WO2009093838A2 - 박막 원심분리 분석 장치 및 이를 이용한 분석 방법 - Google Patents

박막 원심분리 분석 장치 및 이를 이용한 분석 방법 Download PDF

Info

Publication number
WO2009093838A2
WO2009093838A2 PCT/KR2009/000306 KR2009000306W WO2009093838A2 WO 2009093838 A2 WO2009093838 A2 WO 2009093838A2 KR 2009000306 W KR2009000306 W KR 2009000306W WO 2009093838 A2 WO2009093838 A2 WO 2009093838A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sample
thin film
analysis
site
Prior art date
Application number
PCT/KR2009/000306
Other languages
English (en)
French (fr)
Other versions
WO2009093838A9 (ko
WO2009093838A3 (ko
Inventor
Jae Chern Yoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to ES09703773T priority Critical patent/ES2842969T3/es
Priority to EP09703773.3A priority patent/EP2239583B1/en
Priority to CN2009801026928A priority patent/CN101971035B/zh
Priority to DK09703773.3T priority patent/DK2239583T3/da
Priority to US12/863,684 priority patent/US8969070B2/en
Priority to EP20212461.6A priority patent/EP3869205B1/en
Publication of WO2009093838A2 publication Critical patent/WO2009093838A2/ko
Publication of WO2009093838A3 publication Critical patent/WO2009093838A3/ko
Publication of WO2009093838A9 publication Critical patent/WO2009093838A9/ko
Priority to US14/090,317 priority patent/US20140186935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/02Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles without inserted separating walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/10Apparatus for enzymology or microbiology rotatably mounted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/625Detection means characterised by use of a special device being a nucleic acid test strip device, e.g. dipsticks, strips, tapes, CD plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • G01N2035/00247Microvalves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges

Definitions

  • One embodiment of the present invention relates to a thin-film centrifuge device and an analysis method using the same, for example, a device for diagnosing and detecting a small amount of material in a fluid, such as lab-on-a-chip, protein chip and DNA chip
  • the present invention relates to a thin film centrifuge device and an analysis method using the same.
  • a standard compact disc can be formed from a 12 cm polycarbonate substrate, a reflective metal layer and a protective lacquer coating.
  • the formats of CDs, DVDs and CD-ROMs can be described by the ISO 9660 industry standard.
  • the polycarbonate substrate is a transparent polycarbonate of optical quality.
  • the data layer is part of the polycarbonate substrate, and the data is engraved in a series of pit shapes by a stamper during the injection molding process.
  • the molten polycarbonate is injected into the mold under high pressure, and then cooled so that the polycarbonate has a mirror image of a mold or stamper or stamp, and pits representing binary data on the disk substrate are created in the polycarbonate substrate.
  • the stamping master may be glass.
  • Such discs can be modified and modified with thin-film analytical devices that diagnose and detect small amounts of material in the fluid.In this case, instead of pits on the surface of the disc during the injection molding process, channels and buffers may be used. Chambers, holes, valves, etc. may be formed to store buffer solutions.
  • bio chip such as a lab on a chip, a protein chip and a DNA chip for diagnosing and detecting a small amount of a substance in a fluid is integrated into a disk such as a conventional CD-ROM, a DVD, or the like.
  • Discs that carry out bio and chemical processes for diagnosing and detecting substances of are called bio discs.
  • Bio discs may include a plurality of chambers for storing many liquid phase bios and chemicals required for chemical processes.
  • the bio and chemical processes include a preparation process, a centrifugation process, a DNA amplification process, a hybridization process, an antigen-antibody reaction process, a mixing process, and a washing process to prepare a sample from the sample. And the like, these bio and chemical processes can be sequentially processed on bio discs sequentially, which is known.
  • the bio disc to be commercialized, the following problems need to be solved.
  • valve that does not leak during centrifugation when extracting a sample from a sample by centrifugation.
  • the valve which is opened and closed by the existing physical movement takes a manner in which opening and closing is made by closely contacting or releasing a ball or a sealing means to a hole or a channel, and a valve which takes such a method is known.
  • the valve may be incompletely sealed because it must allow opening by physical movement.
  • a leak may occur due to hydraulic pressure generated by the fluid itself during centrifugation. Therefore, leaks may not be able to extract a quantitative sample from the sample through centrifugation, thereby reducing the reliability and accuracy of the analysis. Therefore, there is a need for a centrifugal analysis device in which such leakage does not occur during high speed rotation.
  • One embodiment of the present invention is to provide a small amount of material in the fluid, such as lab-on-a-chip, protein chip and DNA chip by providing a centrifugal separator in the body of the thin film that does not cause leakage during the extraction of the sample from the sample by centrifugation
  • the present invention provides a thin film centrifuge device and an analysis method using the same.
  • the sample inlet for injecting a sample;
  • a sample chamber for storing a sample injected into the sample inlet;
  • An analyte chamber and a remnant chamber for separately storing the sample and the remnant of the quantitatively by centrifuging the sample in the sample chamber;
  • a bottle neck channel connecting the sample chamber and the ground chamber;
  • An excess chamber for storing an excess sample of the sample chamber for storing a sample of quantity or a sample of quantity in the sample chamber;
  • Capture probes for binding to the sample for example for biological specific binding, are immobilized and / or subjected to analytical reactions, eg biochemical reactions with the sample.
  • the liquid valve provides a hydrophilic flow path that connects the sample chamber and the assay site when the body is stopped, and at the same time U- or V-shaped to prevent fluid in the sample chamber from moving to the assay site during rotation of the body.
  • Can have The surface of the liquid valve is superhydrophilic, and fluid retained in the sample chamber by the liquid valve during rotation of the body can move to the analysis site by hydrophilic fluid movement when the body stops.
  • a superhydrophilic coated U- or V-shaped flow path is used as the liquid valve so that all samples in the sample chamber are subjected to hydrophilic fluid movement during the body stop. To the analysis site.
  • all the samples in the sample chamber can determine the volume of the sample (volume) required for quantitative analysis.
  • the entire sample in the sample chamber comprises moving to the analysis site.
  • samples having a viscosity such as serum may not migrate all of the samples in the sample chamber through the flow path having the U- or V-shape due to its viscosity. That is, when the body is stopped, only a part of the sample in the sample chamber may be moved into the analysis site through the hydrophilic flow passage having the U-shaped or V-shaped shape, so that quantitative analysis may not be possible.
  • one embodiment of the present invention provides a means for moving fluid to a sample in the sample chamber to move all the samples in the sample chamber into the analysis site through a hydrophilic flow passage having the U- or V-shape when the body is stopped. Can be provided.
  • all the samples in the sample chamber can be moved to the analysis site by a fluid moving means selected from the following four types.
  • the air pressure generated while the swelling chamber is swelled during rotation of the body and returns upon stopping rotation of the body may generate a fluid propulsion force to move all the samples in the sample chamber to the analysis site.
  • the means for moving the fluid due to the fluid propulsion force caused by the expansion and return of the ground chamber is referred to as a chamber pump. Expansion of the ground chamber during rotation of the body may occur by centrifugal force.
  • the residue chamber is not only disposed on the circumference of the sample chamber but also heavier than the sample, for example, red blood cells are stored according to an embodiment of the present invention so that the upper substrate of the residue chamber expands during high-speed rotation. can do.
  • the upper substrate of the residue chamber may be a thin film having a thickness of, for example, 0.1 mm to 0.6 mm to facilitate expansion during high speed rotation.
  • the fluid pressure that occurs when a substance in the ground chamber, which has been compressed during rotation of the body, e.g. red blood cells in accordance with one embodiment of the invention, expands when the body stops rotating Fluid propulsion may be generated to move all samples in the chamber to the assay site.
  • the means for moving the fluid by the fluid propulsion force due to the compression and expansion of the red blood cells in the residue chamber is called a red blood cell pump. Red blood cell compression in the ground chamber during rotation of the body may occur by centrifugal force.
  • the liquid valve through a hydrophilic flow path having the U- or V-shape, including an absorbent pad or sample pad or superhydrophilic chamber, between the distal end of the liquid valve and the assay site inlet.
  • Absorption force for sucking a sample arriving at the end of can continuously generate a fluid propulsion force to move all the samples in the sample chamber to the assay site or superhydrophilic chamber.
  • the fluid moving means by the fluid driving force according to the suction force of the absorbent pad or the suction force of the sample pad or the hydrophilic suction force of the superhydrophilic chamber is called a suction pump.
  • hydrophilic absorption force for moving a sample in the sample chamber by superhydrophilic coating the flow path having the U-shaped or V-shaped shape is used to move all the samples in the sample chamber to the analysis site. It can generate fluid thrust.
  • the fluid moving means by the fluid driving force according to the hydrophilic suction force is referred to as hydrophilic fluid movement.
  • all the samples in the sample chamber are moved to the analysis site by the fluid moving means to empty the sample chamber.
  • the strong capillary effect on the fluid in the bottleneck channel prevents the fluid in the residue chamber from moving to the liquid valve.
  • the strong capillary effect on the fluid in the bottleneck channel can be balanced with the force of fluid movement by the fluid movement means and the fluid no longer moves to the assay site. Thus, only the quantitative sample is taken to the assay site.
  • the chamber pump, the erythrocyte pump, the suction pump and the fluid moving means by the hydrophilic fluid movement means the fluid propulsion force by the capillary phenomenon provided by the flow path having a U-shaped or V-shaped It may further include.
  • the sample chamber may be one that is superhydrophilic (Superhydrophilic) coating.
  • the superhydrophilic coating comprises a hydrophilic coating.
  • the sample comprises a variety of biomaterials, for example blood.
  • the sample also includes a substance obtained from the sample by centrifugation, such as serum or plasma obtained from blood.
  • the plasma including the serum, plasma, and leukocytes is referred to as serum.
  • the remnant chamber may be a capillary chamber.
  • Centrifugation of blood can separate it into serum, blood clots, plasma and red blood cells.
  • Most of the blood clots may be red blood cells. Therefore, when the blood of the sample chamber is stored and the sample chamber and the residue chamber are centrifuged, serum remains in the sample chamber, and red blood cells remain in the residue chamber. In this case, if the rotation is stopped after centrifugation, red blood cells may be mixed with serum again. That is, after centrifugation, in order to extract only the serum to stop the rotation of the body, in this case, red blood cells and serum are mixed again, it may be difficult to extract only the serum.
  • one embodiment of the present invention is configured by the capillary chamber having a low (or narrow) capillary chamber so that the red blood cells remain in the ground chamber by the capillary phenomenon or the binding force between the surface of the ground chamber and the red blood cells. It was not mixed again.
  • the binding force between the surface of the ground chamber and the red blood cells is due to the strong viscosity of the red blood cells, and thus the centrifuged red blood cells can remain in the ground chamber without mixing again with serum even if the rotation stops.
  • the height of the capillary chamber may be, for example, 0.1mm to 0.6mm.
  • the body may further comprise a cleaning chamber for storing the cleaning solution required for the cleaning process.
  • the body may further comprise a mixing chamber for performing a mixing process between the two fluids.
  • the body further comprises a buffer chamber for storing a dilution buffer for diluting the sample or a label for binding to a target material in the sample.
  • a buffer chamber for storing a dilution buffer for diluting the sample or a label for binding to a target material in the sample.
  • the marker may have a gold or gold conjugate or latex or fluorescent label or radioactive isoenzyme or enzyme linked antibody label as a particle for coloring in the form of antibody or DNA.
  • the enzyme can be developed by a substrate solution that reacts with the enzyme.
  • it may further comprise a substrate chamber for storing the substrate solution to react with the enzyme and the color development.
  • the sample comprises a bio-material that causes a biochemical binding reaction, such as, for example, serum, DNA, proteins, ligands (receptors), and the like.
  • a biochemical binding reaction such as, for example, serum, DNA, proteins, ligands (receptors), and the like.
  • the thin film centrifuge device may further comprise a thin film cylindrical magnet for azimuth direction search of the analysis site in the body.
  • a thin film cylindrical magnet for azimuth direction search of the analysis site in the body.
  • thin film ferromagnetic metal particles may be used.
  • the diameter of the thin film cylindrical magnet or thin film ferromagnetic metal particles may be in the range of 1mm to 5mm, the thickness may be in the range of 0.1mm to 1mm.
  • the bottleneck channel may be constituted by two thin film flow paths (channels).
  • the bottleneck channel is centrifuged by the centrifugal force generated by the rotation of the body, so that the samples in the sample chamber and the residue chamber are respectively centrifuged to move the remnants in the sample chamber to the residue chamber or to centrifuge in the residue chamber.
  • a passage may be provided for allowing an analyte to move into the sample chamber. That is, the bottleneck channel may provide a passage for causing the sample and debris separated during centrifugation to move between the sample chamber and the debris chamber.
  • the residue chamber is devoid of exhaust vents. That is, the debris chamber does not include any channels or exhaust ports for liquid entry and exit except the bottleneck channel.
  • the bottleneck channel as a thin film channel, it is possible to prevent the residue in the residue chamber from moving back into the sample chamber when the body is stopped, so that the quantity of sample in the sample chamber is maintained. That is, when the body is stopped, it is impossible for the fluid in the ground chamber to move freely into the sample chamber due to the strong capillary phenomenon of the fluid in the bottleneck channel composed of the thin film channel and the absence of the exhaust port of the ground chamber.
  • the fluid in the ground chamber does not move to the liquid valve due to the strong capillary phenomenon for the fluid in the bottleneck channel. That is, the strong capillary effect on the fluid in the bottleneck channel is balanced with the force of hydrophilic fluid movement to move to the liquid valve so that the fluid no longer moves to the liquid valve.
  • the hydrophilic flow path may be a surface modification by a porous surface or an aqueous paint or superhydrophilic paint coating.
  • the thin film centrifuge device may further comprise a spindle motor for rotating the body.
  • the thin film centrifuge device controls a BOPM (Bio Pickup Optical Module) device mounted on a slider to enable space addressing of the chambers and the movement thereof. It includes a slide motor (slide motor), and mounted on the BOPM device, a laser beam generator and a permanent magnet, the coordinates of the BOPM device may be moved and controlled by the control of the slide motor.
  • the laser beam generator may be, for example, using an optical pickup device.
  • the radial search may be performed by the control of the slide motor.
  • the azimuth direction search can be made by rotating the body a certain amount by controlling the short rotation of the spindle motor or controlling the step motor with the slider stopped.
  • the step motor may be connected to and engaged with a gear on a spindle motor motor shaft for rotation in the azimuth direction of the body.
  • the thin film centrifuge device may further include a temperature control means for controlling the reaction temperature of the chambers.
  • the temperature control means may comprise one or more selected from the group consisting of temperature measuring means, heating means and cooling means.
  • the heating means includes a laser beam generator mounted on the slider.
  • the cooling means may be rotation cooling due to the rotation of the body, and heat dissipation due to contact between the surface of the chamber and air during the rotation of the body may occur efficiently, thereby causing a cooling action.
  • the temperature measuring means may be to wirelessly transmit the temperature of the chamber is measured by a temperature sensor connected to a wireless RF IC embedded in the body to an external central control device.
  • the body comprises a rotatable thin film disk consisting of an upper substrate, an intermediate substrate and a lower substrate.
  • the disk diameter of the disk may be, for example, a disk disk of 120 mm, 80 mm or 32 mm, and a thickness of 0.6 mm to 3 mm.
  • the movement of the fluid may be performed by centrifugal force or capillary action by the rotational force of the body, or may be performed through a superhydrophilic coated flow path.
  • the body can be selected from a variety of materials such as, for example, plastic, glass, silicon wafers, hydrophobic materials.
  • plastics tend to be preferred because of their economy, ease of processing, and compatibility with existing laser reflection based detectors such as CD-ROM and DVD readers.
  • the body is made of a silicon wafer, polypropylene, polyacrylate, polyvinyl alcohol, polyethylene, polymethyl methacrylate (PMMA), cyclic olefin polymer (COC) and polycarbonate It may be formed of one or more selected from the group.
  • the body may be aluminum coated to prevent evaporation of the liquid stored in the chamber.
  • the body consists of an upper substrate, an intermediate substrate and a lower substrate, which can be joined by an adhesive.
  • the pressure-sensitive adhesive may be made of a material selected from the group consisting of silicon, rubber, modified silicone, acrylic, polyester, and epoxy.
  • the body comprises a first thin film adhesive tape is formed by laminating and bonding the upper substrate, the intermediate substrate and the lower substrate, laminated between the upper substrate and the intermediate substrate to bond them; And a second thin film adhesive tape laminated between the intermediate substrate and the lower substrate to bond them.
  • the thin film adhesive tape may be a single-sided or double-sided tape.
  • the tape is surface treated with an adhesive (a gluing agent) on both or one side of the release paper such as paper, vinyl, polyester film, polyethylene film, and other synthetic materials, and has high sealing and Pressure-sensitive adhesive materials having characteristics such as buffering, vibration damping, impact resistance, heat resistance, adsorption, adhesion, and the like can be used.
  • the manufacturing method is a thin film coating by adhesive on one side of the substrate by attaching a single-sided tape to the substrate and then removing the release paper, or the adhesive on one side of the substrate by dispensing or spraying or silk screen printing the adhesive.
  • Thin film coating can be performed. That is, in one embodiment of the present invention, the thin adhesive tape may be an adhesive (an adhesive; a gluing agent) itself is a thin film coated on a substrate without using a release paper.
  • Magnetic small beads contained in the mixing chamber A slider movable under the body; And a permanent magnet mounted to the slider and capable of moving the magnetic miniature beads by applying an attractive force to the magnetic miniature beads, wherein the magnetic miniature beads in the mixing chamber move together with the movement of the slider, whereby Mixing of the liquid in the mixing chamber can be induced.
  • the magnetic small beads contained in the mixing chamber A slider movable under the body; And a permanent magnet mounted to the slider and capable of moving the magnetic miniature beads by applying an attractive force to the magnetic miniature beads, stopping the permanent magnets at a corresponding radius of the mixing chamber and rotating the body.
  • the magnetic small beads in the mixing chamber move together, whereby mixing of the liquid in the mixing chamber can be induced.
  • the mixing operation may be a radial search or a radial search and an azimuth search for the mixing chamber to perform the mixing operation.
  • the sample chamber may further include a metering passage connected to the excess chamber to transfer the excess fluid.
  • the assay site may store a reagent for biochemical reaction or may comprise a porous membrane to which a capture probe is immobilized.
  • the assay site comprises a porous membrane and a capture probe immobilized on the porous membrane;
  • the assay site may be a porous membrane and a plurality of types of lines or spots fixed on the porous membrane.
  • a tumor marker or disease marker is included as a test line, and the porous membrane may have a strip shape that allows lateral flow or flow through of the fluid as a whole.
  • the porous membrane may include a sample pad and a conjugate pad at one end and an absorbent pad at the other end.
  • the tumor marker or disease marker may be a marker of AFP, PSA, CEA, CA19-9, CA125, CA15-3 or Alzheimer's disease, or myocardial infarction marker.
  • the assay site may further comprise capture probes for a reference line and a control line fixed on the porous membrane.
  • the reaction concentration of the reference line may be a cutoff value.
  • the baseline concentration of the reference line can be 3 ng / ml, 4 ng / ml, 10 ng / ml, 20 ng / ml, 30 ng / ml, 40 ng / ml or 50 ng / ml.
  • qualitative or quantitative analysis may be performed by the difference in reaction intensity between the reference line and the test line.
  • qualitative or quantitative analysis can be made by the difference in reaction intensity between the background of the strip and the test line.
  • the response intensity of the test line may be determined by a linear function of the reaction strengths formed by the plurality of reference lines to perform qualitative or quantitative analysis.
  • the response intensity of the test line may be determined and qualitatively or quantitatively analyzed by a linear function of the reaction intensity formed by the reference line and the control line.
  • the body may include a wireless RF IC having a temperature measurement function, an analysis site reading function, a function of storing and transmitting a reading result of the analysis site, or a personal encryption function.
  • the thin film centrifuge device may further include detection means for detecting a reaction result of the analysis site.
  • the detecting means may be a spectrophotometer comprising a light source device and a photo detector.
  • the detection means may be an optical measuring device including an illumination device and an image sensor (eg, CCD, CMOS, CIS sensor).
  • the detecting means may be a photometric measuring device including a laser beam device and a light detector.
  • the thin film centrifuge device and the analysis method using the same of the embodiment of the present invention is applicable to a thin film type device for diagnosing and detecting a small amount of bio and / or chemical substances in a fluid such as lab-on-a-chip, protein chip and DNA chip.
  • the thin film centrifuge device according to one embodiment of the present invention can be integrated into a thin film disk such as a conventional CD-ROM, DVD or the like.
  • Thin film centrifugation analysis device and an analysis method using the same is a lab-on-a-chip, ELAP / CLISA analysis method, Lab-on-a-chip applied Rapid test method; Or small amounts of bio and / or chemicals in fluids such as lab-to-chip for food poisoning, residual antibiotics, pesticides, genetically modified foods, food allergy, contaminant or paternity testing, meat type and origin identification Applicable to thin film devices for diagnosing and detecting the
  • the residual pesticides include pesticides contained in vegetables, vegetables or fruits, such as organophosphorus and carbamate insecticides with the highest usage.
  • the biomaterial is DNA, oligonucleotide, RNA, PNA, ligand, receptor, antigen, antibody, milk, urine, saliva, hair, crop sample, meat It may be one or more selected from samples, fish samples, algae samples, sewage (contaminated water), livestock samples, food samples, oral cells, tissue samples, saliva, semen, proteins or other biomaterials.
  • the thin film centrifuge device is white blood cells (Leucocyte), blood (Blood), protein (Protein), nitrite (Nitrite), pH, specific gravity, glucose (Klucose), Ketone (Ketone), Ascorbic acid, eurobilinogen, bilirubin analysis and the like can be performed.
  • one embodiment of the present invention comprises a sample inlet for injecting a sample;
  • a sample chamber for storing a sample injected into the sample inlet;
  • a bottle neck channel connecting the sample chamber and the ground chamber;
  • An excess chamber for storing an excess sample of said sample chamber for storing a quantity of sample in said sample chamber;
  • a capture probe for specific binding to the sample is immobilized and / or a reagent for biochemical reaction with the sample, e.g.
  • a biomaterial for biochemical reaction is stored More analysis sites; A superhydrophilic coated liquid valve formed on a flow path connecting the sample chamber and the analysis site; A trash chamber for collecting debris that does not bind the capture probe by a cleaning process; And a rotatable body in which the chambers, the bottleneck channel, the analysis site, the liquid valve, and the flow path are integrated, wherein the sample is injected into the sample chamber through the sample inlet.
  • the assay method may comprise adding a cleaning solution to clean the assay site; And drying and dehydrating the assay site.
  • the analysis method may include: an analysis site searching step for searching the analysis site; Qualitatively or quantitatively analyzing a reaction result of the assay site; Displaying a diagnosis result according to the analysis on a computer monitor; Remotely transmitting a diagnosis result or a questionnaire according to the analysis to a doctor connected through an internet network; And it may further comprise one or more steps of receiving a prescription from the doctor.
  • the analyzing method may further include mixing the liquid in the mixing chamber by magnetically moving the magnetic small beads contained in the mixing chamber.
  • the analysis method further comprises preventing a fluid leak (or leak) by centrifugal force from the sample chamber during rotation of the body using a liquid valve having a U-shaped or V-shaped shape relative to the center of rotation of the body. can do.
  • the analysis method may further comprise controlling the temperature of the analysis site by the temperature control means.
  • the analysis method includes searching for and selecting one specific analysis site from among the plurality of analysis sites; And a detecting step of detecting a response of the specific analysis site.
  • the detecting step may be performed by a spectrophotometer, and the analysis of the analysis site by the spectrophotometer may be performed by controlling a rotation angle or azimuth direction of the body by a step motor or a gear connected to the step motor. It may be performed after the search step of the chamber using valve search or by continuously measuring the light absorption of the sample during the body rotation by space addrsssing of the assay site by the chamber solution chamber.
  • the light source or the light source device of the spectrophotometer may be a white light LED, an RGB laser, or an LD module in which a plurality of laser diodes (LDs) are integrated.
  • LDs laser diodes
  • the reading of the analysis site by the spectrophotometer is performed by passing light of a specific wavelength obtained by the light source device of the spectrophotometer to the analysis site of the upper substrate in the body or the thin film centrifuge device in which the reflective layer is integrated in the analysis site. And measuring light absorption by the sample in the analysis site by detecting the light reflected by the reflective layer.
  • the reading of the analysis site by the spectrophotometer is performed by a photo detector integrated in the body to obtain a reading result by measuring a light absorption rate by a sample, and a wireless RF IC integrated in the body receives the reading result to the outside. It may include the step of transmitting radio.
  • the washing step may further include washing the analysis site by adding a cleaning solution to the analysis site.
  • the washing step may further include a drying step of drying and dehydrating the analysis site by centrifugal force according to the rotation of the body. Debris from drying and dehydration are collected in the trech chamber by centrifugal force.
  • the body comprises a prep chamber for preparing DNA or RNA from the serum obtained from the sample chamber; And an amplification chamber for amplifying the DNA and RNA; And a fragmentation chamber for performing a process for cutting the amplified DNA into a predetermined length.
  • DNA cut to a certain length in the fragmentation chamber is introduced into the assay site, for example, in which a DNA capture probe is arranged in an array, and a DNA capture probe having a complementary sequence. Hybridized with to form a double stranded DNA.
  • a chamber for adding a process required for DNA amplification and fragmentation process may be added and inserted in addition to the chamber.
  • the thin-film centrifuge device may further include a thin film cylindrical magnet for spatial addressing of the amplification chamber or the fragmentation chamber in the body.
  • the thin-film centrifuge device may further comprise heating means and cooling means for heating the amplification chamber or the fragmentation chamber.
  • the amplification chamber includes performing a thermal cycle (thermo cycle, thermo cycle) according to the polymerase chain reaction (PCR) process.
  • the spatial addressing of the heating means to the amplification chamber or to the fragmentation chamber can be done by radial search and azimuthal search.
  • the assay method comprises the steps of isolating DNA or RNA in a prep chamber; Amplifying the DNA in the amplification chamber; A fragmentation step of cutting the amplified DNA to an appropriate length; The method may further include a labeling step of attaching a label to one end of the DNA.
  • the DNA amplification step may further include a rotation cooling step by a high speed rotation of the body to cool the heat.
  • the fragmentation step after DNA amplification, the step of introducing DNAse into the amplification chamber; Heating to a high temperature by the heating means may include stopping the function of DNAse (stop incubation) and / or making a single strand of DNA (denaturing step).
  • the thin film centrifuge device and an analysis method using the same is applicable to a thin film type device for diagnosing and detecting a small amount of a substance in a fluid such as lab-on-a-chip, protein chip or DNA chip.
  • the thin film centrifuge device and the analysis method using the same according to one embodiment of the present invention is applicable to the integration of the centrifuge device in a thin film, such as a disk device such as a conventional CD-ROM and DVD.
  • FIG. 1 and 2 are a cross-sectional view and a plan view of a thin film centrifuge device according to an embodiment of the present invention and a thin film centrifuge device drive (drive) for driving control keys thereof.
  • FIG 3 is a diagram illustrating a top view of a slider according to an embodiment of the present invention, in which a BOPM and a permanent magnet are installed.
  • FIG. 4 is a side view of a thin film centrifuge device drive according to an embodiment of the present invention for driving and controlling the thin film centrifuge device of FIG.
  • FIG. 5 is a diagram illustrating a spectrophotometer according to an embodiment of the present invention using a grating mirror.
  • 6 to 8 are diagrams showing one embodiment of the present invention for implementing an analysis site reading method on a thin film centrifuge device using a spectrophotometer.
  • FIGS. 9 and 10 illustrate one embodiment of a liquid valve for preventing leakage of liquid during centrifugation.
  • FIG. 11 is a diagram illustrating the centrifugation process step by step.
  • FIG. 12 is a diagram illustrating an embodiment of a bottleneck channel.
  • 13 to 15 illustrate various embodiments of strips in which multiple tumor markers are fixed in a line or spot form on a porous membrane.
  • FIG. 16 is a view illustrating an embodiment of a thin film centrifuge apparatus in which a plurality of assay sites are arranged in parallel in different sectors, and various processes of a lab-on-a-chip are arranged for multiple reaction reactions on a single sample.
  • 17 is a view showing a process of gradually moving all the serum in the sample chamber to the buffer chamber by alternately repeating the hydrophilic fluid movement process by the liquid valve and the fluid movement process by centrifugal force.
  • FIG. 18 is a diagram showing another embodiment of moving serum into an analysis site by centrifugal force in another embodiment of FIG. 17.
  • 19 to 22 is a case in which the dilution solution storage chamber in the embodiment of FIG. 17 further includes a step-by-step operation thereof.
  • FIG. 23 is a view showing a thin film centrifuge device drive according to an embodiment of the present invention capable of front loading or top loading a thin film centrifuge device according to an embodiment of the present invention. to be.
  • 1 and 2 are a cross-sectional view and a plan view of a thin film centrifuge device and a thin film centrifuge device drive (drive) for controlling the drive according to an embodiment of the present invention.
  • the thin film centrifuge device may integrate various processes of a lab-on-a-chip in a thin film device such as a disk device such as a conventional CD-ROM and a DVD.
  • a thin film device such as a disk device such as a conventional CD-ROM and a DVD.
  • one embodiment of the present invention is a fluid treated with one or more chambers 130, 131a, 131b, 131c, and 133 for storing various buffer solutions for analysis and for performing various chemical and centrifugation processes.
  • a thin film centrifuge device 100 in which flow paths 92, 93, 67, an analysis site 132 and a liquid valve 7 for moving the buffer solution are integrated on the thin film disk.
  • a thin film centrifuge device drive 100a for controlling and driving the same.
  • identification number 100 is a thin-film centrifuge device comprising a body or a substrate thereof, wherein an upper substrate 1, an intermediate substrate 2 and a lower substrate 3 are formed by lamination, respectively
  • the sample chamber 130, the sample chamber 131a, the residue chamber 131b, the surplus chamber 131c, the analysis site 132, and the trech chamber 133 are included. They may be closely attached to each other to form a thin film centrifuge device 100.
  • the sample chamber 131a may further include an exhaust port 12 for discharging air pressure due to movement of the sample from the sample chamber 130.
  • the exhaust port 12 may be disposed in a direction opposite to the centrifugal force.
  • the exhaust openings 12 and 13 and the bottleneck channel 67 may be formed by a thin film flow path.
  • the thin film flow path may be formed between the layers of the substrates 1, 2, 3 by a thin film adhesive tape having a flow path shape. That is, the substrates 1, 2, and 3 may be closely adhered to each other by a thin film adhesive tape to form a single thin film centrifuge device 100, and the thin film flow path may be a portion where the thin film tape is missing between the substrate layers.
  • a thin film channel may be formed in the channel.
  • the height of the flow path may be determined by the thickness of the thin film adhesive tape, and since the height is very low, a strong capillary phenomenon may occur with respect to the fluid.
  • the thickness of the thin film adhesive tape may be, for example, 0.001mm to 0.1mm.
  • FIGS. 1 and 2 will be described, for example, when the sample is blood.
  • Identification number 120 denotes a dispenser or pipette or syringe or lancet or sample injection means for injecting a sample
  • identification number 121 is a sample inlet
  • identification number 170 represents a disk void.
  • Identification number 130 is a sample chamber for storing blood injected into the sample inlet.
  • the blood in the sample chamber 130 moves to the sample chamber 131a and the residue chamber 131b through the flow path 92 during the initial rotation of the body 100, and the blood above the quantity is surplus through the flow path 93. It is moved to the chamber 131c. Subsequently, centrifugation occurs independently of each blood stored in the sample chamber 131a and the residue chamber 131b by the centrifugal force by the rotation of the body 100, and not only the blood in the sample chamber 131a, Blood in the chamber 131b is also separated into serum and red blood cells.
  • Identification number 67 is a bottleneck channel connecting the sample chamber 131a and the residue chamber 131b.
  • the bottleneck channel 67 is a red blood cell in the sample chamber 131a while the blood in the sample chamber 131a and the residue chamber 131b are centrifuged by centrifugal force generated by the rotation of the body 100. 131b) or provide a passage for the serum in the residue chamber 131b to move into the sample chamber 131a. That is, the bottleneck channel 67 provides a passage through which serum and red blood cells can freely move between the sample chamber 131a and the residue chamber 131b during centrifugation. According to FIG.
  • the debris chamber 131b is disposed on the outer circumferential side of the body more than the sample chamber 131a, and as a result of the movement through the bottleneck channel 67 of serum and red blood cells during centrifugation, the debris chamber ( Red blood cells are collected in 131b), and serum is collected in the sample chamber 131a.
  • the bottleneck channel 67 may consist of two thin film channels (channels) for movement between serum and red blood cells during centrifugation.
  • the bottleneck channel 67 composed of two thin film channels (channels) may not form a separate exhaust port in the ground chamber 131b. That is, during the rotation of the body 100, the exhaust port 13 of the sample chamber 131a by the centrifugal force also serves as an exhaust port for the ground chamber 131b. However, since the centrifugal force does not exist during the stop of the body 100, the exhaust port 13 of the sample chamber 131a cannot serve as the exhaust port of the ground chamber 131b.
  • the red blood cells can mix with the serum once it stops spinning. That is, after centrifugation, in order to extract only serum, the rotation of the body 100 should be stopped, in which case red blood cells and serum may be mixed again and it may be difficult to extract only serum.
  • the sample chamber 131a and the ground chamber 131b are separated from each other spatially, and secondly, fluid movement between the sample chamber 131a and the ground chamber 131b is prevented.
  • the capillary phenomenon of the ground chamber 131b itself or of the ground chamber 131b causes the red blood cells to remain in the ground chamber 131b as it is so as not to mix with the serum in the sample chamber 131a again.
  • the binding force between the surface of the residue chamber 131b and the red blood cells is due to the strong viscosity of the red blood cells, and when the residue chamber 131b is configured as a capillary chamber, the centrifuged red blood cells do not mix again with the serum even if they stop rotating. Without red blood cells remaining on the surface of the residue chamber 131b. Therefore, the serum in the sample chamber 131a is not mixed again with the red blood cells of the residue chamber 131b even while the body is stopped, so that it remains centrifuged.
  • the surplus chamber 131c is a surplus chamber 131c through the quantitative channel 93 by centrifugal force during the rotation of the body 100 excess blood (excess) of the excess amount (quantity) Can be moved to
  • the amount of blood (or serum) remaining in the sample chamber 131a may be determined according to the height adjustment (corresponding to the distance in the radial direction) of the metering channel 93. Blood above the height of the metering channel 93 may move through the metering channel 93 into the surplus chamber 131c by centrifugal force during rotation.
  • Identification number 290a is a reference hole for alignment required in the production and assembly of thin film centrifuge device 100.
  • the reference hole 290a is inserted into a fixture installed in a jig.
  • Identification number 132 may be immobilized with a capture probe for binding to a serum in the sample chamber 131a, eg for biological specific binding, and / or for reaction with a sample, eg
  • the assay site stores reagents for biochemical reactions.
  • Identification number 41 is a porous membrane or strip to which the capture probe embedded in the assay site 132 is immobilized.
  • Identification number 13 is an exhaust port installed in the analysis site 132 to form an air stream during the high-speed rotation of the body 100 to accelerate the drying of the strip 41.
  • the strip 41 may be dried prior to the pore process so that the cleaning solution diffuses well on the strip during the cleaning process to clean the background noise component by the diffusion force.
  • Serum retained in the sample chamber 131a by the liquid valve 7 during the centrifugation is moved through the liquid valve 7 by the hydrophilic fluid upon stopping the rotation of the body 100. Can be moved to).
  • Identification number 133 is a trash chamber for collecting debris produced by the cleaning process, which is unable to bind to the capture probe of the assay site 132 during the high speed rotation of the body 100. Debris are collected through the flow path 94 into the trech chamber 133.
  • the identification number 211 is a slider mounted with the permanent magnet 5a and connected to the slide motor 109 to be driven and controlled.
  • Fluid movement is by centrifugal force by the rotational force of the body or fluid movement by the superhydrophilic coating of the flow path.
  • Identification number 291 is a thin film cylindrical magnet for spatial addressing the analysis site 132.
  • Identification code 103a is an optical pickup device for reproducing a conventional optical disc (for example, CD or DVD), and identification code 103b is an analysis site 132 for quantitative analysis or qualitative analysis of the analysis site 132.
  • the reading device may be a light transmittance measuring device, a fluorescence detection device, an image sensor device, a spectrophotometer or a surface plasma resonance detection device, and the optical pickup device 103a and the analysis site reading device 103b may be biometric.
  • An optical pickup module (BOPM) device 103 is constructed.
  • Various embodiments of the fluorescence detection device and the SPR detection device are known.
  • the thin film centrifuge device is a BOPM (Bio Pickup Optical Module) device 103 mounted on the slider 211 to enable space addressing of the analysis site 132. And a slide motor 109 for controlling the movement thereof, and a permanent magnet 5a for applying attractive force to the thin film cylindrical magnet 291 on the slider 211, and the slide motor 109 of the slide motor 109.
  • the coordinates of the BOPM device can be controlled to move. Space addressing for the analysis site 132 may be accomplished by radial and azimuthal search.
  • Radial direction search is a process of moving the permanent magnets 5a in the radial direction, and is made by moving the permanent magnets 5a on the slider 211 to the corresponding radius of the thin film cylindrical magnet 291. Thereafter, an azimuthal search is required to match the permanent magnet 5a and the thin film cylindrical magnet 291 on the radius. This can be done by slowing the spindle motor 102 with the slider 211 stopped, or through repeated operations of short rotation and stopping of the spindle motor. Through slow rotation of the spindle motor or several short rotations, when the permanent magnets 5a on the slider 211 coincide with the thin-film cylindrical magnets 291 on the corresponding radius, they are slow due to the strong attraction between them. Alternatively, the body 100 may no longer be rotated by a short rotation, and in this case, alignment between the permanent magnet 5a and the thin film cylindrical magnet 291 may be performed.
  • the azimuth direction search may be performed by the rotation control of the step motor mechanically connected to the shaft of the spindle motor 102 at the time of the azimuth direction search required time.
  • the rotation angle of the spindle motor 102 may be controlled according to the rotation of the step motor.
  • the identification number 116b is a flexible cable for connecting various control signals required for the BOPM 103 on the slider 211, and the central control unit 101 through the wafer or harness 116a. Connected with
  • Identification number 181 is a turn table for placing the thin film centrifuge device 100, which is front or top loaded onto the turn table through the central void 170 of the body.
  • Identification number 188 is a memory-embedded wireless RF IC or electronic tag device that includes a protocol for a lab-on-a-chip process, readings from analysis site 132, analysis algorithms, standard control values for reading, and analysis site 132 Location information, bioinformatics information, and information related to self diagnosis. In addition, personal encryption information and identification (identification) of the thin film centrifuge device can be stored, so that others can not be used without permission.
  • the wireless RF IC 188 includes a smart IC card.
  • the wireless RF IC 188 information is provided to the central control unit 101 through wireless transmission and reception, and may be utilized for personal encryption.
  • Identification number 110 is a radio wave generating means for supplying power to the wireless RF IC (188).
  • the AC magnetic field generated by the radio wave generating means 110 senses an induction coil coil embedded in the wireless RF IC 188 according to the Fleming law to produce a sufficient amount of electricity to supply power to the wireless RF IC 188.
  • the radio wave generating means may include a multipole permanent magnet to generate a current in an induction coil embedded in the wireless RF IC 188 by an alternating magnetic field generated by the rotation of the body 100.
  • the multipole permanent magnet may be arranged circumferentially on a tray for loading the body 100.
  • the wireless RF IC 188 has a temperature measurement function and measures the temperature of the analysis site 132 and wirelessly transmits it to the central control device 101. can do. If the temperature of the analysis site 132 is too high or too low, a constant temperature may be maintained by heating means or cooling means. In one embodiment of the invention, the temperature of the assay site 132 includes maintaining a temperature selected between 30 and 37 degrees Celsius in consideration of reaction with the sample, eg, biochemical activity and stability. .
  • the wireless RF IC 188 is a test date and test results, the effective period, livestock production area, the residual pesticide test and the residual antibiotic test of the thin film analysis device, Information on production and cultivation history, distribution history, contact details of farmers, prices, organic status, etc. may be included. Buyers and livestock distributors can purchase the livestock products with confidence from the above information.
  • the general consumer may know information about the thin film centrifuge device 100 by placing it in an RF IC reader or loading the thin film centrifuge device drive 100a.
  • the wireless RF IC 188 may store the test results of the thin film centrifuge device in a memory built in the wireless RF IC 188.
  • the wireless RF IC 188 controls the analysis site reading device, and the reading result is the central control device 101 or the storage device 112. Alternatively, wireless transmission may be performed to the input / output device 111.
  • the input / output device may have a communication standard of USB (Universal Serial Bus) or IEEE1394 or ATAPI or SCSI or Internet communication network.
  • USB Universal Serial Bus
  • the height, weight, gender, age, etc. of the user of the thin film centrifuge device 100 may be input through the input / output device 111.
  • FIG. 2 shows a sample chamber via a hydrophilic flow path 7 having a U or V shape with a sample pad 41a or an absorption pad 41b between the end of the liquid valve 7 and the analysis site 132.
  • an absorption pump is shown for moving the serum in the sample chamber 131a to the assay site 132 by an absorption force that sucks the serum in 131a.
  • the serum in the sample chamber 131a may be moved to the analysis site 132 by the absorption pump to empty the sample chamber 131a.
  • the fluid in the dreg chamber 131b is discharged due to the strong capillary effect on the fluid in the bottleneck channel 67.
  • Identification number 41b is an absorbent pad
  • identification number 41a is a sample pad and a conjugate pad, which pads are respectively connected to the ends of the porous membrane 41c.
  • FIG. 3 is a top view of a slider according to an embodiment of the present invention in which the BOPM 103 and the permanent magnet 5a are installed.
  • the slider may be controlled to be moved by worm gear connecting portions 109a and 109b connected to the slide motor 109 shaft.
  • the slider is slidably using slide arms 108a and 108b as guides.
  • the slide arms 108a, 108b are fastened to the body of the thin film centrifuge device drive 100a (see FIG. 1) via screws 110a, 110b, 110c, 110d.
  • Reference numeral 116b is a flexible cable and is connected through a wafer or harness 116a.
  • Reference numeral 181 denotes a turn table that is rotated by the spindle motor 102 (see FIG. 1).
  • Identification number 300 is the body supporting the thin film centrifuge device drive 100a.
  • a circuit board 140 is jointly fastened to the body 300 of the thin film centrifuge device drive, and the thin film centrifuge device drive 100a is connected to the bottom of the thin film centrifuge device drive.
  • the central control unit 101, the storage unit 112, and the input / output unit 111 are arranged and designed on the circuit board 140.
  • the central controller 101 not only controls the spindle motor 102 to rotate or stop the thin film centrifuge device 100, but also controls the slider motor 109 by controlling the slide motor 109.
  • the position of the permanent magnet 5a is moved to spatially address the analysis site 132 of the thin film centrifuge device 100. .
  • the permanent magnet 5a may effectively transmit magnetic force to the thin film cylindrical magnet 291 (see FIG. 1).
  • the central control unit 101 is a disk optically loaded (for example, music CD, CD-R, game CD, DVD, etc.) currently loaded in the thin film centrifuge device drive (100a) It is determined whether or not the thin film centrifuge device 100 is used, and in the case of a conventional optical disk, the contents read from the disk are transferred from the optical pickup device 103a (see FIG.
  • the thin film centrifugation analyzer (FIG. 1) through the wireless RF IC 188 on the thin film centrifuge device at the time of loading of the thin film centrifuge device.
  • the central controller 101 can recognize that the disk currently loaded in the thin film centrifuge device drive 100a is a thin film centrifuge device.
  • the wireless RF IC 188 embedded on the thin film centrifuge device 100 reads the result of the analysis of the analysis site 132 by the central control device 101 or by wireless communication.
  • the reading of the analysis site 132 may provide image information about the analysis site 132 obtained by the image sensor device 144 designed to be disposed on the circuit board 140. 112 or to the input / output device 111.
  • Identification number 104 is a compression means of the thin film centrifuge device 100 loaded in the disk voids by the attraction force by the magnetic force with the turntable 181 may be designed to allow vertical movement and idling.
  • Identification number 144a is one or more light emitting diodes (LEDs) for illumination of the image sensor device, wherein the image sensor device 144 or LED 144a is mounted on a slider 211 or an analysis site ( 132) may be installed above or below.
  • the LED comprises a multi-color LED (LED) for emitting light of various wavelengths, the reaction intensity (reaction intensity) for the analysis site 132 under illumination of various wavelengths (wavelength) ) Can be obtained as image information expressed by color intensity, and the result of response of the analysis site 132 can be quantitatively or qualitatively analyzed by the two-dimensional correlation between these wavelengths and the color intensity.
  • the multicolor LED includes R, G, and B LEDs.
  • Identification number 107 is a laser beam generating device, used to excite a sample in a fluorescently labeled analysis site, in which case the image sensor device 144 can obtain image information about the analysis site.
  • Identification number 108 is a spectrophotometer (spectrometer) outputs a plurality of light wavelength (wavelength) for measuring the light transmittance or light absorption of the analysis site, and by measuring the light transmittance or light absorption according to each wavelength analysis site 132 Read the reaction result.
  • Spectrophotometers generally include a light source, a wavelength selector, a sample vessel (test tube or analysis site 132), and a photo detector, which is known.
  • the spectrophotometer measures the absorbance of the sample solution at the assay site after adjusting the device so that the light transmittance is 100% (absorbance 0) using the background solution.
  • the light source must be able to produce a constant amount of light of sufficient energy in the wavelength range required for sample analysis.
  • the light source may be a tungsten filament lamp, a hydrogen or deuterium lamp, a white light LED, or a laser.
  • a white light LED or an RGB laser or a plurality of laser diodes may be used.
  • the RGB laser is a device in which three lasers, which output red, green, and blue light, form a module.
  • the combination of the three laser output powers provides a variety of requirements for sample analysis.
  • the light of the wavelength can be obtained.
  • the LD module is a module of a plurality of laser diodes (LDs) having different wavelengths, and may sequentially turn on an LD that outputs light having a corresponding wavelength, and measure light absorption of a sample for the wavelength. .
  • LDs laser diodes
  • Obtaining light of a certain wavelength from light from a light source can be an important part of a spectrophotometer. The ideal case is to obtain monochromatic radiation in the strict sense, but in reality this is very difficult, so light with a range of wavelength distributions can indicate the degree of monochromatization by specifying the band width of the spectrum.
  • Light of a desired wavelength can be obtained by a wave length selector, which can use a filter or grating mirror or a combination thereof.
  • the grating mirror plays a role of a kind of prism that reflects incident light by wavelength.
  • FIG. 5 shows a spectrophotometer 108 (see FIG. 4) in accordance with an embodiment of the present invention using a grating mirror.
  • the white light from the light source 40 is focused by the lens 42 into a beam, and then passed through the primary H-slit and V-slit 45a to the spot beam.
  • a spot beam is made and the spot beam is incident on a grating mirror 43
  • the light reflected by the grating mirror 43 is separated by wavelength on the phase space.
  • Secondary H-slits and V-slits 45b are fixedly placed at specific angles so as to take only light of a specific wavelength among the light reflected by the grating mirror 43 and separated on the phase space.
  • the wavelength of light passing through the secondary H-slit and V-slit 45b can be varied by rotating the grating mirror 43. That is, by controlling the rotation angle of the grating mirror 43, it is possible to obtain the light of the desired specific wavelength range.
  • the light detector 46 measures the light absorption or light transmittance or intensity of color of the sample in the analysis site to measure the The reaction results are qualitatively or quantitatively analyzed.
  • Qualitative or quantitative analysis of the reaction result of the sample includes an end point method, a rate assay method, an initial rate method, and the like.
  • Identification number 40 is a light source of the spectrophotometer 108
  • the wavelength selector is a step motor 44 for controlling the rotation angle of the grating mirror 43
  • the light source Lens 42 for focusing the light generated from the beam, primary H-slit and V-slit 45a, and spot beam to make the focused beam a spot beam Grating mirror 43 for separating each wavelength
  • secondary H-slits and V-slits 45b for passing only beams of a particular angle (ie, light of a particular wavelength) reflected from the grating mirror 43.
  • the light detector 46 passes the light having a specific wavelength obtained by the light source 40 and the wavelength selection device through the analysis site 132, and the light detector 46 measures the light absorption rate of the sample in the analysis site. Quantitative analysis. By rotating the step motor 44, light having various wavelengths is passed through the analysis site 132 to measure the light absorption rate of the sample in the analysis site for each wavelength.
  • the primary H-slit and V-slit or the secondary H-slit and V-slit are replaced by optical fibers. Can be used.
  • the light source, the lens, the primary H-slit (slit) and V-slit (slit) or primary optical fiber 45a, the grating mirror 43, the secondary H-slit ( Various combinations between slit and V-slit 45b or secondary optical fibers are referred to as light source device 99a.
  • the LD module and the RGB laser module may constitute the light source device 99a alone, and in this case, the light source device 99a may be simplified.
  • Identification number 555 is a transparent opening for reading of the photo detector 46.
  • the light detector 46 of the spectrophotometer 108 is installed above the thin film centrifuge device 100, and the light source device 99a is installed below. And a plurality of analysis sites 132 arranged in the circumferential direction of the thin film centrifuge device 100 using the spectrophotometer 108 in which the light detector 46 is modularized.
  • the plurality of analysis sites 132 embedded in the thin film centrifuge device 100 in the circumferential direction may be space addressed and read in one-to-one correspondence. have.
  • the spectrophotometer 108 may first adjust the device so that the light transmittance is 100% (absorbance 0) using the blank solution, and then measure the absorbance for sample solutions in the plurality of assay sites.
  • one or more of the assay sites of the plurality of assay sites may include a base solution chamber for calibration.
  • the reflective layer 99b is integrated in the upper substrate 1 or the analysis site in the thin film centrifuge device 100, and the light source device 99a and the photo detector 46 are thin film centrifuged.
  • the modularized spectrophotometer 108 is disposed below the separation analyzer 100.
  • the light absorption rate of the sample in the analysis site is obtained by passing the light having a specific wavelength obtained by the light source device 99a through the analysis site 132 and measuring the light reflected by the reflection layer 99b. Measure it.
  • FIG. 7 shows a case in which the photo detector 46 is integrated in the analysis site 132 of the thin film centrifuge device 100.
  • the photo detector 46 is arranged in a one-to-one correspondence with respect to the plurality of analysis sites 132.
  • the optical traveling path is shortened, so that the reception sensitivity of the photodetector 46 is increased, thereby increasing sensitivity.
  • the reading result of the photo detector 46 integrated in the thin film centrifuge device 100 is read by the wireless RF IC 188 and then wirelessly sent to the central control device 101 (see FIG. 1).
  • the reflective layer 99b as illustrated in the left figure of FIG. 7 is integrated into the upper substrate 1, and the plurality of analysis sites 132 (FIG. 7) is arranged.
  • the spectrophotometer 108 By the spectrophotometer 108, one-to-one correspondence for a plurality of analysis sites built in the circumferential direction in the thin film centrifuge device 100 can be sequentially read by spatial addressing.
  • the light source device 99a measures the absorbance by selecting and outputting light having a wavelength suitable for the characteristic of the sample for each analysis site 132.
  • the sequential reading of the analysis site 132 by the spectrophotometer 108 is equipped with a spectrophotometer 108 on the slider 211 to detect radial and azimuthal directions.
  • the search may be preceded by spatial addressing for the analysis site.
  • the image sensor device includes a line image sensor that senses the amount of light in a CCD or CMOS or pixel unit.
  • the line image sensor includes a linear sensor array or a contact image sensor (CIS).
  • the BOPM 103 with the image sensor device may move the slider 211 to obtain image information of the analysis site.
  • the spatial addressing of the analysis site may be preceded by mounting an image sensor device on the slider 211 before reading the analysis site, by radial search and azimuthal search.
  • 9 and 10 show one embodiment of a liquid valve to prevent leakage of liquid during centrifugation.
  • the liquid valve (7) is a high-speed rotation of the body 100, the serum contained in the sample chamber 131a to move to the analysis site 132 by the English alphabet V-shaped or U-shaped channel (7) prevent.
  • 9 and 10 are detailed views of the liquid valve implemented by the liquid valve 7.
  • the liquid valve 7 is largely divided into an inward channel 7a and an outward channel 7b.
  • the inward channel 7a refers to a channel formed in the central direction of the body (the direction opposite to the centrifugal force), and the outward channel 7b refers to a channel formed in the centrifugal force direction.
  • the operation of the liquid valve 7 is as follows.
  • liquid leaked out from the sample chamber 131a is first filled in the inward channel 7a. Once the leaked liquid fills the inward channel 7a, the radial direction centrifugal force acts on the leaked liquid itself within the inward channel 7a so that the liquid in the sample chamber 131a is no longer present. Leaks are detained. Rather, the leaked liquid is withdrawal back into the sample chamber 131a by centrifugal force. That is, at the high speed of rotation of the body 100, when a part of the liquid has escaped from the sample chamber 131a, the centrifugal force acting on the liquid itself causes a force to be further leaked from the sample chamber 131a and the liquid that has already leaked. The balance of forces between the acting centrifugal forces prevents further liquid leakage. Preventing leakage of liquid by centrifugal force acting on such already leaked liquid is called liquid valve operation in one embodiment of the present invention.
  • the outlet of the sample chamber 131a may further include a liquid valve for preventing the leakage of liquid during centrifugation.
  • the liquid valve comprises a V-shaped or U-shaped flow path or one implemented by a superhydrophilic coated flow path causing a liquid valve action.
  • FIG. 11 is a diagram illustrating the periphery of the sample chamber 131a and the residue chamber 131b in the thin film centrifuge device 100 of FIG. 2 to explain the centrifugation process.
  • FIG. 11 illustrates a step of separating blood and blood cells from the sample chamber 130 into the sample chamber 131a and the residue chamber 131b by the rotation of the body 100 into serum and red blood cells by centrifugation.
  • step 1 during the initial rotation of the body, the blood is moved from the sample chamber 130 to the sample chamber 131a and the ground chamber 131b, and the blood exceeding the height of the metering flow passage 93 is subjected to the centrifugal force. The movement to the surplus chamber 131c is shown. It also shows that the blood cannot be moved to the analysis site 132 by the liquid valve 7 and is retained in the sample chamber 131a.
  • Step 2 shows the intermediate state of the centrifugation, and the centrifugation is performed independently for each blood stored in the sample chamber 131a and the residue chamber 131b by centrifugal force according to the rotation of the body, thereby separating serum and red blood cells.
  • the red blood cells in the sample chamber 131a are left in the ground chamber 131b through the bottleneck channel 67. Go to.
  • the serum centrifuged in the residue chamber 131b moves into the sample chamber 131a through the bottleneck channel 67.
  • the bottleneck channel 67 may provide a passage through which serum and red blood cells separated during centrifugation can freely move between the sample chamber 131a and the ground chamber 131b. Since the residue chamber 131b is disposed on the outer side of the circumference more than the sample chamber 131a, red blood cells are collected in the residue chamber 131b and serum is collected in the sample chamber 131a as the centrifugation progresses. Step 3 shows that the serum is collected in the sample chamber 131a and the red blood cells are collected in the debris chamber 131b while the centrifugation is completed by the step 2. Step 4 indicates that the serum of the sample chamber 131a is hydrophilically moved to the analysis site 132 through the liquid valve 7 when the rotation of the body is stopped after the centrifugation is completed.
  • Step 5 shows that only the quantitative serum in the sample chamber 131a has moved to the assay site 132. That is, only the quantitative serum moves into the assay site 132 and the fluid in the bottleneck channel 67 and the residue chamber 131b does not move to the assay site 132 and remains intact.
  • the amount of serum that moves to the assay site 132 is determined by the amount of serum stored in the sample chamber 131a.
  • This phenomenon may be due to the following five causes.
  • the bottleneck channel 67 As a thin film flow channel (channel), a strong capillary phenomenon acts on the fluid during the stop of the body, so that the fluid in the ground chamber 131b passes through the bottleneck channel 67 to the sample chamber 131a. Do not move. Therefore, the red blood cells in the residue chamber 131b can be prevented from moving into the sample chamber 131a. Since the ground chamber 131b is configured as a capillary chamber, the red blood cells stored in the ground chamber 131b are hard to escape. The red blood cells are hardly freed from the ground chamber 131b due to the binding force between the surface of the ground chamber 131b and the red blood cells.
  • the red blood cells stored in the residue chamber 131b are difficult to move because the bottleneck channel 67 is blocked by the viscosity of the serum. Since the ground chamber 131b does not have a dedicated exhaust port thereof, the red blood cells stored in the ground chamber 131b are difficult to move.
  • FIG. 12 illustrates one embodiment of the bottleneck channel 67 above.
  • the detailed figure shows a cross section of the bottleneck channel 67 by the baseline connecting baseline identification numbers 67a and 67b.
  • the bottleneck channel 67 is a first thin film adhesive tape 1a for bonding the upper substrate 1 and the middle substrate 2 and a second thin film adhesive tape for bonding the intermediate substrate 2 and the lower substrate 3. It consists of two thin film flow paths formed by (2a).
  • the bottleneck channel 67 formed by these two thin-film flow paths allows red blood cells in the sample chamber 131a to move to the residue chamber 131b or freely move serum in the residue chamber 131b to the sample chamber 131a during centrifugation.
  • the bottleneck channel 67 may serve as a bottleneck channel for preventing fluid movement when the body is stopped, and may provide a passage for moving serum and red blood cells during centrifugation.
  • FIG. 13 to 15 illustrate various embodiments of strips in which a plurality of tumor markers are fixed in a line or spot form on the porous membrane.
  • a variety of tumor marker lines or spots are called test lines.
  • Identification number 41a is a conjugate pad or a sample pad, or a sample pad and a conjugate pad, and identification number 41b is an absorbent pad.
  • Identification number 41c is a porous membrane.
  • a label such as a gold conjugate or an enzyme linked antibody or a fluorescent substance may be deposited in a frozen dried form on the pad.
  • the capture probe eg, capture antibody
  • the capture probe can immobilize a tumor marker.
  • the tumor marker may be one or more selected from the group consisting of AFP, PSA, CEA, CA19-9, CA125, and A15-3.
  • the capture antibody may immobilize Glutamine Synthetase (GS), a specific marker of Alzheimer's disease.
  • the capture antibody can fix myocardial infarction markers Myoglobin, CK-MB, Troponin I (Tnl).
  • the test line is fixed to the porous membrane 41c after fixing one or more markers or capture probes for AIDS, myocardial infarction, residual antibiotics, residual pesticides, allergy and breast cancer tests, etc. It can be applied when testing the reaction by immunochromatography.
  • the immunochromatography method is a test method combining immunochemistry and chromatography (Chromatogrphic Assay), the specific immunological reactivity of the antibody to the antigen, the color development characteristics and fluidity, porosity of the gold particles (Colloidal gold) It is a test method that applies the movement of molecules by capillary phenomenon of membrane.
  • Immunochromatography is a one-step rapid test that combines the process of dilution, washing, and color development through the reaction of enzyme conjugates and substrates found in traditional multi-step immunoassays. There is convenience to do it. In addition, there is the ease and economy of determining the test result without using specific equipment, and the speed of reading the test result.
  • the capture antibody may be to further fix an antibody for a reference line and a control line in addition to a tumor marker. There may be a plurality of reference lines.
  • the reaction concentration of the reference line may be a cutoff value to facilitate discrimination of negative or positive responses.
  • the reference value of the reference line can be selected from, for example, 3 ng / ml, 4 ng / ml, 10 ng / ml, 20 ng / ml, 30 ng / ml, 40 ng / ml or 50 ng / ml.
  • the test line includes qualitative or quantitative analysis by a difference in reaction intensity between the reference line and the test line.
  • the test line comprises qualitative or quantitative analysis by a difference in reaction intensity between the background and the test line.
  • the test line is a qualitative or quantitative analysis of determining the reaction intensity (reaction intensity) of the test line by a linear function (linear function) for the reaction intensity formed by a plurality of reference lines Include.
  • the test line is determined qualitatively or quantitatively by determining a reaction intensity of the test line by a linear function of the reaction intensity formed by the reference line and the control line. Involves analyzing.
  • the reference line is immobilized with an antibody for capturing free PSA
  • the test line is immobilized with an antibody for capturing a total (PSA)
  • % fPSA Percent free PSA
  • The% fPSA may be obtained by obtaining a ratio of free PSA to total PSA. The matter regarding the total PSA and the free PSA is known.
  • a free PSA may be fixed to the test line and a total PSA may be fixed to the reference line.
  • the reference line is immobilized with an antibody for capturing free PSA
  • the test line is immobilized with an antibody for capturing pro PSA, and thus,% proPSA (Percent pro PSA) may be measured.
  • The% proPSA can be achieved by finding the ratio of the pro PSA to the free PSA.
  • the pro PSA is known.
  • a Pro PSA can be secured to the reference line and a free PSA can be secured to the test line.
  • the free PSA, pro PSA and total PSA can be immobilized on one porous membrane to measure% fPSA and% proPSA at a time.
  • the reaction intensity may be obtained by the image information represented by the color intensity (color intensity) under the LED illumination of various wavelengths (wavelength), these various wavelengths and color intensity Analyzing the quantitative or qualitative analysis of the response result of the analysis site 132 by the two-dimensional functional relationship therebetween.
  • the reference line indicates a positive response when the sample diffuses up to the absorbent pad 41b and may be used to determine the validity of the test using the strip. If the reference line is positive, the test result may be determined to be valid.
  • the porous membrane 41c can be used in a flow through or lateral flow manner, which is known. A sample or a cleaning solution may be added to the sample pad 41a.
  • a strip in which a plurality of tumor markers or disease markers or antibodies are spot-fixed on the porous membrane 41c is applicable.
  • the sample is added to the sample pad 41a, the sample absorbed by the sample pad 41a is diffused and moved by capillary action on the porous membrane 41c, and biochemically specific binding is performed with the capture antibody.
  • An end portion of the porous membrane 41c may be provided with an absorption pad 41b for supporting the diffusion movement.
  • the conjugate pad may be connected to the sample pad, in which case the liquid sample introduced into the sample pad is combined with a gold conjugate or an enzyme linked antibody or fluorescent substance on the conjugate pad.
  • the porous membrane (41c) After the formation of the porous membrane (41c) can be moved to diffuse.
  • the cleaning solution When the cleaning solution is added to the sample pad 41a, the cleaning solution absorbed by the sample pad 41a does not bind or non-specifically binds to the capture antibody while diffusing and moving on the porous membrane 41c by capillary action. ), The background material of the porous membrane 41c may be removed by cleaning the material.
  • the analysis site 132 may be installed by connecting the strip 41 to the end of the liquid valve 7 and the sample pad 41a.
  • the analysis site 132 reading by the image sensor device 144 is performed by the upper substrate 1 to suppress light scattering by illumination and noise caused by substrate scratches. Coating with an opaque or opaque paint.
  • the transparency of the upper substrate may be 20-50%.
  • FIG. 16 is a thin film centrifuge device in which analytical sites 132 are arranged in different sectors in parallel and arranged in various processes for a single sample, for example, a lab-on-a-chip process for analyzing a biochemical reaction. An embodiment of the is shown.
  • the biochemical reaction analysis for example, GOT, GPT, ALP, LDH, GGT, CPK, amylase, T-protein (T-Protein), albumin (Albumin), glucose (Glucose), T in the blood T-Cholesterol, Triglycerides, T-Bilirubin, D-Bilirubin, BUN, Creatinine, I. Phosphorus Analysis of calcium, uric acid, and the like.
  • Identification numbers 132a, 132b, 132c, and 132d are chambers for the biochemical reaction, in which reagents for analyzing and diagnosing the biochemical reaction and the results of the biochemical reaction are stored, and biochemistry with serum supplied from the sample chamber 131a
  • Identification number 7 denotes a liquid valve to prevent leakage of liquid during centrifugation of blood.
  • Identification number 290a designates a reference hole and identification number 131c designates a redundant chamber.
  • Identification numbers 154a, 154b, 154c and 154d denote thin film valves.
  • Identification numbers 13a, 13b, 13c, 13d and 14 denote exhaust ports.
  • the dosing chambers 140a, 140b, 140c and 140d are chambers for supplying a quantitative sample to the corresponding analysis sites 132a, 132b, 132c and 132d, and the volume of the dosing chambers 140a, 140b, 140c and 140d. volume) determines the amount of sample fed to the corresponding assay site.
  • the liquid valve 7 and the concentric flow path 9 are superhydrophilic coated, and the overflow chamber 132e is hydrophobic coated.
  • the serum in the sample chamber 131a moves along the concentric flow path 9 through the liquid valve 7 to move the hydrophilic fluid.
  • the dosing chambers 140a, 140b, 140c, 140d are superhydrophilic coated chambers which are filled with serum during sample movement into the concentric flow path 9.
  • the overflow chamber 132e is hydrophobic, the sample is filled only in the concentric channel 9 and the metering chambers 140a, 140b, 140c, and 140d.
  • the concentric flow path 9 is designed to have a concentric circle and thus receives the same centrifugal force during rotation.
  • the membrane valves 154a, 154b, 154c, and 154d are opened to introduce the reagents in the quantitative chambers 140a, 140b, 140c, and 140d into the respective analysis sites 132a, 132b, 132c, and 132d.
  • the membrane valves 154a, 154b, 154c, and 154d may be disposed on concentric circles and simultaneously opened.
  • the concentric circular flow path (9) is designed to have a concentric circle is rotated by the thin film centrifuge device 100 under the same centrifugal force during rotation, the metering chamber (140a, 140b, 140c) , The sample remains stored only at 140d, and the sample filling the concentric flow path 9 can escape to the overflow chamber 132e by overcoming the hydrophobic barrier formed in the overflow chamber 132e by centrifugal force.
  • the membrane valves 154a, 154b, 154c, 154d are, for example, moved by a permanent magnet or an electromagnet installed above or below the body, including a burst valve.
  • the hydrophobic burst valve uses a fluid movement barrier formed at the interface between the hydrophilic channel and the hydrophobic chamber.
  • the fluid does not move under a centrifugal force below a reference value. When the centrifugal force exceeds a reference value, the fluid moves. Overcoming the barrier and moving to the hydrophobic chamber.
  • the fluid transfer barrier may be formed not only because the hydrophilic fluid is difficult to move, but also because the hydrophilic flow path (channel) itself capillaries the fluid to detain the fluid in the hydrophilic channel.
  • the analysis sites 132a, 132b, 132c, and 132d may be hydrophobic chambers, and the membrane valves 154a, 154b, 154c, and 154d may use hydrophobic burst valves.
  • the quantitative chambers 140a, 140b, 140c, and 140d are superhydrophilic coated chambers, and may form a fluid movement barrier at an interface with the analysis site. Thin film valves including the burst valve are known.
  • Another embodiment of the invention may further comprise a thin film valve between the inward channel 7a of the liquid valve 7 and the outlet of the sample chamber 131a according to FIG. 2.
  • the membrane valve when the membrane valve is closed even when the body 100 is stopped rotating, the fluid in the sample chamber 131a does not move to the analysis site 132, and the fluid is moved by the hydrophilic fluid after the membrane valve is opened. It is possible to move to the analysis site 132 via (7).
  • the azimuth analysis site search for the measurement of the spectrophotometer 108 is a rotation angle of the thin film centrifuge device by a step motor or a gear connection connected to the step motor Control).
  • the azimuth analysis site search for the measurement of the spectrophotometer 108 is azimuth analysis using the azimuth valve search process by placing a thin film cylindrical magnet for analysis site search on the circumference of the body This can be done by conducting a site search or by sequentially addressing the light absorption rate of the sample in each analysis site by space addressing the analysis site by the background solution chamber during rotation of the body 100.
  • the body further includes a blank solution chamber having the same radius as the analysis site for storing the blank solution, and after each spectrophotometer is calibrated so that the light transmittance of the blank solution is 100% (absorbance 0). Absorbance is measured for the sample in the site. Since the absorbance of the blank solution is always zero, it is possible to identify the blank solution chamber during the rotation of the body, thereby allowing spatial addressing of the assay site relative to the blank solution chamber.
  • One embodiment of the present invention can also be applied to the thin-film centrifuge analysis apparatus for the overall process of the lab-on-a-chip for the ELISA (Enzyme-Linked Immunosorbent Assays) or CLISA (Chemical Luminescence Immunosorbent Assays) test. Various embodiments thereof are known.
  • test result according to the reading result is displayed on the computer monitor, and automatically or manually remotely connected to the server of the corresponding government office or food company via the Internet network, and the history is reported to these servers or the wireless RF IC (electronic The test results and various test histories are stored in the memory of the tag).
  • the agency can determine the status of pesticide residues, and food companies can obtain information on where to buy fresh produce.
  • the Office may post such information on the Web to provide information to ordinary consumers to purchase fresh agricultural products through direct trade with the agricultural industry.
  • Enzymes or markers for residual pesticide testing include those used to test pesticides contained in vegetables, vegetables or fruits, for example, the most used organophosphorus and carbamate insecticides, wherein the enzyme is acetylcholinese. Terase (AChE). Various embodiments thereof are known.
  • FIG. 17 shows another example of application of the analysis site 132 of FIG. 2 as another embodiment of the thin film centrifuge device 100.
  • a plurality of analysis sites for providing biochemical reaction analysis to immunological analysis by the strip (41);
  • a buffer chamber 131d for temporarily storing a sample in the sample chamber 131a;
  • a liquid valve 7 for retaining serum in the sample chamber 131a during rotation of the body and providing a hydrophilic fluid movement path for moving the serum in the sample chamber 131a to the buffer chamber 131d when the body is stopped;
  • Thin film valves (155a, 155b, 155c) for independently supplying the serum of the moved buffer chamber (131d) to the plurality of analysis sites;
  • the sample Upon opening of the membrane valves 155a, 155b, 155c, the sample further comprises a hydrophilic flow path 8 for moving the serum of the buffer chamber 131d to the corresponding assay site by hydrophilic fluid transfer.
  • the serum movement from the sample chamber 131a to the buffer chamber 131d may be performed by alternately repeating the hydrophilic fluid movement process by the liquid valve
  • FIG. 17 is a step-by-step process of moving the serum in the sample chamber 131a to the buffer chamber 131d by alternately repeating the hydrophilic fluid movement process by the liquid valve 7 and the fluid movement process by centrifugal force.
  • Step 1 shows that the serum is collected in the sample chamber 131a while the centrifugation is completed during the rotation of the body, and the red blood cells are collected in the residue chamber 131b.
  • step 2 after the centrifugation is completed, the serum of the sample chamber 131a fills the inward channel 7a and the outward channel 7b through the liquid valve 7 when the rotation of the body is stopped, and then into the buffer chamber 131d. Indicates hydrophilic migration.
  • Step 3 shows that the serum in the outward channel 7b moves into the buffer chamber 131d by the centrifugal force by the rotation of the body.
  • step 4 when the rotation of the body is stopped again, the serum of the sample chamber 131a through the liquid valve 7 refills the inward channel 7a and the outward channel 7b and then hydrophilically moves to the buffer chamber 131d. Indicates.
  • Step 5 shows that all the serum in the sample chamber 131a gradually moves into the buffer chamber 131d by the repetition of steps 3 and 4 above.
  • Step 6 opens the membrane valve 155a to indicate that the serum in the buffer chamber 131d moves through the hydrophilic flow path 8 into the corresponding assay site 132a.
  • the buffer chamber 131d of FIG. 17 may be superhydrophilic coated. In this case, the serum of the sample chamber can be easily moved into the buffer chamber by the absorption pump operation.
  • FIG. 18 shows an example in which serum is moved into an assay site by centrifugal force as another embodiment of FIG. 17.
  • the membrane valves 155a, 155b, and 155c may be hydrophobic burst valves or capillary burst valves.
  • the thin film valves 155a, 155b, 155c are hydrophobic burst valves or capillary burst valves formed by a hydrophilic coated hydrophilic flow path 8 and a fluid movement barrier formed at the interface of the hydrophobic chamber, analytical sites 132a, 132b, 132c. .
  • the fluid transfer barrier does not move the serum under centrifugal force below the reference value, and when the centrifugal force above the reference value occurs, the serum may move to the analysis sites 132a, 132b, and 132c by overcoming the fluid transfer barrier.
  • the centrifugal force of step 3 is preferably applied smaller than the centrifugal force to overcome the fluid movement barrier.
  • Identification number 131e is a dilution solution storage chamber for storing the dilution solution.
  • 19 and 20 show that the sample in the sample chamber 131a moves the dilution solution stored in the dilution solution storage chamber 131e to the buffer chamber 131f by opening the burst valve 150 during centrifugation. Indicates.
  • the diluted solution stored in the buffer chamber 131f is retained by the liquid valve 11.
  • the sample in the sample chamber 131a is also held in the sample chamber 131a by the liquid valve 7 during centrifugation.
  • the dilution solution exceeding the quantification of the buffer chamber 131f may be transferred to the surplus chamber 131g through the quantitative flow path 10 so that the dilution solution of the quantification may be stored in the buffer chamber 131f.
  • FIG. 21 shows that the serum of the sample chamber 131a is filled into the inward channel 7a and the outward channel 7b through the liquid valve 7 when the body is stopped rotating, and then hydrophilically moves to the mixing chamber 131h. . It also shows that the dilute solution in the buffer chamber 131f through the liquid valve 11 fills the inward channel 11a and the outward channel 11b and then hydrophilically moves to the mixing chamber 131h.
  • FIG. 22 shows the process of moving the fluid in the outward channels 7b and 11b into the mixing chamber 131h by the centrifugal force caused by the rotation of the body and stopping the rotation of the body so that the inward channels 7a and 11a and the outward channels 7b,
  • the process of refilling 11b) by hydrophilic fluid transfer is alternately repeated to show the result of gradually moving the sample and the dilution solution into the mixing chamber 131h. Therefore, these diluted solutions and samples may be mixed and diluted samples in the mixing chamber 131h.
  • the process of gradually moving the sample and the dilution solution into the mixing chamber 131h by repeatedly performing the hydrophilic fluid movement by the liquid valve and the fluid movement by the centrifugal force is performed by gradually mixing the sample and the dilution solution, The mixing efficiency between the two fluids can be maximized.
  • the mixing between the sample and the dilution solution that occurs during the process of gradually moving the sample and the dilution solution to the mixing chamber 131h is referred to as "gradual mixing".
  • the hydraulic burst valve determines the closing strength by the adhesive area of the thin film adhesive tape when the pores are closed by the thin film adhesive tape, and the above-mentioned disk rotation speed (centrifugal force) that overcomes the closing strength.
  • the thin film adhesive tape may fall and include a valve to open the pores.
  • the burst valve can be, for example, a hydraulic burst valve. Such burst valves are known.
  • the thin film centrifuge device 100 may be loaded into the thin film centrifuge device drive 100a.
  • Identification number 751 is a case of the thin film centrifuge device drive
  • identification number 750a is a tray for front loading the thin film centrifuge device 100.
  • the identification number 750b is a cover for top loading, and the lid may be opened to fit the pores 170 of the thin film centrifuge device to the turntable.
  • One of the identification number 750a or the identification number 750b may be selected according to the loading method.
  • the thin film centrifuge device drive may optionally include a play and seek button 745 and a stop button 746 for normal optical disc playback.
  • Identification number 744 is the power on / off button of the thin film centrifuge drive.
  • Reference numeral 760 denotes a display device for displaying a progress state and a mode of the thin film centrifuge device drive, and a light emitting diode or an LCD device may be used.
  • the display device 760 indicates whether the currently loaded disk is a thin film centrifuge device or an optical disk, displays an analysis result, or displays a progress state according to a main process of the thin film centrifuge device drive.
  • the display device 760 may display the graphical user interface and the progress according to the progress step in the form of a percentage (%), a bar graph, or a pie graph. Can be.
  • the identification number 111 is the input / output device.
  • the identification number 111 may be automatically or manually remotely connected through a corresponding doctor and the internet network, and the diagnosis result and questionnaire may be remotely transmitted to the specialist doctor when necessary. The patient then waits for a prescription from a specialist doctor.
  • the thin film centrifuge device drive according to FIG. 8 may further include a speaker, a video camera, and / or a microphone.
  • the tumor marker tumor marker
  • the tumor tumor marker is a value within the normal range, and as the cancer progresses, the blood concentration increases to increase the positive rate.
  • One embodiment of the present invention contemplates this and includes providing the user with information about periodic follow-up diagnosis, including statistical software that historically manages the readings by quantitative analysis of the assay site.
  • the thin film centrifuge device drive further comprises a software for calculating the result of the reaction by analyzing the negative or positive, risk group or numerical value.
  • the thin film centrifuge device drive may allow side loading or vertical loading of the thin film centrifuge device.

Abstract

박막 원심분리 분석 장치 및 이를 이용한 분석 방법에 관한 것으로, 예를 들어, 랩온어칩, 단백질칩 및 DNA칩과 같은 유체 내 소량의 물질을 진단 및 탐지하는 장치가 박막형 회전형 몸체에 집적화된 박막 원심분리 분석 장치 및 이를 이용한 분석 방법에 관한 것이다.

Description

[규칙 제26조에 의한 보정 07.04.2009] 박막 원심분리 분석 장치 및 이를 이용한 분석 방법
본 발명의 일 구체예들은 박막 원심분리 분석 장치 및 이를 이용한 분석 방법에 관한 것으로, 예를 들어, 랩온어칩, 단백질칩 및 DNA칩과 같은 유체 내 소량의 물질을 진단 및 탐지하는 장치가 박막형 회전형 몸체에 집적화된 박막 원심분리 분석 장치 및 이를 이용한 분석 방법에 관한 것이다.
최근까지 유체 내 소량의 분석종 탐지를 위한 대부분의 임상 진단 분석 장치는 다중 샘플 준비 및 자동화된 시약 첨가용 장치를 포함하고, 병렬 또는 직렬로 수많은 테스트 샘플을 분석하기 위한 장치가 회전형 박막 몸체에 집적화되어 상기 분석에 있어서 효율성 및 경제성이 개선되었고, 이러한 분석 장치, 예를 들어, 회전형 바이오 디스크는 알려져 있다. 이러한 박막형 임상실험 분석 장치는 상기 바이오 디스크의 회전에 의해 발생한 원심력을 이용하여 적은 비용으로 소량의 샘플과 시약으로 다양한 분석을 자동으로 정확히 수행할 수 있다.
박막 형태의 CD와 DVD와 관련하여, 12㎝ 폴리카보네이트 기판, 반사금속층 및 보호 라커 코팅으로부터 표준 컴팩트 디스크가 형성될 수 있다. CD, DVD와 CD-ROM의 포맷은 ISO 9660 공업 표준에 의해 기술될 수 있다. 상기 폴리카보네이트 기판은 광학 품질의 투명한 폴리카보네이트이다. 표준 인쇄 또는 대량 복제된 CD에서 데이타층은 상기 폴리카보네이트 기판의 일부이고, 데이타는 사출 성형 공정 동안 스탬퍼(stamper)에 의해 일련의 피트(pit) 형태로 새겨진다. 이 사출 성형 공정 동안 용융된 폴리카보네이트가 고압하에서 몰드에 주입되고, 이후에 냉각되어 폴리카보네이트가 몰드 또는 스탬퍼 또는 스탬프의 거울상 형태를 가지며, 디스크 기판 상의 이진 데이타를 나타내는 피트가 폴리카보네이트 기판에 생성된다. 스탬핑 마스터(stamping master)는 유리일 수 있다. 이러한 디스크는 유체 내 소량의 물질을 진단 및 탐지하는 박막 형태의 분석 장치로 변형 및 개조가 가능하며, 이 경우 사출 성형 공정 동안 디스크 표면에 피트 대신, 유체가 흐를 수 있는 유로(channel) 및 버퍼(buffer) 용액을 저장할 수 있는 챔버(chamber), 유공(hole) 및 밸브(valve) 등이 형성될 수 있다.
이하, 상기 통상적인 CD-ROM, DVD 등과 같은 디스크 속에 유체 내 소량의 물질을 진단 및 탐지하기 위한 랩온어칩(Lab On a Chip), 단백질칩 및 DNA칩과 같은 바이오칩이 집적화되거나 또는 유체 내 소량의 물질을 진단 및 탐지하기 위한 바이오 및 화학 공정을 수행하는 디스크를 바이오 디스크라 칭한다.
통상의 바이오 디스크는 화학 공정에 필요한 많은 액상(liquid phase)의 바이오 및 화학 물질을 저장하기 위한 복수 개의 챔버를 포함할 수 있다. 상기 바이오 및 화학 공정은 샘플로부터 시료를 준비하기 위한 프렙(preparation) 공정, 원심분리 공정, DNA 증폭 공정, 혼성화(hybridization) 공정, 항원-항체 반응 공정, 혼합(mixing) 공정, 세척(washing) 공정 등을 포함하며, 이들 바이오 및 화학 공정은 순차적으로 바이오 디스크 상에서 자동 처리될 수 있고, 이는 알려져 있다. 그러나 바이오 디스크가 상용화되기 위해서는, 하기 문제점들이 해결되어야할 필요가 있다.
원심분리에 의해 샘플로부터 시료를 추출시 원심분리 동안 누수를 발생치 않는 밸브가 필요하다. 기존의 물리적 움직임에 의해 개폐가 이루어지는 밸브는 유공(hole) 또는 채널(channel)에 구슬(ball) 혹은 밀폐수단를 밀착시키거나 이탈함으로서 개폐가 이루어 지는 방식을 취하고, 이러한 방식을 취하는 밸브는 알려져 있다. 그러나 이러한 밸브는 물리적 움직임에 의한 개방을 허용해야 하기 때문에 밸브의 밀폐가 불완벽할 수 있다. 따라서, 원심분리 동안 유체 자체에 의해 발생한 유압에 의한 누수(leak)가 생길 수 있다. 따라서, 누수 발생으로 원심분리를 통해 샘플로부터 정량의 시료를 추출할 수 없어 분석의 신뢰도 및 정확도가 떨어질 수 있다. 따라서 고속 회전 중에 이러한 누수가 발생하지 않는 원심분리 분석장치가 필요하다.
본 발명의 일 구체예들은 원심분리에 의해 샘플로부터 시료를 추출하는 동안 누수를 발생하지 않는 원심 분리 장치를 박막의 몸체내에 구비함으로서 랩온어칩, 단백질칩 및 DNA칩과 같은 유체 내 소량의 물질을 진단 및 탐지하는 바이오칩이 집적화된 박막 원심분리 분석장치 및 이를 이용한 분석 방법을 제공한다.
본 발명의 일 구체예는 샘플을 주입하기 위한 샘플 주입구; 상기 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버(sample chamber); 상기 샘플 챔버의 샘플을 원심분리에 의해 정량의 시료(analyte)와 찌꺼기(remnant)를 분리하여 따로 저장하기 위한 시료 챔버(analyte chamber) 및 찌꺼기 챔버(remnant chamber); 상기 시료 챔버와 상기 찌꺼기 챔버를 연결하는 병목 채널(bottle neck channel); 상기 시료 챔버에 정량의 샘플 또는 정량의 시료를 저장하기 위해, 상기 시료 챔버의 잉여분(excess)의 샘플을 저장하기 위한 잉여 챔버; 상기 시료와 결합하기 위한, 예를 들어, 생물학적인 특이적 결합(specific binding)을 하기 위한 포획 프로브(capture probe)가 고정화되어 있거나 및/또는 상기 시료와의 분석 반응, 예를 들어, 생화학 반응을 하기 위한 시약, 예를 들어, 바이오 물질이 저장되어 있는 하나 이상의 분석 사이트; 세정 공정에 의해 상기 포획 프로브와 결합하지 않는 물질(debris)을 모으기 위한 트레쉬 챔버(trash chamber); 상기 챔버들, 상기 병목 채널, 상기 분석 사이트 및 유로가 집적화된 회전 가능한 소수성(hydrophobic) 몸체; 및 상기 원심분리 동안 상기 시료 챔버 내에 억류되어 있던 시료가 상기 몸체의 정지시 친수성 유체 이동에 의해 시료가 상기 분석 사이트로 이동하기 위한, 상기 시료 챔버와 상기 분석 사이트를 연결하는 유로 상에 형성된 초친수성(Superhydrophilic) 코팅된 액체 밸브를 포함하는 박막 원심분리 분석 장치를 제공할 수 있다.
상기 액체 밸브는 상기 몸체의 정지시 상기 시료 챔버와 상기 분석 사이트를 연결하는 친수성 유로를 제공하는 동시에, 상기의 몸체 회전 동안에는 상기 시료 챔버 내의 유체가 상기 분석 사이트로 이동하지 못하도록 U자형 또는 V자형 형상을 가질 수 있다. 상기 액체 밸브의 표면은 초친수성(Superhydrophilic) 처리가 되어 있고, 상기 몸체의 회전 동안 상기 액체 밸브에 의해 상기 시료 챔버 내에 억류되어 있던 유체가 몸체의 정지시 친수성 유체 이동에 의해 상기 분석 사이트로 이동할 수 있다.본 발명의 일 구체예에 의하면, 초친수성(Superhydrophilic) 코팅된 U자형 또는 V자형 형상을 갖는 유로를 상기 액체 밸브로 사용함으로서 상기 시료 챔버의 모든 시료가 상기의 몸체 정지 동안 친수성 유체이동에 의해 상기 분석 사이트로 이동할 수 있다.
본 발명의 일 구체예에 있어서, 상기 시료 챔버 내의 모든 시료가 정량 분석에 필요한 시료의 량(volume)을 결정할 수 있다. 따라서, 상기 시료 챔버 내의 시료 전체가 상기 분석 사이트로 이동하는 것을 포함한다. 그러나, 혈청과 같은 점도(viscosity)를 갖는 시료는 그 자체의 점도 때문에 상기 U자형 또는 V자형 형상을 갖는 유로를 통해 상기 시료 챔버 내의 시료가 전부 상기 분석 사이트로 이동하지 않을 수 있다. 즉, 상기 몸체의 정지시 상기 U자형 또는 V자형 형상을 갖는 친수성 유로를 통해 상기 시료 챔버 내의 시료 일부만이 상기 분석 사이트 내로 이동하게 되어 정량 분석이 불가능한 경우가 있을 수 있다. 따라서 본 발명의 일 구체예는, 상기 몸체의 정지시 상기 U자형 또는 V자형 형상을 갖는 친수성 유로를 통해 상기 시료 챔버 내의 모든 시료를 상기 분석 사이트 내로 이동시키기 위해 상기 시료 챔버 내의 시료에 유체 이동 수단을 제공할 수 있다.
본 발명의 일 구체예에 의하면, 하기 4가지 중 선택되는 유체 이동 수단에 의해 상기 시료챔버 내의 모든 시료를 상기 분석 사이트로 이동시킬 수 있다.
첫째, 상기 몸체의 회전 동안 팽창(swelling)한 상기 찌꺼기 챔버가 상기 몸체의 회전 정지시 복귀하면서 발생하는 공기 압력은 상기 시료 챔버 내의 모든 시료를 상기 분석 사이트로 이동시키기 위한 유체 추진력을 발생시킬 수 있다. 이하, 상기 찌꺼기 챔버의 팽창과 복귀에 따른 유체 추진력에 의한 유체 이동 수단을 챔버 펌프라 칭한다. 상기 몸체의 회전 동안 상기 찌꺼기 챔버의 팽창은 원심력에 의해 발생할 수 있다. 상기 찌꺼기 챔버는 상기 시료 챔버보다 원주 외곽에 배치된 것뿐만 아니라 시료보다 더 무거운 물질, 예를 들어, 본 발명의 일 실시예에 따르면 적혈구가 저장되어 있어서 상기 찌꺼기 챔버의 상부 기질이 고속 회전 중 팽창할 수 있다. 상기 찌꺼기 챔버의 상부 기질은 고속회전중 팽창에 용이토록 예를 들어, 0.1mm 내지 0.6mm의 두께를 갖는 박막일 수 있다.
둘째, 상기 몸체의 회전 동안 압축(compression)되었던 상기 찌꺼기 챔버 내의 물질, 예를 들어, 본 발명의 일 구체예에 따른 적혈구가 상기 몸체의 회전 정지시 신장 (expansion)하면서 발생하는 유체 압력은 상기 시료 챔버 내의 모든 시료를 상기 분석 사이트로 이동시키기 위한 유체 추진력을 발생시킬 수 있다. 이하, 상기 찌꺼기 챔버 내의 적혈구 압축(compression)과 신장(expansion)에 따른 유체 추진력에 의한 유체이동 수단을 적혈구 펌프라 칭한다. 상기 몸체의 회전 동안 상기 찌꺼기 챔버 내의 적혈구 압축(compression)은 원심력에 의해 발생할 수 있다.
셋째, 상기 액체 밸브의 말단과 상기 분석 사이트 입구 사이에 흡수 패스(absorbent pad) 또는 샘플 패드(sample pad) 또는 초친수성 챔버를 포함하여 상기 U자형 또는 V자형 형상을 갖는 친수성 유로를 통해 상기 액체 밸브의 말단에 도착한 시료를 빨아들이는 흡입력(absorption force)은 상기 시료 챔버 내의 모든 시료를 상기 분석 사이트 내지 초친수성 챔버로 이동시키기 위한 유체 추진력을 지속적으로 발생시킬 수 있다. 이하, 상기 흡수 패드의 흡인력 또는 샘플 패드의 흡입력 또는 초친수성 챔버의 친수 흡입력에 따른 유체 추진력에 의한 유체이동 수단을 흡입 펌프라 칭한다.
네째, 상기 U자형 또는 V자형 형상을 갖는 유로를 초친수성(Superhydrophilic) 코팅하여 상기 시료 챔버 내의 시료를 이동시키는 친수 흡입력(hydrophilic absorption force)은 상기 시료 챔버 내의 모든 시료를 상기 분석 사이트로 이동시키기 위한 유체 추진력을 발생시킬 수 있다. 이하, 상기 친수 흡입력에 따른 유체 추진력에 의한 유체이동 수단을 친수성 유체이동이라 칭한다.
본 발명의 일 구체예에 의하면, 상기 유체 이동 수단에 의해 상기 시료챔버 내의 모든 시료를 상기 분석 사이트로 전부 이동시켜 상기 시료 챔버를 비울 수 있다. 상기 시료 챔버 내의 모든 시료가 상기 액체 밸브를 통해 상기 분석 사이트로 다 빠져 나간 후, 상기 병목 채널의 유체에 대한 강한 모세관 현상으로 인해 찌꺼기 챔버 내의 유체는 상기 액체 밸브로 이동하지 않게 된다. 즉, 상기 병목 채널의 유체에 대한 강한 모세관 현상은 상기 유체 이동 수단에 의한 유체 이동의 힘과 균형을 이룰 수 있고 유체는 더 이상 상기 분석 사이트로 이동하지 않게 된다. 따라서, 정량의 시료만이 상기 분석 사이트로 이동하게 된다.
본 발명의 일 구체예에 있어서, 상기 챔버 펌프, 상기 적혈구 펌프, 상기 흡입 펌프 및 상기 친수성 유체이동에 의한 유체 이동 수단은 U자형 또는 V자형 형상을 갖는 유로에 의해 제공되는 모세관 현상에 의한 유체 추진력을 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 샘플 챔버는 초친수성(Superhydrophilic) 코팅되는 것일 수 있다. 본 발명의 일 구체예에 있어서, 상기 초친수성(Superhydrophilic) 코팅은 친수성 코팅을 포함한다.
본 발명의 일 구체예에 있어서, 상기 샘플은 다양한 생물질, 예를 들어, 피(blood)를 포함한다. 또한 상기 시료는 원심분리에 통해 상기 샘플로부터 얻어지는 물질, 예를 들어, 피로부터 얻어지는 혈청 또는 혈장을 포함한다.
이하, 본 발명의 일 구체예들에 있어서, 상기 혈청, 혈장, 및 백혈구를 포함하는 혈장을 혈청이라 통칭한다.
본 발명의 일 구체예에 있어서, 상기 찌꺼기 챔버(remnant chamber)는 모세관 챔버일 수 있다.
피를 원심분리하면 혈청, 혈병, 혈장및 적혈구로 분리될 수 있다. 상기 혈병의 대부분은 적혈구일 수 있다. 따라서 상기 샘플 챔버의 피를 보관하고 상기 시료 챔버와 상기 찌꺼기 챔버를 원심분리하게 되면 상기 시료 챔버에는 혈청이 남게 되고, 상기 찌꺼기 챔버에는 적혈구가 남게 된다. 이 경우 원심분리를 수행한 후 회전을 정지하게 되면 적혈구는 다시 혈청과 섞일 수 있다. 즉, 원심분리 후, 혈청만 뽑아내기 위해서는 몸체의 회전을 멈추어야 하는데, 이 경우 적혈구와 혈청이 다시 섞여 버려 혈청만 뽑아내는 것이 어려워 질 수 있다. 따라서, 본 발명의 일 구체예는 상기 찌꺼기 챔버를 높이가 낮은(또는 좁은) 모세관 챔버로 구성함으로서 적혈구가 모세관 현상 또는 상기 찌꺼기 챔버의 표면과 적혈구 간의 결합력에 의해 상기 찌꺼기 챔버에 잔류하도록 하여 혈청과 다시 섞이지 않도록 하였다. 상기 찌꺼기 챔버의 표면과 적혈구 간의 결합력은 적혈구의 강한 점도(viscosity)에 기인하고 이로 인해 원심분리된 적혈구는 회전을 멈추더라도 혈청과 다시 섞이지 않고 상기 찌꺼기 챔버에 그대로 유지될 수 있다. 상기 모세관 챔버의 높이는 예를 들어, 0.1mm 내지 0.6mm일 수 있다.
본 발명의 일 구체예에 있어서, 상기 몸체는 세정 공정에 필요한 세정 용액을 저장하기 위한 세정 챔버를 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 몸체는 두 유체 간의 믹싱 공정을 수행하기 위한 믹싱 챔버를 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 몸체는 상기 시료를 희석시키기 위한 희석 용액(dilution buffer) 또는 상기 시료 내의 표적(target) 물질에 결합하기 위한 표지자(label)를 저장하고 있는 버퍼 챔버를 더 포함할 수 있다. 상기 표지자는 항체 또는 DNA가 결합된 형태의 발색용 입자로서 금(gold 또는 gold conjugate) 또는 라텍스(latex) 또는 형광 표지 또는 방사능 동위원소 또는 효소(enzyme 또는 enzyme linked antibody) 표지(label)를 가질 수 있다. 상기 효소는 효소와 반응하는 기질(substrate) 용액에 의해 발색할 수 있다.
본 발명의 일 구체예에 있어서, 상기 효소와 반응하여 발색하는 기질 용액을 저장하고 있는 기질 챔버를 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 시료는 예를 들어, 혈청, DNA, 단백질, 리간드(ligand), 수용체(receptor) 등과 같은 생화학적인 결합 반응을 일으키는 바이오 물질을 포함한다.
본 발명의 일 구체예에 있어서, 상기 박막 원심분리 분석 장치는 상기 몸체 내에 상기 분석 사이트의 방위각 방향 탐색을 위한 박막 원기둥 자석을 더 포함할 수 있다. 상기 박막 원기둥 자석 대신 박막 강자성체 금속 입자가 사용될 수 있다. 상기 박막 원기둥 자석 또는 박막 강자성체 금속 입자의 직경은 1mm 내지 5mm 범위 내일 수 있고, 두께는 0.1mm 내지 1mm 범위일 수 있다.
본 발명의 일 구체예에 있어서, 상기 병목 채널은 두 개의 박막 유로(채널)에 의해 구성될 수 있다. 상기 병목 채널은 상기 몸체의 회전에 의해 발생하는 원심력에 의해 상기 시료 챔버와 상기 찌꺼기 챔버 내의 샘플이 각각 원심분리되면서 상기 시료 챔버 내의 찌꺼기(remnant)가 상기 찌꺼기 챔버로 이동하거나 상기 찌꺼기 챔버 내의 원심분리된 시료(analyte)가 상기 시료 챔버 내로 이동하게 하기 위한 통로를 제공할 수 있다. 즉, 상기 병목 채널은 원심분리동안 분리된 시료와 찌꺼기가 상기 시료 챔버와 상기 찌꺼기 챔버 간을 이동하게 하기 위한 통로를 제공할 수 있다.
본 발명의 일 구체예에 있어서, 상기 찌꺼기 챔버는 배기구가 없다. 즉, 상기 찌꺼기 챔버는 상기 병목 채널 외에는 어떠한 액체 입출입을 위한 채널이나 배기구를 포함하지 않는다. 상기 병목 채널을 박막 채널로 구성함으로서 상기 몸체의 정지시 상기 찌꺼기 챔버 내의 찌꺼기가 상기 시료 챔버 내로 재이동하는 것을 방지하여, 상기 시료 챔버 내의 정량의 시료가 유지되도록 한다. 즉, 상기 몸체의 정지시, 박막 채널로 구성된 상기 병목 채널의 유체에 대한 강한 모세관 현상과 상기 찌꺼기 챔버의 배기구가 없음으로 인해 상기 찌꺼기 챔버 내의 유체는 상기 시료 챔버 내로 자유로이 이동하는 것은 불가능하다. 또한, 친수성 유체이동에 의해 상기 시료 챔버 내의 모든 시료가 상기 액체 밸브를 통해 다 빠져 나간후, 상기 병목 채널의 유체에 대한 강한 모세관 현상으로 인해 상기 찌꺼기 챔버 내의 유체는 상기 액체 밸브로 이동하지 않는다. 즉, 상기 병목 채널의 유체에 대한 강한 모세관 현상은 상기 액체 밸브로 이동하려는 친수성 유체이동의 힘과 균형을 이루어 유체는 더 이상 상기 액체 밸브로 이동하지 않는다.
본 발명의 일 구체예에 있어서, 상기 친수성 유로는 다공성 표면에 의한 표면 개질(surface modification) 또는 수성 페인트 또는 초친수성 페이트 코팅이 이루어지는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 박막 원심분리 분석 장치는 상기 몸체를 회전시키기 위한 스핀들 모터(spindle motor)를 더 포함할 수 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치는 상기 챔버 들에 대한 공간 어드레싱(space addressing)이 가능하도록 슬라이더(slider) 상에 탑재된 BOPM(Bio Pickup Optical Module) 장치와 이것의 이동을 제어하기 위한 슬라이드 모터(slide motor)를 포함하고, 상기 BOPM 장치 상에는 레이저 빔 발생 장치 및 영구 자석을 탑재하고, 상기 슬라이드 모터의 제어에 의해 상기 BOPM 장치의 좌표가 이동 및 제어되는 것일 수 있다. 상기 레이저 빔 발생 장치는 예를 들어, 광 픽업장치를 사용하는 것일 수 있다. 상기 방사 방향 탐색은 슬라이드 모터의 제어에 의해 이루어지는 것일 수 있다. 상기 방위각 방향 탐색은 슬라이더를 정지시킨 채 스핀들 모터의 짧은 회전 제어 또는 스텝(step) 모터의 제어에 의해 몸체를 일정량 회전시킴으로써 이루어질 수 있다. 상기 스텝 모터는 몸체의 방위각 방향의 회전을 위해 스핀들(spindle motor) 모터축 상에 기어로 연결 및 체결되어 동작 하는 것일 수 있다.
상기 박막 원심분리 분석 장치는 상기 챔버들의 반응 온도를 제어하기 위한 온도 제어 수단을 더 포함할 수 있다. 상기 온도 제어 수단은 온도 측정 수단, 가열 수단 및 냉각 수단으로 구성된 군으로부터 선택된하나 이상을 포함할 수 있다. 상기 가열수단은 상기 슬라이더 상에 탑재된 레이저 빔 발생장치를 포함한다. 상기의 냉각수단은 몸체의 회전에 의한 회전 쿨링(rotation cooling)일 수 있고, 몸체 회전 중 챔버의 표면과 공기(air) 간에 접촉에 의한 열방출이 효율적으로 일어나 쿨링 작용이 일어날 수 있다. 상기 온도 측정 수단은 상기 몸체 내에 내장된 무선 RF IC에 연결된 온도 센서에 의해 해당 챔버의 온도가 측정되어 외부의 중앙 제어 장치에 무선 송신하는 것일 수 있다.
상기 몸체는 상부 기질, 중간 기질 및 하부 기질로 이루어지는 회전 가능한 박막 디스크를 포함한다. 상기 디스크의 직경은 예를 들어, 120mm, 80mm 또는 32mm이고, 두께는 0.6mm 내지 3mm의 원판 디스크일 수 있다.
상기 유체의 이동은 상기 몸체의 회전력에 의한 원심력 또는 모세관 현상에 의해 수행되거나, 초친수성 코팅된 유로를 통해 수행될 수 있다.
상기 몸체는 예를 들어, 플라스틱, 유리, 실리콘 웨이퍼, 소수성(hydrophobic) 재료와 같은 다양한 재료로부터 선택될 수 있다. 그러나, 플라스틱이 경제성, 가공용이성, CD-ROM 및 DVD 판독기와 같은 기존의 레이저 반사 기초 탐지기와의 양립성을 이유로 선호되는 경향이 있다. 바람직하게, 상기 몸체는 실리콘 웨이퍼, 폴리프로필렌, 폴리아크릴레이트, 폴리비닐알콜, 폴리에틸렌, 폴리메틸메타크릴레이트(PMMA: polymethyl methacrylate), 고리형 올레핀 고분자(COC: cyclic olefin copolymer) 및 폴리카보네이트로 이루어진 군으로부터 선택된 하나 이상으로 형성될 수 있다. 또한, 상기 몸체는 챔버 내에 저장된 액체의 증발을 방지하기 위하여 알루미늄 코팅될 수 있다.
상기 몸체는 상부 기질, 중간 기질 및 하부 기질로 이루어 지며, 이들은 점착제에 의해 접합될 수 있다. 상기 점착제는 실리콘, 고무계, 변성 실리콘계, 아크릴계(acrylic), 폴리에스터 및 에폭시로 이루어진 군으로부터 선택된 재료로 제조될 수 있다.
상기 몸체는 상부 기질, 중간 기질 및 하부 기질이 적층 접합되어 이루어 지고, 상기 상부 기질 및 중간 기질 사이에 적층되어 그들을 결합하는 제1 박막 접착 테이프; 및 상기 중간 기질 및 하부 기질 사이에 적층되어 그들을 결합하는 제2 박막 접착 테이프를 더 포함할 수 있다. 상기 박막 접착 테이프는 단면 또는 양면 테이프일 수 있다. 상기 테이프는 종이, 비닐, 폴리에스테르 필름, 폴리에틸렌 필름 및 기타 합성 재질과 같은 이형지의 양쪽 또는 한쪽 면에 점착제(an adhesive; a gluing agent)로 표면 처리가 되어 있고, 요구되는 조건에 따라 높은 실링 및 완충, 진동 완화, 내충격성, 내열성, 흡착성, 접착력 등의 특징을 가진 점착제 재료가 사용될 수 있다. 이의 제조 방법은 기질에 단면 테이프를 붙인 후 이형지를 제거함으로써 기질의 한쪽 면에 점착제에 의한 박막 코팅을 하거나, 점착제를 디스펜서(dispenser) 또는 스프레이(spray) 또는 실크 스크린 인쇄하여 기질의 한쪽 면에 점착제에 의한 박막 코팅을 할 수 있다. 즉, 본 발명의 일 구체예에 있어서, 상기 박막 접착 테이프는 이형지를 사용치 않고 점착제(an adhesive;a gluing agent) 자체가 기질에 박막 코팅되는 것일 수 있다.
상기 믹싱 챔버에 포함되는 자성체 소형 구슬; 상기 몸체 하부에서 움직일 수 있는 슬라이더; 및 상기 슬라이더에 장착되고 상기 자성체 소형 구슬에 인력을 인가하여 상기 자성체 소형 구슬을 운동시킬 수 있는 영구 자석을 더 포함하고, 상기 슬라이더의 움직임에 따라 상기 믹싱 챔버 내의 자성체 소형 구슬이 함께 움직이고, 그에 의해 상기 믹싱 챔버 내의 액체의 혼합이 유도될 수 있다.
본 발명의 일 구체예의 또 다른 측면에 의하면, 상기 믹싱 챔버에 포함되는 자성체 소형 구슬; 상기 몸체 하부에서 움직일 수 있는 슬라이더; 및 상기 슬라이더에 장착되고 상기 자성체 소형 구슬에 인력을 인가하여 상기 자성체 소형 구슬을 운동시킬 수 있는 영구 자석을 더 포함하고, 상기 영구 자석을 상기 믹싱 챔버의 해당 반경에 정지시키고 상기 몸체를 회전시킴에 따라 상기 믹싱 챔버 내의 자성체 소형 구슬이 함께 움직이고, 그에 의해 상기 믹싱 챔버 내의 액체의 혼합이 유도될 수 있다.
본 발명의 일 구체예에 있어서, 상기 혼합(mixing) 동작은 혼합 동작을 수행하고자 하는 상기 믹싱 챔버에 대해 방사방향 탐색 또는 방사방향 탐색과 방위각 방향 탐색이 선행되는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 시료 챔버는 상기 잉여 챔버와 연결되어 과량의 유체를 이송하는 정량 유로를 더 포함할 수 있다.
상기 분석 사이트는 생화학 반응용 시약을 저장하거나, 포획 프로브가 고정된 다공성 멤브레인을 포함할 수 있다. 상기 분석 사이트는 다공성 멤브레인, 및 상기 다공성 멤브레인 상에 고정된 포획 프로브; 상기 기질에 어레이(array) 형태로 스팟팅(spotting)되어 고정된 포획 프로브; 기질에 형성되는 마이크로포어(micro pore), 또는 상기 마이크로포어에 고정된 포획 프로브을 포함할 수 있다.상기 분석 사이트는 다공성 멤브레인, 및 상기 다공성 멤브레인 상에 고정된 라인 또는 스팟(spot) 형태의 다종의 종양 표지자(tumor marker) 또는 질병 표지자를 테스트 라인으로 포함하고, 상기 다공성 멤브레인은 전체적으로 유체의 측방 유동(lateral flow) 또는 관통 유동(flow through)을 허여하는 스트립(strip) 형태를 가질 수 있다. 상기 다공성 멤브레인는 한쪽 말단에 샘플 패드와 콘쥬게이트 패드(conjugate pad), 다른 말단에는 흡수 패드(absorbent pad)를 포함할 수 있다. 상기 종양 표지자 또는 질병 표지자는 AFP, PSA, CEA, CA19-9, CA125, CA15-3 또는 알츠하이머(Alzheimer) 질환의 마커, 또는 심근 경색 표지 인자일 수 있다.
상기 분석 사이트는 상기 다공성 멤브레인 상에 고정된 기준 라인(reference line)과 컨트롤 라인(control line)을 위한 포획 프로브를 더 포함할 수 있다. 상기 기준 라인(reference line)의 반응 농도는 기준치(cutoff value)가 될 수 있다. 예를 들어, 상기 기준 라인의 기준치 농도는 3 ng/ml, 4 ng/ml, 10 ng/ml, 20 ng/ml, 30 ng/ml, 40 ng/ml 또는 50 ng/ml일 수 있다. 예를 들어, 상기 기준 라인과 테스트 라인 간의 반응 강도의 차이에 의해 정성 또는 정량 분석할 수 있다. 예를 들어, 상기 스트립의 백그라운드(background)와 테스트 라인 간의 반응 강도의 차이에 의해 정성 또는 정량 분석할 수 있다. 예를 들어, 상기 복수 개의 기준 라인에 의해 형성된 반응 강도에 대한 선형 함수(linear function)에 의해 테스트 라인의 반응 강도를 결정하여 정성 또는 정량 분석할 수 있다. 상기 기준 라인과 컨트롤 라인에 의해 형성된 반응 강도에 대한 선형 함수(linear function)에 의해 테스트 라인의 반응 강도를 결정하여 정성 또는 정량 분석할 수 있다.
상기 몸체는 온도 측정 기능 또는 분석 사이트 판독 기능 또는 분석 사이트의 판독 결과를 저장 및 송출하는 기능 또는 개인 암호화 기능을 갖는 무선 RF IC를 포함할 수 있다. 상기 박막 원심분리 분석 장치는 상기 분석 사이트의 반응 결과을 검출하기 위한 검출 수단을 더 포함할 수 있다. 상기 검출 수단은 광원 장치 및 광 검출기를 포함하는 분광 광도계일 수 있다. 또한, 상기 검출 수단은 조명 장치 및 이미지 센서(예를 들어, CCD, CMOS, CIS 센서)를 포함하는 광학 측정 장치일 수 있다. 또는 상기 검출 수단은 레이저 빔 장치 및 광 검출기를 포함하는 포토 메트릭(photometric) 측정 장치일 수 있다.
본 발명의 일 구체예의 박막 원심분리 분석 장치 및 이를 이용한 분석 방법은 랩온어칩, 단백질칩 및 DNA칩과 같은 유체 내 소량의 바이오 및/또는 화학 물질을 진단 및 탐지하는 박막형 장치에 적용가능하다. 예를 들어, 본 발명의 일 구체예에 의한 박막 원심분리 분석 장치는 통상적인 CD-ROM, DVD 등과 같은 박막 디스크 속에 집적화시킬 수 있다.
본 발명의 일 구체예에 의한 박막 원심분리 분석 장치 및 이를 이용한 분석 방법은 ELISA/CLISA 분석 방법이 응용된 랩온어칩, Rapid test 방법이 응용된 랩온어칩; 또는 식중독균 검사, 잔류항생제 검사, 잔류 농약 검사, 유전자 변형 식품 검사, 식품 알레르기 검사, 오염 물질 검사 또는 친자 확인, 육류 종류 및 원산지 식별 검사를 위한 랩온어칩 같은 유체 내 소량의 바이오 및/또는 화학 물질을 진단 및 탐지하는 박막형 장치에 적용가능하다. 상기 잔류 농약은 야채, 채소 또는 과일 중에 포함된 농약, 예를 들어, 이들 중 사용량이 가장 많은 유기인계, 카바메이트계 살충제를 포함한다..
본 발명의 일 구체예에 있어서, 바이오 물질은 DNA, 올리고뉴클레오티드, RNA, PNA, 리간드(ligand), 수용체(receptor), 항원, 항체, 우유, 오줌, 타액(saliva), 머리카락, 농작물 샘플, 육류 샘플, 어류 샘플, 조류 샘플, 오수(오염된 물), 가축 샘플, 식품 샘플, 구강 세포, 조직샘플, 타액, 정액, 단백질 또는 기타 생체물질 중에서 선택되는 하나 이상인 것일 수 있다.
오줌 검체시, 상기 박막 원심분리 분석 장치는 백혈구(Leucocyte), 혈액(Blood), 단백질(Protein), 아질산염(Nitrite), pH, 비중(Specific gravity), 글루코오즈(Glucose), 케톤(Ketone), 아스코르브산(Ascorbic acid), 유로빌리노겐(Urobilinogen), 빌리루빈(bilirubin) 분석 등을 수행할 수 있다.
모발(머리카락) 검체시, 혈액이나 뇨 분석에 비해 미네랄을 비롯한 신체의 영양물질 및 독성물질의 축적에 의한 연혁(Historical Record)을 정확히 측정할 수 있는 장점이 있다. 장기간의 무기물 과다 및 결핍을 정확히 알 수 있으며 독성 중금속의 양을 알아내는데 표본이 되며, 이는 알려져 있다.
또한, 본 발명의 일 구체예는 샘플을 주입하기 위한 샘플 주입구; 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버(sample chamber); 상기 샘플 챔버의 샘플을 원심분리에 의해 정량의 시료와 찌꺼기로 분리하여 따로 저장하기 위한 시료 챔버(analyte chamber) 및 찌꺼기 챔버(remnant chamber); 상기 시료 챔버와 상기 찌꺼기 챔버를 연결하는 병목 채널(bottle neck channel); 상기 시료 챔버에 정량의 시료를 저장하기 위해, 상기 시료 챔버의 잉여분(excess)의 샘플을 저장하기 위한 잉여 챔버; 상기 시료와의 결합(specific binding)을 위한 포획 프로브(capture probe)가 고정화되어 있거나 및/또는 상기 시료와의 생화학 반응을 위한 시약, 예를 들어, 생화학 반응을 하기 위한 바이오 물질이 저장되어 있는 하나 이상의 분석 사이트; 상기 시료 챔버와 상기 분석 사이트를 연결하는 유로 상에 형성된 초친수성 코팅된 액체 밸브; 세정 공정에 의해 상기 포획 프로브와 결합하지 않는 물질(debris)을 모으기 위한 트레쉬 챔버(trash chamber); 및 상기 챔버들, 상기 병목 채널, 상기 분석 사이트, 상기 액체 밸브 및 유로가 집적화된 회전 가능한 몸체를 포함하는 박막 원심분리 분석 장치를 이용한 분석 방법에 있어서, 상기 샘플 주입구를 통해 샘플을 샘플 챔버에 주입하는 단계; 상기 몸체의 회전에 의해 발생하는 원심력에 의해 상기 샘플 챔버 내의 샘플이 상기 시료 챔버와 상기 찌꺼기 챔버로 이동하고, 상기 시료 챔버의 정량을 초과하는 경우 상기 잉여 샘플이 상기 잉여 챔버로 이동하는 단계; 상기 몸체의 회전에 의해 발생하는 원심력에 의해 상기 시료 챔버와 상기 찌꺼기 챔버 내의 샘플이 각각 원심분리되면서 상기 시료 챔버 내의 찌꺼기가 상기 병목 채널을 통해 상기 찌꺼기 챔버로 이동되거나 또는 상기 찌꺼기 챔버 내의 시료가 상기 병목 채널을 통해 상기 시료 챔버로 이동하는 단계; 상기 액체 밸브에 의해 상기 시료 챔버 내에 억류되어 있던 시료가 상기 몸체의 정지시 상기 시료 챔버 내의 시료가 상기 액체 밸브를 통해 친수성 유체이동에 의해 상기 분석 사이트로 이동하는 단계; 및 상기 분석 사이트 내로 이동한 시료를 상기 분석 사이트 내로 유입시켜 상기 분석 사이트 내의 포획프로브와 결합 반응을 수행하거나 상기 분석 사이트 내의 시약과 생화학 반응을 수행하는 단계를 포함하는 분석 방법을 제공한다.
상기 분석 방법은 세정 용액을 첨가하여 상기 분석 사이트를 세정하는 단계; 및 상기 분석 사이트를 건조 및 탈수시키는 단계를 더 포함할 수 있다.
상기 분석 방법은 상기 분석 사이트를 탐색하기 위한 분석 사이트 탐색 단계; 상기 분석 사이트의 반응 결과를 정성 또는 정량 분석하는 단계; 상기 분석에 따른 진단 결과를 컴퓨터 모니터 상에 표시하는 단계; 상기 분석에 따른 진단 결과 또는 문진표를 인터넷 망을 통해 접속되어 있는 의사에게 원격 전송하는 단계; 및 상기 의사로부터 처방을 받는 단계 중 하나 이상의 단계를 더 포함할 수 있다.
상기 분석 방법은 상기 믹싱 챔버 내에 포함된 자성체 소형 구슬을 자력에 의해 운동시켜 상기 믹싱 챔버 내의 액체를 혼합하는 단계를 더 포함할 수 있다.
상기 분석 방법은 상기 몸체의 회전 중심을 기준으로 U자형 또는 V자형 형상을 갖는 액체 밸브를 이용하여 상기 몸체의 회전동안 상기 시료 챔버로부터 원심력에 의한 유체 누출(또는 누수)을 방지하는 단계를 더 포함할 수 있다.
상기 분석 방법은 상기 온도 제어 수단에 의한 분석 사이트의 온도를 제어하는 단계를 더 포함할 수 있다.
상기 분석 방법은 상기 복수 개의 분석 사이트들 중 하나의 특정 분석사이트를 탐색하여 선택하는 단계; 및 상기 특정 분석 사이트의 반응을 검출하는 검출 단계를 더 포함할 수 있다. 상기 검출 단계는 분광 광도계에 의해 수행될 수 있고, 상기 분광 광도계에 의한 분석 사이트의 분석은 스텝 모터(step motor) 또는 상기 스텝 모터에 연결된 기어에 의한 몸체의 회전각(rotation angle) 제어 또는 방위각 방향 밸브 탐색을 이용한 챔버의 탐색 단계 이후 수행되거나 또는 바탕 용액 챔버에 의한 분석 사이트의 공간 어드레싱(space addrsssing)에 의하여 상기 몸체 회전 동안 시료의 광 흡수율을 연속적으로 계측하여 수행될 수 있다.
상기 분광 광도계의 광원 또는 광원 장치는 백색광 LED, RGB 레이저, 또는 복수 개의 LD(Laser Diode)가 집적화된 LD 모듈일 수 있다.
상기 분광 광도계에 의한 분석 사이트의 판독은 상기 몸체 내의 상부 기질 또는 상기 분석 사이트 내에 반사층이 집적화된 박막 원심분리 분석 장치의 분석 사이트에 상기 분광 광도계의 광원 장치에 의해 얻어진 특정 파장의 빛을 통과시키는 단계, 및 상기 반사층에 의해 반사된 빛을 광 검출기가 검출함으로써 상기 분석 사이트 내의 시료에 의한 광 흡수율을 측정하는 단계를 포함할 수 있다. 상기 분광 광도계에 의한 분석 사이트의 판독은 상기 몸체 내에 집적화된 광 검출기가 시료에 의한 광 흡수율을 측정함으로써 판독 결과를 얻는 단계, 및 상기 몸체 내에 집적화된 무선 RF IC가 상기 판독 결과를 수신하여 외부로 무선 송출하는 단계를 포함할 수 있다.
상기 세정 단계는 상기 분석 사이트에 세정 용액을 첨가하여 상기 분석 사이트를 세척하는 단계를 더 포함할 수 있다. 상기 세정 단계는 상기 분석 사이트를 몸체의 회전에 따른 원심력에 의해 건조 및 탈수시키는 건조 단계를 더 포함할 수 있다. 건조 및 탈수 과정에서 생긴 찌거기(debris)는 원심력에 의해 트레쉬 챔버에 모이게 된다.
본 발명의 일 구체예에 있어서, 상기 몸체는 상기 시료 챔버로부터 얻어진 혈청으로부터 DNA 또는 RNA을 준비하기 위한 프렙챔버; 및 상기 DNA 및 RNA을 증폭하기 위한 증폭 챔버; 및 상기 증폭된 DNA을 일정한 길이로 자르기 위한 공정을 수행하기 위한 프레그맨테이션 챔버(fragmentation chamber)을 더 포함할 수 있다. 상기 프레그멘테이션 챔버에서 일정한 길이로 잘려진 DNA는 예를 들어, DNA 캡쳐 프로브(capture probe)가 어레이(array) 형태로 배열된 상기 분석 사이트 내로 투입되어, 상보적 서열(complemetary sequence)갖는 DNA 포획 프로브와 혼성화(hybridization)되어 이중 가닥 DNA(double stranded DNA)를 이룰 수 있다. 혼성화 여부를 탐지하기 위한 다양한 실시예는 알려져 있다. 상기 박박 원심분리 분석 장치는 상기 챔버 이외에 DNA 증폭 및 프레그맨테이션 공정 등에 필요한 공정을 추가하기 위한 챔버가 추가 및 삽입될 수 있다.
본 발명의 일 구체예에 있어서, 상기 박박 원심분리 분석 장치는 상기 몸체 내에 상기 증폭 챔버 또는 상기 프레그맨테이션 챔버의 공간 어드레싱을 위한 위한 박막 원기둥 자석을 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 박박 원심분리 분석 장치는 상기 증폭 챔버 또는 상기 프레그맨테이션 챔버를 가열하기 위한 가열 수단과 및 냉각 수단을 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 증폭 챔버는 PCR(Polymerase Chain Reaction) 공정에 따른 열 순환(써머 사이클, thermo cycle)을 수행하는 것을 포함한다. 상기 증폭 챔버 또는 상기 프레그멘테이션 챔버에 대한 가열 수단의 공간 어드레싱은 방사 방향 탐색과 방위각 방향(azimuthal) 탐색에 의해 이루어 질 수 있다.
상기 분석 방법은 프렙 챔버에서 DNA 또는 RNA를 분리하는 단계; 증폭 챔버에서 DNA를 증폭하는 단계; 증폭된 DNA를 적당한 길이로 자르는 프레그맨테이션(fragmentation) 단계; DNA의 한쪽 말단에 표지자를 붙이는 라벨링 (labeling)단계를 더 포함할 수 있다.
상기 DNA 증폭 단계는 열을 식히기 위해 상기 몸체의 고속 회전에 의한 회전 냉각(rotation cooling) 단계를 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 프레그맨테이션 단계는 DNA 증폭 후, DNAse을 상기 증폭 챔버로 유입시키는 단계; 상기 가열 수단에 의해 고온으로 가열하여 DNAse의 기능을 정지(인큐베이션 정지) 및/또는 단일 가닥의 DNA을 만드는 단계(denaturing step)를 포함할 수 있다.
본 발명의 일 구체예에 의한 박막 원심분리 분석 장치 및 이를 이용한 분석 방법은 랩온어칩, 단백질칩 또는 DNA칩과 같은 유체 내 소량의 물질을 진단 및 탐지하는 박막형 장치에 적용가능하다. 예를 들어, 본 발명의 일 구체예에 의한 박막 원심분리 분석 장치 및 이를 이용한 분석 방법은 통상적인 CD-ROM 및 DVD 등의 디스크 장치와 같은 박막 속에 원심 분리 장치를 집적화시키는데 적용가능하다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 및 이를 구동 제어키 위한 박막 원심분리 분석 장치 드라이브(drive)의 단면도와 평면도를 나타내는 도면이다.
도 3은 BOPM 및 영구 자석이 설치 배치된 본 발명의 일 실시예에 따른 슬라이더(slider)의 상부도를 나타내는 도면이다.
도 4는 도 1의 박막 원심분리 분석 장치를 구동 및 제어하기 위한 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 드라이브의 측면도를 나타내는 도면이다.
도 5는 그레이팅 미러(grating mirror)를 사용하는 본 발명의 일 실시예에 따른 분광 광도계를 나타내는 도면이다.
도 6 내지 도 8은 분광 광도계를 이용하여 박막 원심분리 분석 장치 상의 분석 사이트 판독 방법을 구현한 본 발명의 일 실시예를 나타내는 도면이다.
도 9 및 도 10은 원심분리 동안 액체의 누수를 방지하기 위한 액체 밸브의 일 실시예를 나타내는 도면이다.
도 11은 원심분리 과정을 단계 별로 나타낸 도면이다.
도 12는 병목 채널의 일 실시예를 나타내는 도면이다.
도 13 내지 도 15는 다공성 멤브레인 상에 다종의 종양 표지자(tumor marker)를 라인(line) 또는 스팟(spot) 형태로 고정시킨 스트립(strip)의 다양한 실시예를 나타내는 도면이다.
도 16은 분석 사이트가 상이한 섹터에 병렬로 복수 개 배열되어 단일 샘플에 대한 다종의 분석 반응을 위한 랩온어칩의 제반 공정이 배치된 박막 원심분리 분석 장치의 일 실시예를 나타내는 도면이다.
도 17은 액체 밸브에 의한 친수성 유체 이동 과정과 원심력에 의한 유체이동 과정을 교대로 반복함으로서 시료 챔버 내의 모든 혈청이 버퍼 챔버로 점진적으로 이동하는 과정을 나타낸 도면이다.
도 18은 도 17의 다른 형태의 일 실시예로, 원심력에 의해 분석 사이트 내로 혈청을 이동시키는 일 실시예를 나타내는 도면이다.
도 19 내지 도 22는 상기 도 17의 일 실시예에서 희석 용액 저장 챔버를 더 포함하는 경우로서, 이에 대한 동작을 단계별로 나타낸 도면이다.
도 23은 본 발명의 일 구체예에 따른 박막 원심분리 분석 장치를 프런트 로딩(front loading) 또는 탑 로딩(top loading)할 수 있는 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 드라이브를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 대하여 상세히 설명한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 및 이를 구동 제어하기 위한 박막 원심분리 분석 장치 드라이브(drive)의 단면도 및 평면도를 나타낸다.
도 1 및 도 2에 따르면, 박막 원심분리 분석 장치는 통상적인 CD-ROM 및 DVD 등의 디스크 장치와 같은 박막 장치 속에 랩온어칩의 제반 공정이 집적화될 수 있다. 예를 들어, 본 발명의 일 실시예는 분석에 필요한 각종 버퍼 용액을 저장하고, 다양한 화학 공정 및 원심분리 공정을 수행하기 위한 1 이상의 챔버(130, 131a, 131b, 131c, 133)와 처리된 유체 및 버퍼 용액을 이동시키기 위한 유로(92, 93, 67), 분석 사이트(132) 및 액체 밸브(7)가 박막 디스크 상에 집적화된 박막 원심분리 분석 장치(100); 및 이를 제어 및 구동하기 위한 박막 원심분리 분석 장치 드라이브(100a)를 포함한다.
도 1에 따르면, 식별 번호 100은 박막 원심분리 분석 장치로서, 그의 몸체 또는 기질을 포함하고, 상부 기질(1), 중간 기질(2) 및 하부 기질(3)이 적층에 의해 형성되며, 이들 각각은 사출 성형 공정 동안 기질 표면에 유체가 흐를 수 있는 상기 유로(92, 93, 67); 액체 밸브(7); 샘플 챔버(130), 시료 챔버(131a), 찌꺼기 챔버(131b), 잉여 챔버(131c), 분석 사이트(132) 및 트레쉬 챔버(133)를 포함한다. 이들은 서로 밀착 부착되어 박막 원심분리 분석 장치(100)를 이룰 수 있다.
본 발명의 일 구체예에 의한 박막 원심분리 분석 장치에 있어서, 상기 시료 챔버(131a)는 상기 샘플 챔버(130)로부터의 샘플의 이동으로 인한 공기압을 배출하기 위한 배기구(12)를 더 포함할 수 있으며, 상기 배기구(12)는 원심력의 반대 방향으로 배치될 수 있다. 본 발명의 일 구체예에 있어서, 배기구(12, 13)과 병목 채널(67)은 박막 유로에 의해 형성될 수 있다.
본 발명의 일 구체예에 있어서, 상기 박막 유로는 유로 형상이 설계된 박막 접착 테이프에 의해 기질들(1, 2, 3)의 층 사이에 형성될 수 있다. 즉, 상기 기질들(1, 2, 3)은 박막 접착 테이프에 의해 서로 밀착 부착되어 하나의 박막 원심분리 분석 장치(100)를 이룰 수 있으며, 상기 박막 유로는 기질층 사이에서 박막 테이프가 빠진 부분에 박막 유로(channel)가 형성될 수 있다. 박막 유로는 유로의 높이가 박막 접착 테이프의 두께에 의해 결정될 수 있으며, 그 높이가 매우 낮기 때문에, 유체에 대해 강한 모세관 현상이 일어날 수 있다. 본 발명의 일 구체예에 있어서, 상기 박막 접착 테이프의 두께는 예를 들어, 0.001mm 내지 0.1mm일 수 있다.
이하, 샘플이 혈액인 경우를 예를 들어 도 1 및 도 2의 일 실시예를 설명한다.
식별 번호 120은 샘플을 주입하기 위한 디스펜서(dispenser) 또는 피펫 또는 주사기 또는 란셋(lancet) 또는 샘플 주입 수단을 나타내고, 식별 번호 121은 샘플 주입구이고, 식별 번호 170은 디스크 공극을 나타낸다.
식별 번호 130은 샘플 주입구로 주입된 혈액를 저장하기 위한 샘플 챔버(sample chamber)이다. 상기 샘플 챔버(130) 내의 혈액은 몸체(100)의 초기 회전 동안 유로(92)를 통해 시료 챔버(131a)와 찌꺼기 챔버(131b)로 이동하고, 정량 이상의 혈액은 정량 유로(93)을 통해 잉여 챔버(131c)로 이동된다. 이후, 상기 몸체(100)의 회전에 의한 원심력에 의해 시료 챔버(131a)와 찌꺼기 챔버(131b)에 저장된 각각의 혈액에 대해 독립적으로 원심분리가 일어나, 시료 챔버(131a)의 혈액 뿐만 아니라, 찌꺼기 챔버(131b) 내의 혈액도 혈청과 적혈구로 분리된다.
식별 번호 67은 상기 시료 챔버(131a) 와 찌꺼기 챔버(131b)를 연결하는 병목채널이다. 상기 병목 채널(67)은 몸체(100)의 회전에 의해 발생되는 원심력에 의해 상기 시료 챔버(131a)와 찌꺼기 챔버(131b) 내의 혈액이 각각 원심분리되면서 시료 챔버(131a) 내의 적혈구가 찌꺼기 챔버(131b)로 이동하거나 찌꺼기 챔버(131b) 내의 혈청이 시료 챔버(131a) 내로 이동하기 위한 통로를 제공한다. 즉, 상기 병목 채널(67)은 원심분리 중에 혈청과 적혈구가 시료 챔버(131a)와 찌꺼기 챔버(131b) 간을 자유로이 이동할 수 있는 통로를 제공한다. 도 1에 따르면, 찌꺼기 챔버(131b)가 시료 챔버(131a)보다 더 몸체의 바깥 원주 쪽에 배치되어 있기 때문에, 원심분리 중 혈청과 적혈구의 병목 채널(67)을 통한 이동의 결과로서, 찌꺼기 챔버(131b)에는 적혈구가 모아지고, 시료 챔버(131a)에는 혈청이 모아진다. 원심분리 동안 혈청과 적혈구 간의 이동을 위해 상기 병목 채널(67)은 두 개의 박막 유로(채널)로 구성될 수 있다. 이러한 두 개의 박막 유로(채널)로 구성된 병목 채널(67)은 찌꺼기 챔버(131b)에 별도의 배기구를 형성하지 않을 수 있다. 즉, 몸체(100)의 회전 동안에는 원심력에 의해 시료 챔버(131a)의 배기구(13)는 찌꺼기 챔버(131b)에 대한 배기구 역할도 한다. 하지만 몸체(100)의 정지 동안에는 원심력이 존재하지 않기 때문에 시료 챔버(131a)의 배기구(13)는 찌꺼기 챔버(131b)의 배기구 역할을 할 수 없다.
혈액을 아무리 원심분리를 잘하더라도 회전을 멈추면 적혈구는 혈청과 다시 섞여 버릴 수 있다. 즉, 원심분리 후, 혈청만 뽑아내기 위해서는 몸체(100)의 회전을 멈추어야 하는데, 이 경우 적혈구와 혈청이 다시 섞여 버려 혈청만 뽑아내는 것이 어려워 질 수 있다. 이러한 문제를 방지하기 위해, 일차적으로 상기 시료 챔버(131a)와 상기 찌꺼기 챔버(131b)를 공간적으로 분리하여 따로 두고, 이차적으로는 상기 시료 챔버(131a)와 상기 찌꺼기 챔버(131b) 간의 유체 이동을 막는 병목 채널(67)을 두고, 삼차적으로는 상기 찌꺼기 챔버(131b)를 높이가 낮은(좁은) 모세관 챔버로 구성함으로서, 상기 찌꺼기 챔버(131b) 자체의 모세관 현상 또는 상기 찌꺼기 챔버(131b)의 표면과 적혈구 간의 결합력에 의해 적혈구가 상기 찌꺼기 챔버(131b)에 그대로 잔류토록 하여 상기 시료 챔버(131a) 내의 혈청과 다시 섞이지 않게 하였다. 상기 찌꺼기 챔버(131b)의 표면과 적혈구 간의 결합력은 적혈구의 강한 점도(viscosity)에 기인하며, 상기 찌꺼기 챔버(131b)를 모세관 챔버로 구성하는 경우 원심분리된 적혈구는 회전을 멈추더라도 혈청과 다시 섞이지 않고 상기 찌꺼기 챔버(131b)의 표면에 적혈구가 결합된 채로 그대로 남아있다. 따라서 상기 시료 챔버(131a) 내의 혈청은, 몸체의 정지동안에도 상기 찌꺼기 챔버(131b)의 적혈구와 다시 섞이지 않아 원심분리된 채로 남아있게 된다.
본 발명의 일 구체예에 있어서, 상기 잉여 챔버(131c)는 정량을 초과하는 잉여분(excess)의 혈액을 몸체(100)의 회전 동안 원심력에 의해 정량 채널(93)을 통해 상기 잉여 챔버(131c)로 이동시킬 수 있다. 상기 정량 채널(93)의 높이 조절(방사 방향의 거리에 해당)에 따라 상기 시료 챔버(131a)에 남게 되는 혈액(또는 혈청)량이 결정될 수 있다. 상기 정량 채널(93)의 높이 이상의 혈액은 회전 동안 원심력에 의해 정량 채널(93)을 통해 잉여 챔버(131c)로 이동할 수 있다.
식별 번호 290a는 박막 원심분리 분석 장치(100)의 생산 및 조립시 필요한 정렬(alignment)을 위한 기준 구멍이다. 상기 기준 구멍(290a)은 지그(jig)에 설치된 고정축(fixture)에 삽입된다.
식별 번호 132는 상기 시료 챔버(131a) 내의 혈청과 결합, 예를 들어, 생물학적 특이 결합(specific binding)을 하기 위한 포획 프로브(capture probe)가 고정화되어 있거나 및/또는 시료와의 반응, 예를 들어, 생화학 반응을 하기 위한 시약이 저장되어 있는 분석 사이트이다.
식별 번호 41은 상기 분석 사이트(132)에 내장된 포획 프로브가 고정화된 다공성 멤브레인 또는 스트립(strip)이다. 식별 번호 13은 상기 분석 사이트(132) 내에 설치된 배기구로서 상기 몸체(100)의 고속 회전시 공기 흐름(air stream)을 형성하여 상기 스트립(41)의 건조를 빠르게 진행되게 한다. 세공 공정 전에 상기 스트립(41)을 건조시켜 세정 공정 동안 세정액이 스트립(strip) 상에서 잘 확산(diffusion)되도록 하여 확산력(diffusion force)에 의해 백그라운드 노이즈(background noise) 성분을 세정하게 할 수 있다.
상기 원심분리 동안 액체 밸브(7)에 의해 시료 챔버(131a) 내에 억류되어 있던 혈청이 상기 몸체(100)의 회전 정지시 친수성 유체 이동에 의해 혈청이 액체 밸브(7)를 통해 상기 분석 사이트(132)로 이동할 수 있다.
식별 번호 133은 세정 공정에 의해 생성된 물질(debris)을 모으기 위한 트레쉬 챔버(trash chamber)로서, 상기 몸체(100)의 고속 회전 동안 상기 분석 사이트(132)의 포획 프로브와 결합을 이루지 못한 물질(debris)이 유로(94)를 통해 상기 트레쉬 챔버(133)로 모인다.
식별 번호 211은 영구 자석(5a)을 탑재한 슬라이더(slider)로 슬라이드(slide) 모터(109)와 연결되어 구동제어 된다.
유체 이동은 몸체의 회전력에 의한 원심력 또는 유로의 초친수성 코팅에 의한 유체 이동에 의한다.
식별 번호 291은 상기 분석 사이트(132)를 공간 어드레싱하기 위한 박막원기둥 자석이다.
식별 부호 103a는 통상의 광학 디스크(예를 들어, CD 또는 DVD)의 재생을 위한 광 픽업장치이고, 식별 부호 103b는 상기 분석 사이트(132)를 정량 분석 또는 정성 분석하기 위한 분석 사이트(132)의 판독 장치로 광 투과율 측정 장치, 형광 탐지 장치, 이미지 센서 장치, 분광 광도계(spectrometer) 또는 SPR(Surface Plasmon Resonance) 탐지 장치일 수 있고, 광 픽업 장치(103a)와 분석 사이트 판독 장치(103b)는 바이오 광 픽업모듈(BOPM) 장치(103)를 구성한다. 상기 형광 탐지 장치 및 SPR탐지 장치는 대한 다양한 실시예는알려져 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치는 상기 분석 사이트(132)에 대한 공간 어드레싱(space addressing)이 가능하도록 슬라이더(211) 상에 탑재된 BOPM(Bio Pickup Optical Module) 장치(103)와 이것의 이동을 제어하기 위한 슬라이드 모터(109)를 포함하고, 슬라이더(211) 상에는 상기 박막 원기둥 자석(291)에 인력을 작용시키기 위한 영구 자석(5a)을 탑재하고, 슬라이드 모터(109)의 제어에 의해 BOPM 장치의 좌표가 이동 제어될 수 있다. 상기 분석 사이트(132)에 대한 공간 어드레싱(space addressing)은 방사 방향 탐색과 방위각 방향(azimuthal) 탐색에 의해 이루어 질 수 있다.
상기 방사 방향 탐색과 방위각 방향(azimuthal) 탐색의 일 실시예는 하기와 같다. 방사 방향 탐색은 방사 방향(radial)으로 영구 자석(5a)을 이동시키는 과정으로, 상기 박막 원기둥 자석(291)의 해당 반경으로 상기 슬라이더(211) 상의 영구 자석(5a)을 이동시킴으로써 이루어 진다. 이후, 해당 반경 상에서 영구 자석(5a)과 박막 원기둥 자석(291)을 일치시키기 위해 방위각 방향(azimuthal) 탐색이 필요하다. 이는 슬라이더(slider)(211)을 중지한 채, 스핀들(spindle) 모터(102)를 서행시키거나, 또는 스핀들(spindle) 모터의 짧은 회전과 중지의 반복 동작을 통해 이루어질 수 있다. 스핀들(spindle) 모터의 서행 또는 여러 차례의 짧은 회전을 통해, 슬라이더(211) 상의 영구 자석(5a)과 해당 반경 상에 있는 박막형 원기둥 자석(291)과 일치하게 되면, 그들 간의 강한 인력으로 인해 서행 또는 짧은 회전에 의해 더 이상 몸체(100)를 회전시키지 못하고 이 경우 영구 자석(5a)과 박막 원기둥 자석(291) 간의 정렬이 이루어 질 수 있다.
또한, 본 발명의 다른 일 구체예에 의하면, 상기 방위각 방향 탐색은 방위각 방향 탐색 필요 시점에서 스핀들 모터(102)의 축에 기계적으로 연결 접속되는 스텝 모터의 회전 제어에 의해 이루어질 수 있다. 스텝 모터의 회전에 따라 스핀들 모터(102)의 회전 각도가 제어될 수 있다.
식별 번호 116b은 슬라이더(211) 상의 BOPM(103) 에 필요한 각종 제어 신호를 연결하기 위한 프렉셔블 케이블(flexible cable)로서, 웨이퍼 또는 하네스(wafer 또는 harness)(116a)를 통해 중앙 제어 장치(101)와 연결된다.
식별 번호 181은 박막 원심분리 분석 장치(100)을 올려놓기 위한 턴 테이블(turn table)로서, 몸체의 중심 공극(170)을 통해 턴 테이블에 프런트(front) 또는 탑(top) 로딩된다. 식별 번호 188은 메모리 내장형 무선 RF IC 또는 전자 태그(tag) 장치로서, 랩온어칩 공정을 위한 프로토콜, 분석 사이트(132)의 판독 결과, 분석 알고리즘, 판독을 위한 표준 제어값 및 분석 사이트(132)에 대한 위치 정보, 생물정보학(bioinformatics) 정보, 자기 진단(self diagnosis)에 관련된 정보를 포함한다. 또한, 개인 암호화 정보 및 박막 원심분리 분석 장치의 ID(identification)가 저장될 수 있어, 타인이 함부로 사용할 수 없도록 할 수 있다. 상기 무선 RF IC(188)는 스마트 IC 카드를 포함한다. 상기 무선 RF IC(188) 정보는 무선 송수신을 통해 중앙 제어 장치(101)에 제공되며, 개인 암호화를 위해 활용될 수 있다. 식별 번호 110은 상기 무선 RF IC(188)에 전원을 공급하기 위한 무선 전파 발생 수단이다. 상기 무선전파 발생 수단(110)에 의한 교류 자계는 플레밍 법칙에 따라 무선 RF IC(188) 속에 내장된 유도 코일을 감응시켜 충분한 양의 전기를 생산해 무선 RF IC(188)에 전원을 공급한다. 상기 무선 전파 발생 수단은 다극(multipole) 영구 자석을 구비하여 몸체(100)의 회전에 따라 발생된 교류 자계에 의해 상기 무선 RF IC(188) 속에 내장된 유도 코일에 전류를 발생시키는 것일 수 있다. 본 발명의 일 구체예에 있어서, 상기 다극(multipole) 영구 자석은 상기 몸체(100)를 로딩(loading)하기 위한 트레이(tray) 상에 원주 상으로 배치될 수 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치에 있어서, 상기 무선 RF IC(188)는 온도 측정 기능을 갖고 있어 상기 분석 사이트(132)의 온도를 계측하여 중앙 제어 장치(101)에 무선 송신할 수 있다. 상기 분석 사이트(132)의 온도가 너무 높거나 낮으면 가열 수단 또는 냉각 수단에 의해 일정한 온도를 유지할 수 있다. 본 발명의 일 구체예에 있어서, 상기 분석 사이트(132)의 온도는 시료와의 반응, 예를 들어, 생화학적 활성 및 안정성이 고려된 섭씨 30 내지 37도 사이에서 선택된 온도를 유지하는 것을 포함한다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치에 있어서, 상기 무선 RF IC(188)는 박막 분석 장치의 잔류 농약 검사 및 잔류 항생제 검사에 따른 검사 일자 및 검사 결과, 유효 기간, 농축산 생산 지역, 생산 및 재배 이력, 유통 이력, 재배 농가의 연락처, 가격, 유기농 여부 등에 대한 정보가 포함할 수 있다. 구매자 및 농축산 유통업체는 상기 정보에 의해 농축산물을 안심하고 구입할 수 있다. 일반 소비자는 박막 원심분리 분석 장치(100)를 RF IC 판독기에 갖다 대거나 또는 박막 원심분리 장치 드라이브(100a)에 로딩함으로써 그에 대한 정보를 알 수 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치에 있어서, 상기 무선 RF IC(188)는 박막 원심분리 분석 장치의 검사 결과를 무선 RF IC(188)에 내장된 메모리에 저장할 수 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치에 있어서, 상기 무선 RF IC(188)는 상기의 분석 사이트 판독 장치를 제어하고, 그 판독 결과를 중앙 제어 장치(101) 또는 저장 장치(112) 또는 입출력 장치(111)로 무선 송신할 수 있다.
본 발명의 일 구체예에 따른 박막 원심분리 분석 장치에 있어서, 상기 입출력 장치는 USB(Universal Serial Bus) 또는 IEEE1394 또는 ATAPI 또는 SCSI 또는 인터넷 통신망의 통신 규격을 갖는 것일 수 있다. 또한, 상기 입출력 장치(111)를 통해 박막 원심분리 분석 장치(100) 사용자의 신장, 체중, 성별, 연령 등을 입력할 수 있다.
도 2는 액체 밸브(7)의 말단과 분석 사이트(132) 사이에 샘플 패드(41a) 또는 흡수 패드(41b)를 구비하여 상기 U자형 또는 V자형 형상을 갖는 친수성 유로(7)를 통해 시료 챔버(131a) 내의 혈청을 빨아들이는 흡입력(absorption force)에 의해 시료 챔버(131a) 내의 혈청을 분석 사이트(132)로 이동시키기는 흡수 펌프의 일실시예를 나타낸다. 상기 흡수 펌프에 의해 시료 챔버(131a) 내의 혈청을 분석 사이트(132)로 이동시켜 시료 챔버(131a)를 비울 수 있다. 상기 시료 챔버(131a) 내의 시료가 액체 밸브(7)를 통해 분석 사이트(132)로 빠져 나간 후, 상기 병목 채널(67)의 유체에 대한 강한 모세관 현상으로 인해 찌꺼기 챔버(131b) 내의 유체는 액체 밸브(7)로 이동하지 않는다. 즉, 병목 채널(67)의 유체에 대한 강한 모세관 현상은 상기 흡수 펌프에 의한 유체이동력과 균형을 이루어 유체는 더 이상 분석 사이트(132)로 이동하지 않는다. 식별 번호 41b는 흡수 패드이고, 식별 번호 41a는 샘플 패드와 콘쥬게이드 패드로서, 상기 패드들은 다공성 멤브레인(41c)의 말단에 각각 연결된다.
도 3은 BOPM(103) 및 영구 자석(5a)이 설치 배치된 본 발명의 일 실시예에 따른 슬라이더(slider)의 상부도이다. 상기 슬라이더(slider)는 슬라이드 모터(109) 축에 연결된 웜(worm) 기어 연결부(109a, 109b)에 의해 이동 제어될 수 있다. 상기 슬라이더(slider)는 슬라이드 아암(108a, 108b)를 가이드(guide)로 사용하여 미끄러지듯 이동된다. 상기 슬라이드 아암(108a, 108b)는 나사(110a, 110b, 110c, 110d)을 통해 박막 원심분리 분석 장치 드라이브(100a, 도 1 참조)의 몸체에 체결된다. 도면 부호 116b는 플렉셔블 케이블(flexible cable)이며, 웨이퍼 또는 하네스(116a)을 통해 연결된다. 도면 부호 181은 상기 스핀들(spindle) 모터(102, 도 1 참조)에 의해 회전하는 턴 테이블이다.
도 4는 도 1의 박막 원심분리 분석 장치(100)를 구동 및 제어하기 위한 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 드라이브(100a)의 측면도이다. 식별 번호 300은 박막 원심분리 분석 장치 드라이브(100a)를 지지하고 있는 몸체이다. 박막 원심분리 분석 장치 드라이브 밑면에는 회로 기판(140)이 상기 박막 원심분리 분석 장치 드라이브의 몸체(300)에 이음 체결되고, 회로 기판 (140) 위에 박막 원심분리 분석 장치 드라이브(100a)를 제어하기 위한 중앙 제어 장치(101), 저장 장치(112) 및 입출력 장치(111)가 상기 회로 기판(140) 위에 배치 설계되어 있다. 상기 중앙 제어 장치(101)는 상기 박막 원심분리 분석 장치(100)의 회전 또는 정지를 위해 스핀들(spindle) 모터(102)를 제어할 뿐만 아니라, 슬라이드(slide) 모터(109) 제어에 의해 슬라이더(211) 상에 설계 배치된 바이오 광 픽업모듈(BOPM)의 이동을 제어할뿐만 아니라 박막 원심분리 분석 장치(100)의 분석 사이트(132)를 공간 어드레싱하기 위해 영구 자석(5a)의 위치를 이동시킨다. 상기 영구 자석(5a)은 박막형 원기둥 자석(291, 도 1 참조)에 대해 효과적으로 자력을 전달할 수 있다. 또한, 상기 중앙 제어 장치(101)는 현재 박막 원심분리 분석 장치 드라이브(100a)에 로딩(loading)된 디스크가 통상의 광 디스크(예를 들어, 음악 CD, CD-R, 게임 CD, DVD 등)인지 박막 원심분리 분석 장치(100)인지 여부를 판단하여, 통상의 광 디스크인 경우 디스크로부터 읽은 내용을 상기 광 픽업 장치(103a, 도 3 참조)로부터 저장 장치(112) 또는 입출력 장치(111)로 전송하거나, 또는 쓸 내용을 광 픽업 장치(103a, 도 3 참조)로 보내고, 재생/기록(Read/Write)에 필요한 각종 제어 신호를 상기 각 부분에 제공하는 등의 광 디스크를 위한 통상의 동작을 수행한다.
본 발명의 일 구체예에 있어서, 박막 원심분리 분석 장치의 로딩(loading) 시점에서 박막 원심분리 분석 장치 상의 무선 RF IC(188)를 통해, 상기 중앙 제어 장치(101)에 박막 원심분리 분석 장치(100)의 고유 ID를 무선 송신함으로써, 현재 박막 원심분리 분석 장치 드라이브(100a)에 로딩(loading)된 디스크가 박막 원심분리 분석 장치임을 중앙 제어 장치(101)가 인식하도록 할 수 있다.
본 발명의 일 구체예에 있어서, 박막 원심분리 분석 장치(100) 상에 내장된 무선 RF IC(188)에 의해 분석 사이트(132)에 대한 판독 결과를 무선 통신에 의해 중앙 제어 장치(101) 또는 저장 장치(112) 또는 입출력 장치(111)로 보낸다. 또는, 상기 분석 사이트(132)에 대한 판독은 상기 회로 기판(140) 위에 배치 설계된 이미지 센서 장치(144)에 의해 얻어진 분석 사이트(132)에 대한 이미지 정보를 중앙 제어 장치(101) 또는 저장 장치(112) 또는 입출력 장치(111)로 보냄으로써 이루어 질 수 있다. 식별 번호 104는 디스크 공극에 로딩된 박막 원심분리 분석 장치(100)의 압착 수단으로 턴테이블(181)과의 자력에 의한 인력에 의해 압착하는 것으로 수직 이동과 공회전이 허여되도록 설계될 수 있다.
식별 번호 144a는 상기 이미지 센서 장치의 조명(illumination)을 위한 한 개 이상의 LED(light Emitting Diode)이며, 상기 이미지 센서 장치(144) 또는 LED(144a)는 슬라이더(211) 상에 탑재되거나 분석 사이트(132) 상측 또는 하측에 설치될 수 있다. 본 발명의 일 구체예에 있어서, 상기 LED는 다양한 파장의 빛을 발광하는 다색 LED(Multi color LED)를 포함하며, 다양한 파장(wavelength)의 조명 하에서 분석 사이트(132)에 대한 반응 강도(reaction intensity)를 칼라 강도(color intensity)에 의해 표현된 영상 정보로서, 얻을 수 있으며, 이들 파장과 칼라 강도 간의 2차원적 상관 관계에 의해 분석 사이트(132)의 반응 결과를 정량 분석 또는 정성 분석할 수 있다. 상기 다색 LED(Multi color LED)는 R,G,B LED를 포함한다. 식별 번호 107은 레이저 빔 발생 장치로서, 형광 표지된 분석 사이트 내의 시료를 여기(excitation) 시키는데 사용되며, 이 경우 상기 이미지 센서 장치(144)에 의해 분석 사이트에 대한 이미지 정보를 얻을 수 있다. 식별 번호 108은 분광 광도계(spectrometer)로 분석 사이트의 광 투과율 또는 광 흡수율을 측정하기 위한 복수 개의 빛 파장(wavelength)을 출력하고, 각 파장에 따른 광 투과율 또는 광 흡수율을 측정하여 분석 사이트(132)의 반응 결과를 판독한다. 일반적으로 분광 광도계는 광원(light source), 파장 선택 장치(wavelength selector), 시료 용기(시험관 또는 분석 사이트(132)), 및 광 검출기(photo detector)를 포함하고, 이는 알려져 있다. 분광 광도계는, 바탕 용액을 이용하여 투광도가 100% (흡광도 0)가 되도록 장치를 조절한 후, 분석 사이트의 시료 용액에 대한 흡광도를 측정한다. 광원(light source)은 시료 분석에 요구되는 파장 범위에 있는 충분한 에너지의 빛을 일정한 양으로 낼 수 있어야 한다. 광원은 텅스텐 등(tungsten filament lamp), 수소 등(hydrogen or deuterium lamp), 백색광 LED, 레이저(Laser)가 사용될 수 있으며, 본 발명의 일 구체예에서는 백색광 LED 또는 RGB 레이저 또는 복수 개의 LD(Laser Diode)가 집적화된 LD 모듈일 수 있다. 상기 RGB 레이저는 적색(Red), 녹색(Green) 및 청색(Blue) 광을 출력하는 3개의 레이저가 하나의 모듈 형태를 이룬 장치로서, 이들 3개의 레이저 출력 파워 조합에 의해 시료 분석에 요구되는 다양한 파장의 빛을 얻을 수 있다. 상기 LD 모듈은 서로 다른 파장을 갖는 복수 개의 LD(Laser Diode)을 모듈화한 것으로서, 해당 파장의 빛을 출력하는 LD를 차례로 온(On) 시켜가면서 해당 파장에 대한 시료의 광 흡수율을 측정할 수 있다. 광원에서 나온 빛으로부터 특정 파장의 빛을 얻는 것은 분광 광도계에서 중요한 부분일 수 있다. 이상적인 경우 엄밀한 의미에서의 단색광(monochromatic radiation)을 얻는 것이지만, 현실적으로 이것은 매우 어렵기 때문에 어떤 범위의 파장 분포를 보이는 빛은 스펙트럼의 대역폭(band width)을 명시하여 단색화(monochromatization) 정도를 나타낼 수 있다. 광원으로부터 단일 파장에 가까운 빛일수록 측정의 감도(sensitivity)와 분해능(resolution)이 더 커질 수 있다. 원하는 파장의 빛은 파장 선택 장치(wave length selector)에 의해 얻을 수 있고, 상기 파장 선택 장치는 필터 또는 그레이팅 미러(grating mirror) 또는 이의 조합을 사용할 수 있다. 상기 그레이팅 미러(grating mirror)는 입사된 빛을 파장 별로 분산시켜 반사시켜 주는 일종의 프리즘과 같은 역할을 담당하게 된다.
도 5는 그레이팅 미러(grating mirror)를 사용하는 본 발명의 일 실시예에 따른 분광 광도계(108, 도 4 참조)를 나타낸다.
도 5에 따르면, 광원(40)으로부터 백색광을 렌즈(42)에 의해 빔(beam)으로 집속시킨 후, 1차 H-슬릿(slit)과 V-슬릿(slit)(45a)을 통과시켜 스팟 빔(spot beam)을 만들고, 상기 스팟 빔(spot beam)을 그레이팅 미러(grating mirror)(43)에 입사시키면 상기 그레이팅 미러(43)에서 반사된 빛이 위상 공간 상에서 파장 별로 분리된다. 그레이팅 미러(43)에서 반사되어 위상 공간 상에서 분리된 빛 중 특정 파장의 빛만 취하기 위해 특정 각도에 2차 H-슬릿(slit) 및 V-슬릿(slit)(45b)을 고정배치한다. 이 경우 그레이팅 미러(43)를 회전시킴으로써 상기 2차 H-슬릿(slit) 및 V-슬릿(slit)(45b)을 통과하는 빛의 파장을 가변시킬 수 있다. 즉, 그레이팅 미러(43)의 회전 각도를 제어함에 의해 원하는 특정 파장 영역의 빛을 얻을 수 있다.
이렇게 얻은 특정 파장의 빛을 분석 사이트(132)에 통과시킨 후, 이를 상기 광 검출기(46)가 측정함으로써 분석 사이트 내의 시료의 광 흡수율 또는 광 투과율 또는 칼라 강도(Intensity of color)을 측정하여 시료의 반응 결과를 정성 분석 또는 정량 분석한다. 상기 시료의 반응 결과를 정성 분석 또는 정량 분석하는 방법에는 종점(end point)법, 속도 분석(Rate Assay)법, 개시 속도(initial rate)법 등이 있고, 이는 알려져 있다.
식별 번호 40은 분광 광도계(108)의 광원(light source)이고, 상기 파장 선택 장치(wavelength selector)는 그레이팅 미러(43)의 회전 각도를 제어하기 위한 스텝 모터(step motor)(44), 상기 광원으로부터 발생된 빛을 집속하기 위한 렌즈(42)와 집속된 빔을 스팟 빔(spot beam)으로 만들기 위한 1차 H-슬릿(slit)과 V-슬릿(slit) (45a), 스팟 빔(spot beam)을 파장 별로 분리시키기 위한 그레이팅 미러(43); 및 그레이팅 미러(43)에서 반사된 특정 각도의 빔(즉, 특정 파장의 빛)만을 통과시키기 위한 2차 H-슬릿(slit)과 V-슬릿(slit)(45b)을 포함한다. 상기 광원(40)과 파장 선택 장치에 의해 얻어진 특정 파장의 빛을 분석 사이트(132)에 통과시키고 분석 사이트 내의 시료에 대한 광 흡수율을 광 검출기(46)가 측정함으로써 시료의 반응 결과를 정성 분석 또는 정량 분석한다. 상기 스텝모터(44)를 회전시켜 여러 파장(wavelength)의 빛을 분석 사이트(132)에 통과시켜 분석 사이트 내의 시료에 대한 광 흡수율을 파장(wavelength) 별로 측정할 수 있다.
본 발명의 일 구체예에 있어서, 상기 1차 H-슬릿(slit)과 V-슬릿(slit) 또는 2차 H-슬릿(slit)과 V-슬릿(slit)은 광 섬유(optical fiber)가 대신 사용될 수 있다.
본 발명의 일 구체예에서는 이하, 상기 광원, 렌즈, 1차 H-슬릿(slit)과 V-슬릿(slit) 또는 1차 광 섬유(45a), 그레이팅 미러(43), 2차 H-슬릿(slit)과 V-슬릿(slit)(45b) 또는 2차 광 섬유 간의 다양한 조합을 광원 장치(99a)라 칭한다. 상기 LD 모듈과 RGB 레이저 모듈은 단독으로 상기 광원 장치(99a)를 구성할 수 있으며, 이 경우 광원 장치(99a)가 단순화될 수 있다.
도 6 내지 도 8은 분광 광도계(108)를 이용하여 박막 원심분리 분석 장치(100) 상의 분석 사이트(132) 판독 방법을 구현한 본 발명의 실시예를 나타낸다. 식별 번호 555는 상기 광 검출기(46)의 판독을 위한 투명 개구부이다.
도 6에 따르면, 상기 분광 광도계(108)의 광 검출기(46)가 박막 원심분리 분석 장치(100)의 상측에 설치되고, 광원 장치(99a)가 하측에 설치된 경우로서, 상기 광원 장치(99a) 및 상기 광 검출기(46)가 모듈화된 분광 광도계(108)를 이용하여 박막 원심분리 분석 장치(100)의 원주 방향으로 배열된 복수 개의 분석 사이트(132)를 판독한다. 이 경우 박막 원심분리 분석 장치(100)의 회전에 따라, 박막 원심분리 분석 장치(100)에 원주 방향으로 내장된 복수 개의 분석 사이트(132)마다 일대일 대응하여 공간 어드레싱(space addressing) 하여 판독할 수 있다. 분광 광도계(108)는, 먼저 바탕 용액을 이용하여 투광도가 100%(흡광도 0)가 되도록 장치를 조절한 다음 복수 개의 분석 사이트 내의 시료 용액에 대한 흡광도를 측정할 수 있다. 본 발명의 일 구체예에 있어서, 상기 복수 개의 분석 사이트 중 한 개 이상의 분석 사이트는 조절(calibration)을 위한 바탕 용액 챔버를 포함할 수 있다.
도 7의 왼쪽 그림에 따르면, 상기 박막 원심분리 분석 장치(100) 내의 상부 기질(1) 또는 분석 사이트 내에 반사층(99b)을 집적화시키고, 상기 광원 장치(99a) 및 광 검출기(46)를 박막 원심분리 분석 장치(100)의 하측에 모듈화한 분광 광도계(108)를 배치한다. 상기 광원 장치(99a)에 의해 얻어진 특정 파장의 빛을 분석 사이트(132)에 통과시키고, 상기 반사층(99b)에 의해 반사된 빛을 광 검출기(46)가 측정함으로써 분석 사이트 내의 시료에 의한 광 흡수율을 계측한다.
도 7의 오른쪽 그림은 상기 광 검출기(46)가 박막 원심분리 분석 장치(100)의 분석 사이트(132) 내에 집적화된 경우를 나타낸다. 이 경우 복수 개의 분석 사이트(132)에 대해 일대일 대응하여 상기 광 검출기(46)가 배열된다. 이러한 광 검출기(46)가 박막 원심분리 분석 장치(100) 내에 집적화된 경우 광의 경로(optical traveling path)가 짧아져 광 검출기(46)의 수신 감도가 높아져 민감도를 높힐 수 있다. 박막 원심분리 분석 장치(100) 내에 집적화된 광 검출기(46)의 판독 결과는 상기 무선 RF IC(188)에 의해 읽혀진 후 중앙 제어 장치(101, 도 1 참조)로 무선 송출된다.
도 8에 따르면, 상기 도 7의 왼쪽 그림에 예시된 것 같은 반사층(99b)을 상부 기질(1)에 집적화시키고, 박막 원심분리 분석 장치(100)의 원주 방향으로 복수 개의 분석 사이트(132, 도 7 참조)가 배열되어 있다. 분광 광도계(108)에 의해, 박막 원심분리 분석 장치(100)에 원주 방향으로 내장된 복수 개의 분석 사이트마다 일대일 대응하여 공간 어드레싱에 의해 순차적으로 판독이 가능하다. 이 경우 광원 장치(99a)는 분석 사이트(132)마다 시료의 특성에 맞는 파장(wavelength)의 빛을 선택하여 출력함으로써 흡광도를 측정한다. 본 발명의 일 구체예에 있어서, 상기 분광 광도계(108)에 의한 분석 사이트(132)의 순차적 판독은 상기 슬라이더(211) 상에 분광 광도계(108)를 탑재하여 방사 방향 탐색과 방위각 방향(azimuthal) 탐색에 의해 분석 사이트에 대한 공간 어드레싱이 선행되는 것일 수 있다. 상기 이미지 센서장치는 CCD 또는 CMOS 또는 픽셀(pixel) 단위로 광량을 센싱하는 라인 이미지 센서(line image sensor)를 포함한다. 본 발명의 일 구체예에 있어서, 상기 라인 이미지 센서는 리니어 센서 어레이(linear sensor array) 또는 CIS(Contact Image Sensor)를 포함한다. 본 발명의 일 구체예에 있어서, 상기 이미지 센서 장치를 구비한 BOPM(103)이 분석 사이트의 이미지 정보를 얻기 위해 상기 슬라이더(slider)(211)를 이동시킬 수 있다. 분석 사이트 판독 전 상기 슬라이더(211) 상에 이미지 센서 장치를 탑재하여 방사 방향 탐색과 방위각 방향(azimuthal) 탐색에 의해 분석 사이트에 대한 공간 어드레싱이 선행되는 것일 수 있다.
도 9 및 도 10은 원심분리 동안 액체의 누수(leakage)를 방지하기 위한 액체 밸브의 일실시예를 나타낸다. 상기 액체 밸브(7)는 몸체(100)의 고속 회전시, 시료 챔버(131a)에 들어 있는 혈청이 영문 알파벳 V자형 또는 U자형 형상의 채널(7)에 의해 분석 사이트(132)로 이동하는 것을 방지한다. 또한, 도 9 및 도 10은 상기 액체 밸브(7)에 의해 구현된 액체밸브의 상세 도면이다. 액체 밸브(7)는 크게 내향 채널(7a)과 외향 채널(7b) 부분으로 나뉜다. 내향 채널(7a)은 몸체의 중심 방향(원심력 반대 방향)으로 형성된 채널을 말하며, 외향 채널(7b)은 원심력 방향으로 형성된 채널을 말한다. 액체 밸브(7)의 동작은 하기와 같다. 몸체(100)의 고속 회전시, 상기 시료 챔버(131a)로부터 누출된 액체(liquid leaked out)는 내향 채널(7a)에 먼저 채워지게 된다. 일단 상기 누출된 액체가 내향 채널(7a)을 채우고 나면, 내향 채널(7a) 내에 들어있는 누출된 액체 자체에 대해서 방사 방향(radial direction)의 원심력이 작용해 더 이상 시료 챔버(131a) 내의 액체가 누출되는 것이 억류된다. 오히려 누출된 액체가 원심력에 의해 다시 시료 챔버(131a) 내로 퇴각(withdrawal)한다. 즉, 몸체(100)의 고속 회전시, 시료 챔버(131a)로부터 액체가 일부 빠져나간 경우 그 액체 자체에 작용하는 원심력에 의해, 시료 챔버(131a)로부터 더 누출되려는 힘과 이미 누출된 액체 자체에 작용하는 원심력 간의 힘의 균형에 의해 더 이상의 액체 누출이 방지되는 것이다. 이러한 이미 누출된 액체에 작용하는 원심력에 의해 액체의 누출을 방지하는 것을 본 발명의 일 구체예에서는 액체 밸브 동작이라 칭한다.
본 발명의 일 구체예에 있어서, 상기 시료 챔버(131a)의 출구에는 원심분리 동안 액체의 누수(leakage)를 방지하기 위한 액체 밸브를 더 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 액체 밸브는 V자형 또는 U자형 형상의 유로 또는 액체 밸브 동작을 일으키는 초친수성(Superhydrophilic) 코팅된 유로에 의해 구현된 것을 포함한다.
도 11은 원심분리 과정을 설명하기 위해, 도 2의 박막 원심분리 분석장치(100)에서 시료 챔버(131a)와 찌꺼기 챔버(131b)의 주변을 발췌한 그림이다.
도 11은 몸체(100)의 회전에 의해 샘플 챔버(130)로부터 시료 챔버(131a) 및 찌꺼기 챔버(131b)로 이동한 혈액이 원심분리에 의해 혈청과 적혈구로 분리 되는 과정을 단계별로 나타낸다. 단계 1(step 1)은 혈액이 몸체의 초기 회전 동안, 샘플 챔버(130)로부터 시료 챔버(131a) 및 찌꺼기 챔버(131b)로 이동한 후 정량 유로(93)의 높이를 초과하는 혈액이 원심력에 의해 잉여 챔버(131c)로 이동하는 것을 나타낸다. 또한 혈액이 액체 밸브(7)에 의해 분석 사이트(132)로 이동하지 못하고 시료 챔버(131a) 내에 억류되어 있는 것을 나타낸다. 단계 2는 원심분리의 중간 상태를 나타낸 것으로 몸체의 회전에 따른 원심력에 의해 시료 챔버(131a)와 찌꺼기 챔버(131b)에 저장된 각각의 혈액에 대해 독립적으로 원심분리가 일어나, 혈청과 적혈구로 분리되는 것을 나타낸다. 몸체의 회전에 의해 발생되는 원심력에 의해 상기 시료 챔버(131a)와 찌꺼기 챔버(131b) 내의 혈액이 각각 원심분리되면서 시료 챔버(131a) 내의 적혈구는 상기 병목 채널(67)을 통해 찌꺼기 챔버(131b)로 이동한다. 또한 찌꺼기 챔버(131b) 내에서 원심분리된 혈청은 상기 병목 채널(67)을 통해 시료 챔버(131a) 내로 이동한다. 즉, 상기 병목 채널(67)은 원심분리 동안 분리된 혈청과 적혈구가 시료 챔버(131a)와 찌꺼기 챔버(131b) 사이를 자유롭게 이동할 수 있는 통로를 제공할 수 있다. 찌꺼기 챔버(131b)가 시료 챔버(131a)보다 원주의 더 바깥쪽에 배치되어 있어 원심분리가 진행됨에 따라 찌꺼기 챔버(131b)에는 적혈구가 모아지고, 시료 챔버(131a)에는 혈청이 모아진다. 단계 3은 단계 2에 의해 원심분리가 완료된 상태로 시료 챔버(131a)에는 혈청이 모아지고, 찌꺼기 챔버(131b)에는 적혈구가 모아진 것을 나타낸다. 단계 4는 원심분리 완료 후, 몸체의 회전을 정지시켰을 경우 액체 밸브(7)를 통해 시료 챔버(131a)의 혈청이 분석 사이트(132)로 친수성 이동하는 것을 나타낸다. 단계 5는 시료 챔버(131a) 내의 정량의 혈청만이 분석 사이트(132)로 이동한 것을 나타낸다. 즉, 정량의 혈청만이 분석 사이트(132) 내로 이동하며, 병목 채널(67) 및 찌꺼기 챔버(131b) 내의 유체는 분석 사이트(132)로 이동치 않고 그대로 남아있게 된다. 상기 분석 사이트(132)로 이동하는 혈청의 양은 시료 챔버(131a) 내의 저장된 혈청의 양에 의해 결정된다.
이러한 현상은 하기 5가지의 원인에 의할 수 있다.
상기 병목 채널(67)을 박막 유로(채널)로 구성함으로서, 몸체의 정지 동안에는 유체에 강한 모세관 현상이 작용하여, 찌꺼기 챔버(131b) 내의 유체가 병목 채널(67)을 통해 시료 챔버(131a)로 이동하지 않는다. 따라서, 찌꺼기 챔버(131b) 내의 적혈구가 시료 챔버(131a) 내로 이동하는 것을 방지할 수 있다. 찌꺼기 챔버(131b)는 모세관 챔버로 구성되어 있기 때문에 찌꺼기 챔버(131b) 내에 저장된 적혈구는 이탈되기 어렵다. 찌꺼기 챔버(131b)의 표면과 적혈구 간의 결합력에 의해 적혈구는 찌꺼기 챔버(131b)에서 자유로이 이탈되기 어렵다. 몸체(100)의 정지 동안에는 병목 채널(67)이 혈청의 점성에 의해 막혀 있기 때문에 찌꺼기 챔버(131b) 내에 저장된 적혈구는 이동하기 어렵다. 찌꺼기 챔버(131b)는 그 전용 배기구가 없기 때문에, 찌꺼기 챔버(131b) 내에 저장된 적혈구는 이동하기 어렵다.
도 12는 상기의 병목 채널(67)의 일 실시예를 나타낸다. 상세 그림은 기준선 식별 번호 67a와 67b를 잇는 기준선에 의한 병목 채널(67)의 단면을 나타낸다.
병목 채널(67)은 상부 기질(1)과 중간 기질(2)을 접합시키기 위한 제1 박막 접착 테이프(1a) 및 중간 기질(2)과 하부 기질(3)을 접합시키기 위한 제2 박막 접착 테이프(2a)에 의해 형성된 2개의 박막 유로에 의해 구성된다. 이러한 2개의 박막 유로에 의해 형성된 병목 채널(67)은 원심분리 동안 시료 챔버(131a)내의 적혈구가 찌꺼기 챔버(131b)로 이동하거나 찌꺼기 챔버(131b) 내의 혈청이 시료 챔버(131a) 내로 자유로운 이동을 하기 위한 통로를 제공한다. 즉, 상기 병목 채널(67)은 몸체의 정지 시 유체 이동을 방지하기 위한 병목 채널 역할을 하고, 원심분리 중에는 혈청 및 적혈구의 이동 통로를 제공할 수 있다.
도 13 내지 도 15는 상기 다공성 멤브레인(membrane) 상에 다종의 종양 표지자(tumor marker)를 라인(line) 또는 스팟(spot) 형태로 고정시킨 스트립(strip)의 다양한 실시예를 나타낸다. 이하, 다종의 종양 표지자(tumor marker) 라인 또는 스팟을 테스트 라인(test line)이라 칭한다.
식별 번호 41a는 콘쥬게이트 패드(conjugate pad) 또는 샘플 패드(sample pad), 또는 샘플 패드와 콘쥬게이트 패드(conjugate pad)이고, 식별 번호 41b는 흡수 패드(absorbent pad)이다. 식별 번호 41c는 다공성 멤브레인이다. 상기 콘쥬게이트 패드에는 금 콘쥬게이트(gold conjugate) 또는 효소가 연결된 항체(enzyme linked antibody) 또는 형광물질 같은 표지자(label)가 패드 상에 냉동 건조된 형태(frozen dried form)로 침착될 수 있다. 상기 포획 프로브(예를 들어, 포획 항체)는 종양 표지자(tumor marker)을 고정시킬 수 있다. 상기 종양 표지자(tumor marker)는 AFP, PSA, CEA, CA19-9, CA125 및 A15-3로 구성된 군으로부터 선택되는 하나 이상일 수 있다. 상기 포획 항체는 알츠하이머(Alzheimer) 질환의 특이 마커인 GS(Glutamine Synthetase)을 고정시킬 수 있다. 상기 포획 항체는 심근 경색 표지 인자인 미오글로빈(Myoglobin), CK-MB, 트로포닌 I(Troponin I)(Tnl)을 고정시킬 수 있다.
본 발명의 일 구체예에 있어서, 상기 테스트 라인은 AIDS, 심근경색, 잔류항생제, 잔류 농약, 알레르기 및 유방암 검사 등을 위한 하나 이상의 표지자 내지 포획 프로브를 상기 다공성 멤브레인(41c) 상에 고정시킨 후, 면역크로마토그라피법에 의한 반응 검사시 적용될 수 있다. 상기 면역크로마토그라피법은 면역화학적방법(Immunochemistry)과 크로마토그라피법(Chromatogrphic Assay)를 결합한 검사 방법으로서, 항원에 대한 항체의 특이적인 면역적 반응성과 금 입자(Colloidal gold)의 발색 특성 및 유동성, 다공성 멤브레인(Porous membrane)의 모세관 현상에 의한 분자의 이동을 응용한 검사 방법이다. 면역크로마토그라피법은 기존 다중 단계의(multi-step) 면역측정법에서 볼 수 있는 샘플 희석, 세정 및 효소 결합체와 기질의 반응을 통한 발색 과정을 하나로 통합하여 한 단계(One-Step)로 신속하게 검사할 수 있는 편리성이 있다. 또한, 검사 결과를 특정 장비를 사용하지 않고 판정할 수 있는 용이성 및 경제성, 검사 결과 판독의 신속성이 있다. 상기 포획 항체는 종양 표지자(tumor marker) 외에 기준 라인(reference line)과 컨트롤 라인(control line)을 위한 항체를 더 고정시키는 것일 수 있다. 상기 기준 라인은 복수 개일 수 있다. 상기 기준 라인의 반응 농도는 음성 또는 양성 반응의 판별을 용이하게 하기 위한 기준치(cutoff value)일 수 있다. 상기 기준 라인의 기준치는 예를 들어, 3 ng/ml, 4 ng/ml, 10 ng/ml, 20 ng/ml, 30 ng/ml, 40 ng/ml 또는 50 ng/ml 중에서 선택될 수 있다.
본 발명의 일 구체예에 있어서, 상기 테스트 라인은 상기 기준 라인과 테스트 라인 간의 반응 강도(reaction intensity)의 차(difference)에 의해 정성 또는 정량 분석하는 것을 포함한다.
본 발명의 일 구체예에 있어서, 상기 테스트 라인은 백그라운드와 테스트 라인 간의 반응 강도(reaction intensity)의 차(difference)에 의해 정성 또는 정량 분석하는 것을 포함한다.
본 발명의 일 구체예에 있어서, 상기 테스트 라인은 복수 개의 기준 라인에 의해 형성된 반응 강도에 대한 선형 함수(linear function)에 의해 테스트 라인의 반응 강도(reaction intensity)를 결정하여 정성 또는 정량 분석하는 것을 포함한다.
본 발명의 일 구체예에 있어서, 상기 테스트 라인은 상기 기준 라인과 상기 컨트롤 라인에 의해 형성된 반응 강도에 대한 선형 함수(linear function)에 의해 테스트 라인의 반응 강도(reaction intensity)를 결정하여 정성 또는 정량 분석하는 것을 포함한다.
본 발명의 일 구체예에 있어서, 상기 기준 라인은 자유(free) PSA를 포획하기 위한 항체가 고정화되고, 상기 테스트 라인에는 전체(total) PSA를 포획하기 위한 항체가 고정화되어, %fPSA(Percent free PSA)를 계측하는 것일 수 있다. 상기 %fPSA는 전체(total) PSA에 대한 자유(free) PSA의 비(ratio)를 구함으로서 이루어질 수 있다. 상기 전체(total) PSA 및 자유(free) PSA에 관한 사항은 알려져 있다. 또한, 자유(free) PSA가 테스트 라인에 고정되고 전체(toal) PSA가 기준 라인에 고정될 수도 있다. 본 발명의 일 구체예에 있어서, 상기 기준 라인은 자유(free) PSA를 포획하기 위한 항체가 고정화되고, 상기 테스트 라인에는 프로(pro) PSA를 포획하기 위한 항체가 고정화되어, %proPSA(Percent pro PSA)를 계측하는 것일 수 있다. 상기 %proPSA는 자유(free) PSA에 대한 프로(pro) PSA의 비(ratio)를 구함으로서 이루어질 수 있다. 상기 프로(pro) PSA에 관한 사항은 알려져 있다. 또한, 프로(Pro) PSA가 기준 라인에 고정되고 자유(free) PSA가 테스트 라인에 고정될 수 있다. 또한, 상기 자유(free) PSA, 프로(pro) PSA 및 전체(total) PSA는 하나의 다공성 멤브레인 상에 고정화되어 한번에 %fPSA와 %proPSA를 계측할 수 있다.
본 발명의 일 구체예에 있어서, 상기 반응 강도는 다양한 파장(wavelength)의 LED 조명 하에서 반응 강도가 칼라 강도(color intensity)에 의해 표현된 이미지 정보에 의해 얻는 것일 수 있으며, 이들 다양한 파장과 칼라 강도 간의 2차원적 함수 관계에 의해 분석 사이트(132)의 반응 결과를 정량 또는 정성 분석을 분석하는 것을 포함한다. 상기 기준 라인(reference line)은 흡수 패드(41b)까지 시료가 확산하는 경우 양성 반응을 나타내며, 스트립을 사용한 테스트의 유효성 판별을 위해 사용될 수 있다. 기준 라인(reference line)이 양성일 경우 테스트 결과는 유효한 것으로 판단할 수 있다. 상기 다공성 멤브레인(41c)는 관통 유동(flow through) 또는 측방 유동(lateral flow) 방식으로 사용될 수 있으며, 이는 알려져 있다. 상기 샘플 패드(41a)에는 시료 또는 세정 용액이 투입될 수 있다. 상기 관통 유동(flow through) 방식의 다공성 멤브레인의 경우 상기 다공성 멤브레인(41c) 상에 다종의 종양 표지자(tumor marker) 또는 질병 마커 또는 항체를 스팟 형태로 고정시킨 스트립이 적용가능하다. 샘플 패드(41a)에 시료가 투입된 경우, 샘플 패드(41a)에 의해 흡수된 시료는 다공성 멤브레인(41c) 상에서 모세관 현상에 의해 확산 이동하고 포획 항체와 생화학적으로 특이적인 결합(specific binding)을 할 수 있다. 상기 다공성 멤브레인(41c)의 말단부에는 상기 확산 이동을 지원하기 위한 흡수 패드(41b)가 설치될 수 있다. 또한, 선택적으로, 샘플 패드에는 콘쥬게이트 패드가 연결될 수 있으며, 이 경우 샘플 패드로 유입된 액체 시료가 콘쥬게이트 패드 상의 골드 콘쥬게이트 또는 효소가 연결된 항체(enzyme linked antibody) 또는 형광물질과 결합하여 복합체를 이룬 후 다공성 멤브레인(41c) 상을 확산 이동할 수 있다. 샘플 패드(41a)에 세정액이 투입된 경우, 샘플 패드(41a)에 의해 흡수된 세정액은 다공성 멤브레인(41c) 상을 모세관 현상에 의해 확산 이동하면서 캡쳐 항체와 결합하지 않거나 비특이적으로 결합(non-specific binding)한 물질을 세정하여 다공성 멤브레인(41c)의 배경 노이즈(background noise)을 제거할 수 있다.
본 발명의 일 구체예에 있어서, 상기 분석 사이트(132)는 상기 스트립(41)을 액체 밸브(7)의 말단과 샘플 패드(41a) 부분에 연결하여 설치될 수 있다.
본 발명의 일 구체예에 있어서, 상기 이미지 센서장치(144)에 의한 분석 사이트(132) 판독은 조명에 의한 빛의 산란과 기질상의 흠집에 의한 노이즈(noise)를 억제하기 위해 상부 기질(1)을 불투명처리 또는 불투명 도료에 의해 코팅하는 것을 포함한다. 이 경우 예를 들어, 상부 기질의 투명도는 20~50%일 수 있다.
도 16은 분석 사이트(132)가 상이한 섹터에 병렬로 복수 개로 배열되어 단일 샘플에 대한 다종의 시료 분석, 예를 들어, 생화학 반응 분석을 위한 랩온어칩의 제반 공정이 배치된 박막 원심분리 분석 장치의 일실시예를 나타낸다.
상기 생화학 반응 분석이란, 예를 들어, 혈액 내의 GOT, GPT, ALP, LDH, GGT, CPK, 아밀라아제(Amylase), T-단백질(T-Protein), 알부민(Albumin), 글루코오즈(Glucose), T-콜레스테롤(T-Cholesterol), 트리글세라이드(Triglycerides), T-빌리루빈(T-Bilirubin), D-빌리루빈(D-Bilirubin), BUN, 크레아티닌(Creatinine), I.포스포루스(I.Phosphorus), 칼슘(Calcium), 요산(Uric Acid) 등의 분석을 포함한다.
식별 번호 132a, 132b, 132c 및 132d는 상기 생화학 반응을 위한 챔버로서, 상기 생화학 반응과 생화학 반응 결과를 분석 및 진단하기 위한 시약이 저장되어 있고, 상기 시료 챔버(131a)에서 공급되는 혈청과의 생화학 반응을 수행하는 분석 사이트(Assay site)의 일 실시예를 나타낸다. 식별 번호 7은 혈액의 원심분리 동안 액체의 누수(leakage)을 방지하기 위한 액체 밸브를 나타낸다.
식별 번호 290a는 기준 구멍, 식별 번호 131c는 잉여 챔버를 나타낸다. 식별 번호 154a, 154b, 154c 및 154d는 박막 밸브를 나타낸다. 식별 번호 13a, 13b, 13c, 13d 및 14는 배기구를 나타낸다.
몸체(100)의 회전 동안, 샘플 챔버(130)에 저장된 혈액은 원심분리 과정을 통해 시료 챔버(131a)에는 혈청이 저장되고, 찌꺼기 챔버(131b)에는 적혈구가 저장된다. 정량 챔버(140a,140b, 140c, 140d)는 대응하는 분석 사이트(132a, 132b, 132c, 132d)에 정량의 시료를 공급하기 위한 챔버로서, 정량 챔버(140a, 140b, 140c, 140d)의 체적(volume)이 상기 대응하는 분석 사이트로 공급되는 시료의 양을 결정한다. 액체 밸브(7)와 동심원 유로(9)는 초친수성 코팅되어 있고, 오버플로우 챔버(overflow chamber)(132e)는 소수성 코팅되어 있다. 따라서, 몸체(100)의 회전 정지시 시료 챔버(131a) 내의 혈청이 액체 밸브(7)를 통해 동심원 유로(9)을 따라 친수성 유체 이동한다. 정량 챔버(140a, 140b, 140c, 140d)는 초친수성 코팅되어 있는 챔버로서, 상기 동심원 유로(9)로의 시료 이동 동안 혈청이 채워진다. 이 경우 오버플로우 챔버(132e)는 소수성이므로 동심원 유로(9)와 정량 챔버(140a, 140b, 140c, 140d)에만 시료가 채워진다. 상기 동심원 유로(9)는 동심원을 갖도록 설계되어 있어 회전시 같은 원심력을 받는다. 따라서, 동심원 유로(9)에 시료가 채워지고 난 후, 다시 몸체(100)를 회전시키면, 상기 정량 챔버(140a, 140b, 140c, 140d) 내에만 시료가 저장된 채 남아 있고, 동심원 유로(9)를 채우고 있던 시료들은 원심력에 의해 오버플로우 챔버(132e)로 빠져 나간다. 이후, 상기 박막 밸브(154a, 154b, 154c, 154d)를 개방시켜 각각의 분석 사이트(132a, 132b, 132c, 132d) 내로 상기 정량 챔버((140a, 140b, 140c, 140d) 내의 시료를 유입시켜 시약과 생화학 반응을 일으킬 수 있다. 본 발명의 일 실시예에 있어서, 상기 박막 밸브(154a, 154b, 154c, 154d)는 동심원 상에 배치되어 동시에 개방될 수 있다. 이후 상기 분광 광도계에 의해 상기 분석 사이트(132a, 132b, 132c, 132d) 내의 시료의 광 흡수율을 측정함으로써, 시료의 생화학 반응 결과를 정성 분석 또는 정량 분석할 수 있다.
본 발명의 일 실시예에 있어서, 상기 동심원 유로(9)는 동심원을 갖도록 설계되어 있어 회전시 같은 원심력을 받아 상기 박막 원심분리 분석 장치(100)를 회전시키면, 상기 정량 챔버(140a, 140b, 140c, 140d)에만 시료가 저장된 채 남아 있고, 동심원 유로(9)를 채우고 있던 시료는 원심력에 의해 오버플로우 챔버(132e)에 형성된 소수성 장벽을 극복하여 오버플로우 챔버(132e)로 빠져나갈 수 있다.
본 발명의 일 실시예에 있어, 상기 박막밸브(154a, 154b, 154c, 154d)는 예를 들어, 버스트(Burst) 밸브를 포함하는 상기 몸체의 상측 또는 하측에 설치된 이동 가능한 영구 자석 또는 전자석에 의해 유공 내에 설치된 초소형 구슬(또는 박막 원기둥(원형) 자석)을 이용한 밸브 개폐; 기계적 힘에 의한 밸브 개폐; 원심력에 의한 밸브 개폐; 화학 작용에 의한 용해 및 응고에 의한 밸브 개폐; 열 또는 화학물질에 의해 과거의 형상으로 복원되는 형상 기억 합금에 의한 개폐 동작; 전기 분해에 의해 생성된 공기 방울을 이용한 밸브 개폐; 열에 의해 생성된 공기 방울을 이용한 밸브 개폐; 초소형 구슬의 열팽창과 수축에 의한 밸브 개폐; 정전기력(electrostatic force)에 의한 밸브 개폐; 자력에 의한 밸브 개폐; 레이저 열에 의한 밸브 개폐; temperature gradient 이용한 밸브 개폐; 초음파에 의한 엑츄에이터(actuator)의 밸브 개폐; 펌프(pump) 또는 물리적 압력에 의한 밸브 개폐; 초고주파에 의해 팽창수축하는 소형 입자에 의한 밸브 개폐; 모세관 버스트 밸브(capillary burst valve); 소수성 버스트 밸브; 자성 유체(magntic fluid)에 의한 밸브 개폐; 및 공기의 열 팽창 및 수축에 의한 밸브 개폐 등의 박막 밸브의 개폐 수단에 의해 유공이 개폐될 수 있는 박막화가 가능한 모든 밸브를 포함한다.
상기 소수성 버스트 밸브(hydrophobic burst valve)는 친수성 채널과 소수성 챔버의 경계 면에 형성된 유체 이동 장벽을 이용하는 것으로, 기준치 이하의 원심력 하에서는 유체가 이동하지 못하다가, 기준치 이상의 원심력이 발생하면 유체가 상기 유체 이동 장벽을 극복하여 소수성 챔버로 이동하는 것을 포함한다. 상기 유체이동 장벽은 친수성 유체가 이동하기 어려운 소수성 챔버라는 이유뿐만 아니라, 친수성 유로(채널) 자체가 유체에 대해 모세관 작용을 하여 친수성 채널에 유체를 억류시키기 때문에 형성될 수 있다.
상기 분석 사이트(132a, 132b, 132c, 132d)는 소수성 챔버이고, 상기 박막 밸브(154a, 154b, 154c, 154d)는 소수성 버스트 밸브를 사용하는 것일 수 있다. 이 경우 상기 정량 챔버(140a, 140b, 140c, 140d)는 초친수성 코팅되어 있는 챔버로서, 분석 사이트와의 경계면에 유체 이동 장벽을 형성할 수 있다. 상기 버스트 밸브를 포함한 박막밸브는 알려져 있다.
본 발명의 다른 일 실시예는, 도 2에 따른 액체 밸브(7)의 내향 채널(7a)과 시료 챔버(131a)의 출구 사이에 박막 밸브를 더 포함할 수 있다. 이 경우, 몸체(100)의 회전 정지시에도 박막 밸브가 폐쇄된 경우에는 시료 챔버(131a) 내의 유체가 분석 사이트(132)로 이동하지 않으며, 박막 밸브 개방 후에 유체가 친수성 유체 이동에 의해 액체 밸브(7)를 경유하여 분석 사이트(132)로 이동할 수 있다.
본 발명의 일 실시예에 있어서, 상기 분광 광도계(108)의 계측을 위한 방위각 분석 사이트 탐색은 스텝 모터(step motor) 또는 스텝 모터에 연결된 기어 연결에 의한 박막 원심분리 분석 장치의 회전각(rotation angle) 제어에 의해 이루어질 수 있다.
본 발명의 일 실시예에 있어서, 상기 분광 광도계(108)의 계측을 위한 방위각 분석 사이트 탐색은 분석 사이트 탐색용 박막 원기둥 자석을 몸체의 원주 상에 배치하여 상기 방위각 방향 밸브 탐색 과정을 응용한 방위각 분석 사이트 탐색을 시행함으로써 이루어 지거나 또는 몸체(100)의 회전 동안 바탕 용액 챔버에 의해 분석 사이트를 공간 어드레싱(space addressing)하여 각 분석 사이트 내의 시료의 광 흡수율을 몸체 회전 동안 순차적으로 계측함으로써 이루어질 수 있다. 이 경우 상기 몸체는 바탕 용액을 저장하기 위한 분석 사이트와 같은 반경을 갖는 바탕용액 챔버를 더 포함하고, 바탕 용액의 투광도가 100%(흡광도 0)가 되도록 분광 광도계를 조절(Calibration)한 후 각 분석 사이트 내의 시료에 대한 흡광도를 측정한다. 바탕 용액의 흡광도는 항상 0이므로 몸체의 회전 동안 바탕 용액 챔버를 식별할 수 있고, 이에 따라 바탕 용액 챔버를 기준으로 분석 사이트의 공간 어드레싱이 가능하다.
본 발명의 일 실시예는 ELISA(Enzyme-Linked Immunosorbent Assays) 또는 CLISA(Chemical Luminescence Immunosorbent Assays) 검사를 위한 랩온어칩의 제반 공정을 위한 박막 원심분리 분석장치에도 적용될 수 있다. 이에 대한 다양한 실시예는 알려져 있다.
본 발명의 일 실시예는 잔류 농약 검사 및 잔류 항생제를 위한 랩온어칩의 제반 공정을 위한 박막 원심분리 분석장치에 적용될 수 있다. 이 경우, 판독 결과에 따른 검사 결과가 컴퓨터 모니터 상에 표시되고, 자동 또는 수동으로 해당 관청 또는 식품 업체의 서버에 인터넷 망을 통해 원격 접속되어, 이들 서버에 이력이 보고 되거나 또는 무선 RF IC(전자 테그)의 메모리에 검사 결과와 각종 검사 이력들이 저장된다. 해당 관청은 잔류 농약 현황을 파악할 수 있고, 식품업체는 신선한 농축산물의 구입처에 대한 정보를 얻을 수 있다. 또한 해당 관청은 이와 같은 정보를 웹에 올려 일반 소비자가 해당 농축산업체에서 직거래를 통해 신선한 농축산물을 구매할 수 있는 정보를 제공할 수 있다. 잔류 농약 검사를 위한 효소 내지 마커는 야채, 채소 또는 과일 중에 포함된 농약, 예를 들어, 이들 중 사용량이 가장 많은 유기인계, 카바메이트계 살충제를 검사하기 위한 것을 포함하며, 상기 효소는 아세틸콜린에스터라아제(AChE)를 포함한다. 이에 대한 다양한 실시예는 알려져 있다.
도 17은 박막 원심분리 분석장치(100)의 다른 일 실시예로서, 도 2의 분석 사이트(132)의 다른 형태의 적용예을 나타낸다.
이 경우, 생화학 반응 분석 내지 상기 스트립(41)에 의한 면역학 분석을 제공하는 복수 개의 분석 사이트(132a, 132b, 132c); 시료 챔버(131a)의 시료를 일시적으로 보관하기 위한 버퍼 챔버(131d); 몸체의 회전 동안 시료 챔버(131a) 내에 혈청을 억류시키고, 몸체의 정지시 시료 챔버(131a) 내의 혈청을 버퍼챔버(131d)로 이동시키기 위한 친수성 유체 이동 경로를 제공하는 액체 밸브(7); 상기 이동된 버퍼 챔버(131d)의 혈청을 상기 복수 개의 분석 사이트에 독립적으로 공급하기 위한 박막 밸브(155a, 155b, 155c); 상기 박막 밸브(155a, 155b, 155c)의 개방시, 상기 버퍼 챔버(131d)의 혈청을 친수성 유체 이동에 의해 해당 분석 사이트로 이동하기 위한 친수성 유로(8)를 더 포함함으로서, 단일 샘플 다종 분석이 가능하다. 이 경우, 상기 시료 챔버(131a)로부터 버퍼 챔버(131d)로의 혈청 이동은 액체 밸브(7)에 의한 친수성 유체 이동 과정과 원심력에 의한 유체 이동 과정을 교대로 반복함에 의해 이루어질 수 있다.
도 17은 액체 밸브(7)에 의한 친수성 유체 이동 과정과 원심력에 의한 유체이동 과정을 교대로 반복함으로서 시료 챔버(131a) 내의 혈청이 버퍼 챔버(131d)로 이동하는 과정을 단계별로 나타낸다.
단계 1(step1)은 몸체의 회전 중 원심분리가 완료된 상태로 시료 챔버(131a)에 혈청이 모아지고, 찌꺼기 챔버(131b)에 적혈구가 모아진 것을 나타낸다.
단계 2는 원심분리 완료 후, 몸체의 회전을 정지시켰을 때 액체 밸브(7)를 통해 시료 챔버(131a)의 혈청이 내향 채널(7a)과 외향 채널(7b)을 채운 후 버퍼챔버(131d) 로 친수성 이동하는 것을 나타낸다.
단계 3은 몸체의 회전에 의한 원심력에 의해 외향 채널(7b) 내의 혈청이 버퍼 챔버(131d) 내로 이동하는 것을 나타낸다.
단계 4는 몸체의 회전을 다시 정지시켰을 때 액체 밸브(7)를 통해 시료 챔버(131a)의 혈청이 내향 채널(7a)과 외향 채널(7b)을 다시 채운 후 버퍼 챔버(131d) 로 친수성 이동하는 것을 나타낸다.
단계 5는 상기 단계 3과 단계 4의 반복에 의해 시료 챔버(131a) 내의 모든 혈청이 버퍼 챔버(131d) 내로 점차로(gradually) 이동하는 것을 나타낸다.
단계 6은 박막 밸브(155a)를 개방하여, 버퍼 챔버(131d) 내의 혈청이 친수성 유로(8)를 통해 해당 분석 사이트(132a) 내로 이동하는 것을 나타낸다. 도 17의 버퍼 챔버(131d)는 초친수성 코팅될 수 있다. 이 경우 상기 흡수 펌프 동작에 의해 시료 챔버의 혈청이 버퍼 챔버 내로 쉽게 이동할 수 있다.
도 18은 도 17의 다른 형태의 일실시예로서, 원심력에 의해 분석 사이트 내로 혈청이 이동하는 예를 나타낸다. 이 경우 상기 박막밸브(155a, 155b, 155c)는 소수성 버스트 밸브(hydrophobic burst valve) 또는 모세관 버스트 밸브일 수 있다.
상기 박막밸브(155a, 155b, 155c)는 친수성 코팅된 친수성 유로(8)와 소수성 챔버인 분석 사이트(132a, 132b, 132c)의 경계면에 형성된 유체 이동 장벽에 의해 형성된 소수성 버스트 밸브 또는 모세관 버스트 밸브이다. 이러한 유체 이동 장벽은 기준치 이하의 원심력 하에서는 혈청이 이동하지 못하다가, 기준치 이상의 원심력이 발생하면 혈청이 상기 유체 이동 장벽을 극복하여 분석 사이트(132a, 132b, 132c)로 이동할 수 있다. 이 경우, 상기 단계 3의 원심력은 유체 이동 장벽을 극복하기 위한 원심력보다 작게 적용되는 것이 바람직하다.
도 19 내지 도 22는 상기 도 17의 일 실시예에 희석 용액 저장 챔버를 더 포함하는 경우로서, 이의 단계별 동작을 나타낸다. 식별 번호 131e는 희석 용액을 저장하기 위한 희석 용액 저장 챔버이다.
도 19와 도 20은 시료 챔버(131a) 내의 시료가 원심분리 동안, 버스트 밸브(150)의 개방에 의해 희석 용액 저장 챔버(131e)에 저장되어 있는 희석 용액이 버퍼 챔버(131f)로 이동하는 것을 나타낸다. 이 경우 버퍼 챔버(131f)로 이동하여 저장된 희석 용액은 액체 밸브(11)에 의해 억류된다. 마찬가지로, 시료 챔버(131a) 내의 시료도 원심분리 동안 액체 밸브(7)에 의해 시료 챔버(131a) 내에 억류된다. 버퍼 챔버(131f)의 정량을 초과하는 희석 용액은 정량 유로(10)를 통해 잉여 챔버(131g)로 이동함으로서 정량의 희석 용액이 버퍼 챔버(131f)에 저장될 수 있다.
도 21은 몸체의 회전을 정지시켰을 때 액체 밸브(7)를 통해 시료 챔버(131a)의 혈청이 내향 채널(7a)과 외향 채널(7b)에 채워진 후 믹싱 챔버(131h)로 친수성 이동하는 것을 나타낸다. 또한 액체 밸브(11)를 통해 버퍼 챔버(131f) 내의 희석 용액이 내향 채널(11a)과 외향 채널(11b)에 채워진 후 믹싱 챔버(131h)로 친수성 이동하는 것을 나타낸다.
도 22는 몸체의 회전에 의한 원심력에 의해 외향 채널(7b, 11b) 내의 유체를 믹싱 챔버(131h) 내로 이동시키는 과정과 몸체의 회전을 정지시켜 내향 채널(7a, 11a)과 외향 채널(7b, 11b)을 친수성 유체 이동에 의해 다시 채우는 과정을 교대로 반복 수행하여 믹싱 챔버(131h) 내로 시료와 희석 용액을 점차로(gradually) 이동시킨 결과를 나타낸다. 따라서, 이들 희석 용액과 시료는 믹싱 챔버(131h) 내에서 믹싱(mixing)되어 희석된 시료가 될 수 있다.
상기 액체 밸브에 의한 친수성 유체 이동과 원심력에 의한 유체이동을 반복 수행하여 시료와 희석 용액을 믹싱 챔버(131h)에 점차로(gradually) 이동시키는 과정은 시료와 희석 용액 간에 점진적으로 혼합(mixing)함으로서, 두 유체 간의 믹싱 효율을 극대화시킬 수 있다. 이하, 시료와 희석 용액을 믹싱 챔버(131h)에 점차로(gradually) 이동시키는 과정 중에 일어나는 시료와 희석 용액 간의 믹싱을 그레쥬얼 믹싱(gradual mixing)이라 칭한다.
상기 유압 버스트 밸브는 박막 접착테이프에 의한 유공 폐쇄시 박막 접착테이프의 접착 면적에 의해 폐쇄 강도(closing strength)를 결정하고, 상기 폐쇄 강도(closing strength)를 극복하는 디스크 회전 속도(원심력) 이상에서 상기 박막 접착테이프가 떨어져 유공을 개방시킬 수 있는 밸브를 포함한다.
상기 버스트 밸브는 예를 들어, 유압버스트 밸브(hydraulic burst valve)일 수 있다. 상기 버스트 밸브는 알려져 있다.
도 23은 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치를 프런트 로딩(front loading) 또는 탑 로딩(top loading)할 수 있는 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 드라이브(100a)를 나타낸다. 상기 박막 원심분리 분석 장치 드라이브(100a)에 박막 원심분리 분석 장치(100)가 로딩될 수 있다. 식별 번호 751은 상기 박막 원심분리 분석 장치 드라이브의 용기(case)이고, 식별 번호 750a는 상기 박막 원심분리 분석 장치(100)를 프런트(front) 로딩하기 위한 트레이(tray)이다. 또한, 식별 번호 750b는 탑 로딩하기 위한 뚜껑(cover)로서, 상기 뚜껑을 열고 턴테이블에 박막 원심분리 분석 장치의 공극(170)을 맞추어 끼울 수 있다. 로딩 방식에 따라 식별 번호 750a 또는 식별 번호 750b 중 하나가 선택될 수 있다. 또한, 본 발명의 일 실시예에 따른 박막 원심분리 분석 장치 드라이브는 선택적으로 통상의 광 디스크 재생을 위한 재생 및 탐색 버튼(745), 정지 버튼(746)을 포함할 수 있다. 식별 번호 744는 박막 원심분리 분석 장치드라이브의 전원 온오프 버튼이다.
도면 부호 760은 박막 원심분리 분석 장치 드라이브의 진행 상태 및 모드(mode)를 표시해 주는 표시 장치로서, 발광다이오드 또는 LCD 장치가 사용될 수 있다. 상기 표시 장치(760)는 현재 로딩된 디스크가 박막 원심분리 분석 장치인지 또는 광 디스크인지를 표시하거나 분석 결과를 표시해 주거나 또는 박막 원심분리 분석 장치 드라이브의 주요 공정에 따른 진행 상태를 표시해 준다. 다른 방식에 의하면, 상기 표시 장치(760)는 그래픽 사용자 인터페이스(Graphic User Interface) 및 상기 진행 단계에 따른 진행률을 퍼센트(%) 또는 막대 그래프(bar graph), 파이 그래프(pie graph) 형식으로 표시될 수 있다.
식별 번호 111은 상기 입출력 장치로서, 이를 통해 자동 또는 수동으로 해당 전문 의사와 인터넷 망을 통해 원격 접속되고, 상기 진단 결과 및 문진표가 필요시 전문 의사에게 원격 전송될 수 있다. 이후 환자는 전문 의사의 처방을 기다린다.
도 8에 따른 박막 원심분리 분석 장치 드라이브에는 스피커, 동영상 카메라 및/또는 마이크가 더 포함될 수 있다. 일반적으로 진행 암이 아니면 종양 표지자(tumor marker)의 혈중 농도가 증가하지 않고, 보통 조기 암의 경우에 혈중 종양 표지자는 정상 범위 내의 값이며, 암이 진행됨에 따라 혈중 농도가 증가해 양성율도 높아진다. 본 발명의 일 실시예에서는 이러한 점을 착안하여 분석 사이트의 정량 분석에 의한 판독 결과를 이력 관리하는 통계 소프트웨어를 포함하여 정기적인 추적 진단에 대한 정보를 사용자에게 제공하는 것을 포함한다.
또한, 본 발명의 일 실시예에 있어서, 상기 박막 원심분리 분석 장치 드라이브는 상기 반응 결과를 판독 분석하여 음성 또는 양성, 위험군 여부 또는 수치 등을 계산하기 위한 소프트웨어를 더 포함 한다.
또한, 본 발명의 일 실시예에 있어서, 상기 박막 원심분리 분석 장치 드라이브는 박막 원심분리 분석 장치의 사이드 로딩(side loading) 또는 수직 로딩(vertical loading)을 허용할 수 있다.
상기 본 발명의 일 구체예 또는 일 실시예는 도면을 참조하여 설명되고 있으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 구체예 또는 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 일 구체예 또는 일 실시예의 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해진다.

Claims (33)

  1. 샘플을 주입하기 위한 샘플 주입구;
    상기 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버;
    원심분리 동안 상기 샘플로부터 얻어진 시료를 저장하기 위한 시료 챔버;
    상기 원심분리 동안 발생한 시료가 아닌 찌꺼기(remnant)를 저장하기 위한 찌꺼기 챔버(remnant chamber);
    상기 시료 챔버와 상기 찌꺼기 챔버를 연결하는 병목 채널;
    상기 시료와 결합하기 위한 포획 프로브가 고정화되어 있거나 및/또는 상기 시료와의 생화학 반응을 위한 시약이 저장되어 있는 하나 이상의 분석 사이트;
    세정 공정에 의해 상기 포획 프로브와 결합하지 않은 물질(debris)을 모으기 위한 트레쉬 챔버;
    상기 샘플 주입구, 상기 샘플 챔버, 상기 시료 챔버, 상기 찌꺼기 챔버, 상기 트레쉬 챔버, 상기 병목 채널 및 상기 분석 사이트가 집적화된 회전 가능한 소수성 몸체;
    상기 몸체의 회전 정지시 상기 시료 챔버 내의 시료를 분석 사이트로 이동시키기 위한, 친수성 유체 이동, 챔버 펌프, 적혈구 펌프 및 흡수 펌프로 구성된 군으로부터 선택된 하나 이상의 유체 이동 수단; 및
    상기 원심분리 동안 상기 시료 챔버 내에 억류되어 있던 시료가 상기 몸체의 회전 정지시 상기 유체 이동 수단에 의해 상기 분석 사이트로 이동하기 위한 상기 시료 챔버와 상기 분석 사이트를 연결하는 유로를 제공하는 초친수성(superhydrophilic) 코팅된 액체 밸브를 포함하는 박막 원심분리 분석 장치.
  2. 제1항에 있어서, 상기 액체 밸브는 내향 채널과 외향 채널로 구성된 U자형 또는 V자형 형상을 갖는 것인 박막 원심분리 분석 장치.
  3. 제1항에 있어서, 상기 액체 밸브의 말단과 상기 분석 사이트 입구 사이에 흡수 패스(absorbent pad) 또는 샘플 패드(sample pad) 또는 초친수성 챔버를 구비하여 상기 액체 밸브의 말단에 도착한 시료를 빨아들이는 흡입력(absorption force)에 의해 상기 시료 챔버 내의 시료를 상기 분석 사이트 또는 상기 초친수성 챔버로 이동시키는 것인 박막 원심분리 분석 장치.
  4. 제1항에 있어서, 상기 액체 밸브와 상기 시료 챔버의 출구 사이에 박막 밸브를 더 포함하는 것인 박막 원심분리 분석 장치.
  5. 제1항에 있어서, 상기 몸체는 상기 시료 챔버의 잉여분(excess)의 시료 내지 샘플을 저장하기 위한 정량 유로 및 잉여 챔버를 더 포함하는 것인 박막 원심분리 분석 장치.
  6. 제1항에 있어서, 상기 찌꺼기 챔버(remnant chamber)는 모세관 챔버인 것인 박막 원심분리 분석 장치.
  7. 제1항에 있어서, 상기 몸체는 세정 챔버, 믹싱(mixing) 챔버, 버퍼 챔버 및 기질 챔버로 구성된 군으로부터 선택된 하나 이상의 챔버를 더 포함하는 것인 박막 원심분리 분석 장치.
  8. 제1항에 있어서, 상기 병목 채널은 두 개 이상의 박막 유로(또는 박막 채널)를 포함하는 것인 박막 원심분리 분석 장치.
  9. 제8항에 있어서, 상기 박막 유로는 유로 형상이 포함된 박막 접착 테이프에 의해 몸체를 구성하는 기질들의 층 사이에 형성되는 것인 박막 원심분리 분석 장치.
  10. 제1항에 있어서, 상기 몸체는 상부 기질, 중간 기질 및 하부 기질이 적층 및 접합되어 있고, 상기 상부 기질 및 상기 중간 기질 사이에 적층되어 상기 상부 기질과 상기 중간 기질을 결합시키는 제1 박막 접착 테이프; 및 상기 중간 기질 및 하부 기질 사이에 적층되어 상기 중간 기질과 상기 하부 기질을 결합시키는 제2 박막 접착 테이프를 더 포함하는 것인 박막 원심분리 분석 장치.
  11. 제10항에 있어서, 상기 기질은 소수성 물질, 실리콘 웨이퍼, 폴리프로필렌, 폴리아크릴레이트, 폴리비닐알콜, 폴리에틸렌, 폴리메틸메타크릴레이트(PMMA: polymethyl methacrylate), 고리형 올레핀 고분자(COC: cyclic olefin copolymer) 및 폴리카보네이트로 구성된 군으로부터 선택되는 하나 이상으로 형성되는 것인 박막 원심분리 분석 장치.
  12. 제1항에 있어서, 상기 분석 사이트는 상기 포획 프로브가 고정된 다공성 멤브레인 또는 스트립(strip)을 포함하는 것인 박막 원심분리 분석 장치.
  13. 제1항에 있어서, 상기 몸체는 온도 측정 기능, 분석 사이트 판독 기능, 분석 사이트 의 판독 결과를 저장 및 송출하는 기능, 개인 암호화 기능, 상기 박막 원심분리 분석 장치의 ID(identification) 저장 및 송출 기능, 검사 일자 저장 기능 및 유효 기간 저장 기능으로 구성된 군으로부터 선택된 하나 이상의 기능을 갖는 무선 RF IC를 포함하는 것인 박막 원심분리 분석 장치.
  14. 제13항에 있어서, 상기 무선 RF IC에 전원을 공급하기 위한 무선 전파 발생 수단을 더 포함하는 것인 박막 원심분리 분석 장치.
  15. 제14항에 있어서, 상기 무선 전파 발생 수단은 다극(multipole) 영구 자석을 포함하여 상기 몸체의 회전에 따라 발생된 교류 자계에 의해 상기 무선 RF IC 속에 내장된 유도 코일에 전류를 발생시키는 것인 박막 원심분리 분석 장치.
  16. 제1항에 있어서, 상기 몸체는 상기 시료 챔버로부터 얻어진 혈청으로부터 DNA 또는 RNA을 준비하기 위한 프렙 챔버, 상기 DNA 및 RNA을 증폭하기 위한 증폭 챔버 및 상기 증폭된 DNA을 일정한 길이로 자르기 위한 공정을 수행하기 위한 프레그맨테이션 챔버(fragmentation chamber)을 더 포함하는 것인 박막 원심분리 분석 장치.
  17. 제16항에 있어서, 상기 몸체 내에 상기 프렙 챔버 또는 상기 증폭 챔버 또는 상기 프레그맨테이션 챔버 또는 상기 분석 사이트 또는 믹싱 챔버에 대한 공간 어드레싱(space addressing)을 위한 박막 원기둥 자석 또는 박막 강자성체 금속 입자를 더 포함하는 것인 박막 원심분리 분석 장치.
  18. 제17항에 있어서, 상기 공간 어드레싱은 방사 방향 탐색과 방위각 방향 탐색에 의해 이루어 지는 것인 박막 원심분리 분석 장치.
  19. 제17항에 있어서, 상기 챔버들의 온도를 제어하기 위한 온도 측정 수단, 가열 수단 및 냉각 수단으로 구성된 군으로부터 하나 이상을 포함하는 것인 박막 원심분리 분석 장치.
  20. 제1항에 있어서, 상기 분석 사이트의 판독은 광 투과율 측정 장치, 형광 탐지 장치, 분광 광도계(spectrometer), SPR(Surface Plasmon Resonance) 탐지 장치, 조명 장치 및 이미지 센서를 포함하는 광학 측정장치, 레이저 빔 장치 및 광 검출기를 포함하는 포토 메트릭(photometric) 측정 장치로 구성된 군으로부터 선택된 검출 수단에 의해 이루어지는 것인 박막 원심분리 분석 장치.
  21. 제7항에 있어서, 상기 믹싱 챔버에 포함되는 자성체 소형 구슬; 상기 몸체의 하부 에서 이동 가능한 슬라이더; 및 상기 슬라이더에 장착되고 상기 자성체 소형 구슬에 인력을 인가하여 상기 자성체 소형 구슬을 운동시킬 수 있는 영구 자석을 더 포함하고, 상기 슬라이더의 움직임에 따라 상기 자성체 소형 구슬이 함께 움직이고, 그에 의해 상기 믹싱 챔버 내에서 액체의 혼합이 유도되는 것인 박막 원심분리 분석 장치.
  22. 제7항에 있어서, 상기 믹싱 챔버에 포함되는 자성체 소형 구슬; 상기 몸체의 하부에서 이동 가능한 슬라이더; 및 상기 슬라이더에 장착되고 상기 자성체 소형 구슬에 인력을 인가하여 상기 자성체 소형 구슬을 운동시킬 수 있는 영구 자석을 더 포함하고, 상기 영구 자석을 상기 믹싱 챔버의 해당 반경에 정지시키고 상기 몸체를 회전시킴에 따라 상기 자성체 소형 구슬이 함께 움직이고, 그에 의해 상기 믹싱 챔버 내에서 액체의 혼합이 유도되는 것인 박막 원심분리 분석 장치.
  23. 제1항에 있어서, 초친수성 코팅된 정량 챔버와 초친수성 코팅된 동심원 유로를 더 포함하고, 상기 정량 챔버는 상기 동심원 유로와 상기 분석 사이트 사이에 포함되고, 상기 동심원 유로는 상기 액체 밸브의 출구와 연결되고, 상기 시료 챔버의 시료가 상기 동심원 유로를 통해 친수성 유체 이동하는 동안 상기 정량 챔버와 상기 동심원 유로가 시료에 의해 채워지고, 이후 상기 몸체의 회전에 의해 상기 정량 챔버에 시료를 남긴 채 상기 동심원 유로 내의 시료를 원심력에 의해 빼내어 저장하기 위한 오버플로우(overflow) 챔버를 더 포함하는 것인 박막 원심분리 분석 장치.
  24. 제23항에 있어서, 상기 정량 챔버의 시료는 상기 몸체의 회전시 원심력에 의해 상기 정량 챔버와 상기 분석 사이트와의 경계면 사이에 형성된 유체 이동 장벽을 극복하고 상기 분석 사이트 내로 이동하는 것인 박막 원심분리 분석 장치.
  25. 샘플을 주입하기 위한 샘플 주입구;
    상기 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버;
    원심분리 동안 상기 샘플로부터 얻어진 시료를 저장하기 위한 시료 챔버;
    상기 원심분리 동안 발생한 시료가 아닌 찌꺼기(remnant)를 저장하기 위한 찌꺼기 챔버(remnant chamber);
    상기 시료 챔버와 상기 찌거기 챔버를 연결하는 병목 채널;
    상기 시료 챔버의 정량을 초과하는 잉여분(excess)의 샘플을 저장하기 위한 잉여 챔버;
    상기 시료와 결합하기 위한 포획 프로브가 고정화되어 있거나 및/또는 상기 시료와의 생화학 반응을 위한 시약이 저장되어 있는 하나 이상의 분석 사이트;
    상기 시료 챔버와 상기 분석 사이트를 연결하는 유로 상에 형성된 초친수성 코팅된 액체 밸브;
    세정 공정에 의해 상기 포획 프로브와 결합하지 않는 물질(debris)을 모으기 위한 트레쉬 챔버(trash chamber); 및
    상기 샘플 주입구, 상기 샘플 챔버, 상기 시료 챔버, 상기 찌꺼기 챔버, 상기 잉여 챔버, 상기 트래쉬 챔버, 상기 병목 채널, 상기 분석 사이트, 상기 액체 밸브 및 유로가 집적화된 회전 가능한 몸체를 포함하는 박막 원심분리 분석 장치를 이용한 분석 방법에 있어서,
    상기 샘플 주입구를 통해 샘플을 상기 샘플 챔버에 주입하는 단계;
    상기 몸체의 회전에 의해 발생하는 원심력에 의해 상기 샘플 챔버 내의 샘플이 상기 시료 챔버와 상기 찌꺼기 챔버로 이동하고, 상기 이동시 상기 시료 챔버의 정량을 초과하는 경우 상기 잉여 샘플이 상기 잉여 챔버로 이동하는 단계;
    상기 몸체의 회전에 의해 발생하는 원심력에 의해 상기 시료 챔버와 상기 찌거기 챔버 내의 샘플이 각각 원심분리되면서 상기 시료 챔버 내의 찌거기가 상기 병목 채널을 통해 상기 찌거기 챔버로 이동되거나 또는 상기 찌거기 챔버 내의 시료가 상기 병목 채널을 통해 상기 시료 챔버로 이동하는 단계;
    상기 액체 밸브에 의해 상기 시료 챔버 내에 억류되어 있던 시료가 상기 몸체의 회전 정지시 상기 시료 챔버 내의 시료가 상기 액체 밸브를 통해 친수성 유체 이동에 의해 상기 분석 사이트로 이동하는 단계; 및
    상기 분석 사이트 내로 이동한 시료가 상기 분석 사이트 내의 포획 프로브와 결합하거나 상기 분석 사이트 내의 시약과 생화학 반응을 수행하는 단계를 포함하는 것인 분석 방법.
  26. 제25항에 있어서, 세정 용액을 첨가하여 상기 분석 사이트를 세정하거나 상기 몸체를 회전시켜 상기 분석 사이트를 건조 및 탈수시키는 단계를 더 포함하는 것인 분석 방법.
  27. 제25항에 있어서, 상기 분석 사이트를 탐색하기 위한 분석 사이트 탐색 단계; 상기 분석 사이트의 반응 결과를 정성 또는 정량 분석하는 단계; 상기 몸체 내에 집적화된 무선 RF IC가 상기 분석 사이트를 판독하여 무선 송출하는 단계; 상기 분석에 따른 진단 결과를 컴퓨터 모니터 상에 표시하는 단계; 상기 분석에 따른 진단 결과 또는 문진표를 인터넷 망을 통해 접속되어 있는 의사에게 원격 전송하는 단계; 또는 상기 의사로부터 처방을 받는 단계 중 하나 이상의 단계를 더 포함하는 것인 분석 방법.
  28. 제25항에 있어서, DNA 또는 RNA를 분리하는 단계; DNA를 증폭하는 단계; 증폭된 DNA를 적당한 길이로 자르는 프레그맨테이션(fragmentation) 단계; 또는 DNA의 한쪽 말단에 표지자를 붙이는 라벨링 (labeling)단계 중 하나 이상의 단계를 더 포함하는 것인 분석 방법.
  29. 제1항에 있어서, 상기 찌꺼기 챔버는 상기 병목 채널 이외에는 어떠한 액체의 입출입을 위한 채널 또는 배기구를 포함하지 않는 것인 박막 원심분리 분석 장치.
  30. 샘플을 주입하기 위한 샘플 주입구;
    상기 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버;
    원심분리 동안 상기 샘플로부터 얻어진 시료를 저장하기 위한 시료 챔버;
    상기 원심분리 동안 발생한 시료가 아닌 찌꺼기(remnant)를 저장하기 위한 찌꺼기 챔버(remnant chamber);
    상기 시료 챔버와 상기 찌꺼기 챔버를 연결하는 병목 채널;
    몸체의 회전 동안 상기 시료 챔버 내에 시료를 억류시키고, 몸체의 정지시 상기 시료 챔버 내의 시료를 이동시키기 위한 친수성 유체 이동 경로를 제공하는 초친수성 코팅된 액체 밸브;
    상기 액체 밸브에 의한 친수성 유체 이동과 원심력에 의한 유체 이동을 교대로 반복 수행하여 상기 시료 챔버내의 시료를 이동시켜 저장하기 위한 버퍼 챔버;
    상기 시료와 결합하기 위한 포획 프로브가 고정화되어 있거나 및/또는 상기 시료와의 생화학 반응을 위한 시약이 저장되어 있는 하나 이상의 분석 사이트;
    상기 이동된 버퍼 챔버의 시료를 상기 하나 이상의 분석 사이트에 공급하기 위한 박막 밸브;
    상기 샘플 주입구, 상기 샘플 챔버, 상기 시료 챔버, 상기 찌꺼기 챔버, 상기 버퍼 챔버, 상기 액체 밸브, 상기 병목 채널, 상기 박막 밸브 및 상기 분석 사이트가 집적화된 회전 가능한 소수성 몸체; 및
    상기 박막 밸브 개방시, 상기 버퍼 챔버의 시료를 친수성 유체이동에 의해 상기 분석 사이트로 이동시키기 위한 친수성 유로를 상기 버퍼 챔버와 상기 분석 사이트 간에 포함하여 단일 샘플에 대한 다종 분석을 제공하는 박막 원심분리 분석 장치.
  31. 제30항에 있어서, 상기 박막 밸브는 소수성 버스트 밸브(hydrophobic burst valve) 또는 모세관 버스트 밸브인 것인 박막 원심분리 분석 장치.
  32. 샘플을 주입하기 위한 샘플 주입구;
    상기 샘플 주입구로 주입된 샘플을 저장하기 위한 샘플 챔버;
    원심분리 동안 상기 샘플로부터 얻어진 시료를 저장하기 위한 시료 챔버;
    상기 원심분리 동안 발생한 시료가 아닌 찌꺼기(remnant)를 저장하기 위한 찌꺼기 챔버(remnant chamber);
    상기 시료 챔버와 상기 찌꺼기 챔버를 연결하는 병목 채널;
    희석 용액을 저장하기 위한 희석 용액 저장 챔버;
    상기 희석 용액 저장 챔버의 출구에 설치되어 몸체의 회전 동안 발생하는 유압에 의해 개방되는 유압 버스트 밸브;
    상기 유압 버스트 밸브의 개방시 상기 희석 용액 저장 챔버 내의 희석 용액을 일시적으로 저장하기 위한 버퍼 챔버;
    몸체의 회전 동안 상기 시료 챔버 내의 시료 또는 상기 버퍼 챔버 내의 희석 용액을 억류시키고, 몸체의 정지시 상기 시료 챔버 내의 시료 또는 상기 버퍼 챔버 내의 희석 용액을 이동시키기 위한 친수성 유체 이동 경로를 제공하는 초친수성 코팅된 액체 밸브;
    상기 액체 밸브에 의한 친수성 유체 이동과 원심력에 의한 유체 이동을 교대로 반복 수행하여 상기 시료와 상기 희석 용액을 점차적으로(gradually) 이동시켜 그레쥬얼 믹싱(gradual) 및 일시 저장 기능을 수행하는 믹싱 챔버;
    상기 시료와 결합하기 위한 포획 프로브가 고정화되어 있거나 및/또는 상기 시료와의 생화학 반응을 위한 시약이 저장되어 있는 하나 이상의 분석 사이트;
    상기 이동된 믹싱 챔버 내의 희석된 시료를 상기 하나 이상의 상기 분석 사이트에 공급하기 위한 박막 밸브;
    상기 샘플 주입구, 상기 샘플 챔버, 상기 시료 챔버, 상기 찌꺼기 챔버, 상기 희석 용액 저장 챔버, 상기 버퍼 챔버, 상기 믹싱 챔버, 상기 액체 밸브, 상기 병목 채널, 상기 유압 버스트 밸브, 상기 박막 밸브 및 상기 분석 사이트가 집적화된 회전 가능한 소수성 몸체; 및
    상기 박막 밸브 개방시, 상기 믹싱 챔버 내의 희석된 시료를 친수성 유체이동에 의해 상기 분석 사이트로 이동시키기 위한 친수성 유로를 상기 믹싱 챔버와 상기 분석 사이트 간에 포함하여 단일 샘플에 대한 다종 분석을 제공하는 박막 원심분리 분석 장치.
  33. 제1항, 제12항, 제25항, 제30항 또는 제32항 중 어느 한 항에 있어서, 상기 분석 사이트는 %fPSA(percent free PSA) 또는 %proPSA(percent pro PSA)를 분석하기 위한 포획 프로브가 고정된 것인 박막 원심분리 분석 장치.
PCT/KR2009/000306 2008-01-21 2009-01-21 박막 원심분리 분석 장치 및 이를 이용한 분석 방법 WO2009093838A2 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES09703773T ES2842969T3 (es) 2008-01-21 2009-01-21 Dispositivo centrifugador de capas de película delgada y método de análisis que utiliza el mismo
EP09703773.3A EP2239583B1 (en) 2008-01-21 2009-01-21 Thin-film layered centrifuge device and analysis method using the same
CN2009801026928A CN101971035B (zh) 2008-01-21 2009-01-21 薄膜分层离心装置及使用其的分析方法
DK09703773.3T DK2239583T3 (da) 2008-01-21 2009-01-21 Tyndfilmslagdelt centrifugeindretning og analysefremgangsmåde til anvendelse deraf
US12/863,684 US8969070B2 (en) 2008-01-21 2009-01-21 Thin-film layered centrifuge device and analysis method using the same
EP20212461.6A EP3869205B1 (en) 2008-01-21 2009-01-21 Thin-film layered centrifuge device and analysis method using the same
US14/090,317 US20140186935A1 (en) 2008-01-21 2013-11-26 Thin-film layered centrifuge device and analysis method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080006890 2008-01-21
KR10-2008-0006890 2008-01-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/863,684 A-371-Of-International US8969070B2 (en) 2008-01-21 2009-01-21 Thin-film layered centrifuge device and analysis method using the same
US14/090,317 Continuation US20140186935A1 (en) 2008-01-21 2013-11-26 Thin-film layered centrifuge device and analysis method using the same

Publications (3)

Publication Number Publication Date
WO2009093838A2 true WO2009093838A2 (ko) 2009-07-30
WO2009093838A3 WO2009093838A3 (ko) 2009-10-22
WO2009093838A9 WO2009093838A9 (ko) 2010-09-10

Family

ID=40901539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000306 WO2009093838A2 (ko) 2008-01-21 2009-01-21 박막 원심분리 분석 장치 및 이를 이용한 분석 방법

Country Status (7)

Country Link
US (2) US8969070B2 (ko)
EP (2) EP3869205B1 (ko)
KR (1) KR101608749B1 (ko)
CN (2) CN101971035B (ko)
DK (1) DK2239583T3 (ko)
ES (1) ES2842969T3 (ko)
WO (1) WO2009093838A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636636A (zh) * 2011-02-09 2012-08-15 三星电子株式会社 盘型微流器件
CN109387628A (zh) * 2016-03-14 2019-02-26 北京康华源科技发展有限公司 离心分离检测方法
CN114609388A (zh) * 2022-05-11 2022-06-10 广州华澳生物科技有限公司 微流控免疫检测方法及装置
CN116173526A (zh) * 2022-12-05 2023-05-30 大连理工大学 薄膜蒸发旋流式两相流体蒸发器
CN116173526B (en) * 2022-12-05 2024-05-03 大连理工大学 Thin film evaporation rotational flow type two-phase fluid evaporator

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395425B1 (en) 2011-03-11 2022-10-12 Fenwal, Inc. A system comprising a membrane separation device
US8889424B2 (en) * 2011-09-13 2014-11-18 Joel R. L. Ehrenkranz Device and method for performing a diagnostic test
TWI582425B (zh) * 2011-11-25 2017-05-11 凸版印刷股份有限公司 樣本分析晶片、樣本分析方法及基因解析方法
US10132802B2 (en) * 2012-04-17 2018-11-20 i-calQ, LLC Device for performing a diagnostic test and methods for use thereof
US9625465B2 (en) 2012-05-15 2017-04-18 Defined Diagnostics, Llc Clinical diagnostic systems
US9213043B2 (en) 2012-05-15 2015-12-15 Wellstat Diagnostics, Llc Clinical diagnostic system including instrument and cartridge
US9081001B2 (en) 2012-05-15 2015-07-14 Wellstat Diagnostics, Llc Diagnostic systems and instruments
GB2505232B (en) 2012-08-23 2018-08-01 Schlumberger Holdings Magnetic resonance examination of porous samples
GB2515116A (en) * 2013-06-14 2014-12-17 Univ Dublin City Microfluidic Device
KR102096455B1 (ko) 2013-07-12 2020-04-02 나우다이아그노스틱스, 인코포레이티드 트랜스-비주얼 감도를 가진 범용 신속 진단 테스트 판독기
DE102013220469A1 (de) * 2013-10-10 2015-04-16 Robert Bosch Gmbh System, Zentrifugationseinheit, Zentrifuge und Verfahren zur induktiven Stromerzeugung
EP3197535B1 (en) * 2014-09-23 2018-11-14 Romaltek Medical, S.L. Monitoring manually operated syringes
US9921182B2 (en) 2014-10-06 2018-03-20 ALVEO Technologies Inc. System and method for detection of mercury
US10627358B2 (en) 2014-10-06 2020-04-21 Alveo Technologies, Inc. Method for detection of analytes
US10196678B2 (en) 2014-10-06 2019-02-05 ALVEO Technologies Inc. System and method for detection of nucleic acids
US10352899B2 (en) 2014-10-06 2019-07-16 ALVEO Technologies Inc. System and method for detection of silver
US9506908B2 (en) 2014-10-06 2016-11-29 Alveo Technologies, Inc. System for detection of analytes
CN104483496B (zh) * 2014-11-13 2017-08-25 广东泓睿科技有限公司 绕轴心旋转的检测装置及其检测方法
KR101683798B1 (ko) * 2015-04-30 2016-12-08 (주)로고스바이오시스템스 미생물 검출, 동정 또는 계수 방법 및 이를 이용한 시스템
US10797567B2 (en) * 2015-07-23 2020-10-06 Life Technologies Corporation Rotor assembly including a housing for a sensor array component and methods for using same
CN105203746B (zh) * 2015-10-26 2017-07-14 深圳华迈兴微医疗科技有限公司 一种poct化学发光免疫分析系统及其分析方法
US10255703B2 (en) 2015-12-18 2019-04-09 Ebay Inc. Original image generation system
CN106195321B (zh) 2016-08-30 2017-09-22 博奥颐和健康科学技术(北京)有限公司 一种液体存储和释放组件及液体存储和释放芯片
EP3516077A1 (en) 2016-09-23 2019-07-31 Alveo Technologies Inc. Methods and compositions for detecting analytes
KR102015470B1 (ko) * 2017-08-10 2019-08-28 박준철 시료 형성 장치
AR113802A1 (es) 2017-10-27 2020-06-10 Juno Diagnostics Inc Dispositivos, sistemas y métodos para la biopsia líquida de un volumen ultra bajo
NO346147B1 (en) * 2017-11-09 2022-03-21 Spinchip Diagnostics As Method and apparatus for controlling a focus point of stationary beam focusing on a sample in a rotating cartridge placed in a rotating disc
KR102137306B1 (ko) 2017-11-20 2020-07-23 주식회사 엘지화학 회전식 디스크 시스템을 활용한 중금속 정성 및 정량 분석 디바이스 및 분석 방법
WO2019098562A1 (ko) * 2017-11-20 2019-05-23 주식회사 엘지화학 회전식 디스크 시스템을 활용한 중금속 정성 및 정량 분석 디바이스 및 분석 방법
WO2019098563A1 (ko) * 2017-11-20 2019-05-23 주식회사 엘지화학 회전식 디스크 시스템을 활용한 중금속 정성 및 정량 분석 디바이스 및 분석 방법
JP6434114B1 (ja) * 2017-11-30 2018-12-05 シスメックス株式会社 測定方法および測定装置
KR102013698B1 (ko) * 2017-12-20 2019-08-26 주식회사 씨디젠 검정색 열가소성 수지 밸브 및 비접촉 온도 센서를 이용한 랩온어 디스크 장치
US11823403B2 (en) 2017-12-27 2023-11-21 Cilag Gmbh International Fluorescence imaging in a light deficient environment
WO2019213661A1 (en) 2018-05-04 2019-11-07 Red E Innovations, Llc System for monitoring an injection mold or stamping die
CN108490199A (zh) * 2018-05-16 2018-09-04 清华大学 多指标检测芯片
KR102301178B1 (ko) * 2018-06-25 2021-09-09 주식회사 엘지화학 알데히드류 또는 케톤류 검출용 마이크로 디바이스
DE102018212930B3 (de) * 2018-08-02 2019-11-07 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung und Verfahren zum Leiten einer Flüssigkeit durch ein poröses Medium
KR102412368B1 (ko) 2018-08-30 2022-06-23 주식회사 엘지화학 회전식 플랫폼으로 구현되는 다중 중금속 정성 및 정량 분석 디바이스
WO2020045872A1 (ko) * 2018-08-30 2020-03-05 주식회사 엘지화학 회전식 플랫폼으로 구현되는 다중 중금속 정성 및 정량 분석 디바이스
CA3100506A1 (en) * 2018-09-21 2020-03-26 Foss Analytical A/S A sampling device, a system comprising the sampling device and a method
CN109738622B (zh) * 2018-12-29 2020-12-11 北京化工大学 基于微流控芯片的侧向流纸条快速检测装置
WO2020204232A1 (ko) * 2019-04-04 2020-10-08 바이오뱅크 주식회사 생화학검사와 혈액검사를 동시에 수행하는 멀티시스템 및 이에 사용되는 멀티디스크
KR102468586B1 (ko) * 2019-04-18 2022-11-17 주식회사 엘지화학 알데히드류 또는 케톤류의 검출 방법
KR102463388B1 (ko) * 2019-04-19 2022-11-04 주식회사 엘지화학 회전식 분석 시스템
CN110180610B (zh) * 2019-06-19 2021-09-03 深圳市刚竹医疗科技有限公司 试剂顺序加载方法、结构及微流控装置
US20200397246A1 (en) 2019-06-20 2020-12-24 Ethicon Llc Minimizing image sensor input/output in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11793399B2 (en) 2019-06-20 2023-10-24 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system
US11252326B2 (en) 2019-06-20 2022-02-15 Cilag Gmbh International Pulsed illumination in a laser mapping imaging system
US11337596B2 (en) 2019-06-20 2022-05-24 Cilag Gmbh International Controlling integral energy of a laser pulse in a fluorescence imaging system
US11612309B2 (en) 2019-06-20 2023-03-28 Cilag Gmbh International Hyperspectral videostroboscopy of vocal cords
US11925328B2 (en) 2019-06-20 2024-03-12 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral imaging system
US11471055B2 (en) 2019-06-20 2022-10-18 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11533417B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Laser scanning and tool tracking imaging in a light deficient environment
US11898909B2 (en) 2019-06-20 2024-02-13 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11412152B2 (en) 2019-06-20 2022-08-09 Cilag Gmbh International Speckle removal in a pulsed hyperspectral imaging system
US11716543B2 (en) 2019-06-20 2023-08-01 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11432706B2 (en) 2019-06-20 2022-09-06 Cilag Gmbh International Hyperspectral imaging with minimal area monolithic image sensor
US11237270B2 (en) 2019-06-20 2022-02-01 Cilag Gmbh International Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation
US11122967B2 (en) 2019-06-20 2021-09-21 Cilag Gmbh International Driving light emissions according to a jitter specification in a fluorescence imaging system
US11671691B2 (en) 2019-06-20 2023-06-06 Cilag Gmbh International Image rotation in an endoscopic laser mapping imaging system
US11937784B2 (en) 2019-06-20 2024-03-26 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11674848B2 (en) 2019-06-20 2023-06-13 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for hyperspectral imaging
US11398011B2 (en) 2019-06-20 2022-07-26 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed laser mapping imaging system
US11622094B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for fluorescence imaging
US11877065B2 (en) 2019-06-20 2024-01-16 Cilag Gmbh International Image rotation in an endoscopic hyperspectral imaging system
US10841504B1 (en) 2019-06-20 2020-11-17 Ethicon Llc Fluorescence imaging with minimal area monolithic image sensor
US11633089B2 (en) 2019-06-20 2023-04-25 Cilag Gmbh International Fluorescence imaging with minimal area monolithic image sensor
US11758256B2 (en) 2019-06-20 2023-09-12 Cilag Gmbh International Fluorescence imaging in a light deficient environment
US11624830B2 (en) 2019-06-20 2023-04-11 Cilag Gmbh International Wide dynamic range using a monochrome image sensor for laser mapping imaging
US11617541B2 (en) 2019-06-20 2023-04-04 Cilag Gmbh International Optical fiber waveguide in an endoscopic system for fluorescence imaging
US11531112B2 (en) 2019-06-20 2022-12-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral, fluorescence, and laser mapping imaging system
US11280737B2 (en) 2019-06-20 2022-03-22 Cilag Gmbh International Super resolution and color motion artifact correction in a pulsed fluorescence imaging system
US11700995B2 (en) 2019-06-20 2023-07-18 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
US11389066B2 (en) 2019-06-20 2022-07-19 Cilag Gmbh International Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system
US11540696B2 (en) 2019-06-20 2023-01-03 Cilag Gmbh International Noise aware edge enhancement in a pulsed fluorescence imaging system
US11187658B2 (en) 2019-06-20 2021-11-30 Cilag Gmbh International Fluorescence imaging with fixed pattern noise cancellation
US11550057B2 (en) 2019-06-20 2023-01-10 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11903563B2 (en) 2019-06-20 2024-02-20 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a fluorescence imaging system
US11412920B2 (en) 2019-06-20 2022-08-16 Cilag Gmbh International Speckle removal in a pulsed fluorescence imaging system
KR102168380B1 (ko) * 2019-07-18 2020-10-21 세메스 주식회사 냉각 유닛, 이를 포함하는 기판 처리 장치
CN111925925B (zh) * 2020-08-17 2024-02-27 鄂州康芯医疗科技有限公司 一体化诊断试剂盒及其应用
CN113009136B (zh) * 2020-08-21 2024-04-05 东莞东阳光医疗智能器件研发有限公司 小型多指标检测样本分析装置
US20220380752A1 (en) * 2021-05-26 2022-12-01 Juno Diagnostics, Inc. Devices and methods for extracting blood plasma
WO2023120159A1 (ja) * 2021-12-20 2023-06-29 Phcホールディングス株式会社 生体試料分離容器および生体試料分離制御装置、生体試料分離制御方法および生体試料分離制御プログラム
US20230324425A1 (en) * 2022-04-06 2023-10-12 Babson Diagnostics, Inc. Automated centrifuge loader
CN114570535B (zh) * 2022-05-07 2022-07-12 国大生命科学产业集团(深圳)有限公司 一种脐带间充质干细胞分离用离心装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030054376A1 (en) * 1997-07-07 2003-03-20 Mullis Kary Banks Dual bead assays using cleavable spacers and/or ligation to improve specificity and sensitivity including related methods and apparatus
US6632399B1 (en) * 1998-05-22 2003-10-14 Tecan Trading Ag Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system for performing biological fluid assays
JP3469585B2 (ja) * 1997-05-23 2003-11-25 ガメラ バイオサイエンス コーポレイション ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
US20030129665A1 (en) * 2001-08-30 2003-07-10 Selvan Gowri Pyapali Methods for qualitative and quantitative analysis of cells and related optical bio-disc systems
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
KR100941416B1 (ko) * 2005-04-30 2010-02-11 삼성전자주식회사 바이오 디스크 및 바이오 드라이버 장치 및 이들을 이용한분석방법
US8263386B2 (en) 2005-05-06 2012-09-11 Samsung Electronics Co., Ltd. Digital bio disc (DBD), DBD driver apparatus, and assay method using the same
CN2874467Y (zh) * 2005-07-29 2007-02-28 中国科学院理化技术研究所 一种磁控芯片微混合器
KR100639816B1 (ko) * 2005-11-04 2006-11-01 유재천 초소형 구슬을 이용한 미세 밸브 장치를 포함하는 핵산분석 장치
JP5030110B2 (ja) * 2005-12-21 2012-09-19 サムスン エレクトロニクス カンパニー リミテッド バイオメモリディスクドライブ装置及びそれを用いた分析方法
WO2008016271A1 (en) * 2006-08-02 2008-02-07 Jae Chern Yoo Thin film chemical analysis apparatus and analysis method using the same
WO2009066897A2 (en) * 2007-11-22 2009-05-28 Jae Chern Yoo Thin film valve device and its controlling apparatus
CN101918528B (zh) * 2007-12-10 2013-07-17 三星电子株式会社 薄膜生物阀装置和其控制设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2239583A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636636A (zh) * 2011-02-09 2012-08-15 三星电子株式会社 盘型微流器件
CN109387628A (zh) * 2016-03-14 2019-02-26 北京康华源科技发展有限公司 离心分离检测方法
CN114609388A (zh) * 2022-05-11 2022-06-10 广州华澳生物科技有限公司 微流控免疫检测方法及装置
CN116173526A (zh) * 2022-12-05 2023-05-30 大连理工大学 薄膜蒸发旋流式两相流体蒸发器
CN116173526B (en) * 2022-12-05 2024-05-03 大连理工大学 Thin film evaporation rotational flow type two-phase fluid evaporator

Also Published As

Publication number Publication date
WO2009093838A9 (ko) 2010-09-10
CN101971035A (zh) 2011-02-09
CN101971035B (zh) 2013-10-16
DK2239583T3 (da) 2021-01-18
CN103472241B (zh) 2015-06-17
WO2009093838A3 (ko) 2009-10-22
EP3869205A1 (en) 2021-08-25
US8969070B2 (en) 2015-03-03
EP3869205B1 (en) 2023-11-22
US20100297659A1 (en) 2010-11-25
EP3869205C0 (en) 2023-11-22
US20140186935A1 (en) 2014-07-03
KR20110079570A (ko) 2011-07-07
ES2842969T3 (es) 2021-07-15
EP2239583B1 (en) 2020-12-09
EP2239583A2 (en) 2010-10-13
CN103472241A (zh) 2013-12-25
EP2239583A4 (en) 2015-09-02
KR101608749B1 (ko) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2009093838A2 (ko) 박막 원심분리 분석 장치 및 이를 이용한 분석 방법
JP5161218B2 (ja) 薄膜化学分析装置及びこれを用いた分析方法
EP3674713B1 (en) Microfluidic detection chip and centrifugal detection device
CN102933968B (zh) 离心微流体装置和用于免疫测定的方法
KR100941416B1 (ko) 바이오 디스크 및 바이오 드라이버 장치 및 이들을 이용한분석방법
KR101292536B1 (ko) 바이오 메모리 디스크 및 바이오 메모리 디스크 드라이브장치 및 이를 이용한 분석 방법
WO2011093602A2 (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
WO2009102159A2 (ko) 바이오 디스크 판독 장치 및 이를 이용한 분석 방법
US20050037484A1 (en) Optical bio-discs including spiral fluidic circuits for performing assays
US8900528B2 (en) Disc-shaped analysis chip
WO2008034102A2 (en) Surface mapping by optical manipulation of particles in relation to a functionalized surface
US20050014249A1 (en) Chromatographic analysis on optical bio-discs and methods relating thereto
US10782288B2 (en) Multi-unit for conducting biochemical test and immunological test and testing method thereof
CN100480702C (zh) 以磁性微球介导的微流体分析系统及其检测方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102692.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703773

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12863684

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009703773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017651

Country of ref document: KR

Kind code of ref document: A