deFor this, the distance between the tip P and the sample S is first established by the feedback system of the AFM, then a voltage pulse is applied, once the feedback is reactivated and the tip P of the AFM moves laterally. The entire previous process is repeated at the new point or location, and so on. The lateral displacement will be smaller than the diameter of the structures generated, in this way the formation of continuous lines is ensured. In other words, in order to carry out said step-by-step displacement of the tip, the method comprises carrying out the following steps sequentially: a) firstly establishing the distance between the tip and said facing surface by means of using the mechanism or microscope feedback system, b) apply a first voltage pulse, c) move the tip P laterally to a second area of the facing surface of the substrate S, d) establish the distance between the tip P and said second zone of
Ia superficie enfrentada mediante Ia utilización del mecanismo o sistema de realimentación del microscopio, e) aplicar un segundo pulso de voltaje, y realizar una pluralidad de grupos de etapas c) a e) para una pluralidad de zonas de Ia superficie enfrentada del substrato S.The surface facing through the use of the microscope feedback mechanism or system, e) applying a second voltage pulse, and performing a plurality of groups of stages c) to e) for a plurality of areas of the facing surface of the substrate S.
Para ambos casos, el desplazamiento continuo o el desplazamiento paso a paso, se obtienen resultados como los mostrados en Ia Figura 4, donde aparecen ilustrados Ia punta P del AFM, el substrato S, el voltaje V aplicado entre ambos, y las deposiciones D. A partir de los resultados obtenidos con moléculas de octano C8H18For both cases, the continuous displacement or the step-by-step displacement, results are obtained as shown in Figure 4, where the P-tip of the AFM, the substrate S, the voltage V applied between both, and the depositions D. are illustrated. From the results obtained with C8H18 octane molecules
(calor de formación de -250 kJ/mol) se puede realizar una estimación del coste en euros € que implicaría descomponer una tonelada de CO2 mediante Ia presente propuesta. Para ello se asume que Ia aplicación de un pulso de voltaje V=30 V, t=5x10"5 s produce una corriente de 1=10"14 A. Esta corriente proviene de los valores obtenidos para formar dióxido de silicio en presencia de moléculas de agua mediante un AFM (H. Kuramochi et al., Appl. Phys. Lett. 84, 4005 (2004)). La energía consumida en este proceso podrá calcularse mediante Ia potencia consumida(formation heat of -250 kJ / mol) an estimate of the cost in euros can be made which would imply decomposing a ton of CO2 by means of this proposal. For this, it is assumed that the application of a pulse of voltage V = 30 V, t = 5x10 "5 s produces a current of 1 = 10 " 14 A. This current comes from the values obtained to form silicon dioxide in the presence of molecules of water using an AFM (H. Kuramochi et al., Appl. Phys. Lett. 84, 4005 (2004)). The energy consumed in this process can be calculated using the power consumed
E=lxVxt=1 ,5 x10-17 J. donde t es el tiempo durante el cual se aplica el pulso. El proceso anterior origina Ia descomposición de muchas moléculas con una masa de aproximadamente 4x10"22 kg. Por Io tanto, para activar 1000 kg. se requeriríanE = lxVxt = 1.5 x10-17 J. where t is the time during which the pulse is applied. The previous process causes the decomposition of many molecules with a mass of approximately 4x10 "22 kg. Therefore, to activate 1000 kg.
Figure imgf000013_0001
Figure imgf000013_0001
Por otra parte, el coste de electricidad al minorista en España (tarifa eléctrica de Agosto de 2007) es de 0,11 €/kwh., consecuentemente se obtiene 4x107J/3,6x106)x0,11 €=1 ,22 €. El resultado obtenido indica que el precio es muy competitivo, considerando que 1 Tm de crudo (petróleo) cuesta aproximadamente 500 €. Los derechos de emisión de CO2 han fluctuado muy apreciablemente. Han pasado en unos pocos años de 27 €/Tm a 0,27 € en 2007. Sin embargo, es previsible que en los próximos años cuando se implementen las políticas necesarias para cumplir con los compromisos del protocolo de Kyoto, o del que Ie suceda, volverán a situarse entre 30-50 €/Tm.On the other hand, the cost of electricity to the retailer in Spain (electricity tariff of August 2007) is € 0.11 / kWh, consequently you get 4x10 7 J / 3.6x10 6 ) x € 0.11 = 1.22 €. The result obtained indicates that the price is very competitive, considering that 1 Tm of crude oil (oil) costs approximately € 500. The CO2 emission rights have fluctuated greatly. They have passed in a few years from € 27 / Tm to € 0.27 in 2007. However, it is foreseeable that in the coming years when the necessary policies will be implemented to comply with the Kyoto Protocol commitments, or from which it will happen , will return to be between € 30-50 / Tm.
Dado el carácter secuencial del microscopio de fuerzas y de las velocidades de barrido actuales 1 μm/s se requeriría mucho tiempo para descomponer una cantidad apreciable de CO2 o de otro gas de efecto invernadero. Sin embargo, el método propuesto comprende extrapolar a escala macroscópica las etapas descritas anteriormente, para Io cual comprende utilizar una pluralidad de protrusiones Pr como una pluralidad de puntas unidas para aplicar el mencionado campo eléctrico entre dicha pluralidad de protrusiones Pr y dicha superficie conductora o semiconductora de dicho segundo elemento, o substrato S, de dimensiones macroscópicas.Given the sequential nature of the force microscope and the current scanning rates of 1 μm / s, it would take a long time to decompose an appreciable amount of CO2 or other greenhouse gas. However, the proposed method comprises extrapolating the steps described above on a macroscopic scale, for which it comprises using a plurality of protrusions Pr as a plurality of joined ends to apply said electrical field between said plurality of protrusions Pr and said conductive or semiconductor surface of said second element, or substrate S, of macroscopic dimensions.
Tal como aparece ilustrado en las diferentes vistas de Ia Figura 5, el método comprende utilizar una pieza común Pc integradora de dichas protrusiones Pr, en general un sello Se con una pluralidad de motivos, de los utilizados en procesos de estampación siendo cada uno de dichos motivos una respectiva de dichas protrusiones Pr que actúan como una punta de un AFM. Las protrusiones Rc de dicha Figuras 5 son aislantes, por Io que están recubiertas por una película conductora Rc.As illustrated in the different views of Figure 5, the method comprises using a common part Pc integrating said Pr protrusions, in general a Se seal with a plurality of motifs, of those used in stamping processes, each of said motifs being a respective one of said Pr protrusions acting as a tip of an AFM. The protrusions Rc of said Figures 5 are insulators, so they are covered by a conductive film Rc.
En concreto en Ia vista (a) de Ia Figura 5 aparece el sello Se separado del substrato S, en Ia vista (b) una vez se ha aproximado en general hasta pocos nanómetros y durante Ia aplicación del voltaje V, y en Ia vista (c) una vez se han formado, sobre el substrato S, los productos sólidos D fruto de Ia reacción de las moléculas descompuestas de los gases de efecto invernadero incluidos en Ia mezcla de gases G tratada.Specifically, in the view (a) of Figure 5, the seal appears. It is separated from the substrate S, in the view (b) once it has generally approached a few nanometers and during the application of the voltage V, and in the view ( c) once solid products D have been formed on the substrate S as a result of the reaction of the decomposed molecules of the greenhouse gases included in the mixture of treated G gases.
En efecto, el equipo de investigación del presente inventor, R. García, ha demostrado que el proceso de transformación química que sucede en Ia interfase de un AFM y bajo Ia aplicación de un campo eléctrico puede reproducirse mediante el empleo de sellos Se que contienen un gran número de motivos, cada uno de los cuales puede actuar como una punta de un AFM.In fact, the research team of the present inventor, R. García, has demonstrated that the chemical transformation process that occurs at the interface of an AFM and under the application of an electric field can be reproduced by using seals that contain a large number of reasons, each of which can act as a tip of an AFM.
Un experto en Ia materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de Ia invención según está definido en las reivindicaciones adjuntas.A person skilled in the art could introduce changes and modifications in the described embodiments without departing from the scope of the invention as defined in the appended claims.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de Ia siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:The foregoing and other advantages and features will be more fully understood from the following detailed description of some examples of embodiment with reference to the attached drawings, which should be taken by way of illustration and not limitation, in which:
La Figura 1 muestra las curvas de energía potencial que experimentaría una molécula de metano adsorbida sobre una punta de AFM en presencia de un campo eléctrico (F). Se ilustran los casos de una molécula neutra y otra ionizada. Los diagramas de Ia izquierda muestran Ia energía potencial sin campo eléctrico. Las curvas de Ia derecha muestran Ia situación cuando existe un campo eléctrico aplicado.Figure 1 shows the potential energy curves that an adsorbed methane molecule would experience on an AFM tip in the presence of an electric field (F). The cases of a neutral and an ionized molecule are illustrated. The diagrams on the left show Ia potential energy without electric field. The curves on the right show the situation when there is an applied electric field.
La Figura 2 es una representación esquemática del sistema propuesto por el segundo aspecto de Ia invención, o equipo experimental usado para efectuar Ia descomposición química de gases de efecto invernadero en presencia de un campo eléctrico según el método propuesto por el primer aspecto.Figure 2 is a schematic representation of the system proposed by the second aspect of the invention, or experimental equipment used to effect the chemical decomposition of greenhouse gases in the presence of an electric field according to the method proposed by the first aspect.
La Figura 3 presenta varios esquemas que ilustran el proceso de descomposición de moléculas de gases de efecto invernadero en presencia de campo eléctricos. En el primer paso (vista a) las moléculas del gas se introducen en Ia cámara (ilustrada en Ia Figura 2) del microscopio. En un segundo paso (vista b) Ia aplicación de un voltaje en Ia interfase genera campo eléctrico que inicia Ia activación de las moléculas y su transformación en productos carbonaceos, los cuales se depositan sobre el substrato.Figure 3 presents several schemes that illustrate the process of decomposition of greenhouse gas molecules in the presence of electric fields. In the first step (view a) the gas molecules are introduced into the chamber (illustrated in Figure 2) of the microscope. In a second step (view b) the application of a voltage at the interface generates an electric field that initiates the activation of the molecules and their transformation into carbonaceous products, which are deposited on the substrate.
La Figura 4 es una vista esquemática en perspectiva que ilustra el proceso de generación de múltiples estructuras mediante Ia aplicación secuencial de voltajes entre Ia punta del AFM y Ia superficie en presencia de las moléculas del gas. La Figura 5 ilustra mediante una serie de vistas esquemáticas el proceso de descomposición de moléculas del gas sobre superficies macroscópicas mediante el uso de sellos prefabricados con múltiples protrusiones. Este tipo de sellos permite realizar Ia descomposición de forma simultánea sobre una superficie de varios centímetros cuadrados, Io cual incrementa Ia capacidad para transformar una gran cantidad de moléculas de los gases de efecto invernadero. Figure 4 is a schematic perspective view illustrating the process of generating multiple structures by means of the sequential application of voltages between the tip of the AFM and the surface in the presence of the gas molecules. Figure 5 illustrates through a series of schematic views the process of decomposition of gas molecules on macroscopic surfaces by using prefabricated seals with multiple protrusions. This type of seals allows the simultaneous decomposition on a surface of several square centimeters, which increases the ability to transform a large number of molecules of greenhouse gases.

Claims

REIVINDICACIONES
1.- Método para reducir o eliminar el contenido de gases de efecto invernadero en un gas o mezcla de gases, del tipo que comprende aplicar un campo eléctrico entre un primer y un segundo elementos al menos parcialmente conductores entre los cuales se dispone un volumen de al menos un gas de efecto invernadero o de una mezcla de gases (G) contenedora de al menos un gas de efecto invernadero, estando dicho método caracterizado porque comprende utilizar un microscopio de fuerzas atómicas (AFM) para Ia aplicación de dicho campo eléctrico, mediante Ia aplicación de un correspondiente voltaje (V) a través de al menos una punta (P), o protrusión (Pr) utilizada como punta, de dicho microscopio de fuerzas atómicas (AFM), siendo dicha punta (P) dicho primer elemento.1.- Method to reduce or eliminate the content of greenhouse gases in a gas or mixture of gases, of the type that comprises applying an electric field between a first and a second at least partially conductive elements between which a volume of at least one greenhouse gas or a mixture of gases (G) containing at least one greenhouse gas, said method being characterized in that it comprises using an atomic force microscope (AFM) for the application of said electric field, by The application of a corresponding voltage (V) through at least one tip (P), or protrusion (Pr) used as a tip, of said atomic force microscope (AFM), said tip (P) being said first element.
2.- Método según Ia reivindicación 1 , caracterizado porque comprende disponer a una superficie conductora o semiconductora de dicho segundo elemento (S) enfrentada y separada de dicha punta (P) una distancia predeterminada.2. Method according to claim 1, characterized in that it comprises providing a conductive or semiconductor surface of said second element (S) facing and separated from said tip (P) a predetermined distance.
3.- Método según Ia reivindicación 2, caracterizado porque dicha distancia predeterminada está dentro de un rango que va desde cero hasta varias mieras.3. Method according to claim 2, characterized in that said predetermined distance is within a range from zero to several microns.
A - Método según Ia reivindicación 3, caracterizado porque dicha distancia predeterminada es del orden de nanómetros.A - Method according to claim 3, characterized in that said predetermined distance is of the order of nanometers.
5.- Método según Ia reivindicación 4, caracterizado porque dicha distancia predeterminada está entre 1 y 5 nm. 5. Method according to claim 4, characterized in that said predetermined distance is between 1 and 5 nm.
6.- Método según Ia reivindicación 1 , caracterizado porque se lleva a cabo a temperatura ambiente.6. Method according to claim 1, characterized in that it is carried out at room temperature.
7.- Método según Ia reivindicación 1 , caracterizado porque se lleva a cabo a temperaturas por debajo de 0o C.7. Method according to claim 1, characterized in that it is carried out at temperatures below 0 or C.
8.- Método según Ia reivindicación 1 , caracterizado porque se lleva a cabo a temperaturas superiores a 5O0C. 8. Method according to claim 1, characterized in that it is carried out at temperatures above 5O 0 C.
9.- Método según Ia reivindicación 1 , caracterizado porque se lleva a cabo a temperaturas iguales o inferiores a 5O0C.9. Method according to claim 1, characterized in that it is carried out at temperatures equal to or less than 5O 0 C.
10.- Método según Ia reivindicación 1 ó 2, caracterizado porque comprende llevar a cabo dicha aplicación de un campo eléctrico para activar químicamente las moléculas de dicho gas o gases de efecto invernadero para su posterior reacción para formar productos (D) que se depositarán en fase sólida sobre dicha superficie conductora o semiconductora de dicho segundo elemento, o substrato (S).10. Method according to claim 1 or 2, characterized in that it comprises carrying out said application of an electric field to chemically activate the molecules of said gas or greenhouse gases for its subsequent reaction to form products (D) that will be deposited in solid phase on said conductive or semiconductor surface of said second element, or substrate (S).
11.- Método según Ia reivindicación 1 , caracterizado porque comprende introducir dicho gas o mezcla de gases (G) en una cámara cerrada (C) en el interior de Ia cual se hallan dispuestas dicha punta (P) y dicho segundo elemento (S).11. Method according to claim 1, characterized in that it comprises introducing said gas or gas mixture (G) into a closed chamber (C) inside which said tip (P) and said second element (S) are arranged. .
12.- Método según Ia reivindicación 11 , caracterizado porque comprende una etapa previa de reducción de Ia humedad en el interior de dicha cámara (C).12. Method according to claim 11, characterized in that it comprises a previous stage of reduction of the humidity inside said chamber (C).
13.- Método según Ia reivindicación 12, caracterizado porque dicha etapa previa de reducción de Ia humedad se lleva a cabo mediante el bombeo en dicha cámara cerrada (C) de aire seco.13. Method according to claim 12, characterized in that said previous stage of reduction of humidity is carried out by pumping in said closed chamber (C) of dry air.
14.- Método según Ia reivindicación 1 , caracterizado porque comprende utilizar como punta (P) de dicho microscopio de fuerzas atómicas (AFM) una punta metálica.14. Method according to claim 1, characterized in that it comprises using as a tip (P) of said atomic force microscope (AFM) a metal tip.
15.- Método según Ia reivindicación 1 , caracterizado porque comprende utilizar como punta (P) de dicho microscopio de fuerzas atómicas (AFM) una punta de un material semiconductor. 15. Method according to claim 1, characterized in that it comprises using as a tip (P) of said atomic force microscope (AFM) a tip of a semiconductor material.
16.- Método según Ia reivindicación 1 , caracterizado porque comprende utilizar como punta (P) de dicho microscopio de fuerzas atómicas (AFM) una punta aislante recubierta por una película conductora (Rc).16. Method according to claim 1, characterized in that it comprises using an insulating tip covered by a conductive film (Rc) as the tip (P) of said atomic force microscope (AFM).
17.- Método según Ia reivindicación 1 , caracterizado porque comprende llevar a cabo dicha aplicación de dicho voltaje (V) a través de al menos dicha punta (P) mediante Ia aplicación de una tensión continua. 17. Method according to claim 1, characterized in that it comprises carrying out said application of said voltage (V) through at least said tip (P) by means of applying a continuous voltage.
18.- Método según Ia reivindicación 1 , caracterizado porque comprende llevar a cabo dicha aplicación de dicho voltaje (V) a través de al menos dicha punta (P) mediante Ia aplicación de unos pulsos de voltaje con una frecuencia predeterminada. 18. Method according to claim 1, characterized in that it comprises carrying out said application of said voltage (V) through at least said tip (P) by applying voltage pulses with a predetermined frequency.
19.- Método según Ia reivindicación 18, caracterizado porque dichos pulsos de voltaje aplicados son rectangulares.19. Method according to claim 18, characterized in that said applied voltage pulses are rectangular.
20.- Método según Ia reivindicación 1 , caracterizado porque comprende utilizar dicho microscopio de fuerzas atómicas (AFM) operando en sus modos de contacto y/o en sus modos dinámicos. 20. Method according to claim 1, characterized in that it comprises using said atomic force microscope (AFM) operating in its contact modes and / or in its dynamic modes.
21.- Método según Ia reivindicación 1 , 2, 10 ó 20, caracterizado porque comprende utilizar unos mecanismos de realimentación de dicho microscopio de fuerzas atómicas (AFM).21. Method according to claim 1, 2, 10 or 20, characterized in that it comprises using feedback mechanisms of said atomic force microscope (AFM).
22.- Método según Ia reivindicación 1 ó 20, caracterizado porque comprende utilizar dicho microscopio de fuerzas atómicas (AFM) prescindiendo de Ia utilización de mecanismos de realimentación.22.- Method according to claim 1 or 20, characterized in that it comprises using said atomic force microscope (AFM) regardless of the use of feedback mechanisms.
23.- Método según Ia reivindicación 1 , 2 ó 10, caracterizado porque al menos uno de dichos primer y segundo elementos (S) comprende una superficie formada por múltiples protrusiones o estructuras para aumentar localmente el campo eléctrico aplicado entre ambos elementos. 23. Method according to claim 1, 2 or 10, characterized in that at least one of said first and second elements (S) comprises a surface formed by multiple protrusions or structures to locally increase the electric field applied between both elements.
24.- Método según Ia reivindicación 2 ó 10, caracterizado porque comprende desplazar de forma continua Ia punta (P) del microscopio de fuerzas atómicas (AFM) sobre dicha superficie enfrentada de dicho substrato (S) mientras se aplica un voltaje (V) para activar químicamente una pluralidad de moléculas de dicho gas o gases de efecto invernadero. 24. Method according to claim 2 or 10, characterized in that it comprises continuously moving the tip (P) of the atomic force microscope (AFM) on said facing surface of said substrate (S) while applying a voltage (V) to chemically activate a plurality of molecules of said gas or greenhouse gases.
25.- Método según Ia reivindicación 2, 10 ó 21 , caracterizado porque comprende desplazar paso a paso Ia punta (P) del microscopio de fuerzas atómicas (AFM) sobre dicha superficie enfrentada de dicho substrato (S) mientras se aplica un voltaje (V) para activar químicamente una pluralidad de moléculas de dicho gas o gases de efecto invernadero. 25. Method according to claim 2, 10 or 21, characterized in that it comprises moving the tip (P) of the atomic force microscope (AFM) step by step on said facing surface of said substrate (S) while applying a voltage (V ) to chemically activate a plurality of molecules of said gas or greenhouse gases.
26.- Método según Ia reivindicación 25, caracterizado porque cuando comprende llevar a cabo dicho desplazamiento paso a paso de Ia punta (P), el método comprende Ia realización de las siguientes etapas de manera secuencial: a) establecer en primer lugar Ia distancia entre Ia punta (P) y dicha superficie enfrentada del substrato (S) mediante Ia utilización del mecanismo o sistema de realimentación del microscopio (AFM), b) aplicar un primer pulso de voltaje, c) desplazar Ia punta (P) lateralmente hasta una segunda zona de Ia superficie enfrentada, d) establecer Ia distancia entre Ia punta (P) y dicha segunda zona de Ia superficie enfrentada mediante Ia utilización del mecanismo o sistema de realimentación del microscopio (AFM), e) aplicar un segundo pulso de voltaje, y realizar una pluralidad de grupos de etapas c) a e) para una pluralidad de zonas de Ia superficie enfrentada del segundo elemento (S). 26.- Method according to claim 25, characterized in that when it comprises carrying out said step-by-step movement of the Ia tip (P), the method comprises performing the following steps sequentially: a) first establish the distance between the tip (P) and said facing surface of the substrate (S) by using the feedback mechanism or system of the microscope (AFM), b) apply a first voltage pulse, c) move the tip (P) laterally to a second area of the facing surface, d) establish the distance between the tip (P) and said second zone of the surface facing through the use of the microscope feedback mechanism (AFM), e) applying a second voltage pulse, and performing a plurality of groups of stages c) ae) for a plurality of areas of the facing surface of the second element (S)
27.- Método según Ia reivindicación 2, 10 ó 23, caracterizado porque comprende utilizar una pluralidad de dichas protrusiones (Pr) como una pluralidad de puntas unidas para aplicar dicho campo eléctrico entre dicha pluralidad de protrusiones (Pr) y dicha superficie conductora o semiconductora de dicho segundo elemento, o substrato (S), de dimensiones macroscópicas.27.- Method according to claim 2, 10 or 23, characterized in that it comprises using a plurality of said protrusions (Pr) as a plurality of tips joined to apply said electric field between said plurality of protrusions (Pr) and said conductive or semiconductor surface of said second element, or substrate (S), of macroscopic dimensions.
28.- Método según Ia reivindicación 27, caracterizado porque comprende utilizar una pieza común (Pc) integradora de dichas protrusiones (Pr).28.- Method according to claim 27, characterized in that it comprises using a common part (Pc) integrating said protrusions (Pr).
29.- Método según Ia reivindicación 28, caracterizado porque comprende utilizar como dicha pieza común (Pc) un sello con una pluralidad de motivos, de los utilizados en procesos de estampación, siendo cada uno de dichos motivos una respectiva de dichas protrusiones (Pr).29.- Method according to claim 28, characterized in that it comprises using as said common piece (Pc) a seal with a plurality of motifs, of those used in stamping processes, each of said motifs being a respective one of said protrusions (Pr) .
30.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicho gas de efecto invernadero es al menos uno del grupo que comprende los siguientes gases: dióxido de carbono y metano. 30. A method according to any of the preceding claims, characterized in that said greenhouse gas is at least one of the group comprising the following gases: carbon dioxide and methane.
31.- Sistema para reducir o eliminar el contenido de gases de efecto invernadero en un gas o mezcla de gases, del tipo que comprende:31.- System to reduce or eliminate the content of greenhouse gases in a gas or gas mixture, of the type comprising:
- una cámara cerrada (C) con al menos una entrada para Ia introducción de un gas de efecto invernadero o de una mezcla de gases (G) contenedora de al menos un gas de efecto invernadero,- a closed chamber (C) with at least one inlet for the introduction of a greenhouse gas or a mixture of gases (G) containing at least one greenhouse gas,
- un primer (P) y un segundo (S) elementos al menos parcialmente conductores dispuestos en el interior dicha cámara (C),- a first (P) and a second (S) at least partially conductive elements arranged inside said chamber (C),
- una fuente de tensión (V) en conexión con al menos uno de dichos elementos (P, S) para aplicar un voltaje a través de al menos uno de dichos elementos (P, S), generando un campo eléctrico entre los mismos afectando a un volumen de dicho gas de efecto invernadero o de dicha mezcla de gases (G) dispuesto entre ambos electrodos (P, S), estando dicho sistema caracterizado porque comprende un microscopio de fuerzas atómicas (AFM) en conexión con dicha fuente de tensión (V), siendo dicho primer elemento al menos una punta (P), o protrusión utilizada como punta, de dicho microscopio de fuerzas atómicas (AFM).- a voltage source (V) in connection with at least one of said elements (P, S) to apply a voltage across at least one of said elements (P, S), generating an electric field between them affecting a volume of said greenhouse gas or said gas mixture (G) disposed between both electrodes (P, S), said system being characterized in that it comprises an atomic force microscope (AFM) in connection with said voltage source (V ), said first element being at least one tip (P), or protrusion used as a tip, of said atomic force microscope (AFM).
32.- Sistema según Ia reivindicación 31 , caracterizado porque está adaptado para aplicar el método según una cualquiera de las reivindicaciones 1 a 31. 32.- System according to claim 31, characterized in that it is adapted to apply the method according to any one of claims 1 to 31.
PCT/ES2009/070016 2008-02-05 2009-02-04 Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases WO2009098346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800312A ES2351742B1 (en) 2008-02-05 2008-02-05 METHOD AND SYSTEM TO REDUCE OR ELIMINATE THE CONTENT OF GREENHOUSE GASES IN A GAS OR GAS MIXTURE.
ESP200800312 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009098346A1 true WO2009098346A1 (en) 2009-08-13

Family

ID=40951809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070016 WO2009098346A1 (en) 2008-02-05 2009-02-04 Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases

Country Status (2)

Country Link
ES (1) ES2351742B1 (en)
WO (1) WO2009098346A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3325982B1 (en) 2015-07-22 2020-09-02 Universität Basel Top-cover for a controlled environmental system, top-cover-set and controlled environ-mental system compatible with probe based techniques and procedure to control the en-vironment for a sample

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481528A (en) * 1992-09-25 1996-01-02 Canon Kabushiki Kaisha Information processor and method using the information processor
US6011261A (en) * 1997-03-04 2000-01-04 Canon Kabushiki Kaisha Probe formed of mono-crystalline SI, the manufacturing method thereof, and an information processing device using the probe
WO2000009443A1 (en) * 1998-08-14 2000-02-24 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6051825A (en) * 1998-06-19 2000-04-18 Molecular Imaging Corporation Conducting scanning probe microscope with environmental control
ES2224890A1 (en) * 2004-06-01 2005-03-01 Universitat Autonoma De Barcelona Instrument for electrical characterisation on a nanometric scale

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481528A (en) * 1992-09-25 1996-01-02 Canon Kabushiki Kaisha Information processor and method using the information processor
US6011261A (en) * 1997-03-04 2000-01-04 Canon Kabushiki Kaisha Probe formed of mono-crystalline SI, the manufacturing method thereof, and an information processing device using the probe
US6051825A (en) * 1998-06-19 2000-04-18 Molecular Imaging Corporation Conducting scanning probe microscope with environmental control
WO2000009443A1 (en) * 1998-08-14 2000-02-24 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
ES2224890A1 (en) * 2004-06-01 2005-03-01 Universitat Autonoma De Barcelona Instrument for electrical characterisation on a nanometric scale

Also Published As

Publication number Publication date
ES2351742A1 (en) 2011-02-10
ES2351742B1 (en) 2011-12-12

Similar Documents

Publication Publication Date Title
Van Veldhuizen et al. Energy efficiency of NO removal by pulsed corona discharges
Fridman Plasma chemistry
Yap et al. Carbon dioxide dissociation to carbon monoxide by non-thermal plasma
Potapov et al. Uniform supersonic chemical reactors: 30 years of astrochemical history and future challenges
US6139694A (en) Method and apparatus utilizing ethanol in non-thermal plasma treatment of effluent gas
Urashima et al. Reduction of NO/sub x/from natural gas combustion flue gases by corona discharge radical injection techniques [thermal power plant emissions control]
CN104179552A (en) Automobile tail gas treatment device and method based on low-temperature plasma
Zhou et al. DFT studies of Hg0 oxidation by gaseous advanced oxidation method: H2O2/Fe3O4 (1 1 1) and hydroxyl pre-adsorbed Fe3O4 (1 1 1) surface
Djaouani et al. Numerical Analysis of the Chemical Reactions Effects on NOx Conversion under Various Reduced Electric Fields
Huang et al. An enhancement method for the elemental mercury removal from coal-fired flue gas based on novel discharge activation reactor
Qi et al. Simultaneous removal of NO and SO2 from dry gas stream using non-thermal plasma
WO2009098346A1 (en) Method and system for reducing or eliminating the greenhouse-gas content of a gas or mixture of gases
Schroeder et al. Plasma-enhanced NOx remediation using nanosecond pulsed discharges in a water aerosol matrix
US20230220562A1 (en) Negative emission, large scale carbon capture for clean fossil fuel power generation
US20230074143A1 (en) Negative emission, large scale carbon capture for clean fossil fuel power generation
Lei et al. Plasma-catalytic NO x production in a three-level coupled rotating electrodes air plasma combined with nano-sized TiO2
Zhang et al. Removal dynamics of nitric oxide (NO) pollutant gas by pulse-discharged plasma technique
TW201350191A (en) Apparatus and method for processing gas
US20070196268A1 (en) Thermal activation of photocatalytic generation of hydrogen
Malik et al. A novel pulsed corona discharge reactor based on surface streamers for NO conversion from N2-O2 mixture gases
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
Bogaerts et al. Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications
Alva et al. Nitrogen oxides and methane treatment by non-thermal plasma
Lane et al. Inelastic electron scattering and energy-selective negative ion reactions in molecular films on silicon surfaces
Ceyer Collision-Induced Surface Processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709119

Country of ref document: EP

Kind code of ref document: A1