WO2008074287A1 - Method for the production of a three-dimensional component - Google Patents

Method for the production of a three-dimensional component Download PDF

Info

Publication number
WO2008074287A1
WO2008074287A1 PCT/DE2007/002092 DE2007002092W WO2008074287A1 WO 2008074287 A1 WO2008074287 A1 WO 2008074287A1 DE 2007002092 W DE2007002092 W DE 2007002092W WO 2008074287 A1 WO2008074287 A1 WO 2008074287A1
Authority
WO
WIPO (PCT)
Prior art keywords
individual
individual sections
section
component
irradiation
Prior art date
Application number
PCT/DE2007/002092
Other languages
German (de)
French (fr)
Inventor
Frank Herzog
Original Assignee
Cl Schutzrechtsverwaltungs Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cl Schutzrechtsverwaltungs Gmbh filed Critical Cl Schutzrechtsverwaltungs Gmbh
Publication of WO2008074287A1 publication Critical patent/WO2008074287A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for producing a three-dimensional component, in particular a laser sintering or laser melting method for use in a laser sintering machine, in which the component is produced by successive solidification of individual layers of solidifiable building material by the action of radiation, in particular laser radiation, wherein the point - And / or preferably linear energy input in at least one layer in flat individual sections.
  • the invention has for its object to form a method with the features of claim 1 such that occur in the solidification of the individual layers of the lowest possible voltages within a component layer. It is another object of the invention to define the individual sections and the irradiation sequence such that they generate only small voltages depending on the component geometry during manufacture. Furthermore, a simple and fast construction process should be made possible. This object is solved by the characterizing features of claim 1, advantageous developments of the invention will become apparent from the dependent claims October 16, 2007 Ha / 20070300
  • the irradiation order at least partially so runs that after a point or line energy input within a first single section of the following energy input in a second second single section and the subsequent energy input either in a third or an already partially irradiated single section takes place, wherein the successively irradiated individual sections and / or performed energy entries are not immediately adjacent.
  • the use of flat individual sections that is to say individual sections which have a defined length in both the X and Y directions, enable a more targeted and at the same time less stressful introduction of energy into a component layer.
  • the distance of at least two successively irradiated individual sections corresponds to at least the smallest cross section of a single section or the distance corresponds to at least two energy inputs at least the smallest cross section of an energy input.
  • a further advantageous measure is the irradiation order of the individual sections and / or the energy entries after a stochastic one October 16, 2007 Ha / 20070300
  • the stochastic selection of the order of irradiation is limited to the effect that no two successive energy entries lie directly next to one another.
  • the stochastic distribution ensures a uniform energy input to the individual layers of the component.
  • the stability, in particular the bending stiffness, of a component consisting of individual square sections arranged in the manner of a chess board on the individual layers of the component can be increased by alternately arranging the irradiation lines in the first single section in a first direction and in a subsequent single section are irradiated in a direction perpendicular to the first.
  • alignment angles deviating from 90 ° relative to a first energy input may also be advantageous, for example a 60 ° deviation of the orientation of the irradiation lines in the case of a hexagonal single-section structure.
  • the shape of at least one individual section is square, furthermore, the individual section shapes can also be rectangular or hexagonal.
  • the shape and / or dimensioning of at least two individual sections need not necessarily be identical, so it is advantageous, for example, to arrange square and rectangular individual sections within a component layer and thus to achieve a higher component stability by generating by means of an offset.
  • Component can be achieved and thus the overall stability of the component area-dependent positively influenced.
  • edge regions of the individual sections are irradiated as a grid structure separately and / or by overlapping a plurality of individual sections.
  • Such a lattice structure can be aligned both parallel to the layers of the component, but also extend perpendicularly or at other angles to them over a plurality of component layers.
  • the solidification of the grid lines can take place as a final irradiation measure within a layer, for example with a grouping of defined individual sections.
  • two single-segment groupings can be distributed in a component layer in the manner of a checkerboard (black and white fields) and "usually” irradiate them.
  • a third single-segment grouping is used to selectively target specific areas within a component layer, for example Another example is to irradiate a first region of a component, which is slightly stressed in the operating state of the component, with two individual segment groups whose individual section shape is quadratic on the one hand and whose edges do not overlap and within one another the same Bauteilscbicht in a second, in the operating state of the component highly loaded area of the component this with October 16, 2007 Ha / 20070300
  • Fig. 1 is a schematic representation of a subdivided into individual sections
  • FIG. 2 shows a schematic representation according to FIG. 1 with an irradiation order according to the invention
  • FIG. 3 shows a schematic illustration according to FIG. 1 with an alternative irradiation sequence according to the invention
  • FIG. 4 is a schematic representation of a component layer which is irradiated by individual sections of different geometries
  • Fig. 5 is a schematic representation of a device layer with different Einzelabitessgrupptechniken.
  • drawing figure 1 is a known from the prior art method for
  • the component 1 is produced by sequential solidification of individual layers 2 of solidifiable building material by the action of a radiation, in particular a laser radiation.
  • the energy input 3 is in line form and does not extend continuously over the entire component length, but is distributed in flat individual sections 4 on the component 1.
  • the individual sections 4 are provided with capital letters A, B, C,... Within the individual sections 4, the linear energy inputs 3 are shown with a small arrow 5 which shows the direction of travel of the laser beam. All energy entries 3 are provided with lowercase letters a, b, c, ..., indicating the order of irradiation.
  • drawing figure 1 it can be seen from drawing figure 1 that, as the first in individual section 4A, it is completely irradiated with the energy inputs 3a-3e.
  • the single section 4F is irradiated with the energy inputs 3f-3j and subsequently the single section 4G is started.
  • the individual successive energy inputs 3 and the individual successively completely irradiated individual sections 4 are spaced from one another.
  • the irradiation sequence takes place within a construction process at least in regions such that after a first point or line energy input 3 within a first single section 4 of the following energy input 3 in a further second single section 4 and the subsequent energy input 3 either in a third or an area already irradiated section 4, wherein the successively irradiated individual sections 4 and / or performed energy inputs 3 are not immediately adjacent.
  • the first energy input 3a takes place in the individual section 4A, the subsequent second energy entry 3b in the individual section 4C, the third 3c in individual section 4E, etc.
  • the second placed in the single section 4A energy input j takes place only when all individual sections 4 have experienced an energy input 3. Furthermore, it can be seen from the exemplary embodiment that the spacing 6 of at least two individual sections 4A, 4F irradiated in succession corresponds at least to the smallest cross-section 7 of a single section 4F. It can also be seen that the distance 8 of at least two consecutive energy inputs 3 g, 3 h corresponds to at least the smallest cross section 9 of an energy input 3 g.
  • the irradiation order of the individual sections 4 and the energy inputs 3 is determined by a stochastic selection method.
  • the first energy input 3 a takes place in the single section 4A, the second 3b in the single section 4H, the third 3c in the single section 4C, the fourth 3d in the single section 4G, etc.
  • the energy inputs 3 and individual sections 4 irradiated one after the other are spaced apart from one another (compare distances 6, 8).
  • the orientation of the linear energy input 3 differs in at least two individual sections 4.
  • the line-shaped energy inputs 3 of the individual sections 4B, 4D, 4F, 4H 5 are parallel to one another, but oriented perpendicular to the further individual sections 4 A, 4 C, 4 E, 4 G, 41.
  • Component 1 the individual sections 3 can include both square, rectangular and hexagonal shapes. To increase the stability of the component
  • Grid structure can be created, which can be generated by separate and / or by overlapping multiple sections 4.
  • the solidification of the grid lines can take place as a final irradiation measure within a layer 2.
  • the embodiment in drawing figure 5 represents a component 1, which has a U-shaped cross-section in the illustrated layer 2.
  • the individual sections 4 are combined in four ⁇ individual section groupings 10.
  • the first Einzelabitessgrupptechnik 10 is formed from the individual sections 4 A - 4F; the second single-segment grouping 10 from the single-section groups 4G-4J; the third of the individual sections K and L and the fourth of the individual sections 4M - 4P.
  • These individual section groupings 10 are irradiated in accordance with the component requirements with a different irradiation sequence, irradiation time, single section form, irradiation intensity and / or different degree of overlap.
  • Such a division of the cross-sectional layer 2 of the component 1 is useful not only in critical component cross-sections, but also in principle in solid components 1, which are divided into an envelope region and a core region, makes sense. Due to the variation of the irradiation sequence, irradiation time, single-section form,
  • Irradiation intensity and / or the degree of overlap of individual section 4 for example, different component densities and / or stabilities within a layer 2 can be realized.

Abstract

The invention relates to a method for the production of a three-dimensional component, particularly a laser sintering or laser melting method, for use in a laser sintering machine, wherein the component is produced by the successive compacting of individual layers made of a structural material that can be compacted by exposure to radiation, particularly to laser radiation, wherein the punctiform and/or linear application of energy occurs in at least one layer in two-dimensional individual sections. The irradiation sequence within a structural process is carried out at least in sections such that after a punctiform or linear application of energy within a first individual section the subsequent application of energy occurs in a further, second individual section, and the subsequent application of energy occurs either in a third or in a (first) individual section that has already been partially irradiated, wherein the successively exposed individual sections and/or completed applications of energy do not lie directly next to each other.

Description

16. Oktober 2007 Ha/20070300 October 16, 2007 Ha / 20070300
- 1 -- 1 -
BESCHREIBUNGDESCRIPTION
Verfahren zur Herstellung eines dreidimensionalen BauteilsMethod for producing a three-dimensional component
Die Erfindung betrifft ein Verfahren zum Herstellen eines dreidimensionalen Bauteils, insbesondere ein Lasersinter- oder Laserschmelzverfahren zur Anwendung in einem Lasersinterautomaten, bei dem das Bauteil durch aufeinanderfolgendes Verfestigen einzelner Schichten aus verfestigbarem Baumaterial durch Einwirkung einer Strahlung, insbesondere einer Laserstrahlung, erzeugt wird, wobei der punkt- und/oder vorzugsweise linienförmige Energieeintrag in mindestens einer Schicht in flächigen Einzelabschnitten erfolgt.The invention relates to a method for producing a three-dimensional component, in particular a laser sintering or laser melting method for use in a laser sintering machine, in which the component is produced by successive solidification of individual layers of solidifiable building material by the action of radiation, in particular laser radiation, wherein the point - And / or preferably linear energy input in at least one layer in flat individual sections.
Aus den Patentanmeldungen DE 100 42 134 Al und DE 100 42 132 Al sind Verfahren bekannt, bei welchen ein Bauteil durch aufeinanderfolgendes Verfestigen einzelner Schichten hergestellt wird, wobei der Energieeintrag in flächigen, beispielsweise quadratischen Einzelabschnitten erfolgt. Durch ein derartiges Verfahren wird es erreicht, die Spannungen bei der Verfestigung der einzelnen Schichten zu reduzieren.From the patent applications DE 100 42 134 Al and DE 100 42 132 Al methods are known in which a component is produced by successive solidification of individual layers, wherein the energy input takes place in flat, for example square individual sections. By such a method it is achieved to reduce the stresses in the solidification of the individual layers.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren mit den Merkmalen des Anspruches 1 derart auszubilden, daß bei der Verfestigung der einzelnen Schichten möglichst geringe Spannungen innerhalb einer Bauteilschicht auftreten. Ferner ist es Aufgabe der Erfindung, die Einzelabschnitte und die Bestrahlungsabfolge derart zu definieren, daß sie abhängig von der Bauteilgeometrie bei der Herstellung nur geringe Spannungen erzeugen. Des weiteren soll ein einfacher und schneller Bauprozeß ermöglicht werden. Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruches 1 gelöst, vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen 16. Oktober 2007 Ha/20070300The invention has for its object to form a method with the features of claim 1 such that occur in the solidification of the individual layers of the lowest possible voltages within a component layer. It is another object of the invention to define the individual sections and the irradiation sequence such that they generate only small voltages depending on the component geometry during manufacture. Furthermore, a simple and fast construction process should be made possible. This object is solved by the characterizing features of claim 1, advantageous developments of the invention will become apparent from the dependent claims October 16, 2007 Ha / 20070300
- 2 -- 2 -
AIs Kern der Erfindung wird es angesehen, daß innerhalb eines Bauprozesses die Bestrahlungsreihenfolge zumindest bereichsweise derart abläuft, daß nach einem punkt- oder linienförmigen Energieeintrag innerhalb eines ersten Einzelabschnittes der folgende Energieeintrag in einem weiteren zweiten Einzelabschnitt erfolgt und der darauf folgende Energieeintrag entweder in einem dritten oder einem bereits bereichsweise bestrahlten Einzelabschnitt erfolgt, wobei die nacheinander bestrahlten Einzelabschnitte und/oder erfolgten Energieeinträge nicht unmittelbar nebeneinander liegen. Die Verwendung flächiger Einzelabschnitte, also Einzelabschnitte, die sowohl in X- als auch in Y-Richtung eine definierte Länge aufweisen, ermöglichen einen gezielteren und zugleich spannungsärmeren Energieeintrag in eine Bauteilschicht. Da der Energieeintrag nicht zwangsläufig als eine stetige Scanlinie einen Querschnitt des Bauteils überfahrt, kann über die Anordnung der Einzelabschnitte eine gezielte, auf die Bauteilgeometrie oder Bauteileigenschaften abgestimmte Verfestigung des Baumaterials erreicht werden. Insbesondere durch die Bestrahlungsreihenfolge gemäß Anspruch 1 und der Prämisse, daß nacheinander bestrahlten Einzelabschnitte und/oder Energieeinträge nicht unmittelbar nebeneinander liegen, wird erreicht, daß die erzeugten Spannungen auf den einzelnen Bauteilschichten auf einen geringen Bereich begrenzt sind.As A core of the invention, it is considered that within a construction process, the irradiation order at least partially so runs that after a point or line energy input within a first single section of the following energy input in a second second single section and the subsequent energy input either in a third or an already partially irradiated single section takes place, wherein the successively irradiated individual sections and / or performed energy entries are not immediately adjacent. The use of flat individual sections, that is to say individual sections which have a defined length in both the X and Y directions, enable a more targeted and at the same time less stressful introduction of energy into a component layer. Since the energy input does not necessarily pass over a cross-section of the component as a continuous scan line, a specific consolidation of the building material, which is tailored to the component geometry or component properties, can be achieved via the arrangement of the individual sections. In particular, by the order of irradiation according to claim 1 and the premise that successively irradiated individual sections and / or energy inputs are not immediately adjacent, it is achieved that the voltages generated on the individual component layers are limited to a small range.
In vorteilhafter Weise entspricht der Abstand wenigstens zweier nacheinander bestrahlter Einzelabschnitte mindestens dem kleinsten Querschnitt eines Einzelabschnitts bzw. der Abstand wenigstens zwei Energieeinträge mindestens dem kleinsten Querschnitt eines Energieeintrages. Mittels eines solchen Mindestabstandes zweier Einzelabschnitte und/oder Energieeinträge wird gewährleistet, daß sich die eingebrachte Wärmeenergie nicht auf weitere benachbarte verfestigte, sowie nicht verfestigte Bereiche auswirkt.Advantageously, the distance of at least two successively irradiated individual sections corresponds to at least the smallest cross section of a single section or the distance corresponds to at least two energy inputs at least the smallest cross section of an energy input. By means of such a minimum distance between two individual sections and / or energy inputs, it is ensured that the introduced heat energy does not affect further adjacent solidified, as well as non-solidified areas.
Eine weitere vorteilhafte Maßnahme ist es, die Bestrahlungsreihenfolge der Einzelabschnitte und/oder der Energieeinträge nach einem stochastischen 16. Oktober 2007 Ha/20070300A further advantageous measure is the irradiation order of the individual sections and / or the energy entries after a stochastic one October 16, 2007 Ha / 20070300
- 3 -- 3 -
Auswahlverfahren erfolgen zu lassen. Gleichzeitig ist jedoch die stochastische Auswahl der Bestrahlungsreihenfolge dahingehend beschränkt, daß keine zwei nacheinander erfolgten Energieeinträge unmittelbar nebeneinander liegen. Insbesondere die stochastische Verteilung gewährleistet einen gleichmäßigen Energieeintrag auf die einzelnen Schichten des Bauteils.Selection procedure. At the same time, however, the stochastic selection of the order of irradiation is limited to the effect that no two successive energy entries lie directly next to one another. In particular, the stochastic distribution ensures a uniform energy input to the individual layers of the component.
Zur Steigerung der Stabilität des Bauteils kann es vorteilhafter Weise vorgesehen sein, die linienförmigen- Energieeinträge in mindestens zwei Einzelabschnitten unterschiedlich auszurichten. Beispielsweise läßt sich die Stabilität, insbesondere die Biegesteifigkeit eines Bauteils, das aus quadratischen Einzelabschnitten, die in Art eines Schachbretts auf den einzelnen Schichten des Bauteils angeordnet sind, dadurch erhöhen, daß die Bestrahlungslinien abwechselnd im ersten Einzelabschnitt in einer ersten Richtung und in einem anschließenden Einzelabschnitt in einer zur ersten senkrechten Ausrichtung bestrahlt werden. Darüber hinaus können auch von 90° abweichende Ausrichtungswinkel bezogen auf einen ersten Energieeintrag vorteilhaft sein, beispielsweise eine 60°- Abweichung der Ausrichtung der Bestrahlungslinien bei einer hexagonalen Einzelabschnittsstruktur.In order to increase the stability of the component, it may be advantageous to align the linear energy inputs in at least two individual sections differently. For example, the stability, in particular the bending stiffness, of a component consisting of individual square sections arranged in the manner of a chess board on the individual layers of the component can be increased by alternately arranging the irradiation lines in the first single section in a first direction and in a subsequent single section are irradiated in a direction perpendicular to the first. In addition, alignment angles deviating from 90 ° relative to a first energy input may also be advantageous, for example a 60 ° deviation of the orientation of the irradiation lines in the case of a hexagonal single-section structure.
In einer vorteilhaften Ausfuhrungsform ist die Form mindestens eines Einzelabschnittes quadratisch, ferner können die Einzelabschnittsformen auch rechteckig oder sechseckig ausgebildet sein. Dabei muß die Form und/oder Dimensionierung mindestens zweier Einzelabschnitte nicht zwangsläufig identisch sein, so ist es beispielsweise vorteilhaft, quadratische und rechteckige Einzelabschnitte innerhalb einer Bauteilschicht anzuordnen und damit durch die Erzeugung mittels eines Versatzes eine höhere Bauteilstabilität zu erreichen.In an advantageous embodiment, the shape of at least one individual section is square, furthermore, the individual section shapes can also be rectangular or hexagonal. In this case, the shape and / or dimensioning of at least two individual sections need not necessarily be identical, so it is advantageous, for example, to arrange square and rectangular individual sections within a component layer and thus to achieve a higher component stability by generating by means of an offset.
Im weiteren wird vorgeschlagen, daß sich mindestens zwei Einzelabschnitte überschneiden, an derartigen Schnittpunkten, -linien oder -bereichen kann durch einen nochmaligen oder mehrfachen Energieeintrag eine höhere Dichte des 16. Oktober 2007 Ha/20070300In addition, it is proposed that at least two individual sections overlap, at such intersections, lines or areas can be by a repeated or multiple energy input, a higher density of October 16, 2007 Ha / 20070300
- 4 -- 4 -
Bauteils erreicht werden und damit die Gesamtstabilität des Bauteils bereichsabhängig positiv beeinflußt werden. Insbesondere ist es in diesem Zusammenhang von Vorteil, wenn die Randbereiche der Einzelabschnitte als Gitterstruktur separat und/oder durch Überschneidung mehrerer Einzelabschnitte bestrahlt werden. Eine derartige Gitterstruktur kann sowohl parallel zu den Schichten des Bauteils ausgerichtet sein, aber auch sich senkrecht oder in anderen Winkeln zu diesen über mehrere Bauteilschichten erstrecken. Dabei kann die Verfestigung der Gitterlinien als abschließende Bestrahlungsmaßnahme innerhalb einer Schicht erfolgen, beispielsweise mit einer Gruppierung definierter Einzelabschnitte.Component can be achieved and thus the overall stability of the component area-dependent positively influenced. In particular, it is advantageous in this context if the edge regions of the individual sections are irradiated as a grid structure separately and / or by overlapping a plurality of individual sections. Such a lattice structure can be aligned both parallel to the layers of the component, but also extend perpendicularly or at other angles to them over a plurality of component layers. In this case, the solidification of the grid lines can take place as a final irradiation measure within a layer, for example with a grouping of defined individual sections.
In Weiterbildung der Erfindung ist es vorgesehen, zumindest ein Teil der Einzelabschnitte zu mindestens zwei Einzelabschnittsgruppierungen zusammenzufassen, die sich in ihrer Bestrahlungsabfolge, Bestrahlungszeit, Einzelabschnittsform, Bestrahlungsintensität und/oder Grad der Überschneidung unterscheiden. Solch eine Gruppierung der Einzelabschnitte birgt eine Vielzahl von Vorteilen in sich. So stellt dies eine einfache ökonomische und zugleich zeitsparende Variante dar, um beispielsweise spezifische Dichteerhöhungen innerhalb einer Bauteilschicht einzubringen. So können beispielsweise zwei Einzelabschnittsgruppierungen, wie im obigen Beispiel kurz angerissen, nach Art eines Schachbretts (schwarze und weiße Felder) in einer Bauteilschicht verteilt sein und diese „gewöhnlich" bestrahlen. Eine dritte Einzelabschnittsgruppierung dient nun dazu, gezielt bestimmte Bereiche innerhalb einer Bauteilschicht mit beispielsweise sechseckigen Einzelabschnitten und einer höheren Bestrahlungszeit, die dortigen Bereiche zu verdichten. Ein weiteres Beispiel ist es, einen ersten, im Betriebszustand des Bauteils gering belasteten Bereich eines Bauteils mit zwei Einzelabschnittsgruppierungen zu bestrahlen, deren Einzelabschnittsform einerseits quadratisch ist und deren Ränder sich nicht überschneiden und innerhalb derselben Bauteilscbicht in einem zweiten, im Betriebszustand des Bauteils hoch belasteten Bereich des Bauteils diesen mit 16. Oktober 2007 Ha/20070300In a further development of the invention, it is provided to combine at least a part of the individual sections into at least two individual section groupings which differ in their irradiation sequence, irradiation time, single section form, irradiation intensity and / or degree of overlap. Such a grouping of the individual sections brings with it a multiplicity of advantages. Thus, this represents a simple economic and time-saving variant, for example, to introduce specific density increases within a component layer. Thus, for example, two single-segment groupings, as briefly sketched in the example above, can be distributed in a component layer in the manner of a checkerboard (black and white fields) and "usually" irradiate them.A third single-segment grouping is used to selectively target specific areas within a component layer, for example Another example is to irradiate a first region of a component, which is slightly stressed in the operating state of the component, with two individual segment groups whose individual section shape is quadratic on the one hand and whose edges do not overlap and within one another the same Bauteilscbicht in a second, in the operating state of the component highly loaded area of the component this with October 16, 2007 Ha / 20070300
- 5 -- 5 -
sechseckigen Einzelabschnittsformen zu bestrahlen und diese sich randseitig überschneiden zu lassen, so daß eine stabile hexagonale Gitterstruktur in dem zweiten Bereich der Bauteilschicht erzeugt wird. Diese beiden Beispiele zeigen, wie durch das erfindungsgemäße Verfahren eine höhere Stabilität und insbesondere eine bauteilbereichsspezifische Stabilität erreicht werden kann. Ferner kann es vorteilhaft sein, das Bauteil in einen Hüll- und in einen Kernbereich zu unterteilen und diese beiden Bereiche mit unterschiedlichen Einzelabschnittsgruppierungen zu versehen und zu bestrahlen.To irradiate hexagonal single-section shapes and to let this edge overlap, so that a stable hexagonal lattice structure is generated in the second region of the device layer. These two examples show how a higher stability and in particular a component region-specific stability can be achieved by the process according to the invention. Furthermore, it may be advantageous to divide the component into an envelope and a core region and to provide these two regions with different Einzelabschnittsgruppierungen and irradiate.
Die Erfindung ist anhand von Ausführungsbeispielen in den Zeichnungsfiguren näher erläutert. Diese zeigenThe invention is explained in more detail with reference to embodiments in the drawing figures. These show
Fig. 1 eine schematische Darstellung einer in Einzelabschnitten unterteilteFig. 1 is a schematic representation of a subdivided into individual sections
Bauteilschicht nach dem Stand der Technik;Component layer according to the prior art;
Fig. 2 eine schematische Darstellung gemäß Fig. 1 mit einer erfindungsgemäßen Bestrahlungsreihenfolge;FIG. 2 shows a schematic representation according to FIG. 1 with an irradiation order according to the invention; FIG.
Fig. 3 eine schematische Darstellung gemäß Fig. 1 mit einer alternativen erfindungsgemäßen Bestrahlungsabfolge;FIG. 3 shows a schematic illustration according to FIG. 1 with an alternative irradiation sequence according to the invention; FIG.
Fig. 4 eine schematische Darstellung einer Bauteilschicht, welche durch Einzelabschnitte unterschiedlicher Geometrien bestrahlt wird;4 is a schematic representation of a component layer which is irradiated by individual sections of different geometries;
Fig. 5 eine schematische Darstellung einer Bauteilschicht mit unterschiedlichen Einzelabschnittsgruppierungen.Fig. 5 is a schematic representation of a device layer with different Einzelabschnittsgruppierungen.
In Zeichnungsfigur 1 ist ein aus dem Stand der Technik bekanntes Verfahren zumIn drawing figure 1 is a known from the prior art method for
Herstellen eines dreidimensionalen Bauteils 1 in der Draufsicht dargestellt. Insbesondere handelt es sich um ein Lasersinter- oder Laserschmelzverfahren zur 16. Oktober 2007 Ha/20070300Producing a three-dimensional component 1 shown in plan view. In particular, it is a laser sintering or laser melting process for October 16, 2007 Ha / 20070300
- 6 -- 6 -
Anwendung in einem Lasersinterautomaten, bei dem das Bauteil 1 durch aufeinanderfolgendes Verfestigen einzelner Schichten 2 aus verfestigbarem Baumaterial durch Einwirkung einer Strahlung, insbesondere einer Laserstrahlung erzeugt wird. Dabei erfolgt der Energieeintrag 3 in Linienform und erstreckt sich nicht stetig über die gesamte Bauteillänge, sondern ist in flächige Einzelabschnitte 4 über das Bauteil 1 verteilt.Application in a laser sintering machine, in which the component 1 is produced by sequential solidification of individual layers 2 of solidifiable building material by the action of a radiation, in particular a laser radiation. In this case, the energy input 3 is in line form and does not extend continuously over the entire component length, but is distributed in flat individual sections 4 on the component 1.
Die Einzelabschnitte 4 sind mit den Großbuchstaben A, B, C, ... versehen, innerhalb der Einzelabschnitte 4 sind die linienförmigen Energieeinträge 3 mit einem kleinen Pfeil 5, der die Verfahrrichtung des Laserstrahls zeigt, dargestellt. Sämtliche Energieeinträge 3 sind mit Kleinbuchstaben a, b, c, ... versehen, die die Reihenfolge der Bestrahlung angeben. So ist aus Zeichnungsfigur 1 entnehmbar, daß als erstes im Einzelabschnitt 4A dieser vollständig mit den Energieeinträgen 3a — 3e bestrahlt wird. Anschließend wird der Einzelabschnitt 4F mit den Energieeinträgen 3f - 3j bestrahlt und nachfolgend wird mit dem Einzelabschnitt 4G begonnen. Dabei sind die einzelnen nacheinander erfolgenden Energieeinträge 3, sowie die einzelnen nacheinander vollständig bestrahlten Einzelabschnitte 4 voneinander beabstandet.The individual sections 4 are provided with capital letters A, B, C,... Within the individual sections 4, the linear energy inputs 3 are shown with a small arrow 5 which shows the direction of travel of the laser beam. All energy entries 3 are provided with lowercase letters a, b, c, ..., indicating the order of irradiation. Thus, it can be seen from drawing figure 1 that, as the first in individual section 4A, it is completely irradiated with the energy inputs 3a-3e. Subsequently, the single section 4F is irradiated with the energy inputs 3f-3j and subsequently the single section 4G is started. In this case, the individual successive energy inputs 3 and the individual successively completely irradiated individual sections 4 are spaced from one another.
Bei dem erfindungsgemäßen Verfahren erfolgt die Bestrahlungsreihenfolge innerhalb eines Bauprozesses zumindest bereichsweise derart, daß nach einem ersten punkt- oder linienförmigen Energieeintrag 3 innerhalb eines ersten Einzelabschnittes 4 der folgende Energieeintrag 3 in einem weiteren zweiten Einzelabschnitt 4 erfolgt und der darauf folgende Energieeintrag 3 entweder in einem dritten oder einem bereits bereichsweise bestrahlten Einzelabschnitt 4 erfolgt, wobei die nacheinander bestrahlten Einzelabschnitte 4 und/oder erfolgten Energieeinträge 3 nicht unmittelbar nebeneinander liegen. Dies geht beispielsweise aus Zeichnungsfigur 2 hervor, so findet der erste Energieeintrag 3 a im Einzelabschnitt 4A statt, der darauffolgende zweite Energieeintrag 3b im Einzelabschnitt 4C, der dritte 3c in Einzelabschnitt 4E usw.. In dem in 16. Oktober 2007 Ha/20070300In the method according to the invention, the irradiation sequence takes place within a construction process at least in regions such that after a first point or line energy input 3 within a first single section 4 of the following energy input 3 in a further second single section 4 and the subsequent energy input 3 either in a third or an area already irradiated section 4, wherein the successively irradiated individual sections 4 and / or performed energy inputs 3 are not immediately adjacent. This is apparent, for example, from FIG. 2, the first energy input 3a takes place in the individual section 4A, the subsequent second energy entry 3b in the individual section 4C, the third 3c in individual section 4E, etc. In the in October 16, 2007 Ha / 20070300
- 7 -- 7 -
Zeichnungsfigur 2 dargestellten Ausfuhrungsbeispiel findet der zweite im Einzelabschnitt 4A plazierte Energieeintrag j erst dann statt, wenn sämtliche Einzelabschnitte 4 einen Energieeintrag 3 erfahren haben. Weiter geht aus dem Ausführungsbeispiel hervor, daß der Abstand 6 wenigstens zweier nacheinander bestrahlter Einzelabschnitte 4A, 4F mindestens dem kleinsten Querschnitt 7 eines Einzelabschnitts 4F entspricht. Ferner ist erkennbar, daß der Abstand 8 wenigstens zweier aufeinander folgender Energieeinträge 3 g, 3h mindestens dem kleinsten Querschnitt 9 eines Energieeintrages 3 g entspricht.Drawing 2 illustrated embodiment, the second placed in the single section 4A energy input j takes place only when all individual sections 4 have experienced an energy input 3. Furthermore, it can be seen from the exemplary embodiment that the spacing 6 of at least two individual sections 4A, 4F irradiated in succession corresponds at least to the smallest cross-section 7 of a single section 4F. It can also be seen that the distance 8 of at least two consecutive energy inputs 3 g, 3 h corresponds to at least the smallest cross section 9 of an energy input 3 g.
In einem weiterführenden Ausführungsbeispiels gemäß Zeichnungsfigur 3 ist die Bestrahlungsreihenfolge der Einzelabschnitte 4 und der Energieeinträge 3 nach einem stochastischen Auswahlverfahren bestimmt. Der erste Energieeintrag 3 a findet im Einzelabschnitt 4A, der zweite 3b im Einzelabschnitt 4H, der dritte 3c im Einzelabschnitt 4C, der vierte 3d im Einzelabschnitt 4G, usw. statt. Trotz des stochastischen Auswahlverfahrens sind die nacheinander bestrahlten Energieeinträge 3 und Einzelabschnitte 4 voneinander beabstandet (vgl. Abstände 6, 8). Neben dem stochastischen Auswahlverfahren geht aus dem Ausführungsbeispiel hervor, daß sich die Ausrichtung des linienförmigen Energieeintrages 3 in mindestens zwei Einzelabschnitten 4 unterscheidet. So sind die linienförmigen Energieeinträge 3 der Einzelabschnitte 4B, 4D, 4F, 4H5 zueinander parallel, jedoch in auf die weiteren Einzelabschnitte 4 A, 4C, 4E, 4G, 41 senkrecht stehend ausgerichtet.In a further embodiment according to drawing figure 3, the irradiation order of the individual sections 4 and the energy inputs 3 is determined by a stochastic selection method. The first energy input 3 a takes place in the single section 4A, the second 3b in the single section 4H, the third 3c in the single section 4C, the fourth 3d in the single section 4G, etc. Despite the stochastic selection process, the energy inputs 3 and individual sections 4 irradiated one after the other are spaced apart from one another (compare distances 6, 8). In addition to the stochastic selection process, it can be seen from the exemplary embodiment that the orientation of the linear energy input 3 differs in at least two individual sections 4. Thus, the line-shaped energy inputs 3 of the individual sections 4B, 4D, 4F, 4H 5 are parallel to one another, but oriented perpendicular to the further individual sections 4 A, 4 C, 4 E, 4 G, 41.
Daß die Form der Einzelabschnitte 4 nicht zwangsläufig quadratisch definiert sein muß, geht aus Zeichnungsfigur 4 hervor, wonach innerhalb einer Schicht 2 einesThat the shape of the individual sections 4 need not necessarily be defined quadratically, it is apparent from drawing Figure 4, which within a layer 2 of a
Bauteils 1 die Einzelabschnitte 3 sowohl quadratische, rechteckige wie auch sechseckige Formen umfassen können. Zur Steigerung der Stabilität des BauteilsComponent 1, the individual sections 3 can include both square, rectangular and hexagonal shapes. To increase the stability of the component
1 kann es vorgesehen sein, die Bestrahlung derart zu gestalten, daß sich mindestens zwei Einzelabschnitte 4 überschneiden (nicht dargestellt). Ferner kann durch die Bestrahlung der Randbereiche der Einzelabschnitte 4 eine bauteilinterne 16. Oktober 2007 Ha/200703001 it can be provided to design the irradiation such that at least two individual sections 4 overlap (not shown). Furthermore, by the irradiation of the edge regions of the individual sections 4, a component-internal October 16, 2007 Ha / 20070300
- 8 -- 8th -
Gitterstruktur geschaffen werden, die durch separate und/oder durch Überschneidung mehrerer Einzelabschnitte 4 erzeugt werden kann. Beispielsweise kann die Verfestigung der Gitterlinien als abschließende Bestrahlungsmaßnahme innerhalb einer Schicht 2 erfolgen.Grid structure can be created, which can be generated by separate and / or by overlapping multiple sections 4. For example, the solidification of the grid lines can take place as a final irradiation measure within a layer 2.
Das Ausführungsbeispiel in Zeichnungsfigur 5 stellt ein Bauteil 1 dar, das in der dargestellten Schicht 2 einen u-förmigen Querschnitt aufweist. Die Einzelabschnitte 4 sind in vier Einzelabschnittsgruppierungen 10 zusammengefaßt. Die erste Einzelabschnittsgruppierung 10 wird aus den Einzelabschnitten 4 A — 4F gebildet; die zweite Einzelabschnittsgruppierung 10 aus den Einzelabschnittsgruppen 4G — 4J; die dritte aus den Einzelabschnitten K und L und die vierte aus den Einzelabschnitten 4M - 4P. Diese Einzelabschnittsgruppierungen 10 sind entsprechend der Bauteilanforderungen mit einer unterschiedlichen Bestrahlungsabfolge, Bestrahlungszeit, Einzelabschnittsform, Bestrahlungsintensität und/oder unterschiedlichem Grad der Überschneidung bestrahlt. Eine derartige Aufteilung der Querschnittsschicht 2 des Bauteils 1 ist nicht nur bei kritischen Bauteilquerschnitten sinnvoll, sondern auch grundsätzlich bei massiven Bauteilen 1, die in einen Hüllbereich und einen Kernbereich unterteilbar sind, sinnvoll. Durch die Variation der Bestrahlungsabfolge, Bestrahlungszeit, Einzelabschnittsform,The embodiment in drawing figure 5 represents a component 1, which has a U-shaped cross-section in the illustrated layer 2. The individual sections 4 are combined in four individual section groupings 10. The first Einzelabschnittsgruppierung 10 is formed from the individual sections 4 A - 4F; the second single-segment grouping 10 from the single-section groups 4G-4J; the third of the individual sections K and L and the fourth of the individual sections 4M - 4P. These individual section groupings 10 are irradiated in accordance with the component requirements with a different irradiation sequence, irradiation time, single section form, irradiation intensity and / or different degree of overlap. Such a division of the cross-sectional layer 2 of the component 1 is useful not only in critical component cross-sections, but also in principle in solid components 1, which are divided into an envelope region and a core region, makes sense. Due to the variation of the irradiation sequence, irradiation time, single-section form,
Bestrahlungsintensität und/oder dem Maß der Überschneidung von Einzelabschnitt 4 lassen sich beispielsweise unterschiedliche Bauteildichten und/oder Stabilitäten innerhalb einer Schicht 2 realisieren. Irradiation intensity and / or the degree of overlap of individual section 4, for example, different component densities and / or stabilities within a layer 2 can be realized.
16 Oktober 2007 Ha/2007030016 October 2007 Ha / 20070300
- 9 -- 9 -
BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS
1 Bauteil1 component
2 Schicht2 layer
3 Energieeintrag3 energy input
4 Einzelabschnitt4 single section
5 Pfeil5 arrow
6 Abstand von 46 distance from 4
7 kleinster Querschnitt von 47 smallest cross section of 4
8 Abstand von 38 distance from 3
9 kleinster Querschnitt von 39 smallest cross section of 3
10 Einzelabschnittsgruppierung10 single-segment grouping
A5 B5 ... Einzelabschnitte a, b5 ... Bestrahlungsfolge der Energieeinträge A 5 B 5 ... Individual sections a, b 5 ... Irradiation sequence of energy inputs

Claims

16. Oktober 2007 Ha/20070300- 10 -PATENTANSPRÜCHE October 16, 2007 Ha / 20070300-10 -PATENTIAL CLAIMS
1. Verfahren zum Herstellen eines dreidimensionalen Bauteils, insbesondere Lasersinter- oder Laserschmelzverfahren zur Anwendung in einem1. A method for producing a three-dimensional component, in particular laser sintering or laser melting method for use in a
Lasersinterautomaten, bei dem das Bauteil durch aufeinanderfolgendesLasersinterautomaten, in which the component by successive
Verfestigen einzelner Schichten aus verfestigbarem Baumaterial durchSolidifying individual layers of solidifiable building material
Einwirkung einer Strahlung, insbesondere einer Laserstrahlung, erzeugt wird, wobei der punkt- und/oder linienförmige Energieeintrag in mindestens einer Schicht in flächigen Einzelabschnitten erfolgt,The action of a radiation, in particular a laser radiation, is generated, wherein the point and / or line energy input takes place in at least one layer in flat individual sections,
dadurch gekennzeichnet, daßcharacterized in that
innerhalb eines Bauprozesses die Bestrahlungsreihenfolge zumindest bereichsweise derart abläuft, daß nach einem ersten punkt- oder linienförmigen Energieeintrag innerhalb eines ersten Einzelabschnitts der folgende Energieeintrag in einem weiteren zweiten Einzelabschnitt erfolgt und der darauffolgende Energieeintrag entweder in einem dritten oder einem bereits bereichsweise bestrahlten (ersten) Einzelabschnitt erfolgt, wobei die nacheinander bestrahlten Einzelabschnitte und/oder erfolgtenWithin a construction process, the irradiation sequence proceeds at least in regions such that following a first point or line energy input within a first individual section, the following energy input occurs in a further second individual section and the subsequent energy input takes place either in a third (or first section) irradiated area , wherein the successively irradiated individual sections and / or done
Energieeinträge nicht unmittelbar nebeneinander liegen.Energy entries are not immediately adjacent.
2. Verfahren nach Anspruch 1 ,2. The method according to claim 1,
dadurch gekennzeichnet, daßcharacterized in that
der Abstand wenigstens zweier nacheinander bestrahlter Einzelabschnitte mindestens dem kleinsten Querschnitt eines Einzelabschnitts entspricht. the distance between at least two successive irradiated individual sections corresponds to at least the smallest cross section of a single section.
16. Oktober 2007 Ha/20070300October 16, 2007 Ha / 20070300
- 11 -- 11 -
3. Verfahren nach Anspruch 1 oder 2,3. The method according to claim 1 or 2,
dadurch gekennzeichnet, daßcharacterized in that
der Abstand wenigstens zweier nacheinander erfolgender Energieeinträge mindestens dem. kleinsten Querschnitt eines Energieeintrages entspricht.the distance of at least two successive energy entries at least the. smallest cross-section corresponds to an energy input.
4. Verfahren nach einem der Ansprüche 1 - 3,4. The method according to any one of claims 1 - 3,
dadurch gekennzeichnet, daßcharacterized in that
die Bestrahlungsreihenfolge der Einzelabschnitte und/oder der Energieeinträge nach einem stochastischen Auswahlverfahren erfolgt.the order of irradiation of the individual sections and / or the energy entries is carried out according to a stochastic selection method.
5. Verfahren nach einem der vorhergehenden Ansprüche,5. Method according to one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
sich die Ausrichtung des linienförmigen Energieeintrags in mindestens zwei Einzelabschnitten unterscheidet.the orientation of the linear energy input differs in at least two individual sections.
6. Verfahren nach einem der vorhergehenden Ansprüche,6. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
die Form mindestens eines Einzelabschnitts quadratisch, rechteckig oder sechseckig ist. the shape of at least one single section is square, rectangular or hexagonal.
16. Oktober 2007 Ha/20070300October 16, 2007 Ha / 20070300
- 12 -- 12 -
7. Verfahren nach einem der vorhergehenden Ansprüche,7. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
die Form und/oder Dimensionierung mindestens zweier Einzelabschnitte unterschiedlich ist.the shape and / or dimensioning of at least two individual sections is different.
8. Verfahren nach einem der vorhergehenden Ansprüche,8. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
sich mindestens zwei Einzelabschnitte überschneiden.at least two individual sections overlap.
9. Verfahren nach einem der vorhergehenden Ansprüche,9. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
die Randbereiche der Einzelabschnitte als Gitterstruktur separat und/oder durch Überschneidung mehrerer Einzelabschnitte bestrahlt werden.the edge regions of the individual sections are irradiated as a grid structure separately and / or by overlapping a plurality of individual sections.
10. Verfahren nach einem der vorhergehenden Ansprüche,10. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
die Verfestigung der Gitterlinien als abschließende Bestrahlungsmaßnahme innerhalb einer Schicht erfolgt. the solidification of the grid lines takes place as a final irradiation measure within a layer.
16. Oktober 2007 Ha/20070300October 16, 2007 Ha / 20070300
- 13 -- 13 -
11. Verfahren nach einem der vorhergehenden Ansprüche,11. The method according to any one of the preceding claims,
dadurch gekennzeichnet, daßcharacterized in that
zumindest ein Teil der Einzelabschnitte zu mindestens zwei Einzelabschnittsgruppierungen zusammengefaßt ist, die sich in ihrer Bestrahlungsabfolge, Bestrahlungszeit, Einzelabschnittsform, BeStrahlungsintensität und/oder Grad der Überschneidung unterscheiden.at least a part of the individual sections is combined to form at least two individual section groupings, which differ in their irradiation sequence, irradiation time, single section form, irradiation intensity and / or degree of overlap.
12. Verfahren nach Anspruch 11 ,12. The method according to claim 11,
dadurch gekennzeichnet, daßcharacterized in that
eine erste Einzelabschnittsgruppierung im wesentlichen im Hüllbereich und eine weitere Einzelabschnittsgruppierung im wesentlichen im Kernbereich eines Bauteils angeordnet ist. a first Einzelabschnittsgruppierung is arranged substantially in the envelope region and a further Einzelabschnittsgruppierung essentially in the core region of a component.
PCT/DE2007/002092 2006-12-15 2007-11-19 Method for the production of a three-dimensional component WO2008074287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006059851A DE102006059851B4 (en) 2006-12-15 2006-12-15 Method for producing a three-dimensional component
DE102006059851.2 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008074287A1 true WO2008074287A1 (en) 2008-06-26

Family

ID=39328911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/002092 WO2008074287A1 (en) 2006-12-15 2007-11-19 Method for the production of a three-dimensional component

Country Status (2)

Country Link
DE (1) DE102006059851B4 (en)
WO (1) WO2008074287A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing
WO2015039817A1 (en) * 2013-09-20 2015-03-26 Arcam Ab Method for additive manufacturing of three-dimensional article(s)
CN105579166A (en) * 2013-09-20 2016-05-11 阿卡姆有限公司 Method for additive manufacturing of three-dimensional article(s)
US9358729B2 (en) 2010-09-23 2016-06-07 Siemens Aktiengesellschaft Method for selective laser sintering and system for selective laser sintering suitable for said method
WO2016156020A1 (en) * 2015-03-27 2016-10-06 Arcam Ab Improved method for additive manufacturing
US9573225B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9664505B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam position verification
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
CN106808688A (en) * 2017-02-28 2017-06-09 浙江迅实科技有限公司 Region project formula 3D printing method, device
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9713844B2 (en) 2013-04-18 2017-07-25 Arcam Ab Method and apparatus for additive manufacturing
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
CN107877852A (en) * 2016-09-28 2018-04-06 上海普利生机电科技有限公司 Light-cured type 3 D-printing method
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
CN110733177A (en) * 2018-07-20 2020-01-31 Cl产权管理有限公司 Method for additive manufacturing of at least three-dimensional objects
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
WO2020205983A1 (en) 2019-04-01 2020-10-08 Stinger Advanced Manufacturing Corporation Systems and methods for non-continuous deposition of a component
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
CN111804916A (en) * 2020-08-27 2020-10-23 西安赛隆金属材料有限责任公司 Preheating method for electron beam 3D printing powder bed
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US20210178487A1 (en) * 2018-08-16 2021-06-17 Value & Intellectual Properties Management Gmbh 3D-Metal-Printing Method and Arrangement Therefor
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
CN113260497A (en) * 2018-11-19 2021-08-13 Amcm有限公司 Method and system for additive manufacturing
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
CN114368150A (en) * 2021-12-22 2022-04-19 鑫精合激光科技发展(北京)有限公司 Three-dimensional printing method and computer storage medium
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11897033B2 (en) * 2018-04-19 2024-02-13 Compagnie Generale Des Etablissements Michelin Process for the additive manufacturing of a three-dimensional metal part

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323534B1 (en) 2013-02-14 2019-06-19 Renishaw PLC Selective laser solidification method
US9669583B2 (en) 2013-03-15 2017-06-06 Renishaw Plc Selective laser solidification apparatus and method
EP2875897B1 (en) 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
JP5893112B1 (en) 2014-10-06 2016-03-23 株式会社ソディック Additive manufacturing equipment
DE102015100088A1 (en) * 2015-01-07 2016-07-07 Airbus Operations Gmbh Production of metallic components with integrated crack stopper
EP3486072A1 (en) * 2017-11-15 2019-05-22 CL Schutzrechtsverwaltungs GmbH Method for additively manufacturing three-dimensional objects
CN110064756A (en) * 2019-04-23 2019-07-30 阳江市五金刀剪产业技术研究院 A kind of method of selective laser melting (SLM) molding
DE102020112719A1 (en) 2020-05-11 2021-11-11 Pro-Beam Gmbh & Co. Kgaa Process and system for processing a powdery material for the additive manufacturing of a workpiece
EP4116016A1 (en) * 2021-07-09 2023-01-11 Siemens Aktiengesellschaft Method and device for production of an object in layers
DE102021129607A1 (en) * 2021-11-12 2023-05-17 Eos Gmbh Electro Optical Systems Method and device for generating control data for an additive manufacturing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9218423U1 (en) * 1991-05-17 1994-03-03 3D Systems Inc Device for producing a three-dimensional object by stereolithography
DE10042134A1 (en) 2000-08-28 2002-03-28 Concept Laser Gmbh Production of sintered workpieces involves heating individual areas of material irradiation so that they fuse together, where individual areas are separated by distance at least their diameter
DE10042132A1 (en) 2000-08-28 2002-03-28 Concept Laser Gmbh Production of sintered workpieces involves binding layers of material by irradiation, where each layer comprises core and coating, and irradiation is controlled to produce complete fusion of material in coating in at least its surface area
WO2002036331A2 (en) * 2000-10-30 2002-05-10 Concept Laser Gmbh Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation and method for operating the device
EP1419836A1 (en) * 2002-11-07 2004-05-19 Concept Laser GmbH Process for preparing a workpiece, particularly through powder stereolithography or sintering

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1157807B1 (en) * 1989-10-30 2004-01-02 3D Systems, Inc. Stereolithographic construction techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9218423U1 (en) * 1991-05-17 1994-03-03 3D Systems Inc Device for producing a three-dimensional object by stereolithography
DE10042134A1 (en) 2000-08-28 2002-03-28 Concept Laser Gmbh Production of sintered workpieces involves heating individual areas of material irradiation so that they fuse together, where individual areas are separated by distance at least their diameter
DE10042132A1 (en) 2000-08-28 2002-03-28 Concept Laser Gmbh Production of sintered workpieces involves binding layers of material by irradiation, where each layer comprises core and coating, and irradiation is controlled to produce complete fusion of material in coating in at least its surface area
WO2002036331A2 (en) * 2000-10-30 2002-05-10 Concept Laser Gmbh Device for sintering, removing material and/or labeling by means of electromagnetically bundled radiation and method for operating the device
EP1419836A1 (en) * 2002-11-07 2004-05-19 Concept Laser GmbH Process for preparing a workpiece, particularly through powder stereolithography or sintering

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US9358729B2 (en) 2010-09-23 2016-06-07 Siemens Aktiengesellschaft Method for selective laser sintering and system for selective laser sintering suitable for said method
US11141790B2 (en) 2011-12-28 2021-10-12 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US11161177B2 (en) 2011-12-28 2021-11-02 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
WO2014095872A1 (en) * 2012-12-17 2014-06-26 Materialise N.V. Graded materials formed with three dimensional printing
US10406599B2 (en) 2012-12-17 2019-09-10 Arcam Ab Additive manufacturing method and apparatus
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
US9713844B2 (en) 2013-04-18 2017-07-25 Arcam Ab Method and apparatus for additive manufacturing
US9950366B2 (en) 2013-04-18 2018-04-24 Arcam Ab Apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
CN105579166A (en) * 2013-09-20 2016-05-11 阿卡姆有限公司 Method for additive manufacturing of three-dimensional article(s)
CN113172238A (en) * 2013-09-20 2021-07-27 阿卡姆有限公司 Additive manufacturing method for three-dimensional object
WO2015039817A1 (en) * 2013-09-20 2015-03-26 Arcam Ab Method for additive manufacturing of three-dimensional article(s)
US10814392B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US20170246684A1 (en) * 2013-09-20 2017-08-31 Arcam Ab Apparatus for additive manufacturing
US20170246685A1 (en) * 2013-09-20 2017-08-31 Arcam Ab Apparatus for additive manufacturing
US10814393B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US9919361B2 (en) 2013-12-16 2018-03-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10099289B2 (en) 2013-12-16 2018-10-16 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10974448B2 (en) 2013-12-18 2021-04-13 Arcam Ab Additive manufacturing of three-dimensional articles
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US11517964B2 (en) 2013-12-19 2022-12-06 Arcam Ab Method for additive manufacturing
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US10071424B2 (en) 2014-03-07 2018-09-11 Arcam Ab Computer program products configured for additive manufacturing of three-dimensional articles
US10058921B2 (en) 2014-04-02 2018-08-28 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US11084098B2 (en) 2014-04-02 2021-08-10 Arcam Ab Apparatus for fusing a workpiece
US10071423B2 (en) 2014-04-02 2018-09-11 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10821517B2 (en) 2014-04-02 2020-11-03 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10507549B2 (en) 2014-06-20 2019-12-17 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10493564B2 (en) 2014-06-20 2019-12-03 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10195693B2 (en) 2014-06-20 2019-02-05 Vel03D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9573225B2 (en) 2014-06-20 2017-02-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9586290B2 (en) 2014-06-20 2017-03-07 Velo3D, Inc. Systems for three-dimensional printing
US9915583B2 (en) 2014-08-20 2018-03-13 Arcam Ab Energy beam position verification
US9897513B2 (en) 2014-08-20 2018-02-20 Arcam Ab Energy beam size verification
US9664505B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam position verification
US9664504B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam size verification
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US10586683B2 (en) 2015-01-21 2020-03-10 Arcam Ab Method and device for characterizing an electron beam
WO2016156020A1 (en) * 2015-03-27 2016-10-06 Arcam Ab Improved method for additive manufacturing
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11806800B2 (en) 2015-09-24 2023-11-07 Arcam Ab X-ray calibration standard object
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
US10357957B2 (en) 2015-11-06 2019-07-23 Velo3D, Inc. Adept three-dimensional printing
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11623282B2 (en) 2015-11-18 2023-04-11 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US10688722B2 (en) 2015-12-10 2020-06-23 Velo3D, Inc. Skillful three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US9931697B2 (en) 2016-02-18 2018-04-03 Velo3D, Inc. Accurate three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
CN107877852B (en) * 2016-09-28 2021-05-11 上海普利生机电科技有限公司 Photo-curing type three-dimensional printing method
CN107877852A (en) * 2016-09-28 2018-04-06 上海普利生机电科技有限公司 Light-cured type 3 D-printing method
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
CN106808688A (en) * 2017-02-28 2017-06-09 浙江迅实科技有限公司 Region project formula 3D printing method, device
CN106808688B (en) * 2017-02-28 2022-11-29 浙江迅实科技有限公司 Area projection type 3D printing method and device
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11724316B2 (en) 2018-03-29 2023-08-15 Arcam Ab Method and device for distributing powder material
US11897033B2 (en) * 2018-04-19 2024-02-13 Compagnie Generale Des Etablissements Michelin Process for the additive manufacturing of a three-dimensional metal part
CN110733177A (en) * 2018-07-20 2020-01-31 Cl产权管理有限公司 Method for additive manufacturing of at least three-dimensional objects
US20210178487A1 (en) * 2018-08-16 2021-06-17 Value & Intellectual Properties Management Gmbh 3D-Metal-Printing Method and Arrangement Therefor
CN113260497A (en) * 2018-11-19 2021-08-13 Amcm有限公司 Method and system for additive manufacturing
EP3946780A4 (en) * 2019-04-01 2022-12-28 Stinger Advanced Manufacturing Corporation Systems and methods for non-continuous deposition of a component
WO2020205983A1 (en) 2019-04-01 2020-10-08 Stinger Advanced Manufacturing Corporation Systems and methods for non-continuous deposition of a component
CN111804916A (en) * 2020-08-27 2020-10-23 西安赛隆金属材料有限责任公司 Preheating method for electron beam 3D printing powder bed
CN114368150A (en) * 2021-12-22 2022-04-19 鑫精合激光科技发展(北京)有限公司 Three-dimensional printing method and computer storage medium

Also Published As

Publication number Publication date
DE102006059851A1 (en) 2008-07-03
DE102006059851B4 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
DE102006059851B4 (en) Method for producing a three-dimensional component
EP0617657B1 (en) Process for producing three-dimensional objects
EP2565018B1 (en) Data model for describing a component manufactured using a layer construction method
EP1993812B1 (en) Method and device for the production of a three-dimensional object
EP1419836A1 (en) Process for preparing a workpiece, particularly through powder stereolithography or sintering
DE102009019595B4 (en) High aspect ratio grating, particularly for use as an X-ray optical grating in a CT system manufactured by a lithographic process
WO1996011790A1 (en) Process for manufacturing three-dimensional objects
WO1994021446A1 (en) Three-dimensional object production process
DE102018203233A1 (en) Exposure method, manufacturing method and apparatus for selective laser melting
DE102007043097B4 (en) Layout procedure for a mask
EP3170648B1 (en) Additive production method and method for controlling a device for additive production of a three-dimensional component
DE102007059262B4 (en) Laser peripheral welding process and fuel injection valve
EP3970261A1 (en) Stator for an electric machine with a strip-like winding unit for a stator winding, and method for producing same
DE102016110628B4 (en) Method for producing a connection between an electrical conductor and an electrical contact part, as well as a contact part and line arrangement
DE102021119414A1 (en) Process for manufacturing a stator
EP4192641A1 (en) Method for producing an object layer by layer
WO2017140871A2 (en) Method for producing a polarization converter, polarization converter and polarization converter element
WO2012055495A1 (en) Resist structure for producing an x-ray optical grating structure
DE202011110084U1 (en) data model
DE4221469C2 (en) Process for the production of gratings
DE102022108550A1 (en) Process for the layered production of a large number of objects and corresponding planning process, with volume-based division of the objects into sub-areas of the construction platform
DE202023105213U1 (en) Solar module
DE202023105215U1 (en) Solar module
DE202023105214U1 (en) Solar module
EP3995236A1 (en) Component with support structure manufactured by means of additive manufacturing and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817806

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE GEMAESS UNSEREM SCHREIBEN VOM 24.08.09

122 Ep: pct application non-entry in european phase

Ref document number: 07817806

Country of ref document: EP

Kind code of ref document: A1