WO2008052665A2 - Bedruckte, verformbare folien - Google Patents

Bedruckte, verformbare folien Download PDF

Info

Publication number
WO2008052665A2
WO2008052665A2 PCT/EP2007/009027 EP2007009027W WO2008052665A2 WO 2008052665 A2 WO2008052665 A2 WO 2008052665A2 EP 2007009027 W EP2007009027 W EP 2007009027W WO 2008052665 A2 WO2008052665 A2 WO 2008052665A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
film
films
printed
thermoplastic
Prior art date
Application number
PCT/EP2007/009027
Other languages
English (en)
French (fr)
Other versions
WO2008052665A3 (de
Inventor
Jan Weikard
Klaus Meyer
Hans Braun
Roland KÜNZEL
Erhard Luehmann
Diethelm Rappen
Nicolas Stoeckel
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to MX2009004446A priority Critical patent/MX2009004446A/es
Priority to JP2009535010A priority patent/JP2010508177A/ja
Priority to AT07819095T priority patent/ATE503621T1/de
Priority to EP07819095A priority patent/EP2086739B1/de
Priority to BRPI0717561-2A priority patent/BRPI0717561A2/pt
Priority to DE502007006853T priority patent/DE502007006853D1/de
Publication of WO2008052665A2 publication Critical patent/WO2008052665A2/de
Publication of WO2008052665A3 publication Critical patent/WO2008052665A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • B29C45/14811Multilayered articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/10Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C2045/14237Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure the inserts being deformed or preformed outside the mould or mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • B29C37/0032In-mould coating, e.g. by introducing the coating material into the mould after forming the article the coating being applied upon the mould surface before introducing the moulding compound, e.g. applying a gelcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to films, to a process for printing these films, to the curing of layers applied by printing processes and to moldings produced therefrom.
  • a plastic film is coated over a large area by means of common coating methods, such as doctoring, spraying or dipping, the coating dries virtually nontack-free by physical drying or partial curing.
  • the film can then be deformed at elevated temperatures.
  • This concept offers a lot of potential for the production of e.g. of vehicle attachment parts by Kunststoffverarbeiter, where the more expensive painting step three-dimensional components could be replaced by the simpler coating of a flat substrate.
  • This can e.g. be realized by drying / curing according to two different mechanisms.
  • EP-A 0 819 516 describes a process for painting an article during a forming process by means of a deformable, radiation-curable lacquer film.
  • the disadvantage here is that due to the low glass transition temperature, the blocking resistance of the coated film before shaping and post-curing is not given in sufficient measure. This considerably impairs the handling before the final curing and is a great disadvantage for industrial use, since such films can not be rolled up, for example, or only with the use of protective films, since otherwise they will cake.
  • WO 00/63015 also describes a coated deformable film which can be cured by means of radiation.
  • polymeric components with a glass transition temperature above 40 0 C, an improved blocking resistance is achieved before deformation.
  • Similar films are also described in WO 2005/080484, WO 2005/099943, WO 2005/1 18689, WO 2006/048109. In no case, however, does the coating take place by printing processes.
  • the coatings are applied in all known processes by conventional coating processes which are unsuitable and / or uneconomical for the production of small areas and / or multicolored decors.
  • EP-A 0 688 839 describes high-temperature-resistant, flexible screen printing inks based on a special polycarbonate binder. Such screen printing inks are e.g. for printing deformable films, which can also be back-injected used. A corresponding method is taught by EP-A 0 691 201.
  • the coatings applied by means of printing are inferior to conventional, crosslinked coatings due to lack of crosslinking in terms of chemical and mechanical resistance.
  • the invention therefore also provides a process for the production of deformed printed films in which
  • thermoplastic film or composite film with one or more coloring coating compositions printing inks) a) and then coating it to coat a *) is dried and / or cured, wherein the coating agent a) and the drying / curing conditions are selected such that the coating a *) is thermoplastic,
  • the film or composite film optionally printed according to A) is printed with at least one coating agent b) which contains constituents curable with actinic radiation,
  • the coating composition b) is dried and / or cured without the action of actinic radiation to form a block-resistant and thermoplastic coating b *),
  • the coated film is deformed by suitable tools under the action of elevated temperature and preferably also under pressure,
  • the coating b *) is hardened by the action of actinic radiation to form a duromeric layer
  • the foil is back-injected with thermoplastic materials or back-foamed with one- or multi-component plastics.
  • steps E) and F) may also be performed in reverse order.
  • the invention also relates to the deformed films produced by the process according to the invention in steps A) -E) and the shaped bodies produced in steps A) -F).
  • the film to be used according to the invention must above all have the required thermal deformability.
  • Thermoplastic polymers such as ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, PC, PET, PMMA, PP are therefore suitable in principle , PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PP-EPDM, and UP (abbreviated to DIN 7728T1) and their mixtures, furthermore composite films composed of two or more layers of these plastics.
  • the films to be used according to the invention can also contain reinforcing fibers or fabrics, provided that they do not impede or prevent the desired thermoplastic deformation.
  • thermoplastic polyurethanes polymethylmethacrylate (PMMA) and modified variants of PMMA, furthermore PC, ASA, PET, PP, PP-EPDM and ABS.
  • PMMA polymethylmethacrylate
  • the film is preferably used in a thickness of 50 to 5000 microns, more preferably from 200 to 2000 microns.
  • the polymer of the film may contain additives and process aids for film production such as e.g. Stabilizers, plasticizers, fillers such as fibers and dyes.
  • the coating provided as well as the other side of the film may be smooth or have a surface structure, with a smooth surface of the side to be coated is preferred.
  • a thermally deformable adhesive layer may be applied on the back of the film.
  • a thermally deformable adhesive layer may be applied on the surface on which the coating agent is not applied.
  • hot-melt adhesives or radiation-curing adhesives are suitable for this purpose.
  • a protective film can also be applied on the surface of the adhesive layer, which is also thermoformable.
  • Coating agents a) are, for example, printing inks which are thermoplastic in the dried / cured state a *) and can therefore be deformed in process step D) without crack formation or deterioration of the optical properties with the film.
  • Suitable binders for the printing ink are therefore nitrocellulose in combination with plasticizers, thermoplastic polyurethanes, thermoplastic polyesters, thermoplastic polycarbonates, thermoplastic poly (meth) acrylates.
  • Suitable coating compositions a) may be solvent-based, solvent-free or aqueous.
  • binders it is possible to include further constituents customary for printing inks, for example dyes, effect pigments, fillers, additives, catalysts, initiators and / or stabilizers.
  • a) contains at least one dye.
  • the film can optionally be pretreated.
  • Typical pretreatments include cleaning with solvents or aqueous cleaning agents, activation by means of flame treatment, UV irradiation, corona or plasma treatment or treatment with ionized gas, such as ionized air, to reduce dust.
  • ionized gas such as ionized air
  • Particularly suitable inks are for example available from the company. Pröll KG, White Castle, DE under the name Noriphan ® HTR.
  • Suitable printing methods for applying a) are known; in principle, all printing methods such as high-pressure, intaglio, flexographic, offset, screen, pad, inkjet and laser printing are suitable. Screen printing and laser printing are preferred, and screen printing is particularly preferred.
  • the coating a) is dried and / or cured by conventional methods, with pure drying without curing (by chemical crosslinking) being preferred.
  • inks a ! ) -a for example, by inkjet printing or laser printing or sequentially, for example, by screen printing to apply and to dry / harden.
  • the film optionally printed according to A) can first be pretreated.
  • Typical pretreatments include purification with solvents or aqueous cleaners, activation by flame treatment, UV irradiation, corona, plasma or ionized gas treatment, such as, e.g. ionized air to reduce dust.
  • the film is then printed with at least one coating agent b) which contains constituents curable with actinic radiation.
  • the coating composition b) is such that it is dried or dried and cured in step C) to give a block-resistant coating b *).
  • the ingredients of the coating composition b) in particular the binder contained must therefore be chosen by their influence on the glass transition temperature in step C) the dried or dried and cured coating b *) so that these at least 35 ° C, preferably 40 0 C or more is. The higher the glass transition temperature of b *), the better the blocking resistance.
  • the glass transition temperature of b *) is not significantly higher, so a maximum of 10 0 C, preferably 5 ° C higher than the glass transition temperature of the film or the uppermost layer of the composite film lie.
  • Drying - also referred to as physical hardening - is understood by one skilled in the art to mean curing with release of the solvent at room temperature or preferably at elevated temperature. In this case, the molecular weight and the chemical nature of the molecules of the binder remains unchanged, but a physical crosslinking of the chain molecules with each other, for example, by entanglement or hydrogen bonding, so that a dry, block-resistant paint surface can be obtained.
  • Suitable drying, aqueous coating compositions b) contain at least one actinic radiation curable component as a binder.
  • Suitable binders are UV-curable polymer dispersions, UV-curable polyacrylate dispersions and combinations thereof with one another and with UV-curing monomers; furthermore suitable are combinations of UV-curing polyurethane dispersions with polyacrylate dispersions.
  • Suitable commercial binders are obtainable, for example, under the name Lux® from Alberdingk & Boley GmbH, Krefeld, DE, in particular the products Lux 1613, 241, 285, 331, 460, 480; continue Laromer® ® from BASF AG, Ludwigshafen, Germany, in particular the products LR 8949, 8983, 9005; continue Bayhydrol ® UV from Bayer MaterialScience AG, Leverkusen, Germany, in particular Bayhydrol ® UV 2282, VP LS 2317, VP LS 2280 and XP 2629; further Ucecoat ® from Cytec Surface Specialties SAMV, Brussels, BE, particularly Ucecoat ® 7571, 7770, 7772, 7773, 7825 and 7849th
  • Suitable solvent-containing coating compositions b) comprise binders curable with actinic radiation.
  • Suitable constituents of the binders are, for example, urethane (meth) acrylates, polyester (meth) acrylates, epoxy (meth) acrylates and (meth) acrylated polymers, such as polyacrylates.
  • Suitable products have the above-described influence on the glass transition temperature. Preference is given to urethane (meth) acrylates.
  • EP-A 1 448 735 describes the preparation of urethane (meth) acrylates. glass transition temperatures and low melt viscosity and their use in powder coatings. These products can be used dissolved in suitable organic solvents as binders for suitable coating compositions b). Further products are the urethane acrylates mentioned in WO 2005/080484, WO 2005/099943, WO 2005/118689, WO 2006/048109.
  • Suitable polyester (meth) acrylates are known.
  • products which are offered commercially as binders for UV-curable powder coating materials are dissolved in organic solvents, for example, suitable Uvecoat ® 2300 and 3003 from Cytec Surface Specialties BVTNV, Brussels, BE.
  • Suitable (meth) acrylated polymers of vinylic monomers are also known. Loading Sonders suitable are products having a glass transition temperature above 40 0 C. Beipsiels- as Ebecryl ® 1200 from Cytec Surface Specialties BV / NV, Brussels, BE.
  • the coating b) in step C) may preferably be physically dried and cured in addition to b *).
  • the coating b) additionally chemically hardens in addition to the physical drying, it must be ensured that the crosslinking density in b *) is not too high, since otherwise the deformability of b *) in step D) is too low. It is therefore preferred to build up essentially high-molecular chains by the chemical hardening. Accordingly, the components and / or their proportions in b) are to be selected such that only a slight crosslinking takes place in the course of curing C) in the sense of deformation D).
  • the chemically curable coating composition b) can be used both 100%, solid or liquid, dissolved in organic solvents and dissolved in an aqueous phase and / or emulsified.
  • the coating composition b) therefore contains:
  • the content of ethylenically unsaturated groups has a significant influence on the achievable resistance properties of the radiation-cured coating. It is therefore preferred to use at least 0.5 mol of ethylenically unsaturated groups per kg of solid content of the coating agent.
  • Particularly resistant systems contain at least 1, 0 mol, in particular at least 1, 5 mol per kg.
  • Suitable chemical functions I) and U) for the polyaddition are, in principle, all the functions usually used in coating technology. Particularly suitable are isocyanate hydroxyl, thiol, amine and / or urethane, carboxylate-epoxide, melamine-hydroxoxyl, and carbamate-hydroxyl. Also suitable are carbodiimides and / or polyaziridines together with correspondingly reactive functions. As function I), very particular preference is given to isocyanates and as function II) hydroxyl, primary and / or secondary amines and asparaginate.
  • isocyanates I aromatic, araliphatic, aliphatic and cycloaliphatic di- or polyisocyanates are used. It is also possible to use mixtures of such di- or polyisocyanates.
  • suitable di- or polyisocyanates are butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, the isomeric bis (4,4'-isocyanatocyclohexyl ) methanes and mixtures thereof any isomer content, isocyanatomethyl-l, 8-octane diisocyanate, 1, 4-cyclohexylene diisocyanate, the isomeric cyclohexanedimethylene diisocyanates, 1,4-phenylene diisocyanate, 2,4- and / or 2,6-toluene diisocyanate,
  • isocyanates I) partially reacted with isocyanate-reactive ethylenically unsaturated compounds.
  • ß-unsaturated carboxylic acid derivatives such as acrylates, methacrylates, maleates, fumarates, maleimides, acrylamides, and vinyl ether, propenyl, allyl ether and dicyclopentadienyl units containing compounds having at least one isocyanate-reactive group, are particularly preferred Acrylates and methacrylates having at least one isocyanate-reactive group.
  • Suitable hydroxy-functional acrylates or methacrylates are, for example, compounds such as 2-hydroxyethyl (meth) acrylate, polyethylene oxide mono (meth) acrylates, polypropylene oxide mono (meth) acrylates, polyalkylene oxide mono (meth) acrylates, poly ( ⁇ -caprolactone) mono (meth ) acrylated translate, such as Tone ® M100 (Dow, USA), 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) - acrylate, 3-hydroxy-2,2-dimethylpropyl (meth) acrylate, the hydroxyfunctional mono- -, di- or tetra (meth) acrylates of polyhydric alcohols such as trimethylolpropane, glycerol, pentaerythritol, di-pentaerythritol, ethoxylated, propoxylated or alkoxylated trimethylolpropane, glycerol
  • the reaction of the isocyanates with the isocyanate-reactive components can be carried out by known processes with urethanization and / or allophanatization.
  • all of the abovementioned diisocyanates or polyisocyanates 1) can be used individually or in any mixtures which have no ethylenically unsaturated functions.
  • compounds of component 1.2) it is possible to use all the abovementioned compounds 1) individually or in any mixtures which have at least one isocyanate group and additionally have at least one ethylenically unsaturated function which reacts with ethylenically unsaturated compounds with polymerization on exposure to actinic radiation.
  • component 1) contains a high proportion of aromatic and / or cycloaliphatic structural units, more preferably cycloaliphatic structural units, which can be achieved in particular by selecting the corresponding isocyanate compounds ,
  • Isocyanate-reactive compounds 2 are monomeric, oligomeric or polymeric compounds as well as mixtures of one or more of these compounds.
  • Suitable compounds of component 2) are low molecular weight, short chain, i. 2 to 20 carbon atoms containing aliphatic, araliphatic or cycloaliphatic diols, triols and / or higher polyols.
  • diols are ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, positionally isomeric diethyloctanediols , 1, 3-Butylene glycol, cyclohexanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,2- and 1,4-cyclohexane
  • triols examples are trimethylolethane, trimethylolpropane or glycerol.
  • Suitable higher-functionality alcohols are ditrimethylolpropane, pentaerythritol, dipentaerythritol or sorbitol. Preference is given to aliphatic diols, very particularly preferably cycloaliphatic diols.
  • aliphatic and cycloaliphatic polyols such as polyester polyols, polyether polyols, polycarbonate polyols, hydroxy-functional acrylic resins, hydroxy-functional polyurethanes, hydroxy-functional epoxy resins or corresponding hybrids (cf Römpp Lexikon Chemie, pp. 465-466, 10th Edition 1998, Georg -Thieme-Verlag, Stuttgart).
  • Preference is given cycloaliphatic polyester polyols and / or (cyclo) aliphatic polycarbonate polyols, very particularly preferred are those polyester and / or polycarbonate polyols containing branched linear aliphatic diols.
  • all compounds can be used individually or in any mixtures which have at least one isocyanate-reactive group and at least one unsaturated function which reacts with ethylenically unsaturated compounds under the influence of actinic radiation with polymerization.
  • ⁇ , ⁇ -unsaturated carboxylic acid derivatives such as acrylates, methacrylates, maleinates, fumarates, maleimides, acrylamides and vinyl ether, propenyl ether, allyl ether and dicyclopentadienyl units-containing compounds which have at least one isocyanate-reactive group, are particularly preferred these are acrylates and methacrylates having at least one isocyanate-reactive group.
  • Suitable hydroxy-functional acrylates or methacrylates are, for example, compounds such as 2-hydroxyethyl (meth) acrylate, polyethylene oxide mono (meth) acrylates, polypropylene oxide mono (meth) acrylates, polyalkylene oxide mono (meth) acrylates, poly ( ⁇ -caprolactone) mono (meth ) - acrylates, such as Tone ® MlOO (Dow, Schwalbach, Germany), 2-hydroxypropyl (meth) acrylate, 4-hy- droxybutyl (meth) acrylate, 3-hydroxy-2,2-dimethylpropyl (meth) acrylate, the hydroxy-functional mono-, di- or tetraacrylates of polyhydric alcohols, such as trimethylolpropane, glycerol, pentaerythritol, dipentaerythritol, ethoxylated, propoxylated or alkoxylated trimethylolpropane, g
  • isocyanate-reactive oligomeric or polymeric unsaturated acrylate and / or methacrylate group-containing compounds are suitable alone or in combination with the aforementioned monomeric compounds.
  • polyester acrylates The preparation of polyester acrylates is described in DE-A 4 040 290 (p.3, Z. 25 - p.6, Z. 24), DE-A-3 316 592 (p. 5, p. 14 - p. 11 , Z. 30) and PKT Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, pp. 123-135.
  • hydroxyl-containing epoxy (meth) acrylates known per se with OH contents of 20 to 300 mg KOH / g or hydroxyl-containing polyurethane (meth) acrylates with OH contents of 20 to 300 mg KOH / g or acrylated polyacrylates with OH contents of 20 to 300 mg KOH / g and mixtures thereof with one another and mixtures with hydroxyl-containing unsaturated polyesters and mixtures with polyester (meth) acrylates or mixtures of hydroxyl-containing unsaturated polyesters with polyester (meth) acrylates.
  • Such compounds are also described in P.K.T.
  • Hydroxyl-containing epoxy (meth) acrylates are based in particular on reaction products of acrylic acid and / or methacrylic acid with epoxides (glycidyl compounds) of monomeric, oligomeric or polymeric bisphenol A, bisphenol F, hexanediol and / or butanediol or their ethoxylated and / or propoxylated derivatives. Preference is furthermore given to epoxy acrylates having defined functionality, such as those resulting from the reaction of an optionally unsaturated diacid such as fumaric acid, maleic acid, hexahydrophthalic acid or adipic acid and glycidyl (meth) acrylate. Aliphatic epoxy acrylates are particularly preferred. Acrylated polyacrylates can be prepared, for example, by reacting glycidyl-functional polyacrylates with (meth) acrylic acid.
  • all of the abovementioned isocyanate-reactive compounds 2) can be used individually or in any mixtures which have no ethylenically unsaturated functions.
  • all of the abovementioned compounds 2) can be used individually or in any mixtures which have at least one isocyanate-reactive group and additionally have at least one ethylenically unsaturated function which reacts with ethylenically unsaturated compounds under the influence of actinic radiation with polymerization.
  • the abovementioned compounds which can be used in purely physically drying coating compositions b) can be used.
  • the blocking resistance after drying C) can not exert too great a negative influence on other monomeric or polymeric compounds which carry at least one functional group which reacts with ethylenically unsaturated compounds under the action of actinic radiation and which does not react with isocyanate groups still have isocyanate-reactive groups.
  • Suitable compounds are ⁇ , ⁇ -unsaturated carboxylic acid derivatives such as acrylates, methacrylates, maleinates, fumarates, maleimides, acrylamides, furthermore vinyl ethers, propenyl ethers, allyl ethers and dicyclopentadienyl units-containing compounds. Preference is given to vinyl ethers, acrylates and methacrylates, particular preference to acrylates.
  • Examples include the reactive diluents known in the technology of radiation curing (cf Römpp Lexikon Chemie, p.491, 10th ed., 1998, Georg-Thieme-Vlag, Stuttgart) or the binders known in the technology of radiation curing, such as Polyether acrylates, polyester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, silicone acrylates, polycarbonate acrylates and acrylated polyacrylates.
  • Suitable esters are usually obtained by esterification of alcohols having 2 to 20 carbon atoms, preferably polyhydric alcohols having 2 to 20 carbon atoms, with unsaturated acids or unsaturated acid chlorides, preferably acrylic acid and its derivatives.
  • unsaturated acids or unsaturated acid chlorides preferably acrylic acid and its derivatives.
  • the methods of esterification known to the person skilled in the art can be used.
  • Suitable alcohol components in the esterification are monohydric alcohols such as the isomeric butanols, pentanols, hexanols, heptanols, octanols, nonanols and decanols, furthermore cycloaliphatic alcohols such as isobornol, cyclohexanol and alkylated cyclohexanols, dicyclopentanol, arylaliphatic alcohols such as phenoxyethanol and nonylphenylethanol, and tetrahydro- furfuryl alcohols.
  • monohydric alcohols such as the isomeric butanols, pentanols, hexanols, heptanols, octanols, nonanols and decanols
  • cycloaliphatic alcohols such as isobornol, cyclohexanol and alkylated cyclo
  • dihydric alcohols such as ethylene glycol, propanediol 1, 2, 1,3-propanediol, diethylene glycol, dipropylene glycol, the isomeric butanediols, neopentyl glycol, 1,6-hexanediol, 2-ethylhexanediol, 1, 4-cyclohexanediol, 1, 4- Cyclohexane dimethanol and tripropylene glycol.
  • Suitable higher-value alcohols are glycerol, trimethylolpropane, ditrimethylolpropane, pentaerythritol or dipentaerythritol.
  • Photoinitiators 4 are initiators which can be activated by actinic radiation and trigger a radical polymerization of the corresponding polymerizable groups. Photoinitiators are compounds which are known per se and are commercially available, whereby a distinction is made between unimolecular (type I) and bimolecular (type II) initiators.
  • Type I systems are e.g. aromatic ketone compounds, e.g. Benzophenones in combination with tertiary amines, Alkylbenzopheno- ne, 4,4'-bis (dimethylamino) benzophenone (Michler's ketone), anthrone and halogenated benzophenones or mixtures of the types mentioned.
  • (type II) initiators such as benzoin and its derivatives, benzil ketals, acylphosphine oxides e.g. 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic acid esters, camphorquinone, ⁇ -aminoalkylphenones, ⁇ , ⁇ -dialkoxyacetophenones and ⁇ -hydroxyalkylphenones. It may be advantageous to use mixtures of these compounds. Depending on the radiation source used for the curing, the type and concentration of photoinitiator must be adapted in a manner known to the person skilled in the art.
  • component 5 conventional additives and / or auxiliaries and / or solvents may be present in the technology of lacquers, paints, printing inks, sealants and adhesives.
  • stabilizers such as UV absorbers and hindered amines (HALS), furthermore antioxidants and paint assistants, for example anti-settling agents, defoaming and / or wetting agents, leveling agents, plasticizers, catalysts, auxiliary solvents and / or thickeners and also pigments, dyes and / or matting agents.
  • HALS hindered amines
  • paint assistants for example anti-settling agents, defoaming and / or wetting agents, leveling agents, plasticizers, catalysts, auxiliary solvents and / or thickeners and also pigments, dyes and / or matting agents.
  • Examples are acetone, ethyl acetate, butyl acetate, methoxypropyl acetate, glycols, water, xylene or solvent naphtha from Exxon-Chemie as an aromatic-containing solvent and mixtures of the solvents mentioned.
  • component 6 may be present unfunctional polymers and fillers for adjusting the mechanical and optical properties. Suitable for this purpose are all polymers and fillers which are compatible and miscible with the coating composition.
  • the compounds of component 6) can be used both as bulk material and in the form of particles with average diameters in the range between one and 10,000 nanometers, preferably in the range from one to 500 nanometers, more preferably in the range from two to 200 nanometers.
  • polymer additives are polymers such as polyacrylates, polycarbonates, polyurethanes, Polyolef ⁇ ne, polyethers, polyesters, polyamides and polyureas in question.
  • Fillers which may be used are mineral fillers, glass fibers and / or metallic fillers, as used in common procedures for so-called metallic paints.
  • Suitable printing methods for applying b) are known, in principle all printing methods such as high-pressure, intaglio, flexographic printing, offset printing, screen printing, pad printing, digital printing such as inkjet printing and laser printing. Screen printing and laser printing are preferred, and screen printing is particularly preferred.
  • the printing ink b) can be adapted by methods known per se by the addition of solvents or selection of appropriate additives for the printing process.
  • the printing process itself offers no special features, except that the ink must be protected against the ingress of intense radiation (light, UV light) that can initiate polymerization of the ethylenically unsaturated groups.
  • the application of the coating b) by a printing process offers the particular advantage that the film does not necessarily have to be printed over the entire surface, but only at the points at which the coating is desired according to later use.
  • the printed film can optionally be rolled up, without causing the coating b *) to adhere to the rear side of the substrate film. But it is also possible to cut the coated film and feed the blanks individually or as a stack of further processing.
  • the printed film is brought into the desired final shape by thermal deformation.
  • thermal deformation This can be done by conventional methods such as deep drawing, vacuum thermoforming, pressing, blow molding (see Lechner (ed.) Macromolecular Chemistry, p 384 ff, Verlag Birkenhäuser, Basel, 1993) and - preferably - after Hochdgingverform Kunststoff as exemplified in the EP-A 0 371 425 are described.
  • the deformation takes place at higher pressures above 20 bar, preferably above 50 bar.
  • the pressure to be used is determined in particular by the thickness of the film to be formed and the temperature, as well as the film material used. It may need to be determined in simple preliminary tests.
  • the coating b *) of the film is finally hardened by irradiation with actinic radiation.
  • Curing with actinic radiation is understood as meaning the free-radical polymerization of ethylenically unsaturated carbon-carbon double bonds by means of initiator radicals which are liberated by irradiation with actinic radiation, for example from the photoinitiators described above.
  • the radiation curing is preferably carried out by the action of high-energy radiation, ie UV radiation or daylight, for example light of wavelength 200 to 750 nm, or by irradiation with high-energy electrons (electron radiation, 90 to 300 keV).
  • high-energy radiation ie UV radiation or daylight, for example light of wavelength 200 to 750 nm, or by irradiation with high-energy electrons (electron radiation, 90 to 300 keV).
  • medium or high pressure mercury vapor lamps are used as radiation sources for light or UV light, wherein the mercury vapor may be modified by doping with other elements such as gallium or iron.
  • Lasers, pulsed lamps (known as UV flash emitters), halogen lamps or excimer emitters can also be used.
  • the radiators can be installed immovable, so that the material to be irradiated is moved past the radiation source by means of a mechanical device, or the radiators can be movable, and the material to be irradiated does not change its location during curing.
  • the radiation dose usually sufficient for crosslinking upon UV curing is in the range of 80 to 5000 mJ / cm 2 .
  • the irradiation may optionally also be in the absence of oxygen, e.g. be carried out under inert gas atmosphere or oxygen-reduced atmosphere.
  • inert gases are preferably nitrogen, carbon dioxide, noble gases or combustion gases.
  • the irradiation can be carried out by covering the coating with media transparent to the radiation. Examples of this are e.g. Plastic films, glass or liquids such as water.
  • the type and concentration of the optionally used initiator can be varied or optimized in a manner known to the person skilled in the art or by preliminary preliminary experiments.
  • unirradiated areas should be avoided.
  • the irradiation conditions such that the thermal load on the film does not become too great.
  • thin films and films made of materials with low glass transition temperature tend to uncontrolled deformation when the irradiation exceeds a certain temperature.
  • by reducing the corresponding radiation dose of the uncontrolled deformation can be counteracted.
  • a certain dose and intensity the irradiation is necessary.
  • it is particularly advantageous to cure under inert or oxygen-reduced conditions since the required dose for hardening decreases when the oxygen content in the atmosphere is reduced above b *).
  • mercury radiators are particularly preferably used in fixed installations.
  • Photoinitiators are then used in concentrations of 0.1 to 10, more preferably 0.2 to 3.0 wt .-% based on the solids of the coating.
  • the resulting printed, deformed film shows very good resistance to solvents, coloring liquids as they occur in the household and good scratch and abrasion resistance. Overall, it is the property of non-crosslinked printed films, as e.g. can be obtained by printing with screen printing inks according to EP-A 0 688 839, superior.
  • Step F Spraying, Foaming
  • the deformed coated film can be modified before or after the final curing by injection molding or also backfoaming with optionally filled polymers such as thermoplastics or even reactive polymers such as two-component polyurethane systems.
  • optionally filled polymers such as thermoplastics or even reactive polymers such as two-component polyurethane systems.
  • an adhesive layer can be used as adhesion promoter.
  • known suitable tools are used.
  • the films produced by the process according to the invention in steps A) -E) and the moldings produced by the process according to the invention in steps A) -F) are valuable materials for the production of commodities.
  • the invention therefore also relates to the use of the film and of the molded articles in the manufacture of vehicle components, plastic parts such as covers for vehicle (interior) construction and / or aircraft (interior) construction, furniture, electronic devices, communication devices, housings and decorative objects.
  • the invention therefore also relates to the articles of daily use produced using the film or the molded articles. Examples
  • Acid value mg mg KOH / g sample, titration with 0.1 mol / l NaOH solution against bromothymol blue (ethanolic solution), color change from yellow via green to blue, basis DIN 3682.
  • Isocyanate content Data in%, back titration with 0.1 mol / 1 hydrochloric acid after reaction with butylamine, based on DIN EN ISO 1 1909.
  • GPC Gel permeation chromatography
  • Viscosities rotational viscometer (Haake, type VT 550)., Measurements at 23 ° C and shear rate - unless otherwise stated - D 1/40 s -1.
  • % is% by weight.
  • stirrer and nitrogen (6 L / h) 2700.06 g of adipic acid and 499.54 g of butanediol were initially charged at RT and heated with stirring to 180 0 C until an acid number of ⁇ 484 was reached.
  • distillation operation was ended and a further 10,223 g of dimethyl carbonate were pumped to the reaction mixture and with stirring under reflux at 150 0 C 2 h, the pressure rising to 3.9 bar (absolute). Thereafter, the cleavage product methanol was again removed in a mixture with dimethyl carbonate by distillation, wherein the pressure within 4 h was lowered continuously by a total of 2.2 bar. Subsequently the distillation operation was ended and pumped further 7147 g of dimethyl carbonate at 150 0 C to the reaction mixture and held there with stirring under reflux for 2, wherein the pressure to 3.5 bar (absolute).
  • the cleavage product methanol was again removed by distillation in a mixture with dimethyl carbonate, wherein the pressure was lowered to normal pressure within 4 h. Subsequently, the reaction mixture was heated to 180 0 C within 2 h and kept at this temperature for 2 h with stirring. Thereafter, the temperature was reduced to 130 0 C and passed a stream of nitrogen (5 l / h) through the reaction mixture, while the pressure was lowered to 20 mbar. Thereafter, the temperature was increased within 4 h to 180 0 C and held there for 6 h. The further removal of methanol in a mixture with dimethyl carbonate was carried out from the reaction mixture.
  • reaction mixture contained an NCO content of 1.6 ⁇ 0.1 wt.%. Then was cooled to 40 0 C, and 33.6 g of ethyldiisopropylamine were added. After 5 min stirring at 40 0 C, the reaction mixture was poured into 2250 g of water at 20 0 C with rapid stirring. Subsequently, 42.6 g of isophoronediamine in 125.0 g of water were added. After stirring for 30 minutes without heating or cooling, the product was vacuum (50 mbar, max. 50 0 C) distilled until a solids content of 35 ⁇ 1 wt.% Was achieved.
  • the dispersion has a pH of 8.3 and an average particle size of 100 nm (laser correlation spectroscopy measurement: Zetasizer 1000, Malvern Instruments, Malvern, UK). Flow time in a 4 mm cup: 18 s.
  • Example 5 Formulation of a solvent-containing dual-cure screen printing ink
  • component A 68.7 g of Isocyanatoacrylates from Example 1 and 4.0 g of iso- cyanatoacrylats Desmolux ® XP 2510 (90% in butyl acetate, NCO content was 7.0%, molecular weight Mn 1200 g / mol , Viscosity 15,000 mPas, D 40 l / s, 23 ° C., Bayer MaterialScience AG, Leverkusen, DE).
  • component B) 11.0 g of the carbonate diol of Example 3, 8.9 g of the epoxy acrylate from Example 2 were 6.4 g of a 50% solution of the photoinitiator Irgacure ® 184 (Ciba Specialty Chemicals, Basel, CH) in butyl acetate , 0.7 g of flow and wetting additive Byk® 306 (Byk-Chemie, Wesel, DE) and 0.3 g of dibutyltin dilaurate homogeneously mixed.
  • the components A) and B) were mixed together immediately prior to printing in a ratio of 1: 1. To adjust the viscosity, 28 parts of butyl acetate were added to 100 parts of the mixture.
  • Example 6 Formulation of an aqueous, physically drying and UV-curing screen printing ink
  • ABS and PC plastic films (Bayfol ® DFA and Makrofol ® DEl-I) in sheets (both non-let and with a physically drying, silver metallic screen printing ink No- riphan ® HTR [Proell, White Castle, DE] according to the manufacturer screenprinted printed and dried) by screen printing with the printing inks according to Example 5 and 6 coated with the following printing parameters:
  • a portion of the coated plastic sheets were pre-dried for 30 minutes in a chamber oven at 80 0 C.
  • the other part of the sheets was pre-dried by continuous flow furnaces (hot air / IR flat channel [manufacturer SPS, Wuppertal] at a speed of 3 m / min [film temperature 85 ° C]). All slides were then dry and block-resistant.
  • Thermoforming plant Adolf ILLIG, Heilbronn
  • High-pressure forming process HPF plant HDVF Penzberg, plastic machinery (type: SAMK 360)
  • Mold temperature Bayfol DFA ® 100 0 C, Makrofol ® DEl-I 100 0 C.
  • Sheet temperature Bayfol DFA ® 130 0 C, Makrofol ® DEl-I 14O 0 C
  • UV system IST UV channel
  • Lamp type Mercury CM spotlight 80W / cm
  • UV dose 4 passes x 500 mJ / cm 2
  • the three-dimensional, UV-cured foils were injected behind as follows: Plant type: ARBURG 570C, Lossburg (type: Allrounder 2000-675)
  • Insert Molding Material Bayblend ® T65 (amorphous thermoplastic polymer blend based on polycarbonate and ABS; Bayer MaterialScience AG, Leverkusen, Germany)
  • Substrate with Noriphan HTR silver metallic printed Bayfol ® DFA preparation according to Example 7; as compared with the printed only Noriphan HTR ® films were, however, prepared analogously to Example 7 without UV curing.
  • test results clearly show that surfaces can be achieved on deformed films with better resistances, abrasion resistance and scratch resistance by the process according to the invention than by the processes of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft bedruckte Folien, ein Verfahren zur Bedruckung dieser Folien, die Härtung von mit Druckverfahren aufgebrachten Schichten und aus diesen hergestellte Formkörper.

Description

Bedruckte, verformbare Folien
Die vorliegende Erfindung betrifft Folien, ein Verfahren zur Bedruckung dieser Folien, die Härtung von mit Druckverfahren aufgebrachten Schichten und aus diesen hergestellte Formkörper.
Es sind Verfahren bekannt, bei denen zunächst eine Kunststofffolie mittels gängiger Lackierverfahren wie Rakeln, Spritzen oder Tauchen großflächig beschichtet wird, die Beschichtung durch physikalische Trocknung oder Teilhärtung nahezu klebfrei antrocknet. Gegebenenfalls nach Schüt- zen der beschichteten Folie durch eine weitere laminierte oder kaschierte Schutzfolie kann die Folie dann bei erhöhten Temperaturen verformt werden. Dieses Konzept bietet viel Potential für die Herstellung z.B. von Fahrzeuganbauteilen durch Kunststoffverarbeiter, wo der aufwendigere Lackierschritt dreidimensionaler Bauteile durch die einfachere Beschichtung eines flächigen Substrats ersetzt werden könnte.
In aller Regel setzen gute Oberflächeneigenschaften eine hohe Vernetzungsdichte der Beschichtung voraus. Hohe Vernetzungsdichten führen aber zu duromerem Verhalten mit maximal möglichen Verstreckungsgraden von nur wenigen Prozent, so dass die Beschichtung während des Umformvorganges zur Rissbildung neigt. Dieser offensichtliche Konflikt zwischen erforderlicher hoher Vernetzungsdichte und angestrebtem hohen Verstreckungsgrad kann auf unterschiedlichen Wegen gelöst werden, z.B. indem die Härtung in zwei Schritten, vor und nach der Umformung, durchgeführt wird.
Dies kann z.B. durch Trocknung/Härtung nach zwei unterschiedlichen Mechanismen realisiert werden.
Die EP-A O 819 516 beschreibt ein Verfahren zum Lackieren eines Gegenstandes während eines Umformvorgangs mittels einer verformbaren, strahlungshärtbaren Lackfolie. Nachteilig ist dabei, dass aufgrund der tiefen Glasübergangstemperatur die Blockfestigkeit der lackierten Folie vor dem Verformen und Nachhärten nicht in ausreichendem Maß gegeben ist. Dies beeinträchtigt die Handhabung vor der Endhärtung erheblich und ist für die industrielle Anwendung von großem Nachteil, da solche Folien beispielsweise nicht oder nur unter Verwendung von Schutzfolien aufgerollt wer- den können, da sie sonst verbacken. Außerdem ist diesem Stand der Technik außer der Glasübergangstemperatur und der Nennung von Polymerklassen („Phosphazene, Urethane, Acrylate") nicht zu entnehmen, wie die Komponenten eines Lacksystems beschaffen sein müssen, um thermoplastische Verformbarkeit und duromeres Verhalten, insbesondere Beständigkeiten gegen Witterung und Verkratzen nach der Endhärtung zu ermöglichen. Außerdem werden die erzielbaren Ver- Streckungsgrade nicht genannt. Die WO 00/63015 beschreibt ebenfalls eine beschichtete verformbare Folie, die mittels Strahlung gehärtet werden kann. Durch Zusatz von polymeren Komponenten mit einer Glasübergangstemperatur oberhalb 400C wird eine verbesserte Blockfestigkeit vor der Verformung erreicht. Ähnliche Folien werden auch in WO 2005/080484, WO 2005/099943, WO 2005/1 18689, WO 2006/048109 beschrieben. In keinem Fall erfolgt jedoch die Beschichtung durch Druckverfahren.
Das Auftragen der Beschichtungen erfolgt bei allen bekannten Verfahren durch übliche Lackier- verfahren, die zur Herstellung von kleinen Flächen und/oder mehrfarbigen Dekoren nicht geeignet und/oder unwirtschaftlich sind.
Die EP-A 0 688 839 beschreibt hochtemperaturbeständige, flexible Siebdruckfarben auf Basis eines speziellen Polycarbonatbindemittels. Solche Siebdruckfarben werden z.B. zum Bedrucken verformbarer Folien, die auch hinterspritzt werden können, verwendet. Ein entsprechendes Verfahren lehrt die EP-A 0 691 201. Die mittels Druckverfahren aufgebrachten Beschichtungen sind aufgrund von fehlender Vernetzung im Hinblick auf chemische und mechanische Widerstandsfähigkeit konventionellen, vernetzten Beschichtungen unterlegen.
Zusammenfassend lässt sich feststellen, dass aus dem Stand der Technik ein Verfahren zur Herstellung von verformten bedruckten Folien nicht bekannt ist, welches folgende Voraussetzungen erfüllt:
1 ) Einfache Applikation mit üblichen Druckverfahren auf einer Folie oder einem Folienverbund
2) Thermische Trocknung und gegebenenfalls Härtung über einen Polyadditionsmechanismus, der zu einer blockfesten thermoplastischen bedruckten Folie führt, die sich mit entsprechenden
Werkzeugen verformen lässt.
3) Endhärtung der über Druckverfahren aufgebrachten Beschichtung auf der verformten Folie durch aktinische Strahlung, wobei Beständigkeitseigenschaften der Beschichtung erreicht werden, wie sie auch durch herkömmliche Lackierung bereits geformter Gegenstände erzielbar sind.
Die Bereitstellung eines derartigen Verfahrens ist Teil der der vorliegenden Erfindung zugrunde liegende Aufgabe.
Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung von verformten bedruckten Folien, bei dem
A) optional eine thermoplastische Folie oder Verbundfolie mit einer oder mehreren farbgebenden Beschichtungsmitteln (Druckfarben) a) bedruckt und anschließend zur Beschichtung a*) ge- trocknet und/oder gehärtet wird, wobei das Beschichtungsmittel a) und die Trocknungs- /Härtungsbedingungen so gewählt werden, dass die Beschichtung a*) thermoplastisch ist,
B) die gegebenenfalls nach A) bedruckte Folie oder Verbundfolie mit mindestens einem Beschichtungsmittel b) bedruckt wird, welches mit aktinischer Strahlung härtbare Bestandteile enthält,
C) anschließend das Beschichtungsmittel b) ohne Einwirkung aktinischer Strahlung zu einer blockfesten und thermoplastischen Beschichtung b*) getrocknet und/oder gehärtet wird,
D) die beschichtete Folie durch geeignete Werkzeuge unter Einwirkung erhöhter Temperatur und bevorzugt auch unter Druck verformt wird,
E) die Beschichtung b*) durch Einwirkung von aktinischer Strahlung zu einer duromeren Schicht gehärtet wird und
F) optional die Folie mit thermoplastischen Kunststoffen hinterspritzt oder mit ein- oder mehr- komponentigen Kunststoffen hinterschäumt wird.
Optional können die Schritte E) und F) auch in umgekehrter Reihenfolge durchgeführt werden.
Gegenstand der Erfindung sind auch die nach dem erfindungsgemäßen Verfahren in den Schritten A)-E) hergestellten verformten Folien sowie die in den Schritten A)-F) hergestellten Formkörper.
Schritt A
Die erfindungsgemäß einzusetzende Folie muss neben allgemeinen Beständigkeitsanforderungen vor allem die nötige thermische Verformbarkeit besitzen. Prinzipiell geeignet sind daher thermo- plastische Polymere wie ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, PC, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PP-EPDM, und UP (Kurzbezeichnungen nach DIN 7728T1) sowie ihre Mischungen, weiterhin Verbundfolien aufgebaut aus zwei oder mehr Schichten dieser Kunststoffe. Allgemein können die erfindungsgemäß einzusetzenden Folien auch verstärkende Fasern oder Gewebe enthalten sofern diese die erwünschte thermoplastische Verformung nicht beeinträchtigen bzw. unmöglichmachen.
Besonders geeignet sind thermoplastische Polyurethane, Polymethylmethacrylat (PMMA) sowie modifizierte Varianten von PMMA, weiterhin PC, ASA, PET, PP, PP-EPDM und ABS. - A -
Die Folie wird bevorzugt in einer Dicke von 50 bis 5000 μm, besonders bevorzugt von 200 bis 2000 μm verwendet. Optional kann das Polymer der Folie Additive und Prozesshilfsmittel zur Folienherstellung enthalten wie z.B. Stabilisatoren, Weichmacher, Füllstoffe wie Fasern und Farbstoffe enthalten. Die zur Beschichtung vorgesehene sowie die andere Seite der Folie kann glatt sein oder eine Oberflächenstruktur aufweisen, wobei eine glatte Oberfläche der zu beschichtenden Seite bevorzugt ist.
Auf der Rückseite der Folie, d.h. auf der Oberfläche, auf der das Beschichtungsmittel nicht aufgebracht wird, kann optional eine thermisch verformbare Klebstoffschicht aufgebracht sein. Hierzu eignen sich je nach Vorgehensweise bevorzugt Schmelzklebstoffe bzw. Strahlungshärtende Kleb- Stoffe. Zusätzlich kann auf der Oberfläche der Klebeschicht noch eine Schutzfolie aufgebracht werden, die ebenfalls thermisch verformbar ist. Weiterhin ist es möglich, die Folie rückseitig mit Trägermaterialien wie Geweben auszustatten, die jedoch im gewünschten Maße verformbar sein müssen.
Beschichtungsmittel a) sind beispielsweise Druckfarben, die im getrockneten/gehärteten Zustand a*) thermoplastisch sind und daher beim Verfahrensschritt D) ohne Rissbildung oder Verschlechterung der optischen Eigenschaften mit der Folie verformt werden können. Als Bindemittel für die Druckfarbe sind daher geeignet Nitrocellulose in Kombination mit Weichmachern, thermoplastische Polyurethane, thermoplastische Polyester, thermoplastische Polycarbonate, thermoplastische Poly(meth)acrylate. Bei der Wahl des geeigneten Bindemittels ist dessen Glasübergangstemperatur so zu wählen, dass diese oberhalb der Glasübergangstemperatur der Folie bzw. der der beschichteten Schicht der Verbundfolie liegt, aber trotzdem so tief, dass ein Verformen im Schritt D) problemlos möglich ist. Bei einem einfachen Thermoformen muss die Glasübergangstemperatur von Folie und Beschichtung a*) unterhalb der im Werkzeug beim Thermoformen eingestellten Temperatur liegen. Die Auswahl des Bindemittels für a) kann vom Fachmann daher in einfachen Versu- chen für das gewünschte Verformverfahren ermittelt werden.
Geeignete Beschichtungsmittel a) können lösemittelhaltig, lösemittelfrei oder wässrig vorliegen. Neben Bindemitteln können weitere für Druckfarben übliche Bestandteile enthalten sein, beispielsweise Farbstoffe, Effektpigmente, Füllstoffe, Additive, Katalysatoren, Initiatoren und/oder Stabilisatoren. Bevorzugt enthält a) mindestens einen Farbstoff.
Zur Aufbringung von a) auf die Folie kann die Folie gegebenenfalls vorbehandelt werden. Übliche Vorbehandlungen umfassen die Reinigung mit Lösemitteln oder wässrigen Reinigungsmitteln, die Aktivierung mittels Beflämmen, UV-Bestrahlung, Corona-, Plasmabehandlung oder die Behandlung mit ionisiertem Gas wie z.B. ionisierter Luft, um Staubeinfall zu reduzieren. Besonders geeignete Druckfarben werden beispielsweise in der EP-A 0 688 839 beschrieben.
Besonders geeignete Druckfarben sind beispielsweise von der Fa. Pröll KG, Weißenburg, DE unter der Bezeichnung Noriphan® HTR erhältlich.
Geeignete Druckverfahren zur Aufbringung von a) sind bekannt, prinzipiell sind alle Druckverfah- ren wie Hochdruck, Tiefdruck, Flexodruck, Offsetdruck, Siebdruck, Tampondruck, Tintenstrahl- druck und Laserdruck geeignet. Bevorzugt sind Siebdruck und Laserdruck, besonders bevorzugt ist der Siebdruck.
Im Anschluss an die Bedruckung wird die Beschichtung a) durch übliche Verfahren getrocknet und/oder gehärtet, wobei eine reine Trocknung ohne Härtung (durch chemische Vernetzung) be- vorzugt ist.
Zur Erzeugung von mehrfarbig bedruckten Folien ist es möglich mehrere verschiedene Druckfarben a!)-a„) gleichzeitig z.B. durch Tintenstrahldruck oder Laserdruck oder nacheinander z.B. durch Siebdruck aufzutragen und zu trocknen/härten.
Schritt B
Zur Aufbringung der Beschichtung b) im Verfahrensschritt B) kann die gegebenenfalls nach A) bedruckte Folie zunächst vorbehandelt werden. Übliche Vorbehandlungen umfassen die Reinigung mit Lösemitteln oder wässrigen Reinigungsmitteln, die Aktivierung mittels Befiämmen, UV-Bestrahlung, Corona-, Plasmabehandlung oder die Behandlung mit ionisiertem Gas wie z.B. ionisier- ter Luft, um Staubeinfall zu reduzieren.
Die Folie wird dann mit mindestens einem Beschichtungsmittel b) bedruckt, welches mit aktini- scher Strahlung härtbare Bestandteile enthält. Das Beschichtungsmittel b) ist dabei so beschaffen, dass es im Schritt C) zu einer blockfesten Beschichtung b*) getrocknet oder getrocknet und gehärtet wird. Die Bestandteile des Beschichtungsmittels b) insbesondere das enthaltene Bindemittel müssen daher von Ihrem Einfluss auf die Glasübergangstemperatur der im Schritt C) getrockneten bzw. getrockneten und gehärteten Beschichtung b*) so gewählt werden, dass diese mindestens 35°C, bevorzugt 400C oder mehr beträgt. Dabei gilt je höher die Glasübergangstemperatur von b*) desto besser ist die Blockfestigkeit. Gleichzeitig sollte, um eine gute Verformbarkeit im Schritt D) zu gewährleisten, die Glasübergangstemperatur von b*) nicht wesentlich höher, also maximal 100C, bevorzugt nur 5°C höher als die Glasübergangstemperatur der Folie oder die der obersten Schicht der Verbundfolie liegen. Unter Trocknung - auch als physikalische Härtung bezeichnet - versteht der Fachmann die Härtung unter Abgabe des Lösemittels bei Zimmertemperatur oder bevorzugt bei erhöhter Temperatur. Dabei bleibt das Molekulargewicht und die chemische Natur der Moleküle des Bindemittels unverändert, allerdings entsteht eine physikalische Vernetzung der Kettenmoleküle untereinander z.B. durch Verschlaufung oder Wasserstoffbrückenbindung, so dass eine trockene, blockfeste Lackoberfläche erhalten werden kann. Im Falle von Dispersionslacken oder Beschichtungsstoffen auf Dispersionsbasis erfolgt die physikalische Härtung durch Koaleszenz der Beschichtungsmittel- teilchen wobei ebenfalls bei Zimmertemperatur oder bevorzugt erhöhter Temperatur das Lösemittel, in den meisten Fällen Wasser, abgegeben wird und die Dispersionspartikel zu einer Beschich- tung verfließen, die mit vollständiger Abgabe des Lösemittels ebenfalls eine trockene, blockfeste Lackoberfläche ausbilden kann.
Geeignete trocknende, wässrige Beschichtungsmittel b) enthalten mindestens einen mit aktinischer Strahlung härtbaren Bestandteil als Bindemittel. Geeignete Bindemittel sind UV -härtende PoIu- rethandispersionen, UV-härtende Polyacrylatdispersionen sowie deren Kombinationen untereinan- der und mit UV-härtenden Monomeren, weiterhin geeignet sind Kombinationen von UV-härtenden Polyurethandispersionen mit Polyacrylatdispersionen.
Geeignete kommerzielle Bindemittel sind beispielsweise erhältlich unter der Bezeichnung Lux® von Alberdingk & Boley GmbH, Krefeld, DE, insbesondere die Produkte Lux 1613, 241, 285, 331, 460, 480; weiterhin Laromer® von BASF AG, Ludwigshafen, DE, insbesondere die Produkte LR 8949, 8983, 9005; weiterhin Bayhydrol® UV von Bayer MaterialScience AG, Leverkusen, DE, insbesondere Bayhydrol® UV 2282, VP LS 2317, VP LS 2280 und XP 2629; weiterhin Ucecoat® von Cytec Surface Specialities SAMV, Brüssel, BE, insbesondere Ucecoat® 7571, 7770, 7772, 7773, 7825 und 7849.
Die Herstellung von UV-härtenden Dispersionen mit physikalischer Antrocknung vor einer UV- Härtung wird z.B. in den Patentanmeldungen EP-A 0 753 531 sowie EP-A 0 942 022 beschrieben.
Geeignete lösemittelhaltige Beschichtungsmittel b) enthalten mit aktinischer Strahlung härtbare Bindemittel. Als Bestandteile der Bindemittel eignen sich beispielsweise Urethan(meth)acrylate, Polyester(meth)acrylate, Epoxy(meth)acrylate und (meth)acrylierte Polymerisate wie Polyacrylate. Geeignete Produkte besitzen den oben geschilderten Einfluss auf die Glasübergangstemperatur. Bevorzugt sind Urethan(meth)acrylate.
Die Herstellung von geeigneten Urethan(meth)acrylaten mit hohen Glasübergangstemperaturen wird beispielsweise in den Patentanmeldungen EP-A 1 448 735 sowie EP-A 1 541 649 ausführlich beschrieben. EP-A 1 448 735 beschreibt dabei die Herstellung von Urethan(meth)acrylaten geeig- neter Glasübergangstemperaturen und geringer Schmelzviskosität und ihre Verwendung in Pulverlacken. Diese Produkte können in geeigneten organischen Lösungsmitteln gelöst als Bindemittel für geeignete Beschichtungsmittel b) eingesetzt werden. Weitere Produkte sind die in WO 2005/080484, WO 2005/099943, WO 2005/118689, WO 2006/048109 genannten Urethanacrylate.
Geeignete Polyester(meth)acrylate sind bekannt. Insbesondere Produkte, die als Bindemittel für UV-härtende Pulverlacke kommerziell angeboten werden, sind in organischen Lösemitteln gelöst geeignet, beispielsweise Uvecoat® 2300 und 3003 von Cytec Surface Specialities BVTNV, Brüssel, BE.
Geeignete (meth)acrylierte Polymerisate von vinylischen Monomeren sind ebenfalls bekannt. Be- sonders geeignet sind Produkte mit einer Glasübergangstemperatur oberhalb von 40 0C. Beipsiels- weise Ebecryl® 1200 von Cytec Surface Specialities BV/NV, Brüssel, BE.
Neben der reinen physikalischen Trocknung kann die Beschichtung b) im Schritt C) bevorzugt physikalisch getrocknet und zusätzlich zu b*) gehärtet werden.
Unter chemischer Härtung versteht der Fachmann die Härtung durch chemische Vernetzung von im Beschichtungsmittel enthaltenen Molekülen bei Raumtemperatur oder erhöhter Temperatur. Bevorzugt erfolgt die Härtung durch Polyaddition.
Wird die Beschichtung b) neben der physikalischen Trocknung zusätzlich noch chemisch gehärtet, ist darauf zu achten, dass die Vernetzungsdichte in b*) nicht zu hoch ist, da ansonsten die Verformbarkeit von b*) im Schritt D) zu gering ist. Es ist daher bevorzugt, durch die chemische Här- tung im wesentlichen hochmolekulare Ketten aufzubauen. Entsprechend sind die Komponenten und/oder ihre Anteile in b) so zu wählen, dass im Sinne der Verformung D) nur eine geringe Vernetzung bei der Härtung C) stattfindet.
Das chemisch härtbare Beschichtungsmittel b) kann sowohl 100%ig, fest oder flüssig, in organischen Lösemitteln gelöst als auch in wässriger Phase gelöst und/oder emulgiert zum Einsatz kom- men.
Das Beschichtungsmittel b) enthält daher:
1) Eine oder mehrere Verbindungen, die mindestens eine zur Polyaddition mit Komponente 2) geeignete chemische Funktion I) enthalten, die
1.1) keine ethylenisch ungesättigte Doppelbindungen enthalten und/oder
1.2) ethylenisch ungesättigte Doppelbindungen enthalten 2) Eine oder mehrere Verbindungen, die mindestens eine zur Polyaddition mit Komponente 1) geeignete und von I) verschiedene chemische Funktion U) enthalten, die
2.1) keine ethylenisch ungesättigten Doppelbindungen enthalten und/oder
2.2) ethylenisch ungesättigte Doppelbindungen enthalten
und optional:
3) ethylenisch ungesättigten Verbindungen, die keine zur Polyaddition geeignete chemische Funktionen aufweisen
4) Fotoinitiatoren
5) Farbmittel, Pigmente, Additive wie Stabilisatoren, Katalysatoren und andere Hilfs- und Zu- satzstoffe sowie Lösungsmittel
6) Nichtfunktionelle Polymere und/oder Füllstoffe,
wobei mindestens eine der Komponenten 1-3) ethylenisch ungesättigte Gruppen aufweist.
Der Gehalt an ethylenisch ungesättigten Gruppen hat wesentlichen Einfluss auf die erreichbaren Beständigkeitseigenschaften der mit Strahlung gehärteten Beschichtung. Daher ist es bevorzugt mindestens einen Gehalt an 0,5 mol ethylenisch ungesättigten Gruppen pro kg Festgehalt des Be- schichtungsmittels einzusetzen. Besonders resistente Systeme enthalten mindestens 1 ,0 mol, insbesondere mindestens 1 ,5 mol pro kg.
Geeignete chemische Funktionen I) und U) für die Polyaddition sind prinzipiell alle in der Be- schichtungstechnologie üblicherweise verwendeten Funktionen. Insbesondere geeignet sind Isocy- anat-Hydroxyl, Thiol, Amin und/oder Urethan, Carboxylat-Epoxid, Melamin-Hydrxoxyl, und Car- bamat-Hydroxyl. Weiterhin geeignet sind Carbodiimide und/oder Polyaziridine zusammen mit entsprechend reaktiven Funktionen. Als Funktion I) sind ganz besonders bevorzugt Isocyanate sowie als Funktion II) Hydroxyl, primäre und/oder sekundäre Amine sowie Asparaginat.
Als Isocyanate I) werden aromatische, araliphatische, aliphatische und cycloaliphatische Di- oder Polyisocyanate verwendet. Es können auch Mischungen solcher Di- oder Polyisocyanate eingesetzt werden. Beispiele geeigneter Di- oder Polyisocyanate sind Butylendiisocyanat, Hexamethy- lendiisocyanat (HDI), Isophorondiisocyanat (IPDI), 2,2,4- und/oder 2,4,4-Trimethylhexamethylen- diisocyanat, die isomeren Bis(4,4'-isocyanatocyclohexyl)methane und deren Mischungen beliebigen Isomerengehalts, Isocyanatomethyl-l,8-octandiisocyanat, 1 ,4-Cyclohexylendiisocyanat, die isomeren Cyclohexandimethylendiisocyanate, 1 ,4-Phenylendiisocyanat, 2,4- und/oder 2,6- Toluylendiisocyanat, 1 ,5-Naphthylendiisocyanat, 2,4'- oder 4,4'-Diphenylmethandiisocyanat, Tri- phenylmethan-4,4',4"-triisocyanat oder deren Derivate mit Urethan-, Harnstoff-, Carbodiimid-, Acylharnstoff-, Isocyanurat-, Allophanat-, Biuret-, Oxadiazintrion-, Uretdion-, Iminooxadiazin- dionstruktur und Mischungen derselben. Bevorzugt sind Polyisocyanate auf Basis oligomerisierter und/oder derivatisierter Diisocyanate, die durch geeignete Verfahren von überschüssigem Diisocy- anat befreit wurden, insbesondere die des Hexamethylendiisocyanat, Isophorondiisocyanat und der isomeren Bis(4,4'-isocyanatocyclohexyl)methane sowie deren Mischungen. Bevorzugt sind die oligomeren Isocyanurate, Uretdione, Allophanate und Iminooxadiazindione des HDI, des IPDI und/oder der isomeren Bis(4,4'-isocyanatocyclohexyl)methane sowie deren Mischungen. Besonders bevorzugt sind die oligomeren Isocyanurate, Uretdione und Allophanate des IPDI sowie die oligomeren Isocyanurate der isomeren Bis(4,4'-isocyanatocyclohexyl)methane.
Es ist auch möglich, die vorgenannten Isocyanate I) teilweise mit isocyanat-reaktiven ethylenisch ungesättigten Verbindungen umgesetzt zu verwenden. Bevorzugt werden hierzu α,ß-ungesättigte Carbonsäurederivate wie Acrylate, Methacrylate, Maleinate, Fumarate, Maleimide, Acrylamide, sowie Vinylether, Propenylether, Allylether und Dicyclopentadienyl-Einheiten enthaltende Verbindungen, die mindestens eine gegenüber Isocyanaten reaktive Gruppe aufweisen, eingesetzt, besonders bevorzugt sind dies Acrylate und Methacrylate mit mindestens einer isocyanatreaktiven Gruppe. Als hydroxyfunktionelle Acrylate oder Methacrylate kommen beispielsweise Verbindun- gen wie 2-Hydroxyethyl(meth)acrylat, Polyethylenoxid-mono(meth)acrylate, Polypropylenoxid- mono(meth)acrylate, Polyalkylenoxidmono(meth)acrylate, Poly(ε-caprolacton)mono(meth)acry- late, wie z.B. Tone® M100 (Dow, USA), 2-Hydroxypropyl(meth)acrylat, 4-Hydroxybutyl(meth)- acrylat, 3-Hydroxy-2,2-dimethylpropyl(meth)acrylat, die hydroxyfunktionellen Mono-, Di- oder Tetra(meth)acrylate mehrwertiger Alkohole wie Trimethylolpropan, Glycerin, Pentaerythrit, Di- pentaerythrit, ethoxiliertes, propoxiliertes oder alkoxyliertes Trimethylolpropan, Glycerin, Pentaerythrit, Dipentaerythrit oder deren technische Gemische in Betracht. Darüberhinaus sind isocyanat- reaktive oligomere oder polymere ungesättigte Acrylat- und/oder Methacrylatgruppen enthaltende Verbindungen alleine oder in Kombination mit den vorgenannten monomeren Verbindungen geeignet.
Die Umsetzung der Isocyanate mit den isocyanatreaktiven Komponenten kann nach bekannten Verfahren unter Urethanisierung und/oder Allophanatisierung erfolgen.
Als Verbindungen der Komponente 1.1) können alle vorgenannten Di- oder Polyisocyanate 1) einzeln oder in beliebigen Mischungen verwendet werden, die keine ethylenisch ungesättigten Funktionen aufweisen. AIs Verbindungen der Komponente 1.2) können alle vorgenannten Verbindungen 1) einzeln oder in beliebigen Mischungen verwendet werden, die mindestens eine Isocyanatgruppe aufweist und zusätzlich mindestens eine ethylenisch ungesättigte Funktion aufweist, die unter Einwirkung akti- nischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagiert.
Zur Erzielung einer guten physikalischen Trocknung neben der Härtung im Schritt C) ist es bevorzugt, dass die Komponente 1) einen hohen Anteil an aromatischen und/oder cycloaliphatischen Struktureinheiten, besonders bevorzugt an cycloaliphatischen Struktureinheiten enthält, was sich insbesondere durch Wahl der entsprechenden Isocyanatverbindungen erzielen lässt.
Isocyanat-reaktive Verbindungen 2) sind monomere, oligomere oder polymere Verbindungen so- wie Mischungen einer oder mehrerer dieser Verbindungen.
Geeignete Verbindungen der Komponente 2) sind niedermolekulare kurzkettige, d.h. 2 bis 20 Kohlenstoffatome enthaltende aliphatische, araliphatische oder cycloaliphatische Diole, Triole und/oder höhere Polyole. Beispiele für Diole sind Ethylenglykol, Diethylenglykol, Triethylen- glykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,4-Butandiol, Neopentylglykol, 2-Ethyl-2-butylpropandiol, Trimethylpentandiol, stellungsisomere Diethyloctandiole, 1 ,3-Butylenglykol, Cyclohexandiol, 1 ,4-Cyclohexandimethanol, 1,6-Hexandiol, 1,2- und 1 ,4-Cyclohexandiol, hydriertes Bisphenol A (2,2-Bis(4-hydroxycyclohexyl)propan), 2,2- Dimethyl-3-hydroxypropionsäure-(2,2-dimethyl-3-hydroxypropylester). Beispiele geeigneter Triole sind Trimethylolethan, Trimethylolpropan oder Glycerin. Geeignete höherfunktionelle Alkohole sind Ditrimethylolpropan, Pentaerythrit, Dipentaerythrit oder Sorbit. Bevorzugt sind aliphatische Diole, ganz besonders bevorzugt cycloaliphatische Diole.
Geeignet sind auch höhermolekulare aliphatische und cycloaliphatische Polyole wie Polyesterpolyole, Polyetherpolyole, Polycarbonatpolyole, hydroxyfunktionelle Acrylharze, hydroxyfunktionel- Ie Polyurethane, hydroxyfunktionelle Epoxyharze oder entsprechende Hybride (vgl. Römpp Lexi- kon Chemie, S.465-466, 10. Aufl. 1998, Georg-Thieme-Verlag, Stuttgart). Bevorzugt sind (cycloaliphatische Polyesterpolyole und/oder (cyclo)aliphatische Polycarbonatpolyole, ganz besonders bevorzugt sind solche Polyester- und/oder Polycarbonatpolyole, die verzweigt linear aliphatische Diole enthalten.
Weiterhin können als Verbindungen der Komponente 2) alle Verbindungen einzeln oder in belie- bigen Mischungen verwendet werden, die mindestens eine gegenüber Isocyanaten reaktive Gruppe und mindestens eine ungesättigte Funktion aufweisen, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagiert. Bevorzugt werden α,ß-ungesättigte Carbonsäurederivate wie Acrylate, Methacrylate, Maleinate, Fumarate, Maleimide, Acrylamide, sowie Vinylether, Propenylether, Allylether und Dicyclo- pentadienyl-Einheiten enthaltende Verbindungen, die mindestens eine gegenüber Isocyanaten reaktive Gruppe aufweisen, eingesetzt, besonders bevorzugt sind dies Acrylate und Methacrylate mit mindestens einer isocyanatreaktiven Gruppe.
Als hydroxyfunktionelle Acrylate oder Methacrylate kommen beispielsweise in Betracht Verbindungen wie 2-Hydroxyethyl(meth)acrylat, Polyethylenoxid-mono(meth)acrylate, Polypropylen- oxidmono(meth)acrylate, Polyalkylenoxidmono(meth)acrylate, Poly(ε-caprolacton)mono(meth)- acrylate, wie z.B. Tone® MlOO (Dow, Schwalbach, DE), 2-Hydroxypropyl(meth)acrylat, 4-Hy- droxybutyl(meth)acrylat, 3-Hydroxy-2,2-dimethylpropyl(meth)acrylat, die hydroxyfunktionellen Mono-, Di- oder Tetraacrylate mehrwertiger Alkohole wie Trimethylolpropan, Glycerin, Pentae- rythrit, Dipentaerythrit, ethoxiliertes, propoxiliertes oder alkoxyliertes Trimethylolpropan, Glycerin, Pentaerythrit, Dipentaerythrit oder deren technische Gemische.
Darüberhinaus sind isocyanat-reaktive oligomere oder polymere ungesättigte Acrylat- und/oder Methacrylatgruppen enthaltende Verbindungen alleine oder in Kombination mit den vorgenannten monomeren Verbindungen geeignet.
Die Herstellung von Polyesteracrylaten wird in der DE-A 4 040 290 (S.3, Z. 25 - S.6, Z. 24), DE-A-3 316 592 (S. 5, Z. 14 - S. 11, Z. 30) und P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London, S. 123 - 135 beschrieben.
Ebenfalls verwendet werden können die an sich bekannten hydroxylgruppenhaltigen Epoxy(meth)- acrylate mit OH-Gehalten von 20 bis 300 mg KOH/g oder hydroxylgruppenhaltige Polyurethan- (meth)acrylate mit OH-Gehalten von 20 bis 300 mg KOH/g oder acrylierte Polyacrylate mit OH- Gehalten von 20 bis 300 mg KOH/g sowie deren Mischungen untereinander und Mischungen mit hydroxylgruppenhaltigen ungesättigten Polyestern sowie Mischungen mit Polyester(meth)- acrylaten oder Mischungen hydroxylgruppenhaltiger ungesättigter Polyester mit Polyester(meth)- acrylaten. Solche Verbindungen werden ebenfalls in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 2, 1991, SITA Technology, London S 37 - 56 beschrieben. Bevorzugt sind Polyesteracrylate mit definierter Hydroxyfunktiona- lität.
Hydroxylguppenhaltige Epoxy(meth)acrylate basieren insbesondere auf Umsetzungsprodukten von Acrylsäure und/oder Methacrylsäure mit Epoxiden (Glycidylverbindungen) von monomeren, oli- gomeren oder polymeren Bisphenol-A, Bisphenol-F, Hexandiol und/oder Butandiol oder deren ethoxilierten und/oder propoxilierten Derivaten. Bevorzugt sind weiterhin Epoxyacrylate mit definierter Funktionalität wie sie aus der Umsetzung einer ggf. ungesättigten Disäure wie Fumarsäure, Maleinsäure, Hexahydrophthalsäure oder Adipinsäure und Glycidyl(meth)acrylat. Aliphatische Epoxyacrylate sind besonders bevorzugt. Acrylierte Polyacrylate können beispielsweise durch Umsetzung von glycidylfunktionellen Polyacrylaten mit (Meth)acrylsäure hergestellt werden.
Als Verbindungen der Komponente 2.1) können alle vorgenannten Isocyanat-reaktiven Verbindungen 2) einzeln oder in beliebigen Mischungen verwendet werden, die keine ethylenisch ungesättigten Funktionen aufweisen.
Als Verbindungen der Komponente 2.2) können alle vorgenannten Verbindungen 2) einzeln oder in beliebigen Mischungen verwendet werden, die mindestens eine Isocyanat-reaktive Gruppe aufweisen und zusätzlich mindestens eine ethylenisch ungesättigte Funktion aufweisen, die unter Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagiert.
Als optionale Komponente 3) können die oben genannten Verbindungen, die bei rein physikalisch trocknenden Beschichtungsmitteln b) zum Einsatz kommen können, verwendet werden. In untergeordneter Menge, d.h. nur in solchen Mengen die die Blockfestigkeit nach der Trocknung C) nicht zu stark negativ beeinflussen können auch andere monomere oder polymere Verbindungen, die mindestens eine funktionelle Gruppen tragen, die durch Einwirkung aktinischer Strahlung mit ethylenisch ungesättigten Verbindungen unter Polymerisation reagieren und die weder Isocyanat- Gruppen noch Isocyanat-reaktive Gruppen aufweisen.
Geeignet sind α,ß -ungesättigte Carbonsäurederivate wie Acrylate, Methacrylate, Maleinate, Fumarate, Maleimide, Acrylamide, weiterhin Vinylether, Propenylether, Allylether und Dicyclopenta- dienyl-Einheiten enthaltende Verbindungen. Bevorzugt sind Vinylether, Acrylate und Methacrylate, besonders bevorzugt sind Acrylate. Beispiele beinhalten die in der Technologie der Strah- lenhärtung bekannten Reaktiwerdünner (vgl. Römpp Lexikon Chemie, S.491 , 10. Aufl. 1998, Ge- org-Thieme-V erlag, Stuttgart) oder die in der Technologie der Strahlenhärtung bekannten Bindemittel wie Polyetheracrylate, Polyesteracrylate, Urethanacrylate, Epoxyacrylate, Melaminacrylate, Silikonacrylate, Polycarbonatacrylate und acrylierte Polyacrylate.
Geeignete Ester werden üblicherweise durch Veresterung von Alkoholen mit 2 bis 20 Kohlenstoff- atomen, bevorzugt mehrwertigen Alkoholen mit 2 bis 20 Kohlenstoffatomen, mit ungesättigten Säuren oder ungesättigten Säurechloriden erhalten, bevorzugt Acrylsäure und deren Derivate. Dazu können die dem Fachmann bekannten Methoden der Veresterung angewendet werden. Geeignete Alkoholkomponenten bei der Veresterung sind einwertige Alkohole wie die isomeren Butanole, Pentanole, Hexanole, Heptanole, Octanole, Nonanole und Decanole, weiterhin cycloali- phatische Alkohole wie Isobornol, Cyclohexanol und alkylierte Cyclohexanole, Dicyclopentanol, arylaliphatische Alkohole wie Phenoxyethanol und Nonylphenylethanol, sowie Tetrahydro- furfurylalkohole. Ebenfalls geeigne sind Zweiwertige Alkohole wie Ethylenglykol, Propandiol-1 ,2, Propandiol-1,3, Diethylenglykol, Dipropylenglykol, die isomeren Butandiole, Neopentylglykol, Hexandiol-1,6, 2-Ethylhexandiol, 1 ,4-Cyclohexandiol, 1 ,4-Cyclohexandimethanol und Tripropy- lenglykol. Geeignete höherwertige Alkohole sind Glycerin, Trimethylolpropan, Ditrimethylol- propan, Pentaerythrit oder Dipentaerythrit. Bevorzugt sind Diole und höherwertige Alkohole, be- sonders bevorzugt sind Glycerin, Trimethylolpropan, Pentaerythrit, Dipentaerythrit und 1 ,4- Cyclohexandimethanol .
Fotoinitiatoren 4) sind durch aktinische Strahlung aktivierbare Initiatoren, die eine radikalische Polymerisation der entsprechenden polymerisierbaren Gruppen auslösen. Fotoinitiatoren sind an sich bekannte, kommerziell vertriebene Verbindungen, wobei zwischen unimolekularen (Typ I) und bimolekularen (Typ II) Initiatoren unterschieden wird. (Typ I)-Systeme sind z.B. aromatische Ketonverbindungen, z.B. Benzophenone in Kombination mit tertiären Aminen, Alkylbenzopheno- ne, 4,4'-Bis(dimethylamino)benzophenon (Michlers Keton), Anthron und halogenierte Benzophenone oder Mischungen der genannten Typen. Weiter geeignet sind (Typ II)-Initiatoren wie Ben- zoin und seine Derivate, Benzilketale, Acylphosphinoxide z.B. 2,4,6-Trimethyl-benzoyl-di- phenylphosphinoxid, Bisacylphosphinoxide, Phenylglyoxylsäureester, Campherchinon, α-Amino- alkylphenone, α,α-Dialkoxyacetophenone und α-Hydroxyalkylphenone. Es kann vorteilhaft sein auch Gemische dieser Verbindungen einzusetzen. Je nach zur Härtung verwendeter Strahlungsquelle muss Typ und Konzentration an Photoinitiator in dem Fachmann bekannter Weise ange- passt werden. Näheres ist zum Beispiel in P. K. T. Oldring (Ed.), Chemistry & Technology of UV & EB Formulations For Coatings, Inks & Paints, Vol. 3, 1991, SITA Technology, London, S. 61 - 328 beschrieben.
Als Komponente 5) können in der Technologie der Lacke, Farben, Druckfarben, Dichtstoffe und Klebstoffe übliche Zusätze und/oder Hilfs- und/oder Lösemittel enthalten sein.
Insbesondere sind dies Stabilisatoren, Lichtschutzmittel wie UV-Absorber und sterisch gehinderte Amine (HALS), weiterhin Antioxidantien sowie Lackhilfsmittel, z.B. Antiabsetzmittel, Entschäu- mungs- und/oder Netzmittel, Verlaufmittel, Weichmacher, Katalysatoren, Hilfslösemittel und/oder Verdicker sowie Pigmente, Farbstoffe und/oder Mattierungsmittel. Der Einsatz von Lichtschutzmitteln und die verschiedenen Typen sind beispielhaft beschrieben in A. Valet, Lichtschutzmittel für Lacke, Vincentz Verlag, Hannover, 1996. Geeignete Lösungsmittel sind abgestimmt auf die verwendeten Bindemittel sowie das Druckverfahren Wasser und/oder andere gängige Lösungsmittel aus der Drucktechnik. Beispiele sind Aceton, Ethylacetat, Butylacetat, Methoxyproylacetat, Glykole, Wasser, Xylol oder Solventnaphtha der Fa. Exxon-Chemie als aromatenhaltiges Lösemittel sowie Gemische der genannten Lösemittel.
Als Komponente 6) können unfunktionelle Polymere und Füllstoffe zur Einstellung der mechanischen und optischen Eigenschaften enthalten sein. Hierzu eignen sich alle Polymere und Füllstoffe, die mit dem Beschichtungsmittel verträglich und mischbar sind. Die Verbindungen der Komponente 6) können sowohl als Bulkmaterial als auch in Form von Partikeln mit mittleren Durchmessern im Bereich zwischen einem und 10000 Nanometern, bevorzugt im Bereich von einem bis 500 Nanometern, besonders bevorzugt im Bereich von zwei bis 200 Nanometern, eingesetzt werden.
Als Polymere Zusatzstoffe kommen Polymere wie beispielsweise Polyacrylate, Polycarbonate, Polyurethane, Polyolefϊne, Polyether, Polyester, Polyamide und Polyharnstoffe in Frage.
Als Füllstoffe können mineralische Füllstoffe, Glasfasern und/oder metallische Füllstoffe, wie sie in gängigen Vorgehensweisen für sog. Metalliclackierungen zum Einsatz kommen, verwendet werden.
Geeignete Druckverfahren zur Aufbringung von b) sind bekannt, prinzipiell sind alle Druckverfahren wie Hochdruck, Tiefdruck, Flexodruck, Offsetdruck, Siebdruck, Tampondruck, Digitaldruck wie Tintenstrahldruck und Laserdruck. Bevorzugt sind Siebdruck und Laserdruck, besonders bevorzugt ist der Siebdruck. Die Druckfarbe b) kann je nach Druckverfahren durch Zusatz von Lö- sungsmitteln oder Auswahl entsprechender Additive für das Druckverfahren nach an sich bekannten Vorgehensweisen angepasst werden.
Das Druckverfahren selbst bietet keine methodischen Besonderheiten, außer dass die Druckfarbe vor Einfall von intensiver Strahlung (Licht, UV-Licht), die eine Polymerisation der ethylenisch ungesättigten Gruppen auslösen kann, geschützt werden muss.
Das Aufbringen der Beschichtung b) durch ein Druckverfahren bietet den besonderen Vorteil, dass die Folie nicht notwendigerweise vollflächig bedruckt werden muss, sondern nur an den Stellen, an denen gemäß späterer Verwendung die Beschichtung gewünscht wird.
Je nach Größe der Folie und der Größe des gewünschten Druckbildes ist es möglich mehrere Druckbilder so genannte Nutzen auf ein Druckformat parallel aufzutragen und entsprechend wei- terzuverarbeiten. Schritt C) Trocknung/Härtung
Nach dem Bedrucken wird vorhandenes Lösungsmittel und/oder Wasser nach gängigen Methoden entfernt. Hierzu wird insbesondere mit erhöhten Temperaturen in Öfen und mit bewegter Luft (Konvektionsöfen, Düsentrockner) sowie Wärmestrahlung (IR, NIR) gearbeitet Es ist sorgfältig darauf zu achten, dass durch die erhöhte Temperatur und/oder die Wärmestrahlung keine Polymerisation (Vernetzung) der ethylenisch ungesättigten Gruppen in b) ausgelöst wird, da dieses die Verformbarkeit beeinträchtigt. Weiterhin ist die maximal erreichte Temperatur so niedrig zu wählen, dass sich die Folie oder Verbundfolie nicht unkontrolliert verformt.
Nach dem Trocknungs-/Härtungsschritt kann die bedruckte Folie ggf. aufgerollt werden, ohne dass es zum Verkleben der Beschichtung b*) mit der Rückseite der Substratfolie kommt. Es ist aber auch möglich die beschichtete Folie zuzuschneiden und die Zuschnitte einzeln oder als Stapel der Weiterverarbeitung zuzuführen.
Schritt D) Verformen
Die bedruckte Folie wird durch thermisches Verformen in die gewünschte Endform gebracht wer- den. Dies kann nach gängigen Verfahren wie Tiefziehen, Vakuum-Tiefziehen, Pressen, Blasverformen erfolgen (s. Lechner (Hrsg.) Makromolekulare Chemie, S. 384 ff, Verlag Birkenhäuser, Basel, 1993) sowie - bevorzugt - nach Hochdruckverformverfahren wie sie beispielhaft in der EP- A 0 371 425 beschrieben sind. Bei letzterem erfolgt die Verformung unter höheren Drücken oberhalb 20 bar, bevorzugt oberhalb 50 bar. Der anzuwendende Druck wird insbesondere von der Di- cke der zu verformenden Folie und der Temperatur, sowie dem verwendeten Folienmaterial bestimmt. Er ist ggf. in einfachen Vorversuchen zu ermitteln.
Es ist beim Hochdruckverformverfahren besonders vorteilhaft, dass man unterhalb der Erweichungstemperatur des Folienmaterials arbeiten kann, bevorzugt mindestens 20 0C, besonders bevorzugt mindestens 30 0C unterhalb der Erweichungstemperatur. Diese „Kalf'verformung hat den Vorteil, dass dünnere Folien, die zu exakterer Ausformung führen, verwendet werden können. Ein weiterer Vorteil sind kürzere Taktzeiten sowie eine geringere thermische Belastung der Beschichtung b*).
Schritt E) Härtung mit Strahlung
Nach dem Verformungsschritt wird die Beschichtung b*) der Folie durch Bestrahlung mit aktini- scher Strahlung endgehärtet. Unter Härtung mit aktinischer Strahlung versteht man die radikalische Polymerisation von ethyle- nisch ungesättigten Kohlenstoff-Kohlenstoff-Doppelbindungen mittels Initiatorradikalen, die durch Bestrahlung mit aktinischer Strahlung beispielsweise aus den oben beschriebenen Fotoinitiatoren freigesetzt werden.
Die Strahlungshärtung erfolgt bevorzugt durch Einwirkung energiereicher Strahlung, also UV- Strahlung oder Tageslicht, z.B. Licht der Wellenlänge 200 bis 750 nm, oder durch Bestrahlen mit energiereichen Elektronen (Elektronenstrahlung, 90 bis 300 keV). Als Strahlungsquellen für Licht oder UV-Licht dienen beispielsweise Mittel- oder Hochdruckquecksilberdampflampen, wobei der Quecksilberdampf durch Dotierung mit anderen Elementen wie Gallium oder Eisen modifiziert sein kann. Laser, gepulste Lampen (unter der Bezeichnung UV-Blitzlichtstrahler bekannt), Halogenlampen oder Eximerstrahler sind ebenfalls einsetzbar. Die Strahler können ortsunbeweglich installiert sein, so dass das zu bestrahlende Gut mittels einer mechanischen Vorrichtung an der Strahlungsquelle vorbeibewegt wird, oder die Strahler können beweglich sein, und das zu bestrahlende Gut verändert bei der Härtung seinen Ort nicht. Die üblicherweise zur Vernetzung ausrei- chende Strahlungsdosis bei UV-Härtung liegt im Bereich von 80 bis 5000 mJ/cm2.
Die Bestrahlung kann gegebenenfalls auch unter Ausschluss von Sauerstoff, z.B. unter Inertgas- Atmosphäre oder Sauerstoff-reduzierter Atmosphäre durchgeführt werden. Als Inertgase eignen sich bevorzugt Stickstoff, Kohlendioxid, Edelgase oder Verbrennungsgase. Des weiteren kann die Bestrahlung erfolgen, indem die Beschichtung mit für die Strahlung transparenten Medien abge- deckt wird. Beispiele hierfür sind z.B. Kunststofffolien, Glas oder Flüssigkeiten wie Wasser.
Je nach Strahlungsdosis und Aushärtungsbedingungen sind Typ und Konzentration des gegebenenfalls verwendeten Initiators in dem Fachmann bekannter Weise oder durch orientierende Vorversuche zu variieren bzw. zu optimieren. Zur Härtung der verformten Folien ist es besonders vorteilhaft, die Härtung mit mehreren Strahlern durchzuführen, deren Anordnung so zu wählen ist, dass jeder Punkt der Beschichtung möglichst die zur Aushärtung optimale Dosis und Intensität an Strahlung erhält. Insbesondere sind nicht bestrahlte Bereiche (Schattenzonen) zu vermeiden.
Weiterhin kann es je nach eingesetzter Folie vorteilhaft sein, die Bestrahlungsbedingungen so zu wählen, dass die thermische Belastung der Folie nicht zu groß wird. Insbesondere dünne Folien sowie Folien aus Materialien mit niedriger Glasübergangstemperatur neigen zur unkontrollierten Verformung, wenn durch die Bestrahlung eine bestimmte Temperatur überschritten wird. In diesen Fällen ist es vorteilhaft, durch geeignete Filter oder Bauart der Strahler möglicht wenig Infrarotstrahlung auf das Substrat einwirken zu lassen. Weiterhin kann durch Reduktion der entsprechenden Strahlendosis der unkontrollierten Verformung entgegengewirkt werden. Dabei ist jedoch zu beachten, dass für eine möglichst vollständige Polymerisation eine bestimmte Dosis und Intensität der Bestrahlung notwendig sind. Es ist in diesen Fällen besonders vorteilhaft unter inerten oder sauerstoffreduzierten Bedingungen zu härten, da bei Reduktion des Sauerstoffanteils in der Atmosphäre oberhalb von b*) die erforderliche Dosis zur Aushärtung abnimmt.
Besonders bevorzugt werden zur Härtung Quecksilberstrahler in ortsfesten Anlagen eingesetzt. Fotoinitiatoren werden dann in Konzentrationen von 0,1 bis 10, besonders bevorzugt 0,2 bis 3,0 Gew.-% bezogen auf den Festkörper der Beschichtung eingesetzt. Zur Härtung dieser Beschich- tungen wird bevorzugt eine Dosis von 500 bis 4000 mJ/cm2, gemessen im Wellenlängebereich von 200 bis 600 nm, verwendet.
Die resultierende bedruckte, verformte Folie zeigt sehr gute Beständigkeiten gegenüber Lösungs- mittel, färbenden Flüssigkeiten wie sie im Haushalt vorkommen sowie gute Kratz- und Abriebbeständigkeiten. Insgesamt ist sie den Eigenschaften nicht vernetzter bedruckter Folien, wie sie z.B. durch Bedruckung mit Siebdruckfarben nach EP-A 0 688 839 erhalten werden können, überlegen.
Schritt F: Hnterspritzen, Hinterschäumen
Die verformte beschichtete Folie kann vor oder nach der Endhärtung durch Hinterspritzen oder auch Hinterschäumen mit gegebenenfalls gefüllten Polymeren wie Thermoplasten oder auch reaktiven Polymeren wie zwei Komponenten Polyurethansystemen modifiziert werden. Dabei kann ggf. eine Klebschicht als Haftvermittler eingesetzt werden. Dazu werden an sich bekannte geeignete Werkzeuge verwendet.
Die nach dem erfindungsgemäßen Verfahren in den Schritten A)-E) hergestellten Folien sowie die nach dem erfmdungsgemäßen Verfahren in den Schritten A)-F) hergestellten Formkörper sind wertvolle Materialien zur Herstellung von Gebrauchsgegenständen. Gegenstand der Erfindung ist daher auch die Verwendung der Folie sowie der Formkörper bei der Herstellung von Fahrzeugan- bauteilen, Kunststoffteilen wie Blenden für den Fahrzeug(innen)bau und/oder Flugzeug(innen)bau, Möbelbau, elektronischen Geräten, Kommunikationsgeräten, Gehäusen und dekorativen Gegenständen. Gegenstand der Erfindung sind daher auch die unter Verwendung der Folie oder der Formkörper hergestellten Gebrauchsgegenstände. Beispiele
Säurezahl: Angabe mg KOH / g Probe, Titration mit 0,1 mol/1 NaOH-Lösung gegen Bromthy- molblau (ethanolische Lösung), Farbumschlag von gelb über grün nach blau, Grundlage DIN 3682.
Hydroxylzahl: Angabe in mg KOH / g Probe, Titration mit 0,1 mol/1 meth. KOH-Lösung nach kalter Acetylierung mit Essigsäureanhydrid unter Katalyse von Dimethylaminopyridin, Grundlage DIN 53240.
Isocyanatgehalt: Angabe in %, Rücktitration mit 0,1 mol/1 Salzsäure nach Reaktion mit Butylamin, Grundlage DIN EN ISO 1 1909.
Gelpermeationschromatographie (GPC): Elutionsmittel THF, RI-Detektion, Integration nach Ei- chung mit Polystyrolstandards.
Viskositäten: Rotationsviskosimeter (Fa. Haake, Typ VT 550), Messungen bei 23°C und Schergefälle - soweit nicht anders vermerkt - D 1/40 s'1.
Wenn nicht anderweitig vermerkt, handelt es sich bei %-Angaben um Gew.-%.
Komponenten eines Beschichtungsniittels
Beispiel 1: Herstellung eines Isocyanatoacrylats
9000 g 4,4'-(2,4'-)Diisocyanatodicyclohexylmethan wurden in einem Planschliffgefäß mit Rührer, Rückflusskühler, Stickstoffuberleitung, Innenthermometer und Tropftrichter unter Stickstoff vorgelegt. Anschließend wurde auf 600C erwärmt und 28,0 g einer 5 %igen Lösung von Trimethyl- benzylammoniumhydroxid, gelöst in n-Butanol/Methanol = 12: 1, langsam zudosiert, wobei die Temperatur so lange zwischen 60 und 800C gehalten wurde, bis der NCO-Gehalt der Rohlösung zwischen 25,5 und 25,8 % lag. Anschließend wurden 21,0 g einer 5 %igen Lösung von Dibu- tylphosphat in 4,4'-(2,4'-)Diisocyanatodicyclohexylmethan zugegeben, abgekühlt und mit 450 g eines handelsüblichen Isocyanuratpolyisocyanats auf Basis von Diisocyanatohexan (HDI) (NCO = 21,8 %, Viskosität = 3000 mPas/23°C, monomeres HDI = 0,1 %) versetzt und bei 200°C/0,15 mbar durch Dünnschichtdestillation monomeres 4,4'-(2,4'-)Diisocyanatodicyclohexyl- methan abgetrennt. 1894,52 g des so erhaltenen Festharzes (NCO = 15,0 %) wurden entnommen und in einem weiteren Mehrhalskolben mit Rückflusskühler, Tropftrichter, Innenthermometer, Rührer und Luftdurchleitung (6 L/h) zusammen mit 975,00 g Butylacetat, 3,176 g Dibutylzinndi- laurat und 3,18 g 2,6-Di-tert.butyl-4-methylphenol vorgelegt und unter Rühren auf 600C aufgeheizt. 374,12 g Hydroxyethylacrylat wurden anschließend langsam zugetropft, wobei eine maxima- Ie Temperatur von 65°C erreicht wurde. Danach wurde das Reaktionsgemisch so lange bei 600C gerührt, bis ein NCO-Gehalt < 4,4 % erreicht wurde.
Kennzahlen nach 24 h Lagerung bei RT:
Figure imgf000020_0001
Beispiel 2: Herstellung eines Epoxyacrylats
In einem Mehrhalskolben mit Destillationsbrücke, Rührer und Stickstoffdurchleitung (6 L/h) wurden 2700,06 g Adipinsäure und 499,54 g Butandiol bei RT vorgelegt und unter Rühren auf 1800C erwärmt bis eine Säurezahl von < 484 erreicht wurde. 2251 ,88 g dieses Vorproduktes wurden in einem weiteren Mehrhalskolben mit Rückflusskühler, Innenthermometer und Luftdurchleitung (6 L/h) zusammen mit 2735,94 g Glycidylmethacrylat, 9,98 g Triphenylphosphin und 4,99 g 2,6-Di- tert.butyl-4-methylphenol bei RT vorgelegt und langsam unter Rühren auf 800C aufgeheizt und so lange bei dieser Temperatur gehalten, bis die Säurezahl konstant < 20 war.
Kennzahlen nach 24 h Lagerung bei RT:
Figure imgf000020_0002
Beispiel 3: Herstellung eines Polycarbonatdiols auf Basis 3-Methy-l,5-Pentandiol
In einem 60 1 Druckreaktor mit Destillationsaufsatz, Rührer und Vorlage wurden 34092 g 3- Methyl-1,5-Pentandiol mit 8,0 g Ytterbium(HI)acetylacetonat sowie 10223 g Dimethylcarbonat bei 800C vorgelegt. Anschließend wurde unter Stickstoffatmosphäre das Reaktionsgemisch in 2 h auf 1500C aufgeheizt und dort unter Rühren und Rückfluss 2 h gehalten wobei der Druck auf 3,9 bar (absolut) anstieg. Danach wurden das Spaltprodukt Methanol im Gemisch mit Dimethylcarbonat per Destillation entfernt, wobei der Druck innerhalb von 4h kontinuierlich um insgesamt 2,2 bar gesenkt wurde. Anschließend wurde der Destillationsvorgang beendet und weitere 10223 g Dime- thylcarbonat bei 1500C zu dem Reaktionsgemisch zugepumpt und dort unter Rühren und Rückfluss 2 h gehalten, wobei der Druck auf 3,9 bar (absolut) anstieg. Danach wurde erneut das Spaltprodukt Methanol im Gemisch mit Dimethylcarbonat per Destillation entfernt, wobei der Druck innerhalb von 4 h kontinuierlich um insgesamt 2,2 bar gesenkt wurde. Anschließend wurde der Destillationsvorgang beendet und weitere 7147 g Dimethylcarbonat bei 1500C zu dem Reaktionsgemisch zugepumpt und dort unter Rühren und Rückfluss 2 h gehalten, wobei der Druck auf 3,5 bar (absolut) anstieg. Danach wurde erneut das Spaltprodukt Methanol im Gemisch mit Dimethylcarbonat per Destillation entfernt, wobei der Druck innerhalb von 4 h auf Normaldruck gesenkt wurde. Im Anschluss daran wurde das Reaktionsgemisch innerhalb von 2 h auf 1800C erhitzt und bei dieser Temperatur 2 h unter Rühren gehalten. Daran anschließend wurde die Temperatur auf 1300C redu- ziert und ein Stickstoffstrom (5 l/h) durch das Reaktionsgemisch hindurchgeleitet, während der Druck auf 20 mbar abgesenkt wurde. Danach wurde die Temperatur binnen 4 h auf 1800C erhöht und dort 6 h gehalten. Dabei erfolgte die weitere Entfernung von Methanol im Gemisch mit Dimethylcarbonat aus dem Reaktionsgemisch.
Nach Belüftung und Abkühlung des Reaktionsansatzes auf Raumtemperatur, erhielt man ein farb- loses, flüssiges Oligocarbonatdiol mit folgenden Kennzahlen:
Figure imgf000021_0001
Beispiel 4: Herstellung einer UV-härtenden Polyurethandispersion
In einem Reaktionsgefäß mit Rührer, Innenthermometer und Gaseinleitung (Luftstrom 1 l/h) wur- den 210,3 g des hydroxyfunktionellen Polyesteracrylats Laromer® PE44F (BASF AG, Ludwigshafen, DE) , 701,3 g des C4-Polyethers Terathane® 2000 (Invista, Wichita, US), 43,6 g Dimethylol- propionsäure, 0,7 g Dibutylzinndilaurat, 390,0 g Aceton vorgelegt, mit einem Gemisch von 157,0 g Desmodur® W (cycloaliphatisches Diisocyanat; Bayer MaterialScience AG, Leverkusen, DE) und 80,3 g Desmodur® H (aliphatisches Diisocyanat; Bayer MaterialScience AG, Leverkusen, DE) versetzt und derart aufgeheizt, dass ein konstanter Aceton-Rückfluss herrschte. Es wurde solange bei dieser Temperatur gerührt, bis die Reaktionsmischung einen NCO-Gehalt von 1,6 ± 0,1 Gew. % enthielt. Dann wurde auf 400C abgekühlt, und es wurden 33,6 g Ethyldiisopropylamin zugegeben. Nach 5 min Rühren bei 400C wurde die Reaktionsmischung unter schnellem Rühren in 2250 g Wasser von 200C gegossen. Anschließend wurden 42,6 g Isophorondiamin in 125,0 g Wasser zugefügt. Nach 30 min Nachrühren ohne Heizen oder Kühlen wurde das Produkt im Vakuum (50 mbar, max. 500C) destilliert, bis ein Festkörper von 35 ±1 Gew.% erreicht wurde. Die Dispersion hat einen pH-Wert von 8,3 und eine mittlere Teilchengröße von 100 nm (Laser-Korrelations-Spektroskopie- Messung: Zetasizer 1000, Malvern Instruments, Malvern, UK). Auslaufzeit in einem 4 mm Becher: 18 s.
Beispiel 5: Formulierung einer lösemittelhaltigen Dual-Cure Siebdruckfarbe
Als Komponente A) wurden 68,7 g des Isocyanatoacrylates aus Beispiel 1 und 4,0 g des Iso- cyanatoacrylats Desmolux® XP 2510 (90%ig in Butylacetat, NCO-Gehalt 7,0 %, Molekulargewicht Mn ca. 1200 g/mol, Viskosität 15000 mPas, D 40 l/s, 23 0C; Bayer MaterialScience AG, Leverkusen, DE) vermischt. Als Komponente B) wurden 11,0 g des Carbonatdiols aus Beispiel 3, 8,9 g des Epoxyacrylats aus Beispiel 2, 6,4 g einer 50%igen Lösung des Photoinitiators Irgacure® 184 (Ciba Speciality Chemicals, Basel, CH) in Butylacetat, 0,7 g Verlaufs- und Benetzungsadditiv Byk® 306 (Byk-Chemie, Wesel, DE) und 0,3 g Dibutylzinndilaurat homogen miteinander vermischt. Die Komponenten A) und B) wurden unmittelbar vor dem Bedrucken miteinander im Verhältnis 1 : 1 Miteinander vermischt. Zur Anpassung der Viskosität wurden zu 100 Teilen der Mi- schung 28 Teile Butylacetat gegeben.
Beispiel 6: Formulierung einer wässrigen physikalisch trocknenden und UV-härtenden Siebdruckfarbe
Unter einem Dissolver wurden 95,3 g der Dispersion aus Beispiel 4 mit 2,0 g Acematt® 3200 und 2,0 g Acematt® 3300 (Mattierungsmittel, Degussa, Düsseldorf, DE) 5 min bei 2000 U/min disper- giert. Anschließend wurden nacheinander bei 500 U/min eingearbeitet: 0,3 g Irgacure® 500 (Photoinitiator, Ciba Speciality Chemicals, Basel, CH), 0,2 g Dehydran 1293 (Entschäumer, Cognis GmbH & CoKG, Düsseldorf, DE), 0,2 g Byk® 348 (Verlaufs- und Benetzungsadditiv, Byk- Chemie, Wesel, DE). Nach Zugabe jedes Additvs wurde jeweils 5 min gerührt. Beispiel 7: Herstellung bedruckter und verformter Folien
Herstellung von bedruckten Kunststofffolien
ABS und PC-Kunststofffolien (Bayfol® DFA und Makrofol® DEl-I) wurden als Bogenware (sowohl unbelassen als auch mit einer physikalisch trocknenden, silbermetallic Siebdruckfarbe No- riphan® HTR [Pröll KG, Weißenburg, DE] nach Angaben des Herstellers im Siebdruckverfahren bedruckt und getrocknet) im Siebdruckverfahren mit den Druckfarben nach Beispiel 5 und 6 mit folgenden Druckparametern beschichtet:
Halbautomatische Siebdruckmaschine; Hersteller ESC (Europa Siebdruck Centrum); Gewebe 80 THT Polyester; RKS-Rakel; Trockenfilm-Schichtdicke: 10-12 μm.
Vortrocknung/Vorvernetzung
Ein Teil der beschichteten Kunststoffbögen wurden 30 Minuten im Kammerofen bei 800C vorgetrocknet. Der andere Teil der Bögen wurde mittels kontinuierlichen Durchlauföfen (Heißluft/ IR Flachkanal [Hersteller SPS, Wuppertal] bei einer Geschwindigkeit von 3 m/min [Folientemperatur 85°C] vorgetrocknet). Alle Folien waren anschließend grifftrocken und blockfest.
Thermoformen
Thermoformanlage: Adolf ILLIG, Heilbronn
Werkzeugtemperatur: 60°C bei Bayfol DFA, bzw. 100 0C bei Makrofol® DEl-I Folientemperatur: 165°C bei Bayfol® DFA, bzw. 190 0C bei Makrofol® DEl-I Heizzeit: 15 s bei Bayfol DFA, bzw. 20 s bei Makrofol® DEl-I
Werkzeug: Heizungs-Lüftungsblende zur Herstellung von Folien für die Autoinnenausbau
Hochdruckverformverfahren HPF-Anlage: HDVF Penzberg, Kunststoffmaschinen (Typ: SAMK 360)
Werkzeugtemperatur: Bayfol® DFA 1000C, Makrofol® DEl-I 1000C
Folientemperatur: Bayfol® DFA 1300C, Makrofol® DEl-I 14O0C
Heizzeit: Bayfol® DFA 10 s Makrofol® DEl-I 14 s)
Druck: 100 bar Werkzeug: Heizungs-Lüftungsblende zur Herstellung von Folien für die Autoinnenausbau UV - Härtung der verformten, bedruckten Folien:
UV-Anlage: IST-UV-Kanal
Lampentyp: Quecksilber CM-Strahler 80W/cm
UV-Dosis: 4 Durchgänge x 500 mJ/cm2
Härtungsgeschwindigkeit: 5 m/min
Beispiel 8: Herstellung von Formteilen
Hinterspritzen der ABS-Folien:
Die dreidimensionalen, UV-gehärteten Folien wurden wie folgt hinter spritzt: Anlagentyp: ARBURG 570C, Loßburg (Typ: Allrounder 2000-675)
Spritztemperatur: 2600C Masse
Werkzeugtemperatur: 600C
Einspritzdruck: 1400 bar
Hinterspritzmaterial: Bayblend® T65 (amorphes, thermoplastisches Polymerblend auf Basis von Polycarbonat und ABS; Bayer MaterialScience AG, Leverkusen, DE)
Füllzeit: 2 s
Abprüfung der Oberflächen der verformten Folien und der Formteile:
Substrat: mit Noriphan HTR silbermetallic bedruckte Bayfol®DFA, Herstellung nach Beispiel 7; als Vergleich wurden die nur mit Noriphan® HTR bedruckten Folien analog Beispiel 7 jedoch ohne UV-Härtung hergestellt.
Figure imgf000025_0001
Die Prüfergebnisse zeigen deutlich, dass durch das erfindungsgemäße Verfahren Oberflächen auf verformten Folien mit besseren Beständigkeiten, Abriebfestigkeiten und Kratzfestigkeiten erzielt werden können, als nach den Verfahren des Stands der Technik.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von ein- oder mehrfach bedruckten verformten Folien, bei dem eine thermoplastische Folie
A) optional mit einer oder mehreren farbgebenden Beschichtungsmitteln (Druckfarben) a) bedruckt und anschließend zur Beschichtung a*) getrocknet und/oder gehärtet wird, wobei das Beschichtungsmittel a) und die Trocknungs-/Härtungsbedingungen so gewählt werden, dass die Beschichtung a*) thermoplastisch ist und anschließend diese
B) mit mindestens einem Beschichtungsmittel b) bedruckt wird, welches mit aktinischer Strahlung härtbare Bestandteile enthält,
C) anschließend das Beschichtungsmittel b) ohne Einwirkung aktinischer Strahlung zu einer blockfesten und thermoplastischen Beschichtung b*) getrocknet und/oder gehärtet wird,
D) die beschichtete Folie durch geeignete Werkzeuge unter Einwirkung erhöhter Temperatur verformt wird und
E) die Beschichtung b*) durch Einwirkung von aktinischer Strahlung zu einer duromeren
Schicht gehärtet wird
F) und optional die Folie mit thermoplastischen Kunststoffen hinterspritzt oder mit ein- oder mehrkomponentigen Kunststoffen hinterschäumt wird.
2. Verfahren gemäß Anspruch 1 dadurch gekennzeichnet, dass im Schritt B) das Beschichtungs- mittel b) über ein Siebdruckverfahren aufgebracht wird.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass im Schritt D) die Verformung unter Einwirkung von Druck von mindestens 20 bar durchgeführt wird.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass im Schritt D) die Verformung bei einer Temperatur durchgeführt wird, die unterhalb der Glasübergangstemperatur der Folie liegt.
5. Verformte Folien hergestellt nach einem der Ansprüche 1 bis 4.
6. Verformte Folien gemäß Anspruch 5, dadurch gekennzeichnet, dass sie auf der nicht bedruckten Seite in einem Werkzeug mit gegebenenfalls gefüllten Polymeren wie Thermoplas- ten oder reaktiven ein- oder mehrkomponentigen Polymeren durch Hinterspritzen oder Hinterschäumen verbunden wird.
7. Verwendung der Folien gemäß Anspruch 5 zur Herstellung von Gebrauchsgegenständen.
8. Verwendung der Folien gemäß Anspruch 6 zur Herstellung von Gebrauchsgegenständen.
PCT/EP2007/009027 2006-10-31 2007-10-18 Bedruckte, verformbare folien WO2008052665A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2009004446A MX2009004446A (es) 2006-10-31 2007-10-18 Peliculas impresas y moldeables.
JP2009535010A JP2010508177A (ja) 2006-10-31 2007-10-18 成形可能な印刷フィルム
AT07819095T ATE503621T1 (de) 2006-10-31 2007-10-18 Bedruckte, verformbare folien
EP07819095A EP2086739B1 (de) 2006-10-31 2007-10-18 Bedruckte, verformbare folien
BRPI0717561-2A BRPI0717561A2 (pt) 2006-10-31 2007-10-18 Filmes moldáveis impressos
DE502007006853T DE502007006853D1 (de) 2006-10-31 2007-10-18 Bedruckte, verformbare folien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006051897A DE102006051897A1 (de) 2006-10-31 2006-10-31 Bedruckte, verformbare Folien
DE102006051897.7 2006-10-31

Publications (2)

Publication Number Publication Date
WO2008052665A2 true WO2008052665A2 (de) 2008-05-08
WO2008052665A3 WO2008052665A3 (de) 2008-10-16

Family

ID=38983986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009027 WO2008052665A2 (de) 2006-10-31 2007-10-18 Bedruckte, verformbare folien

Country Status (12)

Country Link
US (1) US20080145624A1 (de)
EP (1) EP2086739B1 (de)
JP (1) JP2010508177A (de)
KR (1) KR20090085592A (de)
CN (1) CN101528438A (de)
AT (1) ATE503621T1 (de)
BR (1) BRPI0717561A2 (de)
DE (2) DE102006051897A1 (de)
ES (1) ES2362044T3 (de)
MX (1) MX2009004446A (de)
TW (1) TW200836847A (de)
WO (1) WO2008052665A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065966A1 (en) 2010-11-19 2012-05-24 Bayer Materialscience Ag Multilayer decorative film
WO2014044694A1 (de) 2012-09-19 2014-03-27 Bayer Materialscience Ag Verfahren zur herstellung eines mit einem uv-gehärteten lack versehenen formteil aus kunststoff sowie selbiges formteil

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002501A1 (de) 2009-04-20 2010-10-28 Wobben, Aloys Rotorblattelement und Herstellverfahren
DE102009022542A1 (de) * 2009-05-25 2010-12-09 Leonhard Kurz Stiftung & Co. Kg Mehrschichtfolie
US20120100314A1 (en) * 2010-04-19 2012-04-26 YJIP, Inc. Sheet for signage that includes polyethylene and other materials and method of manufacture of the same
US9190039B2 (en) * 2013-03-14 2015-11-17 D'addario & Company, Inc. Radiation curable drumhead membrane
CN104325601A (zh) * 2014-10-16 2015-02-04 张晓明 一种球面印刷方法
JP2018536725A (ja) * 2015-09-16 2018-12-13 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 特に高い耐加水分解性を有するコーティングされたフィルムおよびそれらから製造された成形品
US10449714B2 (en) 2016-11-14 2019-10-22 Covestro Deutschland Ag Process for producing an object from a precursor and use of a free-radically crosslinkable resin in an additive manufacturing process
JP7138105B2 (ja) * 2016-12-05 2022-09-15 コベストロ、ドイチュラント、アクチエンゲゼルシャフト 前駆体から物体を作製するための方法および積層造形法におけるラジカル架橋性樹脂の使用
JP6380901B2 (ja) * 2017-01-16 2018-08-29 東洋インキScホールディングス株式会社 活性光線硬化型スクリーン印刷インキ、積層体、成型体およびその製造方法
DE102017206090A1 (de) * 2017-04-10 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen eines geschäumten dekorierbaren Trägerteils für ein Kraftfahrzeug, Folie zur Verwendung in einem derartigen Verfahren und geschäumtes dekorierbares Trägerteil
CN108129655A (zh) * 2017-12-31 2018-06-08 佛山市南海区会斌金属贸易有限公司 一种耐老化的环保材料加工装置及制备方法
CN109401657A (zh) * 2018-10-11 2019-03-01 斯迪克新型材料(江苏)有限公司 用于曲面显示屏的可重工防爆膜
JP7107187B2 (ja) * 2018-11-27 2022-07-27 トヨタ自動車株式会社 複合部材の製造方法
JP7456147B2 (ja) 2019-12-23 2024-03-27 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、活性エネルギー線硬化型インクジェット用インク組成物、組成物収容容器、2次元又は3次元の像形成装置、2次元又は3次元の像形成方法、硬化物、及び加飾体
CN113462304A (zh) * 2020-03-31 2021-10-01 科德宝两合公司 可热成形的装饰材料
WO2022037950A1 (de) * 2020-08-18 2022-02-24 Covestro Deutschland Ag Beschichtungsmittelsysteme, bestehend aus basislack und decklack, sowie darauf basierendes halbzeug und herstellung desselben
US11938670B2 (en) 2021-09-01 2024-03-26 GM Global Technology Operations LLC Powder coated vacuum formed articles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298350A (ja) * 1991-03-27 1992-10-22 Toppan Printing Co Ltd 凹凸模様を有する耐傷性化粧シートの製造方法
EP0688839A2 (de) * 1994-06-20 1995-12-27 Bayer Ag Hochtemperaturbeständige flexible Siebdruckfarben
EP0819516A2 (de) * 1996-07-18 1998-01-21 Daimler-Benz Aktiengesellschaft Verfahren zum Lackieren eines Gegenstandes während eines Urformverfahrens sowie Lackfolie zu Durchführung des Verfahrens
WO2000063015A1 (de) * 1999-04-21 2000-10-26 Basf Aktiengesellschaft Strahlungshärtbare verbundschichtplatte oder -folie
KR20010083548A (ko) * 2000-02-16 2001-09-01 김명준 유브이 하드코팅을 이용한 인몰드 제품의 표면처리방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598009A (en) * 1984-09-13 1986-07-01 Armstrong World Industries, Inc. Embossed material and method for producing the same from a photocrosslinkable polyurethane
DE3826947A1 (de) * 1988-08-09 1990-02-22 Merck Patent Gmbh Thioxanthonderivate, ihre verwendung als fotoinitiatoren, fotopolymerisierbare bindemittelsysteme sowie verfahren zur herstellung einer strahlungsgehaerteten beschichtung
JP2560795B2 (ja) * 1988-09-16 1996-12-04 大日本印刷株式会社 成形シートおよびそれを使用した成形品の製造法
JPH06100640A (ja) * 1992-09-22 1994-04-12 Kansai Paint Co Ltd 真空成型フィルム用活性エネルギー線硬化型着色被覆組成物、真空成型フィルム及び真空成型物
US5922473A (en) * 1996-12-26 1999-07-13 Morton International, Inc. Dual thermal and ultraviolet curable powder coatings
DE10004495A1 (de) * 2000-02-02 2001-08-09 Basf Ag Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate
US6646022B2 (en) * 2000-07-05 2003-11-11 Mitsubishi Rayon Co., Ltd. Photocuring resin compositions, photocuring sheets and molded article using the same, and processes of production thereof
KR100390155B1 (ko) * 2000-12-30 2003-07-04 주식회사 하이닉스반도체 Esd 보호회로
DE10357713A1 (de) * 2003-12-09 2005-07-14 Bayer Materialscience Ag Beschichtungsmittel
DE102004009437A1 (de) * 2004-02-24 2005-09-15 Basf Ag Strahlungshärtbare Verbundschichtplatte oder -folie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298350A (ja) * 1991-03-27 1992-10-22 Toppan Printing Co Ltd 凹凸模様を有する耐傷性化粧シートの製造方法
EP0688839A2 (de) * 1994-06-20 1995-12-27 Bayer Ag Hochtemperaturbeständige flexible Siebdruckfarben
EP0819516A2 (de) * 1996-07-18 1998-01-21 Daimler-Benz Aktiengesellschaft Verfahren zum Lackieren eines Gegenstandes während eines Urformverfahrens sowie Lackfolie zu Durchführung des Verfahrens
WO2000063015A1 (de) * 1999-04-21 2000-10-26 Basf Aktiengesellschaft Strahlungshärtbare verbundschichtplatte oder -folie
KR20010083548A (ko) * 2000-02-16 2001-09-01 김명준 유브이 하드코팅을 이용한 인몰드 제품의 표면처리방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065966A1 (en) 2010-11-19 2012-05-24 Bayer Materialscience Ag Multilayer decorative film
US9108357B2 (en) 2010-11-19 2015-08-18 Bayer Intellectual Property Gmbh Multilayer decorative film
WO2014044694A1 (de) 2012-09-19 2014-03-27 Bayer Materialscience Ag Verfahren zur herstellung eines mit einem uv-gehärteten lack versehenen formteil aus kunststoff sowie selbiges formteil
US10173355B2 (en) 2012-09-19 2019-01-08 Covestro Deutschland Ag Method for producing a molded part made of plastic and provided with a UV-cured paint, and said molded part

Also Published As

Publication number Publication date
JP2010508177A (ja) 2010-03-18
WO2008052665A3 (de) 2008-10-16
EP2086739B1 (de) 2011-03-30
CN101528438A (zh) 2009-09-09
DE502007006853D1 (de) 2011-05-12
ES2362044T3 (es) 2011-06-27
TW200836847A (en) 2008-09-16
BRPI0717561A2 (pt) 2013-10-22
KR20090085592A (ko) 2009-08-07
EP2086739A2 (de) 2009-08-12
DE102006051897A1 (de) 2008-05-08
ATE503621T1 (de) 2011-04-15
US20080145624A1 (en) 2008-06-19
MX2009004446A (es) 2009-05-20

Similar Documents

Publication Publication Date Title
EP2086739B1 (de) Bedruckte, verformbare folien
EP1790673B1 (de) Lackierte Folien
EP1294788B1 (de) Härtbare wässrige polyurethandispersionen
EP1541649B1 (de) Beschichtungsmittel
EP1144476B1 (de) Durch addition an isocyanatgruppen als auch durch strahlungsinduzierte addition an aktivierte c-c-doppelbindungen härtbare beschichtungsmittel
EP2113527B1 (de) Verformbare Folie mit strahlungshärtbarer Beschichtung und hieraus hergestellte Formkörper
EP3350243B1 (de) Beschichtete folien mit besonders hoher hydrolysebeständigkeit und hieraus hergestellte formkörper
EP1468059A2 (de) Strahlungsh rtbare beschichtungen mit verbesserter haftung
DE10048849A1 (de) Verfahren zur Herstellung eines thermisch und mit aktinischer Strahlung härtbaren Mehrkomponentensystems und seine Verwendung
EP3283589B1 (de) Verfahren zur herstellung von formkörpern mit einer strahlungsgehärteten beschichtung
DE19964282B4 (de) Verfahren zur Herstellung einer farb- und/oder effektgebenden Mehrschichtlackierung auf einem grundierten oder ungrundierten Substrat und mit Hilfe des Verfahrens herstellbare Mehrschichtlackierungen
TW201736538A (zh) 雙固化型軟觸感塗層
EP1322689B1 (de) Lösemittelhaltiges, thermisch und mit aktinischer strahlung härtbares mehrkomponentensystem und seine verwendung
WO2006048109A1 (de) Verfahren zur herstellung von formteilen, insbesondere zur anwendung im automobilbau, und hierfür geeignete, eine beschichtung aufweisende folien
EP2313210B1 (de) Zweischicht-beschichtungssysteme mit verbesserter zwischenhaftung
EP1322690B1 (de) Beschichtungsstoffsystem für die herstellung farb- und/oder effektgebender mehrschichtlackierungen auf der basis von mehrkomponentenbeschichtungsstoffen
DE10048275C1 (de) Thermisch und mit aktinischer Strahlung härtbares Mehrkomponentensystem und seine Verwendung
EP1885536B1 (de) Verfahren zur herstellung von eine beschichtung aufweisenden folien, die so erhaltenen folien, sowie ihre verwendung zur herstellung von formteilen, insbesondere zur anwendung im automobilbau

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040356.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819095

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007819095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2048/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/004446

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020097008865

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009535010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0717561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090428