WO2009090293A1 - Endoscopic probe with opto-electronic sensor for use in diagnostics and surgery - Google Patents

Endoscopic probe with opto-electronic sensor for use in diagnostics and surgery Download PDF

Info

Publication number
WO2009090293A1
WO2009090293A1 PCT/ES2009/070004 ES2009070004W WO2009090293A1 WO 2009090293 A1 WO2009090293 A1 WO 2009090293A1 ES 2009070004 W ES2009070004 W ES 2009070004W WO 2009090293 A1 WO2009090293 A1 WO 2009090293A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
elements
sensor
emitting
sensors
Prior art date
Application number
PCT/ES2009/070004
Other languages
Spanish (es)
French (fr)
Inventor
María Luisa DOTOR CASTILLA
Juan Pedro Silveira Martin
Sonnia María LOPEZ SILVA
Luis Antonio HERRERA NOREÑA
Romano Giannetti
Original Assignee
Consejo Superior De Investigaciones Cientificas
Hospital Universitario Marques De Valdecilla
Universidad Pontificia Comillas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Hospital Universitario Marques De Valdecilla, Universidad Pontificia Comillas filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2009090293A1 publication Critical patent/WO2009090293A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for

Definitions

  • the invention finds application in the field of diagnosis and surgery, in particular endoscopy, interventional radiology and laparoscopic surgery, both endoscopic and endocavitary, and especially in human clinics, without excluding veterinary medicine, and especially in situations in which It requires the evaluation of intracorporeal organs and tissues in a non-invasive manner, such as those that occur in the fields of conventional surgery, emergency and organ transplants, as well as in the care of patients in critical situations (ICU, ICU , postoperated units, etc).
  • endoscopy and video surgery (or minimally invasive surgery) is considered by many to be the third revolution in surgery, after anesthesia and the application of antibiotics. Surgeons perform this type of surgery in almost any space and in any organ of the human body, using highly complex cameras and video monitors associated with surgical instruments.
  • the technique consists in carrying out the appropriate approach to each need, introducing a gas (usually carbon dioxide), to create, with its expansion, a working cavity. Through other small cuts and additional incisions, sometimes in combination with natural holes (for example, the mouth or the vagina), a telescopic instrument is inserted attached to a video camera or optical viewfinder (laparoscope when working on the abdomen ) and other long and narrow surgical instruments.
  • one of the main disadvantages is that the surgeon loses important sensory information, since: a) he must pass from his real three-dimensional vision of the operative field to the two-dimensional one through a flat monitor where the images obtained by the camera are shown endoscopic This implies that even bright surgeons in open surgery must perform special training to transfer their surgical skills to endoscopic surgery, an adaptation that requires a lot of practice; b) the perception of colors is not real; c) you cannot use touch to capture certain sensations, such as textures, weak palpitations, etc. Therefore, the measurement of physiological parameters that help them to overcome these deficiencies would be particularly useful. In this sense, in open and endoscopic surgery, as well as in hospital care, invasive and non-invasive techniques are used to obtain this information.
  • electrocardiography capnometry
  • capnography measurement of this carbon dioxide as a function of time
  • volumetric analysis are widely used.
  • ventilatory pressures ultrasound (in which images of the internal organs are formed by external application of ultrasound and analysis of the reflected ones), etc.
  • Photoplethysmography and pulse oximetry have been developed in particular, techniques commonly used to monitor the heart rate and the degree of oxygenation in the blood in a non-invasive manner.
  • Photoplethysmography is a technique based on the application of optical radiation to an organ or tissue, originating, after its interaction with the latter, a signal proportional to changes in blood volume, so it is a simple and useful method to measure The pulsatile component of the heartbeat and evaluate the blood circulation.
  • the degree of oxygenation is determined by measuring the optical radiation reflected or transmitted by the analyzed organ in two or more wavelengths.
  • the time-varying photoplethysmographic signal is caused only by changes in the volume of arterial blood associated with the pumping action of the heart, and therefore, to the cardiac cycle and that only two derivatives of hemoglobin .
  • the oxygen bound hemoglobin (oxyhemoglobin or HbO2) and the non-bound hemoglobin (de-oxyhemoglobin or RHb) absorb part of the applied optical radiation. Therefore it is necessary - TO -
  • the majority of the pulse oximeters use as sources of the optical radiation electroluminescent diodes (Light Emitting Diodes, LEDs) with emissions in the zones of 630-660 nm and 880-940 nm.
  • Examples of such oximeters are described in US Patent 4,167,331, US Patent 4,407,290, US Patent 5,203,329, WO / 1995/012349, and WO / 1996/028085, among others.
  • the use of laser diodes as sources of such radiation is also possible, as described in US Patent 5,318,022, WO / 1996/041566, WO / 1997/049330 and US Patent 6,253,097, among others.
  • the oxygen saturation in the tissue is calculated, after obtaining in each of the wavelengths where said saturation is determined, the quotient value between the pulsatile component of the photoplethysmographic signal and the corresponding constant component.
  • the estimation of the value of the pulsatile component is the most critical phase in any algorithm for processing the measurements obtained by the pulse oximeter.
  • Different approaches have been proposed to develop these algorithms, with the aim of eliminating the effects of the "noise" implicit in any determination and the errors that may be generated, either by the different manipulations that the surgeon must perform during the intervention, or by the own movements of the instrument and / or the organ analyzed, while maintaining the ability to detect signals of different intensity.
  • An exemplary embodiment of one of these algorithms is found in patent document P200501425, "Method for processing photoplethysmographic signals obtained from a person or animal, and an oximeter using said method".
  • the arrangement of its emitting and detecting elements of the optical radiation with respect to the analyzed medium varies as the radiation reflected by said means or Ia must be measured. transmitted through.
  • the reflection sensors can be placed on any pulsatile vascularized surface, but the reflection signal is weaker than the transmission signal and is subject to errors due to the dispersion in the tissue, the specular reflection due to the surface layer of the tissue and a certain "short circuit" of the signal (“shunting") produced between the emitting element and the detector.
  • the transmission sensors must be placed in the parts of the body that can accommodate their emitter (s) and detector (s) elements facing each other, as is the case of the fingers, ear lobe, bridge of the nose , with the disadvantage that these are peripheral and very specific areas. Therefore, although the most widespread practice is the use of pulse oximeters in these areas, in the practice of surgery there is a disadvantage that there are morbid processes related to blood perfusion and oxygenation of tissues, which selectively affect certain organs or tissues without significant impact on the degree of peripheral oxygenation determinable in these areas. Such a situation occurs in cases of ischemia or mesenteric thrombosis, which are often the cause of urgent surgery.
  • transmission photoplethysmography was applied to intraperitoneal organs of animals in an open (non-endoscopic) surgical procedure, using a system based on two laser diodes ("Transmittance photoplethysmography with near-infrared laser diodes in intra-peritoneal organs". SM López -Silva et al. Physiological Measurement. 2006. 27: 1033-1045). Notwithstanding the foregoing, there are no methods, techniques and instruments intended to determine "in situ” and "in vivo" physiological parameters in organs and / or tissues through the application of endoscopic sensors.
  • the present invention combines a sensor composed of light emitting elements and photodetector elements designed to be able to develop measures based on the reflection and / or the transmission of the light signal by a given organ or tissue with endoscopy surgical instruments.
  • This invention consists of a device comprising a probe for endoscopy that incorporates at least one sensor into the cavity made at the patient, capable of detecting optical signals associated with biological parameters.
  • said sensor or sensors are suitable for the application of the principles of photoplethysmography and pulse oximetry and any other based on the emission of an optical signal and Ia reception of the signal reflected or transmitted through a given organ or tissue.
  • This device can incorporate the appropriate mechanisms to place, fix and orient the sensor and thus optimize the signal-to-noise ratio of the measurement.
  • the invention is completed with an external module that includes the electronic control and power supply of the sensor, and amplification, sampling and signal retention.
  • the sensor can be connected to the external module either by cables, or wirelessly.
  • the probe incorporates the corresponding wireless transmission-reception circuits as well as the power supply of these and the sensors by means of batteries.
  • the measured signals are transferred to a computer equipment, where they are processed with computer programs that are implementations of suitable algorithms to be able to be displayed, represented and / or stored as useful data for the operator.
  • the present invention is based on the incorporation of a sensor in an endoscopy instrument, which makes it possible to take advantage of its benefits in exploratory procedures, but especially in surgical procedures (laparoscopic, thoracoscopic, neuroscopic, endovascular, endocavitary, etc.) and achieve The adequate placement, orientation, and even, fixation of said sensor on the organ or tissue to be analyzed, guaranteeing a correct reception of the signals and optimizing the signal-to-noise ratio, in order to measure and present certain biological parameters.
  • This device provides the surgeon and his surgical team with an apparatus that provides the value, in real time, of the measurement of vital parameters of the organs and tissues that are being explored and / or intervened.
  • the device allows applying the principles of photoplethysmography and pulse oximetry and therefore determine the pulse and oxygen saturation in organs or tissues whose blood supply is variable over time.
  • the advantages of this device are a) its "in situ" applicability, providing the required measure instantly; b) the possible damage to the intervened organs or tissues is minimal, because their interaction with them is practically null, based on their transmission or reflection properties; c) simple and functional design; d) the elements that make up the sensor or sensors are available in the market at a reduced cost; e) maintenance is simple, requiring only a cleaning and sterilization similar to that of any surgical instrument or the use of transparent, sterilized and biologically inert plastic covers, commercially available and intended for use with existing biomedical instruments.
  • the device of the invention comprises ( Figure 1) a probe whose main body is a hollow cylindrical tube (1), of any biologically inert material, and at whose front end there are one or several opto-electronic sensors.
  • This tube must have a suitable outer diameter so that it can pass through the hole of a trocar (2) coupled to the surgical incision to avoid its closure and better conduct the surgical instruments.
  • the holes of said trocars have a diameter between 6 and 10 millimeters.
  • the sensor or sensors are coupled on one end of the same modified tube to offer a flat surface for placement (3a), or on the flat surface of one or two pieces (3b) that form fingers or arms, in which at least one will be attached to the tube by an axis perpendicular to the axis of said tube, so that said finger or fingers can rotate on said axis or perpendicular axes, thus forming a clamp in the case of two fingers or arms (3b in Ia Figure 1C).
  • Said clamp It can in turn be modified to optimize the manipulation of the organ or tissue and the placement of the sensor with respect to it.
  • one or two of said fingers may contain an axis transverse to the plane defined by its opening angle, so that when said opening is made, the sensor or sensors are better positioned with respect to the organ or tissue (4) and / or each other (an example of said modification is represented in Figure 8).
  • the diameter of the inner hollow of the tube must allow to house inside the wires and cables (5) necessary for the feeding and electronic control of the sensor or sensors. Said cables will exit through the rear area of said tube to be able to connect with the power and control electronics.
  • the device has in its back one or several thickening (6a in Figure 1A) that facilitate its clamping and manipulation of the probe by the surgeon.
  • the device incorporates handles (6b in Figures 1 B and 1C) on the back of the probe that facilitate this holding and handling.
  • at least one of said handles can be mobile, allowing the finger or fingers that house the sensors to be operated by means of a traction mechanism, so as to vary their angle or opening, which allows the sensor to be properly placed on the organ or tissue to be analyzed and even when the sensor or sensors are incorporated in a clamp, manipulate said organ or tissue and leave them fixed on an area thereof during the measurement period.
  • the hollow of the tube must have a sufficient diameter to house inside it both the cables necessary for the electronic feeding and control of the sensor or sensors and the means necessary to operate the moving finger or fingers.
  • the sensor includes: a) one or more microelectronic elements that emit light of different wavelengths, constituting the emitting elements, which can be electroluminescent diodes (LEDs), superluminescent diodes (SLDs), laser diodes (LD), or any opto-electronic element that emits optical radiation of specific wavelengths; b) one or more photodetector elements, which can be silicon photodiodes, phototransistors, or any optoelectronic element that detects the optical radiation of the wavelengths emitted by the emitting elements and produces an electrical signal proportional to the amount of light detected .
  • LEDs electroluminescent diodes
  • SLDs superluminescent diodes
  • LD laser diodes
  • the hollow of the tube must have a sufficient diameter to house inside it both the cables necessary for the electronic feeding
  • the specific characteristics of the sensor or sensors depend on the precise nature of the application.
  • the range of wavelengths of the optical emission to be used, the activation regime of the emitters, the particular and specific characteristics of the optical detectors, and the spatial arrangement of emitter / s and detector / s with respect to the organ or tissue analyzed are variable parameters in each particular embodiment of the invention.
  • the possible configurations of the invention can be summarized as follows: a) to measure by reflection the emitters and detectors are placed in the same plane; b) to carry out measurement by transmission, the emitters and detectors are placed in two planes facing each other; c) to perform measurements by reflection and transmission with the same device, the two previous configurations are combined.
  • the light emitters can be LEDs (as illustrated in Figures 2 to 7, and in Figures 8A to 8F) in encapsulation for surface mounting, whether said encapsulation applied individually to each LED (Ia adopted by the devices shown in said figures) or together with a group thereof.
  • the light emitters can be of the laser diode type, as shown in Figure 8G.
  • the device of the invention can incorporate any other electronic element that emits optical radiation in a specific wavelength (such as those in the range of 400 to 1000 nm, for the specific embodiment of a device for photoplethysmography and / or pulse oximetry) and whose size allows adapting to the probe or tube that forms the main body of the device.
  • the number of emitters is 4 per sensor, as shown in Figures 2 to 8.
  • the sensor also incorporates one or more detection elements of the optical signal transmitted or reflected by the medium, organ or tissue.
  • said detectors are silicon photodiodes, but also the device of the invention can incorporate any other opto-electronic element that allows the reception of light in the same wavelengths as that generated by the emitters, the generation of an electrical signal proportional to the amount of light received in a given wavelength, its electronic control and a size that allows it to be coupled to the probe or tube that forms the main body of the device in a useful arrangement for the reception of the signal bright. Similar to what is indicated for the emitting elements, not only the type of detector, but also its quantity and arrangement (geometry and distance with respect to the emitters) may vary.
  • the emitting and detecting elements will be mounted on one or more flat surfaces of the anterior end of the modified suitable probe ( Figure 1A) or on one or more flat surfaces of one or more support pieces, respectively.
  • the preferred arrangement will be the assembly of the emitting elements on the surfaces so that the direction in which the light emitted is perpendicular to said surface.
  • the surfaces, whether practiced on the probe itself or on the support pieces, will be fixed when they cannot vary their spatial position with respect to the probe (rigid configuration, Figures 1A, 2, 8A and 8G) or mobile, when it has been provided with the less one of the support pieces with an axis that allows it to vary its spatial position with respect to the probe when rotating on said axis.
  • said axis is perpendicular to the longitudinal axis of the probe and the spatial position of the support surface (s) may vary perpendicular to the plane defined by said surfaces (configuration with variable application angle, Figures 1 B and 1C , 3 to 7, and 8B to F).
  • the senor presents the configuration for reflection measurement, characterized in that both the emitting and detecting elements are resting on the same flat surface.
  • the emitting element or elements When supporting the sensor on an organ or tissue, the emitting element or elements will illuminate it with optical radiations in each of the wavelengths emitted by each of the emitters and the detecting element (s) will collect the light of the same wavelengths of the incident emission that said organs and tissues reflect and that will vary according to the physiological state determinable by the parameter to be measured with the sensor.
  • the reflection sensor may adopt the rigid configurations ( Figures 1A, 2, 8A and 8G) or with an angle of Variable application ( Figures 1 B, 3, 4, 6, 7, and 8B to 8F) as defined above.
  • the senor adopts the configuration for transmission measurement, characterized in that the emitting elements are resting on a flat surface other than that in which the detectors are located.
  • the planes of these surfaces must be as parallel as possible, so that the emitting and detecting elements are as closely opposite as possible.
  • the arrangement of the support pieces must be such that they allow placing the organ or tissue that is to be explored between the emitters and the detectors, but avoiding damaging the organ or tissue.
  • both pieces can be rigid, so that they do not vary their spatial position with respect to the probe
  • the two pieces are joined to the probe through one or two rear axes, adopting the arrangement of a clamp that can be opened at different perpendicular angles ( Figures 6 and 7).
  • the clamp incorporates in each of its fingers a second axis parallel to the common axis of both fingers, whereby it is facilitated that the emitters and detectors are faced in parallel with each other even in the arrangements openings of the clamp ( Figure 8).
  • the senor by transmission it must comprise a portion of the organ or tissue to be analyzed between its emitting and detecting elements, so that the emitting element or elements will illuminate said portion with optical radiation of the different wavelengths and the or The detecting elements will collect the light of the same wavelengths that said organ or tissue has passed through and which will vary according to the physiological state determined by the parameter to be measured with the sensor.
  • the very nature of the emitting and detecting elements does not determine which is the configuration of the sensor, since although emitting elements may occur or detectors more suitable for one or another configuration, it is possible to perform any of them using emitting elements and detectors of the same nature.
  • an emitting element can be part of a sensor at the same time by reflection or by transmission, depending on the relative arrangement of the detector element with respect to it.
  • a detector element can be part of a sensor at the same time by reflection or by transmission, depending on the relative arrangement of the emitting element with respect to it.
  • a particular embodiment of the present invention consists of a probe that combines a sensor by reflection and transmission with common elements, resulting in the hybrid configuration shown in Figures 7 and 8.
  • At least one of the support pieces It couples emitting and detecting elements on the same flat surface, adopting the configuration by reflection and the other support piece engages at least one detector facing said emitting elements so that the sensor adopts the configuration by transmission. Therefore, in this case, the emitting elements are part of both the reflection and transmission sensors and their application to one or the other will depend on the electronic control. In other possible configurations each support piece can couple a combination of emitting and detecting elements so that all of them can form sensor configurations by reflection and transmission.
  • the use of emitters with multiple wavelengths, as well as the arrangement of the detectors with respect to the emitters (multiple distances and geometries) allow the differential and integral analysis of different areas of organs and / or tissues.
  • the clock and control phase generates different firing pulses, some aimed at a power phase to activate each of the transmitters (AE1, AE2, AE3, AE4), and others aimed at the amplification, sampling and retention phase (MR1 , MR2, MR3, MR4) of the signals registered by the detector or detectors (D), previously pre-amplified and amplified by the corresponding electronic circuits.
  • the activation of each of the transmitters is synchronized to occur with a time lag between them and at the same time it is synchronized with the different channels or circuits of sampling and retention. This synchronization makes it possible to distinguish at all times to which transmitter (and therefore to which wavelength) a specific signal collected by a detector corresponds.
  • the number of channels will be equal to the product of the number of emitters emitting at different wavelengths by the number of independent detectors.
  • the number of channels is equal to that of transmitters (four), as a single detector or several detectors are used that act as one only when they are connected in parallel.
  • the number of channels will be double the number of emitting elements.
  • the number of channels will be increased according to the product of the number of detectors by the number of emitters.
  • the analog signals conveniently separated on independent channels pass to the analog inputs (EA1, EA2, EA3, EA4) of a electronic circuit for analog-digital conversion.
  • said circuit is a data acquisition card that can be inserted or connected to a computer, which stores the digital signals and processes them through programs based on the appropriate algorithms, to generate a graphical representation useful for monitoring the desired physiological parameter.
  • the specific algorithms for obtaining and monitoring parameters of interest obtained by photoplethysmography and pulse oximetry are aimed at eliminating noise and artifacts caused by movement due to the manipulations that the surgeon must perform during the intervention or to their own organ movements
  • the preferred objective is to provide direct and real-time measurements of the parameters related to perfusion and blood oxygenation, in particular the heart rate or rhythm or pulse by means of photoplethysmography and / or oxygen saturation by means of pulse oximetry.
  • the pulsatile frequency is obtained, in principle from any emitting channel, although depending on the organ or tissue some wavelengths may be more sensitive than others. Applying the principles of pulse oximetry, from these same photoplethysmographic signals we can obtain the oxygen saturation values of the organs or tissues explored, provided that the signals originating in at least two different wavelengths are considered in accordance with the principles stated previously.
  • the present invention in its particular embodiment as an endoscopic pulse oximeter, allows the operator in the course of a surgical intervention (for example, in a transplant or implant) to check directly and instantaneously if the intervened organ or tissue is adequately receiving the blood from the patient (measurement of the pulsatile level), and / or if there is an adequate exchange of oxygen in the organ or tissue (measurement of oxygen saturation). It can also be useful to assess the extent to which a tissue or organ must be sacrificed to the time to remove, it is possible to make comparisons of the determinations in organs, tissues or healthy areas with respect to those made in the damaged, carcinogenic or with necrosis. These important measures allow the surgeon to assess "in situ" the situation of the tissue or organ, before concluding the surgical intervention, which is undoubtedly an aid to achieve the success of the intervention.
  • FIG. 1 Diagram of three configurations of the device of the invention.
  • the device consists of a probe or hollow tube (1), which is introduced through a trocar (2) coupled to the surgical incision and which at its front end has one or several opto-electronic sensors. These sensors are mounted on a flat surface made in the same tube (3a in Figure 1A) or on the flat surface of a moving part (3b in Figures 1 B and 1C) that can rotate thanks to a shaft attached to the tube and that it can be faced with another similar piece, so that it forms a clamp (Figure 1C), being able to find elements of the sensor only in one of said pieces, which make up the arms or fingers of said clamp, or in both arms or fingers, according to the desired configuration.
  • the manipulation of the probe allows the placement of the sensors with respect to the organ or tissue to be analyzed (4).
  • the sensors have connection cables that go through the inside of the probe and exit through its back (5) to connect with the power and control electronics.
  • the device optionally presents a series of thickening on the back of the tube that serves as a handle (6a in Figure 1A) or handles (6b in Figures 1 B and 1C).
  • the handles also allow controlling the movement of the part or parts that support the sensor or sensors.
  • FIG. 2 Diagram of the device with the sensor by reflection, mounted on a rigid probe.
  • the anterior and posterior ends of the device seen from above (A) and laterally (B) are shown.
  • the front end of the tube of the probe is modified to present a smooth surface (1) on which the sensor is located, which consists of four emitting elements (2, 3, 4 and 5) that can each emit light in a different wavelength and two detector elements (6), the different elements having cable connections (7) that go inside the tube of the probe (8).
  • In the back of said probe there is one or several thickening that serve as a handle (9).
  • the connection cables (7) of the elements of the optical sensor to the power and control electronics come out.
  • Figure 3 Diagram of the device with the sensor by reflection, mounted on a piece of variable angle.
  • the front end of the probe is shown, with view (A) of the rear face and (B) of the front face of the moving part (1) that accommodates the sensor; and side views, the piece that accommodates it aligned (C) or forming an angle (D) with respect to the longitudinal axis of the tube (2) of the probe.
  • This piece can rotate thanks to its coupling by an axis (3) transverse to the longitudinal axis of the probe.
  • the sensor elements are coupled on the inner surface (4) of said part, and are similar to those represented in Figure 2: four emitting elements (5, 6, 7 and 8) and two detecting elements (9), having the different elements connections by cables (10) that go inside the tube of the probe, generally grouped within a common tubular envelope (11).
  • Figure 4 Diagram of the device with the sensor by reflection, mounted on a piece of variable angle that is part of a gripper.
  • the front end of the tube of the probe is shown, with view (A) of the outer face (1) of any of the pieces that form the fingers of the clamp; (B) of the inner face (2) of the finger that does not accommodate the sensor; (C) of the inner face (3) of the finger that accommodates the sensor; and side views, the fingers being aligned (D) or forming an angle (E) to each other.
  • These fingers can rotate thanks to their coupling to the tube (4) of the probe by an axis (5) transverse to the longitudinal axis of said tube.
  • the sensor elements are coupled on the inner surface (3) of one of the fingers of the clip, and are similar to those shown in Figures 2 and 3: four emitting elements (6, 7, 8 and 9) and two elements detectors (10), the different elements having cable connections (11) that go inside the tube of the probe, generally grouped within a common tubular envelope (12).
  • Figure 5 Diagram of the device with the sensor in configuration for transmission, mounted on the fingers of a clamp. The anterior end of the tube of the probe is shown, with views (A) of the outer face
  • the front end of the tube of the probe is shown, with views (A) of the outer face (1) of any of the pieces that form the fingers of the clamp; (B) of the inner face (2) of the finger that accommodates the sensor sensing element in transmission configuration; (C) of the inner face (3) of the finger that accommodates the emitting elements for the reflection and transmission configuration and the detecting elements for the reflection configuration; and lateral, the fingers (D) being aligned or (E) forming an angle to each other.
  • These fingers can rotate thanks to their coupling to the tube of the probe (4) by an axis (5) transverse to the longitudinal axis of said tube.
  • the surface of one of the fingers (2) houses a single detector element (6) for the transmission configuration while the surface of the other finger (3) houses four emitting elements (7, 8, 9 and 10) that serve for the configuration by transmission when they work synchronously with the detector element that is in the opposite position on the other finger (6) and for the configuration by reflection when they work synchronously with the two detector elements (11) that are on the same surface as said emitting elements .
  • the different elements have cable connections (12) that go inside the tube of the probe, generally grouped within a common tubular envelope (13).
  • FIG 7 Diagram of the device with the sensor in hybrid configuration, mounted on the fingers of a parallel opening clamp. Two side views of the device similar to that described in Figure 6 are shown except that the fingers of the clip each contain a transverse axis (1) to its opening plane. In this way, the opening of the clamp rotating on the axis (2) that joins the tube of the probe allows the surfaces that house the sensor elements - four emitting elements of which two (3 and 4) can be seen in the side view, and three sensing elements, one that acts for Ia configuration by transmission (5) and two for the configuration by reflection (6) - be kept in spatial planes parallel to that defined by the longitudinal axes of the tube of the probe and the opening axes of the clamp, which optimizes its placement with respect to the organ or tissue, and the temporary fixation on it.
  • Figure 8 Photographs of embodiments of the device of the invention.
  • A rigid probe in reflection configuration
  • B probe with variable angle piece that couples a sensor by reflection, top view of the inner face of said piece, coupling the sensor
  • C and D side views of the same piece aligned with the axis of the device tube (C) or at an angle with respect to said axis of the tube (D);
  • E and F side views of probe with clamp that incorporates in one of its fingers a sensor in reflection configuration, in closed position (E) and open (F).
  • E open
  • four emitting LEDs with infrared wavelength emissions are used as emitting elements and, as detecting elements, two silicon p-i-n photodiodes.
  • Figure G view of the probe head incorporating a sensor in reflection configuration with 4 laser diodes and a silicon photodiode.
  • FIG. 9 Diagram of the feeding and control system of the device of the invention.
  • the sensor consists of 4 emitting elements (E1, E2, E3, E4) and a detector element (D).
  • Each emitter element has its corresponding power supply phase for activation (AE1, AE2, AE3, AE4).
  • Another phase controls the retention and sampling of signals by components MR1, MR2, MR3 and MR4, which collect the signals generated by the detector, previously amplified.
  • Both phases are coordinated thanks to the clock and control circuit so that the analog signals generated by the detector are separated into independent channels (in this case, when there is only one detector, one channel for each of the transmitters with different wavelength) and pass to the analog inputs (EA1, EA2, EA3 and EA4) of the data acquisition card, which in turn transmits the digital signals to the computer.
  • the analog signals generated by the detector are separated into independent channels (in this case, when there is only one detector, one channel for each of the transmitters with different wavelength) and pass to the analog inputs (EA1, EA2, EA3 and EA4) of the data acquisition card, which in turn transmits the digital signals to the computer.
  • Figure 10 Application of the device of the invention to different organs of the abdominal cavity of a pig.
  • a laparoscopic surgical operation was performed on a pig and the rigid probe was used in reflex configuration.
  • the sensor consisted of four LEDs as emitters and a silicon photodiode as a detector and was as a whole protected by a plastic sheath.
  • the device was applied to the measurement of the pulse constants and oxygen saturation in the gastroepiploic artery (A), the liver (B), the intestine (C) and the abdominal wall (D).
  • the invention Photoplethysmograms obtained with the device of the invention are shown acting as a pulse oximeter during a laparoscopic surgical operation performed on a pig.
  • the device used was a rigid probe with a reflection sensor, said sensor consisting of four LEDs as emitters (in this case emitting radiation with near-infrared wavelengths, LEDniri, LEDnir2, LEDnir3 and LEDnir4) and a silicon photodiode as detector.
  • the data shown correspond to those obtained for the gastroepiploic artery at baseline.
  • Graph A shows the intensity in volts of the electronic signal obtained during a determination of 10 seconds duration.
  • Graph B shows the representation of the pulse values obtained from the photoplethysmograms shown in Figure A after processing.
  • the average pulse value was 117 pulses per minute in all cases, being very similar to that of the heart rate determined by electrocardiography (118 beats per minute). In addition, the variability of said value was practically zero, given that the standard deviation was 0 (zero), demonstrating the effectiveness of the application of the device.
  • Example 1 Rigid probe with reflection sensor.
  • the optical sensor consists of four emitters (2 to 5, in this example four individualized LEDs in surface mount encapsulation) and two detectors (6, in this example two silicon pin photodiodes, also surface mount).
  • the device shown in Figure 8A four LEDs with emissions in near-infrared wavelengths are used and as detectors two BPW34S silicon pin photodiodes.
  • the set of emitting and detecting elements is mounted on the modified end of the cylindrical tube that constitutes the main body of the probe (8), so that it offers a flat surface for assembly of these elements.
  • FIG. 1A shows an example of application of this probe, in which it is introduced into the abdominal cavity through the hole of a trocar (2) that crosses the abdominal wall. The characteristics of the probe allow its manipulation with the handle (6a) and reach the organ or tissue (4) for monitoring, placing the sensor on it.
  • a second embodiment of the present invention is shown in Figures 1 B, 3 and 8B to 8D.
  • the senor is similar to that described in the previous example: four emitting elements (5 to 8, in this example, four individualized LEDs in surface mount encapsulation) and two detectors and two detectors (9, in this example, two silicon pin photodiodes in encapsulation for surface mounting), connected by cables (10) that go inside a tube that goes inside the tube of the probe (2) and exit at its rear end (11) towards The control electronics.
  • this sensor is placed on a flat surface (4) inside an elongated part (1) with variable application angle thanks to the fact that it joins the main body of the tube of the probe (2) by an axis (3).
  • the rotational movement of this piece (1) on said axis (3) can be controlled thanks to a mechanism at the rear end of the probe.
  • this mechanism consists of handles (6b) that allow to exert a traction movement transmitted to said piece (1) by the tube (11) that contains the cables and that is housed inside the tube of the probe (2), allowing to vary its angle as the handles are actuated.
  • the variation of the angle that forms the support piece of the sensor allows to improve the coupling of the optical sensor with the analyzed medium.
  • FIG 1 B an example of application of this probe is shown, in which it is introduced into the abdominal cavity through the hole of a trocar (2) that crosses the abdominal wall.
  • the characteristics of the probe allow its manipulation with the handle (6b) and reach the organ or tissue (4) for monitoring, placing the sensor on it in an optimal way, which results in a better determination while reducing the manipulation to be exerted on said organ or tissue.
  • Example 3. Probe with reflection sensor coupled to a clamp.
  • the third embodiment of the present invention is shown in Figures 4, 8E and 8F.
  • the senor is similar to that described in the previous examples: four emitters (6 to 9, in this example, four individualized LEDs in surface mount encapsulation) and two detectors (10, in this example, two silicon pin photodiodes in encapsulation for surface mounting), connected by cables (11) that go inside a tube that goes inside the tube of the probe (4) and leave at its rear end (12) towards the control electronics .
  • this sensor is placed on a flat surface (3) inside an elongated piece with variable application angle (Figure 5D) thanks to the fact that it joins the main body of the tube of the probe by an axis (5).
  • this piece is facing a similar one that is capable of varying its angle on the same axis or on a parallel one, so that each of these pieces is constituted in the finger of a clamp with variable angle opening .
  • This embodiment allows the probe to be positioned and temporarily fixed in a certain area of the organ or tissue provided that it can be understood between both fingers, which makes it easier to ensure that all determinations over time are carried out in The same area.
  • the manipulation mechanism can be identical to the previous embodiment, although the handles can control the opening of both pieces.
  • Example 4 Probe with transmission sensor coupled to a clamp.
  • the fourth embodiment of the present invention is shown in Figure 1C and 5.
  • the sensor is coupled on the flat and inner surfaces (2 and 3) of the fingers of a clamp similar to Ia of the previous example, but unlike that, one of said fingers contains the emitting elements (7 to 10, in this example, four individualized LEDs in surface mounted encapsulation) and a detector element (6), while the previous example It contains two detectors (10, two silicon pin photodiodes in encapsulation for surface mounting). Both groups of elements must be fixed to the fingers of the clamp so that they are facing each other when the clamp is closed.
  • Example 5. Probe with hybrid sensor (combination of sensor by transmission and reflection) coupled in a clamp.
  • the fifth embodiment of the present invention is shown in Figures 6 and 7.
  • the clip houses a detector element (6) on the flat surface of the interior of one of its fingers and in The corresponding flat surface of the other finger, and facing said detector element, a sensor is set by full reflection, in which, as in the examples of embodiments 1 to 3, the emitting elements (7 to 10, in the Illustrated example four individualized LEDs in surface mount encapsulation) and the detectors (11, in the illustrated example, two silicon pin photodiodes) are located on the same flat surface.
  • the emitting elements must face the detector of the other finger of the clamp, so that they can act both for the determination by reflection, in which case the signal is detected by the detectors (11) placed on the same surface, as by transmission, in which case the signal is detected by the detector that is located on the inner surface of the other finger of the clip (6).
  • each of the fingers of the clip contains a second axis (1) parallel to the common axis of both (2), which allows the surfaces that house the sensor elements (3 to 6) are better facing each other, facilitating on the one hand the manipulation and, if necessary, keeping the sensors fixed over a certain area during the different measurements over time and, on the other , the confrontation of the sensor elements by transmission to optimize said measurements.
  • the parallel opening clamp shown in Figure 7 can only house one of the two configurations, by reflection or by transmission, similar to the examples shown in Figures 4 and 5, respectively.
  • a probe with reflection sensor with parallel displacement can be modified and turned out for application on the organ, analogously to the example of reflection sensor with variable application angle (Figure 3).
  • Example 6 Determination of physiological parameters using the device of the invention.
  • Several laparoscopic surgical operations were performed in pigs, following the guidelines of Royal Decree 1201/2005 on the protection of animals used for experimentation and other scientific purposes.
  • photoplethysmographic and pulse oximetric measurements were made in different areas of the gastroepiploic artery (Figure 10A), liver ( Figure 10B), intestine (Figure 10C) and abdominal wall (Figure 10D).
  • the pigs were then subjected to selective vascular occlusion of arterial and venous territories at decreasing inspiratory oxygen concentrations (02) (100%, 66%, 33% and 17%).
  • the processing of the signals obtained by the device acting as a laparoscopic pulse oximeter allows to obtain pulse and oxygen saturation values.
  • the measurement in the gastroepiploic artery of a pig in basal state using for each of the 4 LED emitters of the sensor a wavelength in the near infrared (denominated nir1, nir2, nir3 and nir4) carried out over 10 seconds originated the electronic signals shown in Figure 11A.
  • These signals once processed, allowed to obtain the pulse values in beats per minute (ppm) shown in Figure 11 B, their average values and standard deviations.
  • the heart rate value in beats per minute
  • the average value of the pulse determined by application of the probe was in all cases 117 beats per minute (very similar to the heart rate determined by electrocardiography, which was 118 beats per minute) and that of the standard deviation was 0 (zero ), demonstrating the effectiveness of the application of the device.

Abstract

The invention is an endoscope in which the tubular probe comprises, at the end inserted into the patient, one or more opto-electronic sensors that detect optical signals associated with a parameter of the physiological activity of the organs, tissues and/or specific regions thereof, and that produce electrical signals in proportion to the value of said parameter. The sensors comprise electronic elements that emit optical radiation in specific wavelengths and electronic elements that detect said radiation. The distinct spatial arrangement of the elements in the probe allows measurement of the amount of radiation at a given wavelength that the organ, tissue or region thereof reflects (when operating in reflection mode) or that is transmitted therethrough (when operating in transmission mode), or a combination thereof. The electronic elements of the sensors may be arranged so as to be stationary in the probe or may be arranged in the form of moving parts with a view to optimizing the use thereof.

Description

TITULO DE LA INVENCIÓN TITLE OF THE INVENTION
SONDA ENDOSCÓPICA CON SENSOR OPTO-ELECTRÓNICO PARA USO DIAGNÓSTICO Y QUIRÚRGICOENDOSCOPIC PROBE WITH OPTO-ELECTRONIC SENSOR FOR DIAGNOSTIC AND SURGICAL USE
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La invención encuentra aplicación en el ámbito del diagnóstico y Ia cirugía, en particular endoscopia, radiología intervencionista y cirugía laparoscópica, tanto endoscópica como endocavitaria, y en especial en clínica humana, sin excluir Ia veterinaria, y sobre todo, en situaciones en las que se precisa Ia evaluación de órganos y tejidos intracorpóreos de manera poco invasiva, tales como las que se dan en los campos de Ia cirugía convencional, de urgencia y de los trasplantes de órganos, así como en Ia atención de pacientes en situaciones críticas (UCI, UVI, unidades de postoperados, etc).The invention finds application in the field of diagnosis and surgery, in particular endoscopy, interventional radiology and laparoscopic surgery, both endoscopic and endocavitary, and especially in human clinics, without excluding veterinary medicine, and especially in situations in which It requires the evaluation of intracorporeal organs and tissues in a non-invasive manner, such as those that occur in the fields of conventional surgery, emergency and organ transplants, as well as in the care of patients in critical situations (ICU, ICU , postoperated units, etc).
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El desarrollo de Ia endoscopia y Ia video-cirugía (o cirugía mínimamente invasiva) es considerada por muchos como Ia tercera revolución en cirugía, después de Ia anestesia y Ia aplicación de los antibióticos. Los cirujanos realizan este tipo de cirugía en casi cualquier espacio y en cualquier órgano del cuerpo humano, usando cámaras y vídeo-monitores de alta complejidad asociados al instrumental quirúrgico. La técnica consiste en realizar el abordaje adecuado a cada necesidad, introduciendo un gas (habitualmente dióxido de carbono), para crear, con su expansión, una cavidad de trabajo. A través de otros pequeños cortes e incisiones adicionales, a veces en combinación con orificios naturales (por ejemplo, Ia boca o Ia vagina), se introducen un instrumento telescópico unido a una cámara de video o visor óptico (laparoscopio cuando se trabaja en el abdomen) y otros instrumentales quirúrgicos largos y angostos. De este modo, bajo gran magnificación visual y con el mínimo de trauma para el paciente, es posible examinar y operar los órganos dañados o enfermos, incluyendo estómago, intestino, páncreas, bazo, ríñones, vesícula, órganos ginecológicos... Así, actualmente existen procedimientos específicos para el tratamiento con video-cirugía (en adelante cirugía por endoscopia o cirugía endoscópica, considerando que Ia misma comprende toda aquella que usa Ia aproximación descrita anteriormente) de Ia mayoría de las enfermedades. A medida que Ia tecnología vaya mejorando e incorpore nuevos instrumentales quirúrgicos y mejores cámaras y sistemas de videos, las fronteras de Ia cirugía por endoscopia se irán expandiendo. Entre las ventajas que ofrece esta técnica en comparación con Ia cirugía abierta tradicional, se pueden destacar: a) reducción del periodo de recuperación (post-operatorio); b) menor dolor posterior a Ia intervención, por Io que permite a los pacientes levantarse y caminar a las pocas horas; c) disminución de Ia tasa de infección de Ia herida operatoria, debido a que los tejidos internos no son expuestos al aire ambiental, d) Ia video-magnificación permite operar sobre los órganos y/o tejidos afectados en forma más precisa y delicada, sin dañar otros cercanos.The development of endoscopy and video surgery (or minimally invasive surgery) is considered by many to be the third revolution in surgery, after anesthesia and the application of antibiotics. Surgeons perform this type of surgery in almost any space and in any organ of the human body, using highly complex cameras and video monitors associated with surgical instruments. The technique consists in carrying out the appropriate approach to each need, introducing a gas (usually carbon dioxide), to create, with its expansion, a working cavity. Through other small cuts and additional incisions, sometimes in combination with natural holes (for example, the mouth or the vagina), a telescopic instrument is inserted attached to a video camera or optical viewfinder (laparoscope when working on the abdomen ) and other long and narrow surgical instruments. In this way, under great visual magnification and with the minimum trauma for the patient, it is possible to examine and operate the organs damaged or sick, including stomach, intestine, pancreas, spleen, kidneys, gallbladder, gynecological organs ... Thus, there are currently specific procedures for treatment with video surgery (hereinafter endoscopy surgery or endoscopic surgery, considering that it comprises all that uses the approximation described above) of most diseases. As technology improves and incorporates new surgical instruments and better cameras and video systems, the boundaries of endoscopy surgery will expand. Among the advantages offered by this technique compared to traditional open surgery, the following can be highlighted: a) reduction of the recovery period (post-operative); b) less pain after the intervention, which allows patients to get up and walk within a few hours; c) decrease of the infection rate of the operative wound, because the internal tissues are not exposed to the ambient air, d) the video-magnification allows to operate on the affected organs and / or tissues in a more precise and delicate way, without damage others nearby.
Por contra, una de las desventajas principales es que el cirujano pierde información sensorial importante, ya que: a) debe pasar de su visión tridimensional real del campo operatorio a Ia bidimensional a través de un monitor plano donde se muestran las imágenes obtenidas por Ia cámara endoscópica. Esto implica que incluso cirujanos brillantes en cirugía abierta deben realizar entrenamientos especiales para transferir sus habilidades quirúrgicas a Ia cirugía endoscópica, adaptación que requiere mucha práctica; b) Ia percepción de los colores no es real; c) no puede utilizar el tacto para captar ciertas sensaciones, como texturas, palpitaciones débiles, etc. Por ello, la medida de parámetros fisiológicos que les ayuden a suplir estas deficiencias sería particularmente útil. En este sentido, en Ia cirugía abierta y en Ia endoscópica, así como en Ia atención hospitalaria se usan técnicas invasivas y no invasivas para obtener esta información. Dentro de las últimas son de uso generalizado Ia electrocardiografía, Ia capnometría, (medición del dióxido de carbono en Ia vía aérea de un paciente durante su ciclo respiratorio), capnografía (medida de este dióxido de carbono en función del tiempo), el análisis volumétrico y de presiones ventilatorias, ecografía (en Ia que se forman imágenes de los órganos internos por aplicación externa de ultrasonidos y análisis de los reflejados), etc.On the other hand, one of the main disadvantages is that the surgeon loses important sensory information, since: a) he must pass from his real three-dimensional vision of the operative field to the two-dimensional one through a flat monitor where the images obtained by the camera are shown endoscopic This implies that even bright surgeons in open surgery must perform special training to transfer their surgical skills to endoscopic surgery, an adaptation that requires a lot of practice; b) the perception of colors is not real; c) you cannot use touch to capture certain sensations, such as textures, weak palpitations, etc. Therefore, the measurement of physiological parameters that help them to overcome these deficiencies would be particularly useful. In this sense, in open and endoscopic surgery, as well as in hospital care, invasive and non-invasive techniques are used to obtain this information. Within the latter, electrocardiography, capnometry, (measurement of carbon dioxide in the airway of a patient during their respiratory cycle), capnography (measurement of this carbon dioxide as a function of time), volumetric analysis are widely used. and of ventilatory pressures, ultrasound (in which images of the internal organs are formed by external application of ultrasound and analysis of the reflected ones), etc.
En los últimos años se han desarrollado en particular Ia fotopletismografía y Ia oximetría de pulso (o pulsioximetría), técnicas utilizadas habitualmente para monitorizar de manera no invasiva e incruenta Ia frecuencia cardiaca y el grado de oxigenación en Ia sangre. La fotopletismografía es una técnica basada en Ia aplicación de una radiación óptica a un órgano o tejido, originándose, tras su interacción con estos últimos, una señal proporcional a los cambios en el volumen sanguíneo, por Io que es un método simple y útil para medir Ia componente pulsátil del latido del corazón y evaluar Ia circulación sanguínea.In recent years, photoplethysmography and pulse oximetry (or pulse oximetry) have been developed in particular, techniques commonly used to monitor the heart rate and the degree of oxygenation in the blood in a non-invasive manner. Photoplethysmography is a technique based on the application of optical radiation to an organ or tissue, originating, after its interaction with the latter, a signal proportional to changes in blood volume, so it is a simple and useful method to measure The pulsatile component of the heartbeat and evaluate the blood circulation.
En el caso de Ia oximetría de pulso, se determina el grado de oxigenación midiendo Ia radiación óptica reflejada o transmitida por el órgano analizado en dos o más longitudes de onda. En esta técnica se asume que Ia señal fotopletismográfica variable en el tiempo es causada únicamente por los cambios en el volumen de Ia sangre arterial asociados a Ia acción de bombeo del corazón, y por tanto, al ciclo cardiaco y que sólo dos derivados de Ia hemoglobina, Ia hemoglobina unida al oxígeno (oxihemoglobina o HbO2) y Ia no unida al mismo (des-oxihemoglobina o RHb) absorben parte de Ia radiación óptica aplicada. Por ello es necesario - A -In the case of pulse oximetry, the degree of oxygenation is determined by measuring the optical radiation reflected or transmitted by the analyzed organ in two or more wavelengths. In this technique it is assumed that the time-varying photoplethysmographic signal is caused only by changes in the volume of arterial blood associated with the pumping action of the heart, and therefore, to the cardiac cycle and that only two derivatives of hemoglobin , The oxygen bound hemoglobin (oxyhemoglobin or HbO2) and the non-bound hemoglobin (de-oxyhemoglobin or RHb) absorb part of the applied optical radiation. Therefore it is necessary - TO -
que, en al menos una de las dos longitudes de onda, las absorciones específicas de Ia HbO2 y Ia RHb sean diferentes.that, at least one of the two wavelengths, the specific absorptions of HbO2 and RHb are different.
La mayoría de los oxímetros de pulso emplean como fuentes de Ia radiación óptica diodos electroluminiscentes (Light Emitting Diodes, LEDs) con emisiones en las zonas de 630-660 nm y 880-940 nm. Ejemplos de dichos oxímetros se encuentran descritos en los documentos US Patent 4,167,331 , US Patent 4,407,290, US Patent 5,203,329, WO/1995/012349, y WO/1996/028085, entre otros. El uso de diodos láser como fuentes de dicha radiación es también posible, tal y como se describe en los documentos de patente US Patent 5,318,022, WO/1996/041566, WO/1997/049330 y US Patent 6,253,097, entre otros.The majority of the pulse oximeters use as sources of the optical radiation electroluminescent diodes (Light Emitting Diodes, LEDs) with emissions in the zones of 630-660 nm and 880-940 nm. Examples of such oximeters are described in US Patent 4,167,331, US Patent 4,407,290, US Patent 5,203,329, WO / 1995/012349, and WO / 1996/028085, among others. The use of laser diodes as sources of such radiation is also possible, as described in US Patent 5,318,022, WO / 1996/041566, WO / 1997/049330 and US Patent 6,253,097, among others.
En cualquier caso, Ia saturación de oxígeno en el tejido se calcula, tras obtener en cada una de las longitudes de onda donde se determina dicha saturación, el valor del cociente entre el componente pulsátil de Ia señal fotopletismográfica y el correspondiente componente constante. La estimación del valor del componente pulsátil es Ia fase más crítica en cualquier algoritmo de procesamiento de las medidas obtenidas por el oxímetro de pulso. Se han propuesto diferentes aproximaciones para desarrollar dichos algoritmos, con el objetivo de eliminar los efectos del "ruido" implícito en toda determinación y los errores que pueden generarse, bien por las diferentes manipulaciones que el cirujano debe realizar durante Ia intervención, bien por los propios movimientos del instrumento y/o del órgano analizado, manteniendo a Ia vez Ia capacidad de detectar señales de distinta intensidad. Un ejemplo de realización de uno de estos algoritmos se encuentra en el documento de patente P200501425, "Método para procesar señales fotopletismográficas obtenidas de una persona o animal, y oxímetro que utiliza dicho método".In any case, the oxygen saturation in the tissue is calculated, after obtaining in each of the wavelengths where said saturation is determined, the quotient value between the pulsatile component of the photoplethysmographic signal and the corresponding constant component. The estimation of the value of the pulsatile component is the most critical phase in any algorithm for processing the measurements obtained by the pulse oximeter. Different approaches have been proposed to develop these algorithms, with the aim of eliminating the effects of the "noise" implicit in any determination and the errors that may be generated, either by the different manipulations that the surgeon must perform during the intervention, or by the own movements of the instrument and / or the organ analyzed, while maintaining the ability to detect signals of different intensity. An exemplary embodiment of one of these algorithms is found in patent document P200501425, "Method for processing photoplethysmographic signals obtained from a person or animal, and an oximeter using said method".
De manera general, en los sensores para fotopletismog rafia y oximetría de pulso, Ia disposición de sus elementos emisores y detectores de Ia radiación óptica con respecto al medio (órgano o tejido) analizado varía según se deba medir Ia radiación reflejada por dicho medio o Ia transmitida a su través. Cada una de estas configuraciones presenta ventajas y desventajas. En principio, los sensores por reflexión pueden colocarse sobre cualquier superficie vascularizada pulsátil, pero Ia señal por reflexión es más débil que Ia señal por transmisión y está sujeta a errores debidos a Ia dispersión en el tejido, a Ia reflexión especular debida a Ia capa superficial del tejido y a un cierto "cortocircuito" de Ia señal ("shunting") producido entre el elemento emisor y el detector. A su vez los sensores por transmisión deben ser colocados en Ia partes del cuerpo que puedan acomodar sus elementos emisor(es) y detector(es) enfrentados entre sí, como es el caso de los dedos, lóbulo de Ia oreja, puente de Ia nariz, con el inconveniente de que estas son zonas periféricas y muy específicas. Por ello, aunque Ia práctica más extendida es el uso de oxímetros de pulso en estas zonas, en Ia práctica de Ia cirugía se presenta Ia desventaja de que existen procesos morbosos relacionados con Ia perfusión sanguínea y Ia oxigenación de los tejidos, que afectan selectivamente a determinados órganos o tejidos sin repercusión significativa en el grado de oxigenación periférica determinable en dichas zonas. Tal situación ocurre en los casos de isquemia o trombosis mesentérica, que frecuentemente son causa de cirugía urgente. La medición incruenta, directa e inmediata, del grado de perfusión y/o de oxigenación de órganos o tejidos sin alterar su estado mediante fotopletismog rafia y/o pulsioximetría, sería de gran ayuda para el cirujano a Ia hora de valorar el estado de un órgano o tejido, realizar un diagnóstico más exacto, topografiar las lesiones y, consecuentemente, establecer una valoración más precisa y un tratamiento más eficaz. Lo mismo ocurre en el caso de valoración de técnicas de revascularización, tanto de homoinjertos (autoinjertos en cirugía reconstructiva) como de aloinjertos (trasplantes de órganos vascularizados: hígado, riñon, páncreas, etc.).In general, in the sensors for photoplethism raffia and pulse oximetry, the arrangement of its emitting and detecting elements of the optical radiation with respect to the analyzed medium (organ or tissue) varies as the radiation reflected by said means or Ia must be measured. transmitted through. Each of these configurations has advantages and disadvantages. In principle, the reflection sensors can be placed on any pulsatile vascularized surface, but the reflection signal is weaker than the transmission signal and is subject to errors due to the dispersion in the tissue, the specular reflection due to the surface layer of the tissue and a certain "short circuit" of the signal ("shunting") produced between the emitting element and the detector. In turn, the transmission sensors must be placed in the parts of the body that can accommodate their emitter (s) and detector (s) elements facing each other, as is the case of the fingers, ear lobe, bridge of the nose , with the disadvantage that these are peripheral and very specific areas. Therefore, although the most widespread practice is the use of pulse oximeters in these areas, in the practice of surgery there is a disadvantage that there are morbid processes related to blood perfusion and oxygenation of tissues, which selectively affect certain organs or tissues without significant impact on the degree of peripheral oxygenation determinable in these areas. Such a situation occurs in cases of ischemia or mesenteric thrombosis, which are often the cause of urgent surgery. The direct and immediate bloodless measurement of the degree of perfusion and / or oxygenation of organs or tissues without altering their status by photoplethysm raffia and / or pulse oximetry would be of great help to the surgeon when assessing the state of an organ or tissue, make a more accurate diagnosis, survey the lesions and, consequently, establish a more accurate assessment and a more effective treatment. The same applies to the evaluation of revascularization techniques, both of homografts (autografts in reconstructive surgery) and allografts (transplants of vascularized organs: liver, kidney, pancreas, etc.).
A pesar de todos los avances en los oxímetros de pulso, actualmente no es posible medir fiablemente Ia saturación de oxígeno en tejidos y órganos intraperitoneales (estómago, hígado, gran parte del intestino, bazo, útero, trompas de Falopio, ovarios) con los dispositivos disponibles, y en particular no es posible realizar esta determinación mediante técnicas endoscópicas. En el artículo "Assessment of photoplethysmographic signáis for the determination of splanchnic oxygen saturation in humans" (AJ. Crerar-Gilbert et al., Anaesthesia, 2002, 57: 442-445) se describe Ia evaluación de señales fotopletismográficas registradas con un sensor por reflexión en intestino, hígado y riñon. Posteriormente se ha aplicado Ia fotopletismografía por transmisión en órganos intraperitoneales de animales en una intervención quirúrgica abierta (no endoscópica), utilizando un sistema basado en dos diodos láser ("Transmittance photoplethysmography with near-infrared láser diodes in intra-peritoneal organs". S. M. López-Silva et al. Physiological Measurement. 2006. 27: 1033-1045). No obstante Io anterior, no existen métodos, técnicas e instrumental destinados a determinar parámetros fisiológicos "in situ" e "in vivo" en los órganos y/o tejidos mediante aplicación de sensores de tipo endoscópico.Despite all the advances in pulse oximeters, it is currently not possible to reliably measure oxygen saturation in intraperitoneal tissues and organs (stomach, liver, much of the intestine, spleen, uterus, fallopian tubes, ovaries) with the available devices, and in particular it is not possible to perform this determination by endoscopic techniques. The article "Assessment of photoplethysmographic sign for the determination of splanchnic oxygen saturation in humans" (AJ. Crerar-Gilbert et al., Anaesthesia, 2002, 57: 442-445) describes the evaluation of photoplethysmographic signals registered with a sensor by Reflection in intestine, liver and kidney. Subsequently, transmission photoplethysmography was applied to intraperitoneal organs of animals in an open (non-endoscopic) surgical procedure, using a system based on two laser diodes ("Transmittance photoplethysmography with near-infrared laser diodes in intra-peritoneal organs". SM López -Silva et al. Physiological Measurement. 2006. 27: 1033-1045). Notwithstanding the foregoing, there are no methods, techniques and instruments intended to determine "in situ" and "in vivo" physiological parameters in organs and / or tissues through the application of endoscopic sensors.
La presente invención combina un sensor compuesto por elementos emisores de luz y elementos fotodetectores diseñado para poder desarrollar medidas basadas en Ia reflexión y/o Ia transmisión de Ia señal luminosa por un órgano o tejido dado con instrumental de cirugía por endoscopia.The present invention combines a sensor composed of light emitting elements and photodetector elements designed to be able to develop measures based on the reflection and / or the transmission of the light signal by a given organ or tissue with endoscopy surgical instruments.
DESCRIPCIÓN DE LA INVENCIÓN Descripción breve Esta invención consiste en un dispositivo que comprende una sonda para endoscopia que incorpora en el extremo anterior que se introduce en Ia cavidad practicada al paciente al menos un sensor capaz de detectar señales ópticas asociadas a parámetros biológicos. En una realización particular de esta invención dicho sensor o sensores son apropiados para Ia aplicación de los principios de Ia fotopletismografía y pulsioximetría y de otros cualesquiera basados en Ia emisión de una señal óptica y Ia recepción de Ia señal reflejada o transmitida a través de un órgano o tejido dado. Este dispositivo puede incorporar los mecanismos adecuados para colocar, fijar y orientar el sensor y optimizar así Ia relación señal-ruido de Ia medida. De manera preferente Ia invención se completa con un módulo externo que incluye Ia electrónica de control y alimentación del sensor, y de amplificación, muestreo y retención de señales. El sensor puede estar conectado al módulo externo bien por cables, bien de modo inalámbrico. En este último caso Ia sonda incorpora los correspondientes circuitos de transmisión-recepción inalámbrica así como Ia alimentación de éstos y los sensores mediante baterías. Las señales medidas se transfieren a un equipo informático, donde son procesadas con programas informáticos que son implementaciones de algoritmos adecuados para poder ser mostradas, representadas y/o almacenadas como datos útiles para el operador.DESCRIPTION OF THE INVENTION Brief Description This invention consists of a device comprising a probe for endoscopy that incorporates at least one sensor into the cavity made at the patient, capable of detecting optical signals associated with biological parameters. In a particular embodiment of this invention said sensor or sensors are suitable for the application of the principles of photoplethysmography and pulse oximetry and any other based on the emission of an optical signal and Ia reception of the signal reflected or transmitted through a given organ or tissue. This device can incorporate the appropriate mechanisms to place, fix and orient the sensor and thus optimize the signal-to-noise ratio of the measurement. Preferably, the invention is completed with an external module that includes the electronic control and power supply of the sensor, and amplification, sampling and signal retention. The sensor can be connected to the external module either by cables, or wirelessly. In the latter case, the probe incorporates the corresponding wireless transmission-reception circuits as well as the power supply of these and the sensors by means of batteries. The measured signals are transferred to a computer equipment, where they are processed with computer programs that are implementations of suitable algorithms to be able to be displayed, represented and / or stored as useful data for the operator.
Descripción detalladaDetailed description
La presente invención se basa en Ia incorporación de un sensor en un instrumento de endoscopia, Io que permite aprovechar las prestaciones del mismo en procedimientos exploratorios, pero especialmente en los quirúrgicos (laparoscópicos, toracoscópicos, neuroscópicos, endovasculares, endocavitarios, etc.) y lograr Ia adecuada colocación, orientación, e inclusive, fijación de dicho sensor sobre el órgano o tejido a analizar, garantizando una correcta recepción de las señales y optimizándose Ia relación señal-ruido, con el fin de medir y presentar determinados parámetros biológicos. Este dispositivo dota al cirujano y a su equipo quirúrgico de un aparato que Ie proporciona el valor, en tiempo real, de Ia medida de parámetros vitales de los órganos y tejidos que están siendo explorados y/o intervenidos.The present invention is based on the incorporation of a sensor in an endoscopy instrument, which makes it possible to take advantage of its benefits in exploratory procedures, but especially in surgical procedures (laparoscopic, thoracoscopic, neuroscopic, endovascular, endocavitary, etc.) and achieve The adequate placement, orientation, and even, fixation of said sensor on the organ or tissue to be analyzed, guaranteeing a correct reception of the signals and optimizing the signal-to-noise ratio, in order to measure and present certain biological parameters. This device provides the surgeon and his surgical team with an apparatus that provides the value, in real time, of the measurement of vital parameters of the organs and tissues that are being explored and / or intervened.
En una realización particular de Ia presente invención el dispositivo permite aplicar los principios de Ia fotopletismografía y pulsioximetría y determinar por tanto el pulso y Ia saturación de oxígeno en órganos o tejidos cuya irrigación sanguínea es variable en el tiempo. Las ventajas de este dispositivo son a) su aplicabilidad "in situ", proporcionando Ia medida requerida al instante; b) el posible daño a los órganos o tejidos intervenidos es mínimo, porque su interacción con los mismos es prácticamente nula, al basarse en propiedades de Ia transmisión o reflexión por parte de los mismos; c) diseño sencillo y funcional; d) los elementos que componen el sensor o sensores están disponibles en el mercado a un coste reducido; e) el mantenimiento es simple, requiriendo únicamente una limpieza y esterilización similar a Ia de cualquier instrumental quirúrgico o bien el uso de fundas plásticas transparentes, esterilizadas y biológicamente inertes, disponibles comercialmente y destinadas a su uso con instrumental biomédico ya existente.In a particular embodiment of the present invention, the device allows applying the principles of photoplethysmography and pulse oximetry and therefore determine the pulse and oxygen saturation in organs or tissues whose blood supply is variable over time. The advantages of this device are a) its "in situ" applicability, providing the required measure instantly; b) the possible damage to the intervened organs or tissues is minimal, because their interaction with them is practically null, based on their transmission or reflection properties; c) simple and functional design; d) the elements that make up the sensor or sensors are available in the market at a reduced cost; e) maintenance is simple, requiring only a cleaning and sterilization similar to that of any surgical instrument or the use of transparent, sterilized and biologically inert plastic covers, commercially available and intended for use with existing biomedical instruments.
El dispositivo de Ia invención comprende (Figura 1 ) una sonda cuyo cuerpo principal es un tubo cilindrico hueco (1 ), de cualquier material biológicamente inerte, y en cuyo extremo anterior se encuentran uno o varios sensores opto-electrónicos. Este tubo debe tener una diámetro exterior adecuado para que pueda pasar por el orificio de un trocar (2) acoplado a Ia incisión quirúrgica para evitar su cierre y conducir mejor el instrumental quirúrgico. Generalmente los orificios de dichos trocares tienen un diámetro entre 6 y 10 milímetros. El sensor o sensores van acoplados sobre un extremo del mismo tubo modificado para que ofrezca una superficie plana para su colocación (3a), o bien sobre Ia superficie plana de una o dos piezas (3b) que forman unos dedos o brazos, en el que al menos uno irá unido al tubo por un eje perpendicular al eje de dicho tubo, para que dicho dedo o dedos puedan girar sobre dicho eje o ejes perpendiculares, formando así una pinza en el caso de tratarse de dos dedos o brazos (3b en Ia Figura 1C). Dicha pinza puede a su vez encontrarse modificada para optimizar Ia manipulación del órgano o tejido y Ia colocación del sensor respecto al mismo. Así por ejemplo, uno o dos de dichos dedos puede contener un eje transversal al plano definido por su ángulo de apertura, de manera que al realizarse dicha apertura, el sensor o sensores se encuentren mejor posicionados respecto al órgano o tejido (4) y/o entre sí (un ejemplo de dicha modificación se representa en Ia Figura 8).The device of the invention comprises (Figure 1) a probe whose main body is a hollow cylindrical tube (1), of any biologically inert material, and at whose front end there are one or several opto-electronic sensors. This tube must have a suitable outer diameter so that it can pass through the hole of a trocar (2) coupled to the surgical incision to avoid its closure and better conduct the surgical instruments. Generally the holes of said trocars have a diameter between 6 and 10 millimeters. The sensor or sensors are coupled on one end of the same modified tube to offer a flat surface for placement (3a), or on the flat surface of one or two pieces (3b) that form fingers or arms, in which at least one will be attached to the tube by an axis perpendicular to the axis of said tube, so that said finger or fingers can rotate on said axis or perpendicular axes, thus forming a clamp in the case of two fingers or arms (3b in Ia Figure 1C). Said clamp It can in turn be modified to optimize the manipulation of the organ or tissue and the placement of the sensor with respect to it. Thus, for example, one or two of said fingers may contain an axis transverse to the plane defined by its opening angle, so that when said opening is made, the sensor or sensors are better positioned with respect to the organ or tissue (4) and / or each other (an example of said modification is represented in Figure 8).
El diámetro del hueco interior del tubo debe permitir albergar en su interior los hilos y cables (5) necesarios para Ia alimentación y control electrónico del sensor o sensores. Dichos cables saldrán por Ia zona posterior de dicho tubo para poder conectarse con Ia electrónica de alimentación y control.The diameter of the inner hollow of the tube must allow to house inside the wires and cables (5) necessary for the feeding and electronic control of the sensor or sensors. Said cables will exit through the rear area of said tube to be able to connect with the power and control electronics.
En una realización particular de Ia presente invención, el dispositivo presenta en su parte posterior uno o varios engrosamientos (6a en Ia Figura 1A) que facilitan su sujeción y Ia manipulación de Ia sonda por el cirujano. En otra realización particular de Ia presente invención, el dispositivo incorpora en Ia parte posterior de Ia sonda unas asas (6b en las Figuras 1 B y 1C) que facilitan esta sujeción y manipulación. A Ia vez, al menos una de dichas asas puede ser móvil, permitiendo accionar el dedo o dedos que albergan los sensores mediante un mecanismo de tracción, de manera que varíen su ángulo o apertura, Io que permite colocar adecuadamente el sensor sobre el órgano o tejido a analizar e incluso, cuando el sensor o sensores están incorporados en una pinza, manipular dicho órgano o tejido y dejarlos fijos sobre una zona del mismo durante el periodo de medida. En este modo de realización el hueco del tubo debe tener un diámetro suficiente para albergar en su interior tanto los cables necesarios para Ia alimentación y control electrónico del sensor o sensores como los medios necesarios para accionar el dedo o dedos móviles. Respecto al sensor, comprende: a) uno o más elementos microelectrónicos que emiten luz de diferentes longitudes de onda, constituyendo los elementos emisores, que pueden ser diodos electroluminiscentes (LEDs), diodos superluminiscentes (SLDs), diodos láser (LD), o cualquier elemento opto-electrónico que emita radiación óptica de longitudes de onda específicas; b) uno o más elementos fotodetectores, que pueden ser fotodiodos de silicio, fototransistores, o cualquier elemento opto- electrónico que detecte Ia radiación óptica de las longitudes de onda emitidas por los elementos emisores y produzca una señal eléctrica proporcional a Ia cantidad de luz detectada. Las características específicas del sensor o sensores dependen de Ia naturaleza precisa de Ia aplicación. Así, el rango de longitudes de onda de Ia emisión óptica a emplear, el régimen de activación de los emisores, las características particulares y específicas de los detectores ópticos, y Ia disposición espacial de emisor/es y detector/es con respecto al órgano o tejido analizado, son parámetros variables en cada realización particular de Ia invención. Con el fin de simplificar, se pueden resumir las posibles configuraciones de Ia invención de Ia siguiente manera: a) para realizar medida por reflexión los emisores y detectores quedan colocados en un mismo plano; b) para realizar medida por transmisión los emisores y detectores quedan colocados en dos planos enfrentados entre sí; c) para realizar medidas por reflexión y por transmisión con el mismo dispositivo, se combinan las dos configuraciones anteriores.In a particular embodiment of the present invention, the device has in its back one or several thickening (6a in Figure 1A) that facilitate its clamping and manipulation of the probe by the surgeon. In another particular embodiment of the present invention, the device incorporates handles (6b in Figures 1 B and 1C) on the back of the probe that facilitate this holding and handling. At the same time, at least one of said handles can be mobile, allowing the finger or fingers that house the sensors to be operated by means of a traction mechanism, so as to vary their angle or opening, which allows the sensor to be properly placed on the organ or tissue to be analyzed and even when the sensor or sensors are incorporated in a clamp, manipulate said organ or tissue and leave them fixed on an area thereof during the measurement period. In this embodiment, the hollow of the tube must have a sufficient diameter to house inside it both the cables necessary for the electronic feeding and control of the sensor or sensors and the means necessary to operate the moving finger or fingers. Regarding the sensor, it includes: a) one or more microelectronic elements that emit light of different wavelengths, constituting the emitting elements, which can be electroluminescent diodes (LEDs), superluminescent diodes (SLDs), laser diodes (LD), or any opto-electronic element that emits optical radiation of specific wavelengths; b) one or more photodetector elements, which can be silicon photodiodes, phototransistors, or any optoelectronic element that detects the optical radiation of the wavelengths emitted by the emitting elements and produces an electrical signal proportional to the amount of light detected . The specific characteristics of the sensor or sensors depend on the precise nature of the application. Thus, the range of wavelengths of the optical emission to be used, the activation regime of the emitters, the particular and specific characteristics of the optical detectors, and the spatial arrangement of emitter / s and detector / s with respect to the organ or tissue analyzed, are variable parameters in each particular embodiment of the invention. In order to simplify, the possible configurations of the invention can be summarized as follows: a) to measure by reflection the emitters and detectors are placed in the same plane; b) to carry out measurement by transmission, the emitters and detectors are placed in two planes facing each other; c) to perform measurements by reflection and transmission with the same device, the two previous configurations are combined.
En esta memoria se describe al menos un ejemplo de realización de Ia invención para cada una de estas configuraciones (Figuras 2 a 8). Lo que se ilustra con cada uno de ellos son distintas configuraciones, definidas por las diferentes posiciones relativas emisores-detectores respecto al medio (órgano o tejido) a analizar. La elección entre una u otra dependerá de las circunstancias de Ia intervención, así como del órgano o tejido intervenido y/o explorado, pudiendo el usuario (cirujano, médico o veterinario) optar por aquella que se adapte mejor al medio o condiciones de medida. Igualmente, son posibles otras realizaciones que den respuesta a posibles necesidades médicas o veterinarias futuras, y que introduzcan nuevos logros y avances científico-técnicos en el campo de los sistemas y métodos de monitorización e intervención de órganos vivos.In this report, at least one embodiment of the invention is described for each of these configurations (Figures 2 to 8). What is illustrated with each of them are different configurations, defined by the different relative positions emitter-detectors with respect to the medium (organ or tissue) to be analyzed. The choice between one or the other will depend on the circumstances of the intervention, as well as the organ or intervened and / or explored tissue, the user (surgeon, doctor or veterinarian) being able to opt for one that best suits the environment or measurement conditions. Likewise, other embodiments are possible that respond to possible future medical or veterinary needs, and that introduce new achievements and scientific-technical advances in the field of monitoring and intervention systems and methods of living organs.
Los emisores de luz pueden ser LEDs (tal y como se ilustra en las Figuras 2 a 7, y en las Figuras 8A a 8F) en encapsulado para montaje superficial, ya sea dicho encapsulado aplicado de manera individual a cada LED (Ia adoptada por los dispositivos mostrados en dichas figuras) o de manera conjunta a un grupo de los mismos. Asimismo, los emisores de luz pueden ser del tipo diodo láser, tal y como se muestra en Ia Figura 8G. El dispositivo de Ia invención puede incorporar cualquier otro elemento electrónico que emita radiación óptica en una longitud de onda específica (tal como las comprendidas en el intervalo de 400 a 1000 nm, para Ia realización específica de un dispositivo para fotopletismografía y/o pulsioximetría) y cuyo tamaño permita adaptarse a Ia sonda o tubo que forma el cuerpo principal del dispositivo. Por otra parte, no sólo el tipo de emisor, sino su cantidad puede variar. Así, en una realización particular de Ia invención el número de emisores es de 4 por sensor, tal y como se muestra en las Figuras 2 a 8.The light emitters can be LEDs (as illustrated in Figures 2 to 7, and in Figures 8A to 8F) in encapsulation for surface mounting, whether said encapsulation applied individually to each LED (Ia adopted by the devices shown in said figures) or together with a group thereof. Likewise, the light emitters can be of the laser diode type, as shown in Figure 8G. The device of the invention can incorporate any other electronic element that emits optical radiation in a specific wavelength (such as those in the range of 400 to 1000 nm, for the specific embodiment of a device for photoplethysmography and / or pulse oximetry) and whose size allows adapting to the probe or tube that forms the main body of the device. On the other hand, not only the type of issuer, but its quantity may vary. Thus, in a particular embodiment of the invention the number of emitters is 4 per sensor, as shown in Figures 2 to 8.
El sensor incorpora asimismo uno o más elementos detectores de Ia señal óptica transmitida o reflejada por el medio, órgano o tejido. En una realización particular de Ia invención dichos detectores son fotodiodos de silicio, pero igualmente el dispositivo de Ia invención puede incorporar cualquier otro elemento opto-electrónico que permita Ia recepción de luz en las mismas longitudes de onda que Ia generada por los emisores, Ia generación de una señal eléctrica proporcional a Ia cantidad de luz recibida en una longitud de onda dada, su control electrónico y un tamaño que Ie permita acoplarse a Ia sonda o tubo que forma el cuerpo principal del dispositivo en una disposición útil para Ia recepción de Ia señal luminosa. De manera similar a Io señalado para los elementos emisores, no sólo el tipo de detector, sino su cantidad y disposición (geometría y distancia con respecto a los emisores) pueden variar.The sensor also incorporates one or more detection elements of the optical signal transmitted or reflected by the medium, organ or tissue. In a particular embodiment of the invention said detectors are silicon photodiodes, but also the device of the invention can incorporate any other opto-electronic element that allows the reception of light in the same wavelengths as that generated by the emitters, the generation of an electrical signal proportional to the amount of light received in a given wavelength, its electronic control and a size that allows it to be coupled to the probe or tube that forms the main body of the device in a useful arrangement for the reception of the signal bright. Similar to what is indicated for the emitting elements, not only the type of detector, but also its quantity and arrangement (geometry and distance with respect to the emitters) may vary.
Los elementos emisores y detectores se encontrarán montados sobre una o más superficies planas del extremo anterior de Ia sonda conveniente modificado (Figura 1A) o sobre una o más superficies planas de una o más piezas soportes, respectivamente. En todos los casos Ia disposición preferente será el ensamblaje de los elementos emisores en las superficies de manera que Ia dirección en Ia que sale Ia luz que emiten sea perpendicular a dicha superficie. Las superficies, ya sean practicadas sobre Ia propia sonda o en las piezas soportes se encontrarán fijas cuando no puedan variar su posición espacial respecto a Ia sonda (configuración rígida, Figuras 1A, 2, 8A y 8G) o móviles, cuando se haya dotado al menos una de las piezas soporte con un eje que Ie permita variar su posición espacial respecto a Ia sonda al girar sobre dicho eje. En una realización particular de Ia presente invención dicho eje es perpendicular al eje longitudinal de Ia sonda y Ia posición espacial de Ia o las superficies soporte puede variar perpendicularmente al plano definido por dichas superficies (configuración con ángulo de aplicación variable, Figuras 1 B y 1C, 3 a 7, y 8B a F).The emitting and detecting elements will be mounted on one or more flat surfaces of the anterior end of the modified suitable probe (Figure 1A) or on one or more flat surfaces of one or more support pieces, respectively. In all cases, the preferred arrangement will be the assembly of the emitting elements on the surfaces so that the direction in which the light emitted is perpendicular to said surface. The surfaces, whether practiced on the probe itself or on the support pieces, will be fixed when they cannot vary their spatial position with respect to the probe (rigid configuration, Figures 1A, 2, 8A and 8G) or mobile, when it has been provided with the less one of the support pieces with an axis that allows it to vary its spatial position with respect to the probe when rotating on said axis. In a particular embodiment of the present invention said axis is perpendicular to the longitudinal axis of the probe and the spatial position of the support surface (s) may vary perpendicular to the plane defined by said surfaces (configuration with variable application angle, Figures 1 B and 1C , 3 to 7, and 8B to F).
En una realización particular de Ia presente invención el sensor presenta Ia configuración para Ia medida por reflexión, caracterizada porque tanto los elementos emisores como detectores se encuentran descansando sobre una misma superficie plana. Al apoyar el sensor sobre un órgano o tejido, el elemento o elementos emisores Io iluminarán con radiaciones ópticas en cada una de las longitudes de onda que emiten cada uno de los emisores y el o los elementos detectores recogerán Ia luz de las mismas longitudes de onda de Ia emisión incidente que dichos órganos y tejidos reflejen y que variará según el estado fisiológico determinable por el parámetro a medir con el sensor. A su vez, el sensor por reflexión podrá adoptar las configuraciones rígida (Figuras 1A, 2, 8A y 8G) o con ángulo de aplicación variable (Figuras 1 B, 3, 4, 6, 7, y 8B a 8F) según se ha definido anteriormente.In a particular embodiment of the present invention, the sensor presents the configuration for reflection measurement, characterized in that both the emitting and detecting elements are resting on the same flat surface. When supporting the sensor on an organ or tissue, the emitting element or elements will illuminate it with optical radiations in each of the wavelengths emitted by each of the emitters and the detecting element (s) will collect the light of the same wavelengths of the incident emission that said organs and tissues reflect and that will vary according to the physiological state determinable by the parameter to be measured with the sensor. In turn, the reflection sensor may adopt the rigid configurations (Figures 1A, 2, 8A and 8G) or with an angle of Variable application (Figures 1 B, 3, 4, 6, 7, and 8B to 8F) as defined above.
En otra realización particular de Ia presente invención el sensor adopta Ia configuración para Ia medida por transmisión, caracterizada porque los elementos emisores se encuentran descansando sobre una superficie plana distinta a aquella en Ia que se encuentran los detectores. Los planos de estas superficies deben encontrarse de Ia forma más paralela posible, para que los elementos emisores y detectores estén Io más enfrentados entre sí que sea posible. A su vez Ia disposición de las piezas soporte ha de ser tal que permitan colocar el órgano o tejido que se quiere explorar entre los emisores y los detectores, pero evitando dañar el órgano o tejido. Si bien ambas piezas pueden ser rígidas, de manera que no varíen su posición espacial respecto a Ia sonda, en una realización preferente de Ia presente invención las dos piezas se unen a Ia sonda a través de uno o dos ejes posteriores, adoptando Ia disposición de una pinza que puede abrirse a diferentes ángulos perpendiculares (Figuras 6 y 7). En otra realización particular de Ia presente invención Ia pinza incorpora en cada uno de sus dedos un segundo eje paralelo al eje común de ambos dedos, por Io que se facilita el que los emisores y detectores se encuentren enfrentados en paralelo entre sí incluso en las disposiciones abiertas de Ia pinza (Figura 8). En todas las configuraciones posibles del sensor por transmisión este deberá comprender una porción del órgano o tejido a analizar entre sus elementos emisores y detectores, de manera que el elemento o elementos emisores iluminarán dicha porción con radiación óptica de las diferentes longitudes de onda y el o los elementos detectores recogerán Ia luz de las mismas longitudes de onda que haya atravesado dicho órgano o tejido y que variará según el estado fisiológico determinable por el parámetro a medir con el sensor.In another particular embodiment of the present invention, the sensor adopts the configuration for transmission measurement, characterized in that the emitting elements are resting on a flat surface other than that in which the detectors are located. The planes of these surfaces must be as parallel as possible, so that the emitting and detecting elements are as closely opposite as possible. At the same time, the arrangement of the support pieces must be such that they allow placing the organ or tissue that is to be explored between the emitters and the detectors, but avoiding damaging the organ or tissue. Although both pieces can be rigid, so that they do not vary their spatial position with respect to the probe, in a preferred embodiment of the present invention the two pieces are joined to the probe through one or two rear axes, adopting the arrangement of a clamp that can be opened at different perpendicular angles (Figures 6 and 7). In another particular embodiment of the present invention, the clamp incorporates in each of its fingers a second axis parallel to the common axis of both fingers, whereby it is facilitated that the emitters and detectors are faced in parallel with each other even in the arrangements openings of the clamp (Figure 8). In all possible configurations of the sensor by transmission it must comprise a portion of the organ or tissue to be analyzed between its emitting and detecting elements, so that the emitting element or elements will illuminate said portion with optical radiation of the different wavelengths and the or The detecting elements will collect the light of the same wavelengths that said organ or tissue has passed through and which will vary according to the physiological state determined by the parameter to be measured with the sensor.
Tal y como se ha definido anteriormente, Ia naturaleza misma de los elementos emisores y detectores no determina cual es Ia configuración del sensor, puesto que aunque puedan darse elementos emisores o detectores más adecuados para una u otra configuración, es posible realizar cualquiera de las mismas utilizando elementos emisores y detectores de Ia misma naturaleza. Igualmente, un elemento emisor puede formar parte a Ia vez de un sensor por reflexión o por transmisión, dependiendo de Ia disposición relativa del elemento detector respecto al mismo. De manera análoga, un elemento detector puede formar parte a Ia vez de un sensor por reflexión o por transmisión, dependiendo de Ia disposición relativa del elemento emisor respecto al mismo. Así, una realización particular de Ia presente invención consiste en una sonda que combina un sensor por reflexión y por transmisión con elementos comunes, resultando en Ia configuración híbrida mostrada en las Figuras 7 y 8. En dicha configuración, al menos una de las piezas soporte acopla elementos emisores y detectores en una misma superficie plana, adoptando Ia configuración por reflexión y Ia otra pieza soporte acopla al menos un detector enfrentado a dichos elementos emisores para que el sensor adopte Ia configuración por transmisión. Por tanto en este caso, los elementos emisores forman parte tanto del sensor por reflexión como por transmisión y su aplicación a uno u otro dependerá del control electrónico. En otras configuraciones posibles cada pieza soporte puede acoplar una combinación de elementos emisores y detectores de manera que todos ellos puedan formar configuraciones de sensor por reflexión y de transmisión.As defined above, the very nature of the emitting and detecting elements does not determine which is the configuration of the sensor, since although emitting elements may occur or detectors more suitable for one or another configuration, it is possible to perform any of them using emitting elements and detectors of the same nature. Likewise, an emitting element can be part of a sensor at the same time by reflection or by transmission, depending on the relative arrangement of the detector element with respect to it. Similarly, a detector element can be part of a sensor at the same time by reflection or by transmission, depending on the relative arrangement of the emitting element with respect to it. Thus, a particular embodiment of the present invention consists of a probe that combines a sensor by reflection and transmission with common elements, resulting in the hybrid configuration shown in Figures 7 and 8. In said configuration, at least one of the support pieces It couples emitting and detecting elements on the same flat surface, adopting the configuration by reflection and the other support piece engages at least one detector facing said emitting elements so that the sensor adopts the configuration by transmission. Therefore, in this case, the emitting elements are part of both the reflection and transmission sensors and their application to one or the other will depend on the electronic control. In other possible configurations each support piece can couple a combination of emitting and detecting elements so that all of them can form sensor configurations by reflection and transmission.
En Ia configuración por reflexión, Ia utilización de emisores con múltiples longitudes de onda, así como Ia disposición de los detectores con respecto a los emisores (múltiples distancias y geometrías) permiten el análisis diferencial e integral de diferentes zonas de órganos y/o tejidos.In the configuration by reflection, the use of emitters with multiple wavelengths, as well as the arrangement of the detectors with respect to the emitters (multiple distances and geometries) allow the differential and integral analysis of different areas of organs and / or tissues.
Todas las anteriores disposiciones de los elementos del sensor y de las piezas soporte de dichos elementos pueden originar los distintos ejemplos de realización de Ia invención que se describen más tarde, así como otras que pueden deducirse de Ia descripción de Ia invención. En cualquiera de las configuraciones es necesaria una electrónica de alimentación y control cuya función principal es proporcionar Ia energía eléctrica al sensor o sensores, sincronizar el funcionamiento de sus elementos emisores y detectores y convertir las señales analógicas originadas por los últimos en señales digitales. La Figura 9 muestra un ejemplo de dicha electrónica para un sensor con 4 elementos emisores de luz (E1 , E2, E3, E4). La fase de reloj y control genera distintos pulsos de disparo, unos dirigidos a una fase de potencia para activar cada uno de los emisores (AE1 , AE2, AE3, AE4), y otros dirigidos a Ia fase de amplificación, muestreo y retención (MR1 , MR2, MR3, MR4) de las señales registradas por el detector o detectores (D), previamente pre- amplificadas y amplificadas por los correspondientes circuitos electrónicos. La activación de cada uno de los emisores se sincroniza para que se produzca con un desfase temporal entre ellos y a Ia vez se sincroniza con los diferentes canales o circuitos de muestreo y retención. Esta sincronización hace posible que se distinga en todo momento a qué emisor (y por tanto a qué longitud de onda) corresponde una señal específica recogida por un detector. El número de canales será igual al producto del número de emisores emitiendo en diferentes longitudes de onda por el número de detectores independientes. En el ejemplo mostrado el número de canales es igual al de emisores (cuatro), por utilizarse un único detector o varios detectores que actúan como uno sólo al encontrarse conectados en paralelo. Cuando se combinen sensores para medidas por reflexión y transmisión a Ia vez (como se describirá posteriormente), el número de canales será el doble del número de elementos emisores. En el caso de un sensor en configuración por reflexión con dos o más detectores independientes, Ia cantidad de canales se incrementará según el producto del número de detectores por el número de emisores.All the previous dispositions of the sensor elements and the support parts of said elements can give rise to the different embodiments of the invention described later, as well as others that can be deduced from the description of the invention. In any of the configurations, a power and control electronics is necessary whose main function is to provide electrical energy to the sensor or sensors, synchronize the operation of its emitting and detecting elements and convert the analog signals originated by the latter into digital signals. Figure 9 shows an example of such electronics for a sensor with 4 light emitting elements (E1, E2, E3, E4). The clock and control phase generates different firing pulses, some aimed at a power phase to activate each of the transmitters (AE1, AE2, AE3, AE4), and others aimed at the amplification, sampling and retention phase (MR1 , MR2, MR3, MR4) of the signals registered by the detector or detectors (D), previously pre-amplified and amplified by the corresponding electronic circuits. The activation of each of the transmitters is synchronized to occur with a time lag between them and at the same time it is synchronized with the different channels or circuits of sampling and retention. This synchronization makes it possible to distinguish at all times to which transmitter (and therefore to which wavelength) a specific signal collected by a detector corresponds. The number of channels will be equal to the product of the number of emitters emitting at different wavelengths by the number of independent detectors. In the example shown, the number of channels is equal to that of transmitters (four), as a single detector or several detectors are used that act as one only when they are connected in parallel. When sensors are combined for measurements by reflection and transmission at the same time (as will be described later), the number of channels will be double the number of emitting elements. In the case of a sensor in reflection configuration with two or more independent detectors, the number of channels will be increased according to the product of the number of detectors by the number of emitters.
Las señales analógicas convenientemente separadas en canales independientes (uno por cada uno de los emisores con diferente longitud de onda) pasan a las entradas analógicas (EA1 , EA2, EA3, EA4) de un circuito electrónico para Ia conversión analógico-digital. En el ejemplo presentado, dicho circuito es una tarjeta de adquisición de datos que puede estar insertada o conectada a un ordenador, que almacena las señales digitales y las procesa mediante programas basados en los algoritmos adecuados, para generar una representación gráfica útil para Ia monitorización del parámetro fisiológico deseado.The analog signals conveniently separated on independent channels (one for each of the transmitters with different wavelengths) pass to the analog inputs (EA1, EA2, EA3, EA4) of a electronic circuit for analog-digital conversion. In the example presented, said circuit is a data acquisition card that can be inserted or connected to a computer, which stores the digital signals and processes them through programs based on the appropriate algorithms, to generate a graphical representation useful for monitoring the desired physiological parameter.
Como se señaló anteriormente, los algoritmos específicos para Ia obtención y monitorización de parámetros de interés obtenidos por fotopletismografía y pulsioximetría tienen como objetivo eliminar el ruido y los artefactos originados por el movimiento debido a las manipulaciones que el cirujano debe realizar durante Ia intervención o a los propios movimientos del órgano. El objetivo preferente es proporcionar medidas directas y en tiempo real de los parámetros relacionados con Ia perfusión y Ia oxigenación sanguínea, en particular Ia frecuencia cardiaca o ritmo o pulso mediante Ia fotopletismografía y/o Ia saturación de oxígeno mediante Ia pulsioximetría. La frecuencia pulsátil se obtiene, en principio a partir de cualquier canal emisor, aunque dependiendo del órgano o tejido algunas longitudes de onda pueden ser más sensibles que otras. Aplicando los principios de Ia pulsioximetría, de estas mismas señales fotopletismográficas podemos obtener los valores de saturación de oxígeno de los órganos o tejidos explorados, siempre que se consideren las señales originadas en, al menos, dos longitudes de onda diferentes en concordancia con los principios enunciados anteriormente.As noted above, the specific algorithms for obtaining and monitoring parameters of interest obtained by photoplethysmography and pulse oximetry are aimed at eliminating noise and artifacts caused by movement due to the manipulations that the surgeon must perform during the intervention or to their own organ movements The preferred objective is to provide direct and real-time measurements of the parameters related to perfusion and blood oxygenation, in particular the heart rate or rhythm or pulse by means of photoplethysmography and / or oxygen saturation by means of pulse oximetry. The pulsatile frequency is obtained, in principle from any emitting channel, although depending on the organ or tissue some wavelengths may be more sensitive than others. Applying the principles of pulse oximetry, from these same photoplethysmographic signals we can obtain the oxygen saturation values of the organs or tissues explored, provided that the signals originating in at least two different wavelengths are considered in accordance with the principles stated previously.
La presente invención, en su realización particular como pulsioxímetro endoscópico, permite al operador en el curso de una intervención quirúrgica (por ejemplo, en un trasplante o implante) comprobar de modo directo e instantáneo si el órgano o tejido intervenido está recibiendo adecuadamente Ia sangre del paciente (medida del nivel pulsátil), y/o si se está produciendo un intercambio de oxígeno adecuado en el órgano o tejido (medida de saturación de oxígeno). Asimismo, puede ser útil para valorar hasta dónde hay que sacrificar un tejido u órgano a Ia hora de extirpar, pues es posible hacer comparaciones de las determinaciones en órganos, tejidos o zonas sanas respecto a las realizadas en las dañadas, cancerígenas o con necrosis. Estas importantes medidas permiten al cirujano valorar "in situ" Ia situación del tejido u órgano, antes de concluir Ia intervención quirúrgica, Io que sin duda es una ayuda para lograr el éxito de Ia intervención.The present invention, in its particular embodiment as an endoscopic pulse oximeter, allows the operator in the course of a surgical intervention (for example, in a transplant or implant) to check directly and instantaneously if the intervened organ or tissue is adequately receiving the blood from the patient (measurement of the pulsatile level), and / or if there is an adequate exchange of oxygen in the organ or tissue (measurement of oxygen saturation). It can also be useful to assess the extent to which a tissue or organ must be sacrificed to the time to remove, it is possible to make comparisons of the determinations in organs, tissues or healthy areas with respect to those made in the damaged, carcinogenic or with necrosis. These important measures allow the surgeon to assess "in situ" the situation of the tissue or organ, before concluding the surgical intervention, which is undoubtedly an aid to achieve the success of the intervention.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
Con el propósito de ilustrar Ia invención, se muestran formas de llevarla a cabo a manera de ejemplos, entendiéndose, sin embargo, que Ia invención no se limita a las configuraciones e implementaciones instrumentales mostradas.With the purpose of illustrating the invention, there are shown ways of carrying it out by way of examples, it being understood, however, that the invention is not limited to the instrumental configurations and implementations shown.
Figura 1. Diagrama de tres configuraciones del dispositivo de Ia invención. El dispositivo consta de una sonda o tubo hueco (1 ), que se introduce a través de un trocar (2) acoplado a Ia incisión quirúrgica y que en su extremo anterior tiene acoplado uno o varios sensores opto- electrónicos. Estos sensores van montados sobre una superficie plana realizada en el mismo tubo (3a en Ia Figura 1A) o sobre Ia superficie plana de una pieza móvil (3b en las Figuras 1 B y 1C) que puede girar gracias a un eje de sujeción al tubo y que puede estar enfrentada a otra pieza similar, de manera que forme una pinza (Figura 1C), pudiendo encontrarse elementos del sensor sólo en una de dichas piezas, que conforman los brazos o dedos de dicha pinza, o en ambos brazos o dedos, según Ia configuración deseada. En todos los casos Ia manipulación de Ia sonda permite Ia colocación de los sensores respecto al órgano o tejido a analizar (4). Los sensores poseen unos cables de conexión que van por el interior de Ia sonda y salen por su parte posterior (5) para conectarse con Ia electrónica de alimentación y control.Figure 1. Diagram of three configurations of the device of the invention. The device consists of a probe or hollow tube (1), which is introduced through a trocar (2) coupled to the surgical incision and which at its front end has one or several opto-electronic sensors. These sensors are mounted on a flat surface made in the same tube (3a in Figure 1A) or on the flat surface of a moving part (3b in Figures 1 B and 1C) that can rotate thanks to a shaft attached to the tube and that it can be faced with another similar piece, so that it forms a clamp (Figure 1C), being able to find elements of the sensor only in one of said pieces, which make up the arms or fingers of said clamp, or in both arms or fingers, according to the desired configuration. In all cases the manipulation of the probe allows the placement of the sensors with respect to the organ or tissue to be analyzed (4). The sensors have connection cables that go through the inside of the probe and exit through its back (5) to connect with the power and control electronics.
Para facilitar Ia manipulación del dispositivo, éste presenta facultativamente en Ia parte posterior del tubo una serie de engrosamientos que sirven como asidero (6a en Ia Figura 1A) o unas asas (6b en las Figuras 1 B y 1C). En este último caso las asas permiten además controlar el movimiento de Ia pieza o piezas que sustentan el sensor o sensores.To facilitate the manipulation of the device, it optionally presents a series of thickening on the back of the tube that serves as a handle (6a in Figure 1A) or handles (6b in Figures 1 B and 1C). In the latter case, the handles also allow controlling the movement of the part or parts that support the sensor or sensors.
Figura 2. Esquema del dispositivo con el sensor por reflexión, montado sobre una sonda rígida. Se muestran los extremos anterior y posterior del dispositivo visto desde arriba (A) y lateralmente (B). El extremo anterior del tubo de Ia sonda está modificado para que presente una superficie lisa (1 ) sobre Ia que se sitúa el sensor, que consta de cuatro elementos emisores (2, 3, 4 y 5) que pueden cada uno emitir luz en una longitud de onda distinta y dos elementos detectores (6), teniendo los distintos elementos conexiones por cables (7) que van por el interior del tubo de Ia sonda (8). En Ia parte posterior de dicha sonda se encuentra uno o varios engrosamientos que hacen las veces de asidero (9). Asimismo, de su extremo posterior (10) salen los cables de conexión (7) de los elementos del sensor óptico a Ia electrónica de alimentación y control.Figure 2. Diagram of the device with the sensor by reflection, mounted on a rigid probe. The anterior and posterior ends of the device seen from above (A) and laterally (B) are shown. The front end of the tube of the probe is modified to present a smooth surface (1) on which the sensor is located, which consists of four emitting elements (2, 3, 4 and 5) that can each emit light in a different wavelength and two detector elements (6), the different elements having cable connections (7) that go inside the tube of the probe (8). In the back of said probe there is one or several thickening that serve as a handle (9). Likewise, from its rear end (10) the connection cables (7) of the elements of the optical sensor to the power and control electronics come out.
Figura 3. Esquema del dispositivo con el sensor por reflexión, montado sobre una pieza de ángulo variable. Se muestra el extremo anterior de Ia sonda, con vista (A) de Ia cara posterior y (B) de Ia cara anterior de Ia pieza móvil (1 ) que acomoda el sensor; y vistas laterales, estando Ia pieza que Io acomoda alineada (C) o formando un ángulo (D) respecto al eje longitudinal del tubo (2) de Ia sonda. Esta pieza puede girar gracias a su acoplamiento por un eje (3) transversal al eje longitudinal de Ia sonda. Los elementos del sensor van acoplados sobre Ia superficie interior (4) de dicha pieza, y son similares a los representados en Ia Figura 2: cuatro elementos emisores (5, 6, 7 y 8) y dos elementos detectores (9), teniendo los distintos elementos conexiones por cables (10) que van por el interior del tubo de Ia sonda, generalmente agrupados dentro de una envoltura tubular común (11 ). Figura 4. Esquema del dispositivo con el sensor por reflexión, montado sobre una pieza de ángulo variable que forma parte de una pinza. Se muestra el extremo anterior del tubo de Ia sonda, con vista (A) de Ia cara exterior (1 ) de cualquiera de las piezas que forman los dedos de Ia pinza; (B) de Ia cara interior (2) del dedo que no acomoda el sensor; (C) de Ia cara interior (3) del dedo que acomoda el sensor; y vistas laterales, estando los dedos alineados (D) o formando un ángulo (E) entre sí. Estos dedos pueden girar gracias a su acoplamiento al tubo (4) de Ia sonda por un eje (5) transversal al eje longitudinal de dicho tubo. Los elementos del sensor van acoplados sobre Ia superficie interior (3) de uno de los dedos de Ia pinza, y son similares a los representados en las Figuras 2 y 3: cuatro elementos emisores (6, 7, 8 y 9) y dos elementos detectores (10), teniendo los distintos elementos conexiones por cables (11 ) que van por el interior del tubo de Ia sonda, generalmente agrupados dentro de una envoltura tubular común (12).Figure 3. Diagram of the device with the sensor by reflection, mounted on a piece of variable angle. The front end of the probe is shown, with view (A) of the rear face and (B) of the front face of the moving part (1) that accommodates the sensor; and side views, the piece that accommodates it aligned (C) or forming an angle (D) with respect to the longitudinal axis of the tube (2) of the probe. This piece can rotate thanks to its coupling by an axis (3) transverse to the longitudinal axis of the probe. The sensor elements are coupled on the inner surface (4) of said part, and are similar to those represented in Figure 2: four emitting elements (5, 6, 7 and 8) and two detecting elements (9), having the different elements connections by cables (10) that go inside the tube of the probe, generally grouped within a common tubular envelope (11). Figure 4. Diagram of the device with the sensor by reflection, mounted on a piece of variable angle that is part of a gripper. The front end of the tube of the probe is shown, with view (A) of the outer face (1) of any of the pieces that form the fingers of the clamp; (B) of the inner face (2) of the finger that does not accommodate the sensor; (C) of the inner face (3) of the finger that accommodates the sensor; and side views, the fingers being aligned (D) or forming an angle (E) to each other. These fingers can rotate thanks to their coupling to the tube (4) of the probe by an axis (5) transverse to the longitudinal axis of said tube. The sensor elements are coupled on the inner surface (3) of one of the fingers of the clip, and are similar to those shown in Figures 2 and 3: four emitting elements (6, 7, 8 and 9) and two elements detectors (10), the different elements having cable connections (11) that go inside the tube of the probe, generally grouped within a common tubular envelope (12).
Figura 5. Esquema del dispositivo con el sensor en configuración para transmisión, montado sobre los dedos de una pinza. Se muestra el extremo anterior del tubo de Ia sonda, con vistas (A) de Ia cara exteriorFigure 5. Diagram of the device with the sensor in configuration for transmission, mounted on the fingers of a clamp. The anterior end of the tube of the probe is shown, with views (A) of the outer face
(I ) de cualquiera de las piezas que forman los dedos de Ia pinza; (B) de Ia cara interior (2) del dedo que acomoda el elemento detector del sensor; (C) de Ia cara interior (3) del dedo que acomoda los elementos emisores del sensor; y laterales, estando los dedos (D) alineados o (E) formando un ángulo entre sí. Estos dedos pueden girar gracias a su acoplamiento al tubo (4) de Ia sonda por un eje (5) transversal al eje longitudinal de dicho tubo. Cada elemento del sensor va acoplado sobre una u otra de las superficies interiores de uno de los dedos de Ia pinza (2 y 3) según el tipo de elemento de que se trate. Así, Ia superficie de uno de los dedos (2) alberga un elemento detector (6) mientras Ia superficie del otro (3) alberga cuatro elementos emisores (7, 8, 9 y 10), en una posición enfrentada al elemento detector. Los distintos elementos poseen conexiones por cables(I) of any of the pieces that form the fingers of the clip; (B) of the inner face (2) of the finger that accommodates the sensor sensing element; (C) of the inner face (3) of the finger that accommodates the emitting elements of the sensor; and lateral, the fingers (D) being aligned or (E) forming an angle to each other. These fingers can rotate thanks to their coupling to the tube (4) of the probe by an axis (5) transverse to the longitudinal axis of said tube. Each element of the sensor is coupled on one or another of the inner surfaces of one of the fingers of the clip (2 and 3) according to the type of element in question. Thus, the surface of one of the fingers (2) houses a detector element (6) while the surface of the other (3) houses four emitting elements (7, 8, 9 and 10), in a position facing the detector element. The different elements have cable connections
(I I ) que van por el interior del tubo de Ia sonda, generalmente agrupados dentro de una envoltura tubular común (12). Figura 6. Esquema del dispositivo con el sensor en configuración híbrida, montado sobre los dedos de una pinza.(II) that go inside the tube of the probe, generally grouped within a common tubular envelope (12). Figure 6. Diagram of the device with the sensor in hybrid configuration, mounted on the fingers of a clamp.
Se muestra el extremo anterior del tubo de Ia sonda, con vistas (A) de Ia cara exterior (1 ) de cualquiera de las piezas que forman los dedos de Ia pinza; (B) de Ia cara interior (2) del dedo que acomoda el elemento detector del sensor en configuración de transmisión; (C) de Ia cara interior (3) del dedo que acomoda los elementos emisores para Ia configuración por reflexión y por transmisión y los elementos detectores para Ia configuración por reflexión; y laterales, estando los dedos (D) alineados o (E) formando un ángulo entre sí. Estos dedos pueden girar gracias a su acoplamiento al tubo de Ia sonda (4) por un eje (5) transversal al eje longitudinal de dicho tubo. La superficie de uno de los dedos (2) alberga un único elemento detector (6) para Ia configuración por transmisión mientras Ia superficie del otro dedo (3) alberga cuatro elementos emisores (7, 8, 9 y 10) que sirven para Ia configuración por transmisión cuando funcionan sincronizadamente con el elemento detector que se encuentra en posición enfrentada en el otro dedo (6) y para Ia configuración por reflexión cuando funcionan sincronizadamente con los dos elementos detectores (11 ) que se encuentran en Ia misma superficie que dichos elementos emisores. Los distintos elementos poseen conexiones por cables (12) que van por el interior del tubo de Ia sonda, generalmente agrupados dentro de una envoltura tubular común (13).The front end of the tube of the probe is shown, with views (A) of the outer face (1) of any of the pieces that form the fingers of the clamp; (B) of the inner face (2) of the finger that accommodates the sensor sensing element in transmission configuration; (C) of the inner face (3) of the finger that accommodates the emitting elements for the reflection and transmission configuration and the detecting elements for the reflection configuration; and lateral, the fingers (D) being aligned or (E) forming an angle to each other. These fingers can rotate thanks to their coupling to the tube of the probe (4) by an axis (5) transverse to the longitudinal axis of said tube. The surface of one of the fingers (2) houses a single detector element (6) for the transmission configuration while the surface of the other finger (3) houses four emitting elements (7, 8, 9 and 10) that serve for the configuration by transmission when they work synchronously with the detector element that is in the opposite position on the other finger (6) and for the configuration by reflection when they work synchronously with the two detector elements (11) that are on the same surface as said emitting elements . The different elements have cable connections (12) that go inside the tube of the probe, generally grouped within a common tubular envelope (13).
Figura 7. Esquema del dispositivo con el sensor en configuración híbrida, montado sobre los dedos de una pinza de apertura en paralelo. Se muestran dos vistas laterales del dispositivo similar al descrito en Ia Figura 6 excepto porque los dedos de Ia pinza contienen cada uno un eje transversal (1 ) a su plano de apertura. De este modo Ia apertura de Ia pinza girando sobre el eje (2) que Ia une al tubo de Ia sonda permite que las superficies que albergan los elementos del sensor - cuatro elementos emisores de los que se aprecian dos (3 y 4) en Ia vista lateral, y tres elementos detectores, uno que actúa para Ia configuración por transmisión (5) y dos para Ia configuración por reflexión (6) - se mantengan en planos espaciales paralelos al definido por los ejes longitudinal del tubo de Ia sonda y los ejes de apertura de Ia pinza, Io que optimiza su colocación respecto al órgano o tejido, y Ia fijación temporal sobre el mismo.Figure 7. Diagram of the device with the sensor in hybrid configuration, mounted on the fingers of a parallel opening clamp. Two side views of the device similar to that described in Figure 6 are shown except that the fingers of the clip each contain a transverse axis (1) to its opening plane. In this way, the opening of the clamp rotating on the axis (2) that joins the tube of the probe allows the surfaces that house the sensor elements - four emitting elements of which two (3 and 4) can be seen in the side view, and three sensing elements, one that acts for Ia configuration by transmission (5) and two for the configuration by reflection (6) - be kept in spatial planes parallel to that defined by the longitudinal axes of the tube of the probe and the opening axes of the clamp, which optimizes its placement with respect to the organ or tissue, and the temporary fixation on it.
Figura 8. Fotografías de modos de realización del dispositivo de Ia invención. (A) sonda rígida en configuración por reflexión; (B) sonda con pieza de ángulo variable que acopla un sensor por reflexión, vista superior de Ia cara interna de dicha pieza, acoplando el sensor; (C y D) vistas laterales de Ia misma pieza alineada con el eje del tubo del dispositivo (C) o formando un ángulo con respecto a dicho eje del tubo (D); (E y F) vistas laterales de sonda con pinza que incorpora en uno de sus dedos un sensor en configuración de reflexión, en posición cerrada (E) y abierta (F). Específicamente, en el dispositivo mostrado en las Figuras A a F se emplean como elementos emisores cuatro LEDs con emisiones en longitudes de onda del infrarrojo y, como elementos detectores, dos fotodiodos p-i-n de silicio. La posibilidad de utilizar distintos elementos emisores se ilustra en Ia Figura G, vista del cabezal de Ia sonda incorporando un sensor en configuración de reflexión con 4 diodos láser y un fotodiodo de silicio.Figure 8. Photographs of embodiments of the device of the invention. (A) rigid probe in reflection configuration; (B) probe with variable angle piece that couples a sensor by reflection, top view of the inner face of said piece, coupling the sensor; (C and D) side views of the same piece aligned with the axis of the device tube (C) or at an angle with respect to said axis of the tube (D); (E and F) side views of probe with clamp that incorporates in one of its fingers a sensor in reflection configuration, in closed position (E) and open (F). Specifically, in the device shown in Figures A to F four emitting LEDs with infrared wavelength emissions are used as emitting elements and, as detecting elements, two silicon p-i-n photodiodes. The possibility of using different emitting elements is illustrated in Figure G, view of the probe head incorporating a sensor in reflection configuration with 4 laser diodes and a silicon photodiode.
Figura 9. Diagrama de sistema de alimentación y control del dispositivo de Ia invención. Se muestra un esquema de una configuración específica en Ia que el sensor consta de 4 elementos emisores (E1 , E2, E3, E4) y un elemento detector (D). Cada elemento emisor tiene su correspondiente fase de alimentación eléctrica para su activación (AE1 , AE2, AE3, AE4). Otra fase controla Ia retención y muestreo de señales por los componentes MR1 , MR2, MR3 y MR4, que recogen las señales generadas por el detector, previamente amplificadas. Ambas fases están coordinadas gracias al circuito de reloj y control de modo que las señales analógicas generadas por el detector son separadas en canales independientes (en este caso, al existir un solo detector, un canal por cada uno de los emisores con diferente longitud de onda) y pasan a las entradas analógicas (EA1 , EA2, EA3 y EA4) de Ia tarjeta de adquisición de datos, que a su vez transmite las señales digitales al ordenador.Figure 9. Diagram of the feeding and control system of the device of the invention. A diagram of a specific configuration is shown in which the sensor consists of 4 emitting elements (E1, E2, E3, E4) and a detector element (D). Each emitter element has its corresponding power supply phase for activation (AE1, AE2, AE3, AE4). Another phase controls the retention and sampling of signals by components MR1, MR2, MR3 and MR4, which collect the signals generated by the detector, previously amplified. Both phases are coordinated thanks to the clock and control circuit so that the analog signals generated by the detector are separated into independent channels (in this case, when there is only one detector, one channel for each of the transmitters with different wavelength) and pass to the analog inputs (EA1, EA2, EA3 and EA4) of the data acquisition card, which in turn transmits the digital signals to the computer.
Figura 10. Aplicación del dispositivo de Ia invención a distintos órganos de Ia cavidad abdominal de un cerdo. Se practicó una operación quirúrgica laparoscópica a un cerdo y se utilizó Ia sonda rígida en configuración por reflexión. El sensor constaba de cuatro LEDs como emisores y un fotodiodo de silicio como detector y se encontraba en su conjunto protegido por una funda de plástico. El dispositivo se aplicó a Ia medición de las constantes del pulso y saturación de oxígeno en Ia arteria gastroepiploica (A), el hígado (B), el intestino (C) y Ia pared abdominal (D).Figure 10. Application of the device of the invention to different organs of the abdominal cavity of a pig. A laparoscopic surgical operation was performed on a pig and the rigid probe was used in reflex configuration. The sensor consisted of four LEDs as emitters and a silicon photodiode as a detector and was as a whole protected by a plastic sheath. The device was applied to the measurement of the pulse constants and oxygen saturation in the gastroepiploic artery (A), the liver (B), the intestine (C) and the abdominal wall (D).
Figura 11. Determinación del pulso mediante el dispositivo deFigure 11. Determination of the pulse using the device
Ia invención. Se muestran fotopletismogramas obtenidos con el dispositivo de Ia invención actuando como pulsioxímetro durante una operación quirúrgica laparoscópica realizada a un cerdo. El dispositivo empleado fue de sonda rígida con un sensor por reflexión, constando dicho sensor de cuatro LEDs como emisores (en este caso emitiendo radiaciones con longitudes de onda en el infrarrojo cercano, LEDniri , LEDnir2, LEDnir3 y LEDnir4) y un fotodiodo de silicio como detector. Los datos mostrados corresponden a los obtenidos para Ia arteria gastroepiploica en estado basal. La gráfica A muestra Ia intensidad en voltios de Ia señal electrónica obtenida durante una determinación de 10 segundos de duración. La gráfica B muestra Ia representación de los valores del pulso obtenidos a partir de los fotopletismogramas mostrados en Ia gráfica A tras su procesamiento. El valor medio del pulso fue en todos los casos de 117 pulsaciones por minuto, resultando muy similar al de Ia frecuencia cardiaca determinada por electrocardiografía (118 pulsaciones por minuto). Además Ia variabilidad de dicho valor resultó prácticamente nula, dada que Ia desviación estándar fue 0 (cero), demostrando Ia eficacia de Ia aplicación del dispositivo. EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNThe invention Photoplethysmograms obtained with the device of the invention are shown acting as a pulse oximeter during a laparoscopic surgical operation performed on a pig. The device used was a rigid probe with a reflection sensor, said sensor consisting of four LEDs as emitters (in this case emitting radiation with near-infrared wavelengths, LEDniri, LEDnir2, LEDnir3 and LEDnir4) and a silicon photodiode as detector. The data shown correspond to those obtained for the gastroepiploic artery at baseline. Graph A shows the intensity in volts of the electronic signal obtained during a determination of 10 seconds duration. Graph B shows the representation of the pulse values obtained from the photoplethysmograms shown in Figure A after processing. The average pulse value was 117 pulses per minute in all cases, being very similar to that of the heart rate determined by electrocardiography (118 beats per minute). In addition, the variability of said value was practically zero, given that the standard deviation was 0 (zero), demonstrating the effectiveness of the application of the device. EXAMPLES OF EMBODIMENT OF THE INVENTION
A continuación se describen distintos ejemplos de realización de Ia invención. Dichos ejemplos no limitan Ia invención, sino que su finalidad es ilustrarla, poniendo de manifiesto tanto Ia capacidad del dispositivo de adoptar distintas configuraciones según las necesidades como su aplicabilidad "in situ" e "in vivo".Different embodiments of the invention are described below. Said examples do not limit the invention, but its purpose is to illustrate it, showing both the ability of the device to adopt different configurations according to needs and its applicability "in situ" and "in vivo".
Ejemplo 1. Sonda rígida con sensor por reflexión. Esta realización particular de Ia presente invención se muestra en las Figuras 1A, 2, 8A y 8G. Tal y como se muestra en Ia Figura 2, el sensor óptico consta de cuatro emisores (2 a 5, en este ejemplo cuatro LEDs individualizados en encapsulado de montaje superficial) y de dos detectores (6, en este ejemplo dos fotodiodos p-i-n de silicio, también de montaje superficial). Específicamente, en el dispositivo mostrado en Ia Figura 8A se emplean cuatro LEDs con emisiones en longitudes de onda del infrarrojo cercano y como detectores dos fotodiodos p-i-n de silicio BPW34S. En cualquier caso, tal y como se muestra en Ia Figura 2 el conjunto de elementos emisores y detectores está montado sobre el extremo modificado del tubo cilindrico que constituye el cuerpo principal de Ia sonda (8), para que ofrezca una superficie plana para el ensamblaje de dichos elementos. De estos elementos salen los distintos cables (7) que los unen con Ia electrónica de alimentación y control. Los cables van por el hueco interior del tubo y salen por Ia parte posterior del mismo (10) para conectarse con Ia electrónica. La sonda posee en su parte posterior un mango o asidero (9) para permitir un mejor manejo. La Figura 1A muestra un ejemplo de aplicación de esta sonda, en el que Ia misma se introduce en Ia cavidad abdominal a través del orificio de un trocar (2) que atraviesa Ia pared abdominal. Las características de Ia sonda permiten su manipulación con el asidero (6a) y alcanzar el órgano o tejido (4) para su monitorización, colocando el sensor sobre el mismo. Ejemplo 2. Sonda con sensor por reflexión con ángulo de aplicación variable. Un segundo ejemplo de realización de Ia presente invención se muestra en las Figuras 1 B, 3 y 8B a 8D. Tal y como muestra Ia Figura 3, el sensor es similar al descrito en el ejemplo anterior: cuatro elementos emisores (5 a 8, en este ejemplo, cuatro LEDs individualizados en encapsulado de montaje superficial) y dos detectores y dos detectores (9, en este ejemplo, dos fotodiodos p-i-n de silicio en encapsulado para montaje superficial), conectados por cables (10) que van dentro de un tubo que va por el interior del tubo de Ia sonda (2) y salen por su extremo posterior (11 ) hacia Ia electrónica de control. A diferencia del ejemplo anterior este sensor se encuentra colocado sobre una superficie plana (4) del interior de una pieza alargada (1 ) con ángulo de aplicación variable gracias a que se une al cuerpo principal del tubo de Ia sonda (2) por un eje (3). El movimiento de rotación de esta pieza (1 ) sobre dicho eje (3) puede controlarse gracias a un mecanismo del extremo posterior de Ia sonda. En el ejemplo ilustrado en Ia Figura 1 B este mecanismo consta de unas asas (6b) que permiten ejercer un movimiento de tracción transmitido a dicha pieza (1 ) por el tubo (11 ) que contiene los cables y que se aloja en el interior del tubo de Ia sonda (2), permitiendo variar su ángulo según se accionen las asas. La variación del ángulo que forma Ia pieza soporte del sensor permite mejorar el acoplamiento del sensor óptico con el medio analizado.Example 1. Rigid probe with reflection sensor. This particular embodiment of the present invention is shown in Figures 1A, 2, 8A and 8G. As shown in Figure 2, the optical sensor consists of four emitters (2 to 5, in this example four individualized LEDs in surface mount encapsulation) and two detectors (6, in this example two silicon pin photodiodes, also surface mount). Specifically, in the device shown in Figure 8A, four LEDs with emissions in near-infrared wavelengths are used and as detectors two BPW34S silicon pin photodiodes. In any case, as shown in Figure 2, the set of emitting and detecting elements is mounted on the modified end of the cylindrical tube that constitutes the main body of the probe (8), so that it offers a flat surface for assembly of these elements. From these elements come the different cables (7) that connect them with the power and control electronics. The cables go through the inner hollow of the tube and exit through the back of the tube (10) to connect with the electronics. The probe has a handle or handle (9) on the back to allow better handling. Figure 1A shows an example of application of this probe, in which it is introduced into the abdominal cavity through the hole of a trocar (2) that crosses the abdominal wall. The characteristics of the probe allow its manipulation with the handle (6a) and reach the organ or tissue (4) for monitoring, placing the sensor on it. Example 2. Probe with reflection sensor with variable application angle. A second embodiment of the present invention is shown in Figures 1 B, 3 and 8B to 8D. As Figure 3 shows, the sensor is similar to that described in the previous example: four emitting elements (5 to 8, in this example, four individualized LEDs in surface mount encapsulation) and two detectors and two detectors (9, in this example, two silicon pin photodiodes in encapsulation for surface mounting), connected by cables (10) that go inside a tube that goes inside the tube of the probe (2) and exit at its rear end (11) towards The control electronics. Unlike the previous example, this sensor is placed on a flat surface (4) inside an elongated part (1) with variable application angle thanks to the fact that it joins the main body of the tube of the probe (2) by an axis (3). The rotational movement of this piece (1) on said axis (3) can be controlled thanks to a mechanism at the rear end of the probe. In the example illustrated in Figure 1 B this mechanism consists of handles (6b) that allow to exert a traction movement transmitted to said piece (1) by the tube (11) that contains the cables and that is housed inside the tube of the probe (2), allowing to vary its angle as the handles are actuated. The variation of the angle that forms the support piece of the sensor allows to improve the coupling of the optical sensor with the analyzed medium.
En Ia Figura 1 B se muestra un ejemplo de aplicación de esta sonda, en el que Ia misma se introduce en Ia cavidad abdominal a través del orificio de un trocar (2) que atraviesa Ia pared abdominal. Las características de Ia sonda permiten su manipulación con el asidero (6b) y alcanzar el órgano o tejido (4) para su monitorización, colocando el sensor sobre el mismo de manera óptima, Io que redunda en una mejor determinación a Ia vez que reduce Ia manipulación a ejercer sobre dicho órgano o tejido. Ejemplo 3. Sonda con sensor por reflexión acoplado en una pinza. El tercer ejemplo de realización de Ia presente invención se muestra en las Figuras 4, 8E y 8F. Tal y como muestra Ia Figura 4, el sensor es similar al descrito en los ejemplos anteriores: cuatro emisores (6 a 9, en este ejemplo, cuatro LEDs individualizados en encapsulado de montaje superficial) y dos detectores (10, en este ejemplo, dos fotodiodos p-i-n de silicio en encapsulado para montaje superficial), conectados por cables (11 ) que van dentro de un tubo que va por el interior del tubo de Ia sonda (4) y salen por su extremo posterior (12) hacia Ia electrónica de control. Al igual que en el ejemplo anterior este sensor se encuentra colocado sobre una superficie plana (3) del interior de una pieza alargada con ángulo de aplicación variable (Figura 5D) gracias a que se une al cuerpo principal del tubo de Ia sonda por un eje (5). A diferencia del ejemplo anterior esta pieza se encuentra enfrentada a otra similar que es capaz de variar su ángulo sobre el mismo eje o sobre uno paralelo, de manera que cada una de dichas piezas se constituye en el dedo de una pinza con apertura de ángulo variable. Este modo de realización permite que Ia sonda pueda posicionarse y quedar fijada temporalmente en determinada zona del órgano o tejido siempre que Ia misma pueda ser comprendida entre ambos dedos, Io que facilita asegurar que todas las determinaciones a Io largo del tiempo se llevan a cabo en Ia misma zona. El mecanismo de manipulación puede ser idéntico al anterior ejemplo de realización, si bien las asas pueden controlar Ia apertura de ambas piezas.In Figure 1 B an example of application of this probe is shown, in which it is introduced into the abdominal cavity through the hole of a trocar (2) that crosses the abdominal wall. The characteristics of the probe allow its manipulation with the handle (6b) and reach the organ or tissue (4) for monitoring, placing the sensor on it in an optimal way, which results in a better determination while reducing the manipulation to be exerted on said organ or tissue. Example 3. Probe with reflection sensor coupled to a clamp. The third embodiment of the present invention is shown in Figures 4, 8E and 8F. As Figure 4 shows, the sensor is similar to that described in the previous examples: four emitters (6 to 9, in this example, four individualized LEDs in surface mount encapsulation) and two detectors (10, in this example, two silicon pin photodiodes in encapsulation for surface mounting), connected by cables (11) that go inside a tube that goes inside the tube of the probe (4) and leave at its rear end (12) towards the control electronics . As in the previous example, this sensor is placed on a flat surface (3) inside an elongated piece with variable application angle (Figure 5D) thanks to the fact that it joins the main body of the tube of the probe by an axis (5). Unlike the previous example, this piece is facing a similar one that is capable of varying its angle on the same axis or on a parallel one, so that each of these pieces is constituted in the finger of a clamp with variable angle opening . This embodiment allows the probe to be positioned and temporarily fixed in a certain area of the organ or tissue provided that it can be understood between both fingers, which makes it easier to ensure that all determinations over time are carried out in The same area. The manipulation mechanism can be identical to the previous embodiment, although the handles can control the opening of both pieces.
Ejemplo 4. Sonda con sensor por transmisión acoplado en una pinza. El cuarto ejemplo de realización de Ia presente invención se muestra en Ia Figura 1C y 5. Tal y como muestra Ia Figura 5, el sensor se encuentra acoplado sobre las superficies planas e interiores (2 y 3) de los dedos de una pinza similar a Ia del ejemplo anterior, pero a diferencia de aquel, uno de dichos dedos contiene los elementos emisores (7 a 10, en este ejemplo, cuatro LEDs individualizados en encapsulado de montaje superficial) y un elemento detector (6), mientras que el ejemplo anterior contiene dos detectores (10, dos fotodiodos p-i-n de silicio en encapsulado para montaje superficial). Ambos grupos de elementos deben fijarse a los dedos de Ia pinza de manera tal que queden uno frente a otro cuando Ia pinza se encuentra cerrada. Ejemplo 5. Sonda con sensor híbrido (combinación de sensor por transmisión y por reflexión) acoplado en una pinza.Example 4. Probe with transmission sensor coupled to a clamp. The fourth embodiment of the present invention is shown in Figure 1C and 5. As shown in Figure 5, the sensor is coupled on the flat and inner surfaces (2 and 3) of the fingers of a clamp similar to Ia of the previous example, but unlike that, one of said fingers contains the emitting elements (7 to 10, in this example, four individualized LEDs in surface mounted encapsulation) and a detector element (6), while the previous example It contains two detectors (10, two silicon pin photodiodes in encapsulation for surface mounting). Both groups of elements must be fixed to the fingers of the clamp so that they are facing each other when the clamp is closed. Example 5. Probe with hybrid sensor (combination of sensor by transmission and reflection) coupled in a clamp.
El quinto ejemplo de realización de Ia presente invención se muestra en las Figuras 6 y 7. Tal y como se muestra en Ia Figura 6, Ia pinza alberga en Ia superficie plana del interior de uno de sus dedos un elemento detector (6) y en Ia superficie plana correspondiente del otro dedo, y enfrentado a dicho elemento detector, se fija un sensor por reflexión completo, en el que al igual que en los ejemplos de modos de realización 1 a 3, los elementos emisores (7 a 10, en el ejemplo ilustrado cuatro LEDs individualizados en encapsulado de montaje superficial) y los detectores (11 , en el ejemplo ilustrado, dos fotodiodos p-i-n de silicio) se hallan sobre Ia misma superficie plana. Los elementos emisores deben encontrarse enfrentados al detector del otro dedo de Ia pinza, de manera que puedan actuar tanto para Ia determinación por reflexión, en cuyo caso Ia señal es detectada por los detectores (11 ) colocados en Ia misma superficie, como por transmisión, en cuyo caso Ia señal es detectada por el detector que se encuentra en Ia superficie interior del otro dedo de Ia pinza (6).The fifth embodiment of the present invention is shown in Figures 6 and 7. As shown in Figure 6, the clip houses a detector element (6) on the flat surface of the interior of one of its fingers and in The corresponding flat surface of the other finger, and facing said detector element, a sensor is set by full reflection, in which, as in the examples of embodiments 1 to 3, the emitting elements (7 to 10, in the Illustrated example four individualized LEDs in surface mount encapsulation) and the detectors (11, in the illustrated example, two silicon pin photodiodes) are located on the same flat surface. The emitting elements must face the detector of the other finger of the clamp, so that they can act both for the determination by reflection, in which case the signal is detected by the detectors (11) placed on the same surface, as by transmission, in which case the signal is detected by the detector that is located on the inner surface of the other finger of the clip (6).
Para esta misma configuración híbrida se ha mostrado en Ia Figura 7 un ejemplo de modo de realización en el que cada uno de los dedos de Ia pinza contiene un segundo eje (1 ) paralelo al eje común de ambos (2), Io que permite que las superficies que albergan los elementos del sensor (3 a 6) queden mejor enfrentadas entre sí, facilitando por una parte Ia manipulación y en su caso mantener fijos los sensores sobre una zona determinada durante las distintas medidas a Io largo del tiempo y, por otra, el enfrentamiento de los elementos del sensor por transmisión para optimizar dichas medidas. La pinza de apertura en paralelo mostrada en Ia Figura 7 puede albergar solamente una de las dos configuraciones, por reflexión o por transmisión, de forma similar a los ejemplos mostrados en las Figuras 4 y 5, respectivamente. Asimismo puede modificarse y resultar una sonda con sensor por reflexión con desplazamiento en paralelo para su aplicación sobre el órgano, de manera análoga al ejemplo de sensor por reflexión con ángulo de aplicación variable (Figura 3).For this same hybrid configuration, an example of embodiment is shown in Figure 7 in which each of the fingers of the clip contains a second axis (1) parallel to the common axis of both (2), which allows the surfaces that house the sensor elements (3 to 6) are better facing each other, facilitating on the one hand the manipulation and, if necessary, keeping the sensors fixed over a certain area during the different measurements over time and, on the other , the confrontation of the sensor elements by transmission to optimize said measurements. The parallel opening clamp shown in Figure 7 can only house one of the two configurations, by reflection or by transmission, similar to the examples shown in Figures 4 and 5, respectively. Likewise, a probe with reflection sensor with parallel displacement can be modified and turned out for application on the organ, analogously to the example of reflection sensor with variable application angle (Figure 3).
Ejemplo 6. Determinación de parámetros fisiológicos utilizando el dispositivo de Ia invención. Se realizaron varias operaciones quirúrgicas laparoscópicas en cerdos, siguiendo las directrices del Real Decreto 1201/2005 sobre protección de los animales utilizados para experimentación y otros fines científicos. Empleando un dispositivo de sonda rígida con sensor por reflexión (Ejemplo de realización 1 ) se realizaron medidas fotopletismográficas y pulsioximétricas en diferentes zonas de Ia arteria gastroepiploica (Figura 10A), hígado (Figura 10B), intestino (Figura 10C) y pared abdominal (Figura 10D).Example 6. Determination of physiological parameters using the device of the invention. Several laparoscopic surgical operations were performed in pigs, following the guidelines of Royal Decree 1201/2005 on the protection of animals used for experimentation and other scientific purposes. Using a rigid probe device with reflection sensor (Example of embodiment 1) photoplethysmographic and pulse oximetric measurements were made in different areas of the gastroepiploic artery (Figure 10A), liver (Figure 10B), intestine (Figure 10C) and abdominal wall (Figure 10D).
Los cerdos fueron entonces sometidos a oclusión vascular selectiva de territorios arteriales y venosos a concentraciones inspiratorias de oxígeno (02) decrecientes (100%, 66%, 33% y 17%). El procesado de las señales obtenidas mediante el dispositivo actuando como pulsioxímetro laparoscópico permite obtener valores de pulso y de saturación de oxígeno. En particular, Ia medición en Ia arteria gastroepiploica de un cerdo en estado basal usando para cada uno de los 4 emisores LEDs del sensor una longitud de onda en el infrarrojo cercano (denominadas nir1 , nir2, nir3 y nir4) realizada a Io largo de 10 segundos originó las señales electrónicas mostradas en Ia Figura 11A. Estas señales, una vez procesadas permitieron obtener los valores de pulso en pulsaciones por minuto (ppm) mostrados en Ia Figura 11 B, sus valores medios y las desviaciones estándar. A modo de comparación, se determinó asimismo el valor de Ia frecuencia cardiaca (en pulsaciones por minuto) mediante electrocardiografía realizada simultáneamente.The pigs were then subjected to selective vascular occlusion of arterial and venous territories at decreasing inspiratory oxygen concentrations (02) (100%, 66%, 33% and 17%). The processing of the signals obtained by the device acting as a laparoscopic pulse oximeter allows to obtain pulse and oxygen saturation values. In particular, the measurement in the gastroepiploic artery of a pig in basal state using for each of the 4 LED emitters of the sensor a wavelength in the near infrared (denominated nir1, nir2, nir3 and nir4) carried out over 10 seconds originated the electronic signals shown in Figure 11A. These signals, once processed, allowed to obtain the pulse values in beats per minute (ppm) shown in Figure 11 B, their average values and standard deviations. By way of comparison, the heart rate value (in beats per minute) by electrocardiography performed simultaneously.
El valor medio del pulso determinado por aplicación de Ia sonda fue en todos los casos de 117 pulsaciones por minuto (muy similar a Ia frecuencia cardiaca determinada por electrocardiografía, que fue de 118 pulsaciones por minuto) y el de Ia desviación estándar fue 0 (cero), demostrando Ia eficacia de Ia aplicación del dispositivo. The average value of the pulse determined by application of the probe was in all cases 117 beats per minute (very similar to the heart rate determined by electrocardiography, which was 118 beats per minute) and that of the standard deviation was 0 (zero ), demonstrating the effectiveness of the application of the device.

Claims

REIVINDICACIONES
1.- Dispositivo que consta de una sonda de endoscopia, tubular, hueca y alargada, caracterizado porque dicha sonda comprende en su extremo anterior que se introduce en Ia cavidad practicada al paciente, uno o varios sensores opto-electrónicos capaces de detectar señales ópticas asociadas a un parámetro de Ia actividad fisiológica de los órganos, tejidos y/o regiones específicas de los mismos y de producir una señal eléctrica proporcional a Ia intensidad de Ia señal óptica detectada.1.- Device consisting of an endoscopy, tubular, hollow and elongated probe, characterized in that said probe comprises at its anterior end that one or more opto-electronic sensors capable of detecting associated optical signals are introduced into the cavity made to the patient. to a parameter of the physiological activity of the specific organs, tissues and / or regions thereof and of producing an electrical signal proportional to the intensity of the detected optical signal.
2.- Dispositivo según Ia reivindicación 1 , caracterizado porque el sensor o sensores consta de uno o más componentes electrónicos para Ia emisión de radiación óptica en al menos una longitud de onda específica (elementos emisores) y de uno o más componentes electrónicos para Ia detección de Ia radiación óptica en cada una de dichas longitudes de onda (elementos detectores), produciendo dichos elementos detectores una señal eléctrica proporcional a Ia cantidad de radiación óptica que captan en una longitud de onda dada.2. Device according to claim 1, characterized in that the sensor or sensors consists of one or more electronic components for the emission of optical radiation in at least a specific wavelength (emitting elements) and one or more electronic components for the detection of the optical radiation in each of said wavelengths (detecting elements), said detecting elements producing an electrical signal proportional to the amount of optical radiation that they capture in a given wavelength.
3.- Dispositivo según Ia reivindicación 2, caracterizado porque al menos uno de sus sensores comprende elementos emisores y elementos detectores en una disposición espacial fija respecto al cuerpo principal de Ia sonda.3. Device according to claim 2, characterized in that at least one of its sensors comprises emitting elements and detecting elements in a fixed spatial arrangement with respect to the main body of the probe.
A - Dispositivo según Ia reivindicación 2, caracterizado porque al menos uno de sus sensores comprende al menos un elemento emisor o un elemento detector en una disposición espacial que puede variar respecto al cuerpo principal de Ia sonda y porque dicha variación es controlable por el operador del dispositivo.A - Device according to claim 2, characterized in that at least one of its sensors comprises at least one emitting element or a detector element in a spatial arrangement that can vary with respect to the main body of the probe and because said variation is controllable by the operator of the device.
5.- Dispositivo según Ia reivindicación 2, caracterizado porque al menos uno de sus sensores comprende al menos un elemento emisor y al menos un elemento detector ensamblados sobre una misma superficie plana, en una disposición tal que el o los elementos detectores recogen preferentemente las radiaciones ópticas que, tras haber sido generadas por el o los elementos emisores e interaccionado con el órgano o tejido a analizar, son reflejadas por dicho órgano o tejido (configuración o modo de operación por reflexión).5. Device according to claim 2, characterized in that at least one of its sensors comprises at least one emitting element and at less a detector element assembled on the same flat surface, in an arrangement such that the detector element (s) preferably collect the optical radiations that, after being generated by the emitting element (s) and interacting with the organ or tissue to be analyzed, are reflected by said organ or tissue (configuration or mode of operation by reflection).
6.- Dispositivo según Ia reivindicación 2, caracterizado porque al menos uno de sus sensores comprende al menos un elemento emisor y al menos un elemento detector ensamblados sobre distintas superficies planas, en una disposición tal que los elementos emisores pueden enfrentarse a los detectores e incluir entre ambos una zona o porción del órgano o tejido a analizar de forma que el o los elementos detectores recojan preferentemente las radiaciones ópticas que, tras haber sido generadas por el o los elementos emisores se han transmitido a través de dicho órgano o tejido, interaccionando con el mismo durante dicha transmisión (configuración o modo de operación por transmisión).6. Device according to claim 2, characterized in that at least one of its sensors comprises at least one emitting element and at least one detector element assembled on different flat surfaces, in an arrangement such that the emitting elements can face the detectors and include between them an area or portion of the organ or tissue to be analyzed so that the detector element (s) preferably collect the optical radiations that, after being generated by the emitting element (s) have been transmitted through said organ or tissue, interacting with the same during said transmission (configuration or mode of operation per transmission).
7.- Dispositivo según Ia reivindicación 2, caracterizado porque comprende al menos un elemento emisor y un elemento detector en Ia disposición definida en Ia reivindicación 5 y al menos un elemento detector que se encuentra en Ia disposición definida en Ia reivindicación 6 respecto a al menos uno de dichos elementos emisores y porque el modo de operación del sensor o sensores que conforman dichos elementos puede controlarse por el operador del dispositivo para que las radiaciones ópticas detectadas por un elemento detector dado hayan sido generadas por al menos un elemento emisor ensamblado en Ia misma superficie (modo de operación por reflexión) o para que las radiaciones ópticas detectadas por un elemento detector dado hayan sido generadas por al menos un elemento emisor ensamblado en una superficie distinta y enfrentada a Ia superficie donde se ensambla dicho elemento detector (modo de operación por transmisión).7. Device according to claim 2, characterized in that it comprises at least one emitter element and a detector element in the arrangement defined in claim 5 and at least one detector element that is in the arrangement defined in claim 6 with respect to at least one of said emitting elements and because the mode of operation of the sensor or sensors that make up said elements can be controlled by the device operator so that the optical radiations detected by a given detector element have been generated by at least one emitting element assembled therein surface (mode of operation by reflection) or so that the optical radiations detected by a given detector element have been generated by at least one emitter element assembled on a different surface and facing the Ia surface where said detector element is assembled (mode of operation by transmission).
8.- Dispositivo según Ia reivindicación 2, caracterizado porque el conjunto de los elementos emisores y detectores del sensor o sensores comprendidos por el mismo es una combinación cualquiera de los definidos en las reivindicaciones 3 a 7, ambas incluidas.8. Device according to claim 2, characterized in that the set of emitting and detecting elements of the sensor or sensors included therein is any combination of those defined in claims 3 to 7, both included.
9.- Dispositivo según cualquiera de las reivindicaciones 2 a 8 (ambas incluidas) en las que los elementos emisores se seleccionan del grupo formado por: diodos electroluminiscentes (LEDs), diodos superluminiscentes y diodos láser.9. Device according to any of claims 2 to 8 (both included) in which the emitting elements are selected from the group consisting of: electroluminescent diodes (LEDs), superluminescent diodes and laser diodes.
10.- Dispositivo según cualquiera de las reivindicaciones 2 a 8 (ambas incluidas) en las que los elementos detectores se seleccionan del grupo formado por: fotodiodos y fototransistores.10. Device according to any of claims 2 to 8 (both included) in which the detector elements are selected from the group consisting of: photodiodes and phototransistors.
11.- Dispositivo según una combinación cualquiera de los definidos por las reivindicaciones 9 y 10.11. Device according to any combination defined by claims 9 and 10.
12.- Dispositivo según cualquiera de las reivindicaciones 2 a 11 (ambas incluidas) caracterizado porque los elementos emisores y detectores están conectados por medio de cables eléctricos a uno o varios aparatos electrónicos para el control de su funcionamiento.12. Device according to any of claims 2 to 11 (both included) characterized in that the emitting and detecting elements are connected by means of electrical cables to one or more electronic devices for the control of their operation.
13.- Dispositivo según cualquiera de las reivindicaciones 2 a 1113. Device according to any of claims 2 to 11
(ambas incluidas) caracterizado porque los elementos emisores y detectores están conectados al módulo externo de modo inalámbrico, incorporando Ia sonda los correspondientes circuitos de transmisión- recepción inalámbrica y Ia alimentación de éstos y los sensores. (both included) characterized in that the emitting and detecting elements are connected to the external module wirelessly, the probe incorporating the corresponding wireless transmission-reception circuits and the power supply of these and the sensors.
14.- Dispositivo según cualquier de las reivindicaciones 12 y 13 caracterizado porque las señales eléctricas generadas por los elementos detectores son recogidas por uno o varios aparatos electrónicos para su conversión en señales digitales que pueden procesarse matemáticamente para ser almacenadas y/o mostradas como datos numéricos o gráficos.14. Device according to any of claims 12 and 13 characterized in that the electrical signals generated by the detecting elements are collected by one or more electronic devices for conversion into digital signals that can be processed mathematically to be stored and / or displayed as numerical data or graphics.
15.- Dispositivo según cualquiera de las reivindicaciones anteriores caracterizado porque Ia radiación óptica se encuentra en el intervalo comprendido entre los 400 y los 1000 nanómetros y el dispositivo se aplica a Ia medida del grado de perfusión y/o de oxigenación sanguínea de un órgano, tejido, o zonas de los mismos y porque dichas señales ópticas son convertidas a datos numéricos o gráficos mediante Ia aplicación de los principios de Ia fotopletismografía y/o Ia pulsioximetría. 15. Device according to any of the preceding claims characterized in that the optical radiation is in the range between 400 and 1000 nanometers and the device is applied to the measure of the degree of perfusion and / or blood oxygenation of an organ, tissue, or areas thereof and because said optical signals are converted to numerical or graphic data by means of the application of the principles of photoplethysmography and / or pulse oximetry.
PCT/ES2009/070004 2008-01-16 2009-01-16 Endoscopic probe with opto-electronic sensor for use in diagnostics and surgery WO2009090293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800108 2008-01-16
ESP200800108 2008-01-16

Publications (1)

Publication Number Publication Date
WO2009090293A1 true WO2009090293A1 (en) 2009-07-23

Family

ID=40885086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070004 WO2009090293A1 (en) 2008-01-16 2009-01-16 Endoscopic probe with opto-electronic sensor for use in diagnostics and surgery

Country Status (1)

Country Link
WO (1) WO2009090293A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167331A (en) * 1976-12-20 1979-09-11 Hewlett-Packard Company Multi-wavelength incremental absorbence oximeter
US5318022A (en) * 1991-03-01 1994-06-07 John Taboada Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds
DE19703220A1 (en) * 1996-01-30 1997-07-31 Hoek Instr Ab Pulse oximetry sensor provided with fibre=optics signal transmission
US20030225337A1 (en) * 2002-01-31 2003-12-04 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
US20050148842A1 (en) * 2003-12-22 2005-07-07 Leming Wang Positioning devices and methods for in vivo wireless imaging capsules
WO2005087097A1 (en) * 2004-03-08 2005-09-22 Masimo Corporation Physiological parameter system
ES2276594B1 (en) * 2005-06-13 2008-06-16 Consejo Superior Investig. Cientificas METHOD FOR PROCESSING PHOTOPLETISMOGRAPHIC SIGNS OBTAINED FROM A PERSON OR ANIMAL, AND OXIMETER THAT USES SUCH METHOD.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167331A (en) * 1976-12-20 1979-09-11 Hewlett-Packard Company Multi-wavelength incremental absorbence oximeter
US5318022A (en) * 1991-03-01 1994-06-07 John Taboada Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds
DE19703220A1 (en) * 1996-01-30 1997-07-31 Hoek Instr Ab Pulse oximetry sensor provided with fibre=optics signal transmission
US20030225337A1 (en) * 2002-01-31 2003-12-04 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
US20050148842A1 (en) * 2003-12-22 2005-07-07 Leming Wang Positioning devices and methods for in vivo wireless imaging capsules
WO2005087097A1 (en) * 2004-03-08 2005-09-22 Masimo Corporation Physiological parameter system
ES2276594B1 (en) * 2005-06-13 2008-06-16 Consejo Superior Investig. Cientificas METHOD FOR PROCESSING PHOTOPLETISMOGRAPHIC SIGNS OBTAINED FROM A PERSON OR ANIMAL, AND OXIMETER THAT USES SUCH METHOD.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. M. LÓPEZ SILVA ET AL., UTILITY OF TRANSMITTANCE PHOTOPLETHYSMOGRAPHY WITH NEAR INFRARED LASER DIODES FOR THE STUDY OF VISCERAL PERFUSION: PRELIMINARY STUDY, 7 July 2005 (2005-07-07) *

Similar Documents

Publication Publication Date Title
US20210338121A1 (en) Apparatus, systems and methods for determining tissue oxygenation
US11324412B2 (en) Surgical instruments with sensors for detecting tissue properties, and system using such instruments
JP7146733B2 (en) Oxygen measurement device with laparoscopic dilation
ES2427546T3 (en) Non-invasive measurements in the body of a human
ES2425388T3 (en) Apparatus for guiding and positioning an endovascular device
US20050080342A1 (en) Device and system for in-vivo procedures
ES2907933T3 (en) Non-invasive measurement of blood oxygen saturation
US20080039715A1 (en) Three-dimensional optical guidance for catheter placement
US20080188727A1 (en) Broadband solid-state spectroscopy illuminator and method
JP2010530284A (en) Differential weighted body spectroscopy
JP4886698B2 (en) Optically guided system for precise patient placement of medical catheters
AU2022200850B2 (en) Ultrasound-guided optoacoustic monitoring of oxygen saturation
US10004438B2 (en) Implantable real-time oximeter to determine potential strokes and post-traumatic brain-injury complications
WO2009090293A1 (en) Endoscopic probe with opto-electronic sensor for use in diagnostics and surgery
WO2022266250A1 (en) Sequential adaptor for combined ultrasound and optoacoustic diagnostic interrogation of the left innominate vein
ES2719525T3 (en) Non-invasive measurement of blood oxygen saturation
Abdollahi Intra-operative optical monitoring of bowel tissue viability based on photoplethysmography and laser doppler flowmetry
Giardini et al. Diffuse reflectance measurement tool for laparoscopic surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09701552

Country of ref document: EP

Kind code of ref document: A1