WO2008016486A2 - Watch controller for a medical device - Google Patents

Watch controller for a medical device Download PDF

Info

Publication number
WO2008016486A2
WO2008016486A2 PCT/US2007/016199 US2007016199W WO2008016486A2 WO 2008016486 A2 WO2008016486 A2 WO 2008016486A2 US 2007016199 W US2007016199 W US 2007016199W WO 2008016486 A2 WO2008016486 A2 WO 2008016486A2
Authority
WO
WIPO (PCT)
Prior art keywords
watch
display
user
infusion
controller device
Prior art date
Application number
PCT/US2007/016199
Other languages
French (fr)
Other versions
WO2008016486A3 (en
Inventor
Joel Goldsmith
Andrew C. Hayes
Original Assignee
Medtronic Minimed, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Minimed, Inc. filed Critical Medtronic Minimed, Inc.
Publication of WO2008016486A2 publication Critical patent/WO2008016486A2/en
Publication of WO2008016486A3 publication Critical patent/WO2008016486A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • G01N33/48792Data management, e.g. communication with processing unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/01Remote controllers for specific apparatus

Definitions

  • Embodiments of this invention relate generally to infusion systems and methods for delivering fluids into an individual's body and monitoring systems and methods for monitoring analyte levels in an individual's body. More particularly, embodiments of this invention relate to apparatuses and methods for providing a convenient way in which to monitor and control the fluids delivered to the individual's body and to monitor the analyte levels in the individual's body.
  • BG blood glucose
  • Diabetics must modify their daily lifestyle to keep their body in balance. To do so, diabetics need to keep strict schedules, including ingesting timely nutritious meals, partaking in exercise, monitoring BG levels daily, and adjusting and administering insulin dosages accordingly. Testing of BG levels has been both painful and awkward for the patient. Traditionally, insulin dependent diabetics were required to monitor their BG levels by puncturing a finger tip with a needle. Due to the fact that many patients must conduct such a test multiple times throughout the day to regulate their BG levels, the procedure can be painful and inconvenient. [0004] Typically, patients may employ various calculations to determine the amount of insulin to inject.
  • bolus estimation software is available for calculating an insulin bolus. Patients may use these software programs on an electronic computing device, such as a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device. Insulin delivery devices include infusion pumps, injection pens, and implantable delivery systems. The better bolus estimation software takes into account the patient's present BG level. Presently, a patient must measure his/her blood glucose using a BG measurement device, such as a test strip meter, a continuous glucose measurement system, or a hospital hemacue.
  • a BG measurement device such as a test strip meter, a continuous glucose measurement system, or a hospital hemacue.
  • BG measurement devices use various methods to measure the BG level of a patient, such as a sample of the patient's blood, a sensor in contact with a bodily fluid, an optical sensor, an enzymatic sensor, or a fluorescent sensor.
  • the BG measurement device When the BG measurement device has generated a BG measurement, the measurement is displayed on the BG measurement device. Then the patient may visually read the BG measurement and physically enter the BG measurement into an electronic computing device to calculate a bolus estimate. Finally, once the bolus estimate is calculated, the patient must inject the insulin bolus or program an insulin delivery device to deliver the bolus into their body.
  • the measurement is transmitted to the electronic computing device.
  • the display In infusion systems where a display is included for convenient viewing of selected information, such as that requested by the user or an instructed act that was undertaken by an infusion device or a sensing device, the display is generally located on the device. This may be inconvenient for the user to view information because infusion devices and sensors are typically secured to or near a site on the user's body. Thus, viewing may require the user to move or manipulate the infusion device or sensor to view the display which may lead to improper reading of the display.
  • an infusion system allows for the control of the delivery of a fluid or medication.
  • An embodiment of the present invention includes a controller device and a therapy/diagnostic device, such as an infusion device.
  • the controller device may be a hand-held device, separate from the infusion device, that allows the user to communicate with the infusion device without actually handling the infusion device.
  • the controller device includes a housing adapted to be carried by the user and a communication system contained in the housing for transmitting a communication or command from the user to the infusion device.
  • the controller device may receive communications sent from the infusion device or other components of the infusion system, such as for example, a characteristic determining device.
  • the controller device may include a user input device on the controller device housing, such as keys, buttons, or the like, for the user to input data or commands.
  • the controller device includes on the housing a display that may mimic the display on the infusion device. In certain embodiments, whatever is shown on the infusion device corresponds to that shown and reflected on the display of the controller device.
  • the controller device display shows information according to communications sent to it from the infusion device.
  • the controller device may be configured so that the input devices included allow all, or substantially all, viewing and data entry to be performed on the controller device without moving or referring to the infusion device.
  • the controller device may control an analyte sensing device such as a continuous glucose sensor.
  • the controller device display shows information according to communications sent to it from the sensing device.
  • the controller device may control more than one device, for example, an infusion pump and an analyte sensor.
  • the controller device may include time-telling functions.
  • the controller device may be a wrist-worn device, such as a watch.
  • the controller device may also be a watch that can be carried on other parts of the body or clothing, such as the ankle, neck (e.g., on a chain), pocket, or ankle.
  • embodiments of the present invention may provide convenience and ease of use.
  • an embodiment with a user interface and display on the controller device may cater to the active lifestyles of many insulin dependent diabetics. A large and simple display minimizes the potential for error in reading and interpreting test data. A small overall size permits discretion during self- monitoring and makes it easy to carry.
  • the controller device may be integrated with a characteristic determining device into one housing and feature a large target area for strip insertion to make the monitoring procedure fast and accurate.
  • the controller device display may include a dedicated backlight to facilitate viewing.
  • the controller device also reflects the other functions that the particular infusion device may show, including a variety of other displays, for example, when the last bolus was administered, when the last alarm occurred, when the last finger stick was taken, past trends, all alarms that occurred in a time period, calibrations, meals, exercise, bolus schedules, temporary basal delivery, diagnostic information, and the like.
  • the infusion device can send a message every time a tenth of a unit, or some specified amount, is delivered, to which the user may monitor via the controller device display.
  • the infusion device is the central hub with peripheral devices being the controller device and a characteristic determining device.
  • the characteristic determining device being adapted to sense and determine the concentration of an analyte of a patient and directs the infusion device fluid delivery according to the measurements. While the term "analyte" is used herein, it is possible to determine and use other characteristics as well using the same type of system.
  • the control is maintained in the central hub and the infusion device sends out most of the commands.
  • the infusion device also sends requests to receive specific data from the controller device and the characteristic determining device, if one is included.
  • the controller device may automatically transmit communications including the data indicative of the determined concentration of the analyte in the user to the infusion device.
  • the controller device further includes a user input device for inputting commands, and transmits the communications to the infusion device in response to a command from the user input device.
  • the controller device further includes an indicator to indicate a status of the communication including the data indicative of the determined concentration of the analyte in the user being transmitted from the determining device communication system to the infusion device communication system. Data compression may be employed to speed up communications.
  • the infusion device may contain all or substantially all of the intelligence.
  • the amount of time that the controller communicates with the infusion device or other components may be limited to save power in the controller device. For example, radio-frequency (RF) communications may be minimized, such that the marriage between the infusion device and controller occurs once until further communication is necessary to exchange data.
  • RF radio-frequency
  • the information regarding the screens displayed is sent to the controller, and when the infusion device needs to display a screen, it sends a screen number to the controller. In the case of screen displays, if the data being sent is fixed, then the screen can be simply displayed. If the data is variable, then the variable data is sent with the screen to the infusion device. Exchange IDs, strings to be displayed, and foreign languages are among data that may be sent from the controller.
  • Further commands that may be sent from the infusion device include, among other commands, a command to show a specific screen on the controller device, a command for displaying requested information on the screen, a command for showing the rules for the input devices, a command for showing the intelligence about that screen type (e.g., menus, data entries, etc.), and the like.
  • the controller device and the infusion device may communicate to one another through wireless or non-wireless methods.
  • wireless methods include, by no way in limitation, RF, infrared (IR), Bluetooth, ZigBee, and other 802.15 protocols, 802.11 WiFi, spread spectrum communication, and frequency hopping communication. Further examples include giving the controller device cellular telephone or pager capabilities.
  • the communication may be wired, such as in hospital use.
  • there may be a tether physically connecting the infusion device to the controller device.
  • the controlling device and the infusion device could be both wired and wireless — when wired, the two components communicate by wire, and when disconnected, the two components could operate through wireless communication.
  • the user can open communication via the internet to obtain communications from, and send communications to, a nurse, parent, or anyone so desired.
  • a transceiver may be used to facilitate data transfer between the PC and the infusion device.
  • Such a communication may also be used by a party, other than the user, to control, suspend, and/or clear alarms.
  • This embodiment could be very useful for a parent to monitor the infusion system of a child, or for a physician to monitor the infusion system of a patient.
  • further description of a communication station may be found in U.S. Patent. No. 5,376,070, which is herein incorporated by reference.
  • the transceiver may allow patients at home or clinicians in a hospital setting to communicate with the various components of the infusion system via RF telemetry.
  • the transceiver may be used to download device information from the infusion device and sent to the PC when the transceiver is connected in to the serial port of the PC.
  • the transceiver may derive its power from the PC when the two are connected. In this way, the transceiver conveniently does not require a separate power source.
  • a cellular phone may be used as a conduit for remote monitoring and programming.
  • the controller device may also act as a transceiver, which would eliminate an extra component.
  • the infusion system includes an infusion device and/or a sensing device.
  • the sensing device includes a sensor and a transmitter in communication with the infusion device. The transmission may occur via wire or wireless methods.
  • the sensing device includes a sensor and a transmitter in communication with the infusion device.
  • the sensing device may sense an analyte of a bodily fluid of the user and provide continuous monitoring of that analyte.
  • the sensing device may be calibrated using data from the infusion device and/or from a characteristic determining device.
  • the sensing device senses additional physiological characteristics.
  • the system is set up to automatically call for assistance when analytes reach a certain level.
  • the system may be set up to notify others, for example, through a cellular network, hi such a manner, the patient's cellular telephone may be used to connect to emergency services.
  • the call may include a global positioning system (GPS) location. GPS functions may be included separately from cellular telephone type functions.
  • Communications between the system components may be performed in a variety of manners.
  • a "spread spectrum” where a large range of RFs can be used to relay the communication
  • changing frequencies can be used so as to pick up whatever frequency is present.
  • This is known as frequency hopping, where the frequency changes periodically or so to take advantage of all, or substantially all, frequencies available.
  • Another embodiment is one that uses adaptive frequency selection, or Listen Before Talk (LBT), where the devices select the cleanest available channel from those allotted prior to transmitting.
  • LBT Listen Before Talk
  • frequency hopping allows the system to find frequencies that are not being used by other nearby systems and thus avoid interference.
  • a system may operate in a manner where each component-to-component communication is on a different frequency, or where the delay for each communication is different.
  • Other types of RF, that are not described, may also be used for communication, such as, translation frequency.
  • Fig. 1 is a front view of a controller device according to an embodiment of the invention.
  • FIG. 2 is a front view of a blood glucose meter integrated into a controller device housing according to an embodiment of the invention.
  • Fig. 3 is a front view of a blood glucose meter integrated into a controller device housing according to another embodiment of the invention.
  • Fig. 4 is a front view of a blood glucose meter integrated into a controller device housing communicating with an infusion device according to an embodiment of the invention.
  • FIG. 5 is a block diagram of an RF communication system in the infusion device according to an embodiment of the invention.
  • Fig. 6A is a block diagram of a controller device according to an embodiment of the invention.
  • Fig. 6B is a block diagram of a controller device according to an embodiment of the invention.
  • Fig. 7 is a block diagram of different communication paths within the infusion system according to an embodiment of the invention.
  • Fig. 8 is a diagram of the electronics architecture of a controller device according to an embodiment of the invention with a custom integrated circuit.
  • Fig. 9A is a front view of a combined watch and controller device according to an embodiment of the invention.
  • Fig. 9B is a rear view of a combined watch and controller device according to an embodiment of the invention.
  • Fig. 10 is a block diagram of a combined watch and controller device according to an embodiment of the invention.
  • the controller device is a hand-held device separate from the therapy/diagnostic device, such as an infusion device, that allows the user to communicate with the therapy/diagnostic device without actually handling the device.
  • therapy/diagnostic devices include electronic therapy devices and devices that receive diagnostic information from cardiac and other sensors.
  • the controller device 5 includes a housing 3 adapted to be carried by the user and a communication system (not shown) contained in the housing 3 for transmitting a communication or command from the user to the infusion device.
  • the controller device 5 may receive communications sent from the infusion device or other components of the infusion system, such as for example, a characteristic determining device.
  • the controller device may include one or more user input devices 2a and 2b on the controller device housing 3, such as keys, buttons, or the like, for the user to input data or commands.
  • the controller device 5 includes a display 4 on the controller device housing 3 which simultaneously displays whatever information and/or graph is being displayed on the infusion device display at that moment. The display 4 allows a user to easily monitor and control what actions are taking place in, or being performed by, the infusion device.
  • the controller device 5 may further include a backlight 1 in the controller device display 4 for easier viewing. The backlight may be adapted to be in one or more colors, which can be user selectable for personalized use.
  • the backlight may be adapted to flash and/or turn to a color such as yellow or red when various alerts and alarms take place.
  • the controller device 5 may include accessories such as hand straps 6 to provide convenient handling.
  • the controller is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
  • a characteristic determining device that senses and determines the concentration of an analyte of a patient, for example blood glucose (“BG”), and controls the infusion device according to the measurements, may be included in an infusion system with the controller device and the infusion device.
  • BG blood glucose
  • the characteristic determining device includes a housing, a receptacle coupled to the housing for receiving and testing an analyte from the user to determine a concentration of the analyte in the user, a processor contained in the housing and coupled to the receptacle for processing the determined concentration of the analyte from the receptacle, and a communication system contained in the housing and coupled to the processor for transmitting a communication including data indicative of the determined concentration of the analyte in the user.
  • the characteristic determining device may also include a lancing device coupled to the receptacle for obtaining the analyte from the user.
  • the infusion device includes a housing adapted to be carried by the user, a drive mechanism contained in the housing and operatively coupled with a reservoir containing the fluid for infusing the fluid into the body of the user, a communication system contained in the housing for receiving the communication including the data indicative of the determined concentration of an analyte in the user from a characteristic determining device, and a processor contained in the housing and coupled to the communication system for processing the data indicative of the determined concentration of the analyte in the user and controlling the infusion device.
  • the infusion device is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
  • the infusion device may further include a bolus estimator used in conjunction with the processor for calculating an estimated amount of fluid to be infused into the body of the user based upon the received data indicative of the determined concentration of the analyte in the user and a target concentration of the analyte in the user, and an indicator to indicate when the estimated amount of fluid to be infused has been calculated.
  • the system may determine the concentration of one of any variety of analyte types including, but not limited to, oxygen, blood, temperature, lactase, pH, implantable, and the like.
  • the infusion device may include a user input device, such as keys, buttons, or the like, for inputting an estimate of a material to be ingested by the user, and the bolus estimator may include the capability to calculate the estimated amount of fluid to be infused into the body of the user based upon the inputted estimate of the material to be ingested by the user.
  • the infusion device may also include a memory for storing the data indicative of the determined concentration of the analyte in the user received by the infusion device communication system from the determining device communication system.
  • the characteristic determining device is a BG measurement device and may use samples from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
  • other measurement devices may be utilized to determine the concentrations, levels, or quantities of other characteristics, analytes, or agents in the user, such as hormones, cholesterol, oxygen, pH, lactate, heart rate, respiratory rate, medication concentrations, viral loads (e.g., HIV), or the like.
  • other fluids may be delivered to the user, such as medication other than insulin (e.g., HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, and anti-cancer treatments), chemicals, enzymes, antigens, hormones, vitamins, or the like.
  • medication other than insulin e.g., HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, and anti-cancer treatments
  • chemicals, enzymes, antigens, hormones, vitamins, or the like are directed towards the use in humans; however, in alternative embodiments, the infusion devices may be used in animals.
  • a bolus function may be set up as a Patient Controlled Analgesic (PCA) function for customized delivery or the user may press a preset bolus button several times.
  • PCA Patient Controlled Analgesic
  • the characteristic determining device is a BG meter that determines BG level and the infusion device is an insulin infusion pump.
  • the BG meter communicates the measurement of BG to the infusion pump device to determine the amount of insulin for delivery to the user.
  • the BG measurement device may be a continuous glucose measurement system, a hospital hemacue, an automated intermittent blood glucose measurement system, and the like, and/or the BG measurement device may use other methods for measuring the user's BG level, such as a sensor in contact with a body fluid, an optical sensor, a RF sensor, an enzymatic sensor, a fluorescent sensor, a blood sample placed in a receptacle, or the like.
  • the BG measurement device may generally be of the type and/or include features disclosed in U.S. Patent Applications Serial No.
  • Such BG measurement devices may be adapted to be carried by the user, for example, in the hand, on the body, in I l a clothing pocket, attached to clothing (e.g., using a clip, strap, adhesive, or fastener), and the like.
  • the BG measurement device is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
  • the BG meter may be integrated into the controller device housing, as shown in Fig. 2, where the controller device housing 15 includes a BG meter receptacle 20.
  • the controller 10 includes a housing 15 adapted to be carried by the user, a BG meter receptacle 20 coupled to the housing 15 for receiving and testing BG level from the user to determine a concentration of the BG in the user.
  • a BG test strip 25 that holds a use blood sample is inserted into the BG meter receptacle 20 for the testing by the controller device 10.
  • the controller device 10 may have a cartridge-like mechanism which loads and presents the strip for testing and then ejects it.
  • the controller device 10 has a display 30 on the housing 15 to show information requested by the user or an instructed act that was undertaken by the infusion device, such as for example, determined concentration of blood glucose levels, BG trends or graphs, such as described and disclosed in U.S. Patent Application Serial No. 10/624,177, entitled “System for Monitoring Physiological Characteristics," which is herein incorporated by reference.
  • the display 30 may further include a dedicated backlight 35 to facilitate viewing.
  • the backlight 35 may be a user programmable multi-color backlight that additionally performs the function of a visual indicator by flashing colors appropriate to the level of an alert or alarm.
  • the backlight 35 may also have variable intensity (automatic or manual) to preserve the battery power and improved viewing.
  • the controller 10 includes a keypad 40 on which various input devices, such as keys, buttons, or the like, are located.
  • the keypad buttons 45a, 45b, 45c, and 45d are used by the user to select options and/or input information.
  • the power of the controller device and of the other various devices discussed herein may be provided from a battery.
  • the battery may be a single use or a rechargeable battery. Where the battery is rechargeable, there may be a connector or other interface on a device to attach the device to an electrical outlet, docking station, portable recharger, or so forth to recharge the battery while in the device.
  • a rechargeable battery may be removable from the device for recharging outside of the device, however, in some cases, the rechargeable battery may be sealed into the housing of the device to create a more water resistant or waterproof housing.
  • the devices may be adapted to accommodate various battery types and shapes. In further embodiments, the devices may be adapted to accommodate more than one type of battery. For example, a device may be adapted to accommodate a rechargeable battery and, in the event of battery failure or other need, also adapted to accommodate a readily available battery, such as a AA battery, AAA battery, or coin cell battery.
  • the controller device 110 includes a housing 115 adapted to be carried by the user, and a BG meter receptacle 120 coupled to the housing 115 for receiving and testing BG level from the user to determine a concentration of the BG in the user.
  • a BG test strip 125 that holds a user's blood sample is inserted into the BG meter receptacle 120 for the testing by the controller device 110.
  • the controller device 110 has a display 130 on the housing 115 to show information requested by the user or an instructed act that was undertaken by the infusion device, such as for example, determined concentration of blood glucose levels, graphs of blood glucose level trends or fluid delivery information.
  • the display 130 may include a dedicated backlight 135 to facilitate viewing.
  • the controller device 110 includes a few input devices, such as keys, buttons, or the like, on the housing 115.
  • the housing buttons 145a, 145b, and 145c are used by the user to select options and/or input information.
  • Fig. 4 illustrates an embodiment of an infusion system that includes an infusion device 50, and further includes a controller device integrated with a BG meter 10, where both share one housing.
  • the controller device 10 communicates to the infusion pump device 50 through a wireless method, for example RF signals.
  • the controller device 10 senses and determines the concentration of BG level of a patient and controls the infusion device 50 according to the measurements. This substantially reduces, if not eliminates, calculations on the part of the patient.
  • the infusion device 50 includes a housing 55 adapted to be carried by the user. On the housing 55 there is included a display 60 that, like the BG meter display 30, shows information requested by the user or an instructed act that was undertaken by the infusion device 50.
  • the infusion device 50 may not include a display, but in that case there should be a suspend/resume input and an action input for safety reasons.
  • the BG meter display 30 shows information according to communications sent to the controller device 10 from the infusion device 50.
  • the display 60 of the infusion device 50 may show substantially the same information as shown on the controller device display 30.
  • the two displays may mimic one another so that the user may choose to conveniently view the selected information from the controller device 10 rather than the infusion device 50, which is usually attached to the user's body through the infusion set 75.
  • the infusion device 50 delivers fluid from within the housing 55, through tubing 80 and into the infusion set 75 into the user's body at an infusion site.
  • a keypad 65 with various input devices, such as the keypad buttons 70a, 70b, and 70c illustrated in the figure.
  • Fig. 5 provides a block diagram of the infusion device 150.
  • the infusion device 150 includes a drive mechanism 152 contained in the housing 172 and operatively coupled with a reservoir 154 containing the fluid for infusing the fluid into the body of the user, a communication system 156 contained in the housing 172 for receiving the communication from the controller device including data indicative of the determined concentration of the BG in the user from the BG meter, and a processor 158 contained in the housing 172 and coupled to the communication system 156 for processing the received communications and controlling the infusion device 150.
  • the fluid is delivered from the reservoir 154 through an outlet 168 in the housing 172 and into the user's body via the tubing 180 and infusion set 175.
  • the infusion device 150 may further include an indicator displayed on the display 160 to indicate when the estimated amount of fluid to be infused has been calculated. Additionally, the infusion device 150 may include one or more user input device(s), such as keys, buttons, and the like, for inputting an estimate of a material to be ingested by the user, and the estimated amount of fluid to be infused into the body of the user may be based upon this inputted estimate of material to be ingested. A bolus estimator may be used in conjunction with the infusion device processor for estimating the appropriate amount of fluid to be infused into the body of the user. There may be included a keypad 165 on which the one or more input device(s) are located.
  • the infusion device 150 may also include a memory 166 for storing the data received by the infusion device communication system 156 from the controller device communication system.
  • a speaker 164 is included to provide an alternative mode of communication.
  • the infusion device 150 may display a message that states "move nearer to pump" when the BG meter or controller device senses that the communication with the infusion device 150 is weak or interrupted. A similar message may be displayed if the BG meter or controller device senses some type of problem or malfunction.
  • an alarm 162 may alert the user of any problem or malfunction by vibrating, emitting warning sounds, flashing light, and the like.
  • the infusion device 150 may provide other functions that show a variety of other displays, for example, when the last bolus was administered, when the last alarm occurred, when the last finger stick was taken, past trends, all alarms that occurred in a time period, calibrations, meals, exercise, bolus schedules, temporary basal delivery, and the like. Whenever a bolus is being delivered, the infusion device 150 can send a message every time a tenth of a unit, or some specified amount, is delivered. [0046] As seen in Fig. 6 A, the controller device 210, includes a housing 215 adapted to be carried by the user.
  • a processor 212 contained in the housing 215 is adapted to process data and commands inputted by the user, and a transmitter 218 (or a transceiver 318 (as shown in Fig. 6B)) contained in the housing 215 and coupled to the processor 212 transmits such communications, including data indicative of the determined concentration of the BG in the user, to the infusion device 250.
  • the controller device 210 may be integrated with a BG meter in one housing, which has a lancing device and receptacle for BG test strips, for obtaining a BG sample from the user.
  • the controller device 210 may communicate with a remote station, such as a computer 224, through a data transfer system, using a type of communication connector 222, that couples the controller device 210 to the computer 224 and allows the data downloading.
  • a remote station such as a computer 224
  • communication may be by wireless methods, such as RF, ER, Bluetooth or other wireless methods.
  • Data may be downloaded via the RF telemetry in the same manner as data is transferred from the controller device 210 to the infusion pump device 250.
  • the transmitter 218 (or a transceiver 318 (as shown in Fig. 6B)) converts RF signals into compatible electrical pulses that may be subsequently sent through a serial port to a specified destination.
  • Data may also be downloaded via RF telemetry, or any other wireless or wired method, from a remote station, such a ' s the computer 224, to the infusion device 250.
  • remote stations include, but are not limited to, a hospital database, a cellular telephone, a PDA, a smart phone or internet.
  • a cellular phone may be used as a conduit for remote monitoring and programming.
  • the controller device may be configured so as to have cellular telephone capabilities.
  • the controller device and/or the other devices with display may be capable of providing PDA functions as well, removing the need for patients to carry separate PDA devices.
  • the controller device 210 includes on the housing a display 230 that may mimic the display on the infusion pump device 250.
  • the controller device display 230 shows information according to communications sent to the controller device 210 from the infusion device 250.
  • the display of the infusion device 250 may show substantially the same information as shown on the controller device display 230.
  • whatever is shown on the infusion device 250 corresponds to that shown and reflected on the display 230 of the controller device 210. In this manner, the user may more conveniently view what is being processed or acted upon in the infusion pump device 250 without removing or adjusting the infusion pump device 250 to view the display.
  • the controller device 210 may include one or more input device(s) 245, such as keys, buttons, and the like, on a keypad 265 so that all, or substantially all, viewing and data entry may be performed on the same device without moving the infusion pump device 250.
  • input device(s) 245 such as keys, buttons, and the like
  • the infusion pump device 250 and the controller device 210 need to have substantially the same resolution or else the screen may not be presented correctly on the display. Another difficulty may be in properly displaying the scaling of graphs. This issue may be addressed by having the infusion pump device talk in an "ideal" screen, and not necessarily in its actual screen format. As shown in Fig. 7, the potential communication paths within embodiments of the infusion system are illustrated.
  • the controller device 410 may serve as a translator between the infusion device 450 and the other components of the infusion system 400, such as a BG meter 482. For example, the controller device 410 may have the ability to determine how best to translate the infusion device's 450 description to the screen of the two displays.
  • the infusion device 450 may communicate directly with the BG meter 482.
  • the resolution need not be the same, and the infusion device and/or controller can compensate for the resolution difference so that one or the other may utilize enhanced displays or a simple display depending on the devices and the needs of the user.
  • the infusion system 400 may include multiple controllers that can communicate with one infusion device 450.
  • the controller may also be integrated into the infusion device in some embodiments.
  • the BG meter 482 may be integrated into the controller 410, sharing one housing, to both communicate with the infusion pump device 450.
  • the controller is separate from the infusion pump device.
  • the infusion device 450 serves as the central hub with most of the intelligence of the system 400.
  • the controller device 410 may be a key fob, in which case, the controller device 410 would serve simply as a virtual keyboard to input data and commands to the infusion device 450.
  • Optional peripheral devices may include a physiological characteristic sensor device, such as a telemetered glucose monitoring system (TGMS) sensor. Alternatively, the sensor may be directly wired to a monitor/user interface.
  • the TGMS sensor or physiological characteristic sensor 486 may provide for continuous BG monitoring.
  • the physiological characteristic sensor 486 may also be linked to a bedside monitor 492 so that monitoring and programming of medication delivery may be performed remotely.
  • the infusion pump device does not include, nor need, a display.
  • a key fob may serve as a remote display.
  • Other options for a remote display include, but are not limited to, cellular telephones, computer monitors, PDA's, smart phones, watch remotes, and the like.
  • the infusion device 450 may further communicate with, and download data such as software upgrades and diagnostic tools from, a remote station like a computer 424 from a connector 422.
  • the infusion device 450 may also communicate with the controller device 410 through a station such as a cellular station 488 that includes GPS.
  • the connector 422 may have memory capability to transport data.
  • the control is maintained in the central hub and the infusion pump device 450 sends out most of the commands.
  • the infusion device 450 also sends requests to receive specific data from the controller device 410.
  • the controller device 410 and the infusion pump device 450 may communicate to one another by a connector 422, other wired methods or by wireless methods, such as RF, IR, Bluetooth, or other wireless methods.
  • the infusion pump device 450 may contain all or substantially all of the intelligence.
  • the controller device 410 may be limited in the amount of time that they communicate with one another to save power in the controller device 410. For example, RF communications may be minimized, such that the marriage between the infusion pump device 450 and controller device 410 occurs once.
  • the information regarding the screens displayed is sent to the controller device 410, and when the infusion pump device 450 needs to display a screen, it sends a screen number to the controller device 410.
  • screen displays if the data being sent is fixed, then the screen can be simply displayed. If the data is variable, then the variable data is sent with the screen to the infusion pump device 450. The screen is then displayed based on a combination of the fixed screen information and the variable data. Exchange IDs, strings to be displayed, and foreign languages are among data that may be sent from the controller device 410.
  • Further commands that may be sent from the infusion pump device 450 include, among other commands, a command to show a specific screen on the controller device 410, a command for displaying requested information on the screen, a command for showing the rules for the input devices, a command for showing the intelligence about that screen type (e.g., menus, data entries, etc.), and the like.
  • the devices may all send diagnostic information to each other, and particularly to the controller device, so that the user may see if anything is going wrong with any of the devices.
  • Fig. 8 shows an electronics architecture according to an embodiment of the invention with a custom integrated circuit ("custom IC") 558 as the processor.
  • This architecture can support many of the devices discussed herein, for example the controller device, the infusion device, the characteristic determining device, a BG meter, or any combination of the above.
  • the custom IC 558 is in communication with a memory 566, keypad 565, audio devices 564 (such as speakers or audio electronic circuitry such as voice recognition, synthesis or other audio reproduction), and a display 560. Where there is a drive mechanism in a device that includes infusion functions, the custom IC 558 is in communication with a motor 552 or motor drive circuitry or other means of delivering fluids or therapy via an electro-mechanical means.
  • the custom IC 558 is in communication with the sensors 580.
  • the electronics architecture further may include a communications block 595 in communication with the custom IC 558.
  • the communications block 595 may be adapted to provide communication via one or more communications methods, such as RF 596, a USB 597, and IR 598.
  • die custom IC 558 may be replaced by electronic circuitry, discrete or other circuitry, with similar functions.
  • the electronics architecture may include a main battery 590 and a power control 592.
  • the power control 592 may be adapted to give an end of battery warning to the user, which can be predicted based on the type of battery used or can be calculated from the power degradation of the battery being used. However, in certain embodiments it is not necessary to know the type of battery used to create an end of battery warning. Various battery types, such as rechargeable, lithium, alkaline, etc., can be accommodated by this design.
  • the electronics architecture includes a removable battery and an internal backup battery. Whenever a new removable batter is inserted, the internal backup battery will be charged to full capacity and then disconnected.
  • the internal backup battery may be rechargeable.
  • a supercap for example, is used to handle the peak loads that the rechargeable internal battery could not handle directly, because it has sufficient energy storage. This method also allows the use of any type of removable battery (alkaline, lithium, rechargeable, etc.) and partially drained batteries. Depending on use, the backup battery may allow the device to operate for at least one day after the removable battery has been drained or removed.
  • a microprocessor measures the charge states and control switches for removable and internal backup batteries.
  • the controller device has no user settings and very little memory, because all, or substantially all, needed data and instructions will be sent to the controller device by the infusion pump device.
  • the functions are all, or substantially all, contained on the infusion pump device in such embodiments.
  • the infusion pump device may include expanded capabilities, such as color on the display screens, and more graph options that can present more detailed graphs. For example, there may be included a graph called "mobile day" where the BG levels of the user for the past five days may be shown as overlapping graphs. The mobile day graph allows the user to see the trend in BG level changes during those days, and aids the user in better controlling the insulin delivery according to the trends that appear for specific times of each day.
  • the BG meter may also include expanded capabilities, such as for example, voice synthesis, voice activation, polyphonic speakers for the vision impaired, and plugs on the BG meter for headphones.
  • the controller device may also be configured to provide these expanded capabilities.
  • the controller device may be integrated with the BG meter in some embodiments.
  • the input keys and the display will all, or substantially all, be included on the controller device.
  • the BG meter may also be separate from the controller device and may talk directly to a sensing device, such as a TGMS sensor.
  • the TGMS sensor is inserted into the subcutaneous tissue of the user to read body fluids, and allows for continuous blood glucose monitoring. The readings are used in conjunction with the BG level determined by the BG meter to continuously monitor BG levels through extrapolating the BG measurements.
  • This embodiment would be compatible with users that do not have an infusion pump device, in which case, there is a need for the ability to talk directly to the TGMS sensor without talking to the infusion pump device.
  • the TGMS sensor may broadcast the data received from the BG meter to the infusion pump device and the controller device.
  • the infusion pump device will always send the data to the controller device.
  • the controller device does not receive the information from the infusion pump device, it will assume that the infusion pump device has not received the data and will communicate the value to infusion pump device, hi other embodiments, the infusion pump device, controller device and TGMS sensor maintain a three-way communication with one another, and have the ability to check the contacts between one another.
  • the system is set up to automatically call for assistance when analytes reach a certain level.
  • the call may include a GPS location.
  • the graph displayed on the controller device may display information regarding boluses, finger sticks, exercise, meals and the like.
  • the graph displayed has eight segments, representing different limits and an actual BG line.
  • the graphs may include additional time spans for which to show the varying BG levels.
  • the embodiments may include a 3 hour, 6, 12, and 24 hour graphs. Additional features of the graphs may include the ability to zoom in or out of the graph.
  • There may be included an ESC key that will allow the user to return to the last scale. Other options may allow the user to focus on specific positions on a graph.
  • the user can select the resolution in which to view the graph.
  • the infusion pump device operates on the last data that the infusion pump device sent to the controller device to display.
  • the controller device will display an idle screen during the time-out phase and while the communication between the infusion pump device and the controller device is re-established. The idle screen may remain until the next action is selected by the user.
  • the user may press a key to start up the communication again. Once a key is pressed, the controller device will process the key data and the screen will be displayed. The controller device may periodically send signals to the pump to see if it is still active on the screen.
  • the graphs may be shown in bitmap packets (e.g., bit-by-bit), and if the user will be getting a large number of packets of data, for example 15 packets of data, to show the graph, the user may opt not to confirm.
  • the data is passed from the controller device, which is programmed to display the data, to the infusion pump device.
  • the controller device can operate in graphics description language where data is recognized by the controller device as instructing it on which position to put each line or color and the graphics display would handle determining the resolution that the graph would be displayed in.
  • the graph may be displayed in three- dimensional format.
  • the specific screens to be displayed may include fixed menus, partially variable menus, and variable menus, hi fixed menus, the menus do not change depending on data. Therefore, they will always look substantially the same on the screen, and the controller device may be programmed to display them when requested.
  • the fixed menus may be described as screen numbers. In this way, the controller device can easily request "screen 1" or "screen 2.” In fixed menus, the text is defined once. There may also be menus where menu items appear and disappear depending on the current settings of the infusion pump device. These menus are considered partially variable menus because some data appear and disappear, and are not all fixed. For example, a program for bolus setup allows a user to change current bolus settings.
  • Bolus set up menus involve variable information as well as fixed information. The values may be variable, but the main menu items (title of variables, etc.) will stay the same. Variable menus contain information that is completely variable, e.g., bolus history screen. Variable data is sent at the time of the screen display, and there is generally no fixed text. What is displayed in variable menus depend on what bolus action the user selects.
  • the history screens resemble the menu screens in that the user cannot select and input any information with the history screen.
  • Data entry screens include multiple fields on a screen and can accept data selection and input by the user.
  • Different units may need to be switched dynamically in depending on how the type of entry is communicated.
  • the screens may also need to be able to display minimum and maximum values as well as time increments, to ensure precision of the display.
  • the rules for this translation will be defined in the infusion pump device.
  • Sensor high and low BG values also need to be interlocked (in some embodiments, these two values will be displayed in the same screen).
  • communication between the infusion system components takes place when the user presses one or more keys to send data to the infusion pump device and, in response, the infusion pump device can relay to the controller device to instruct on what to display.
  • the user may input data through scrolling down menus and selecting options.
  • the controller device for example by pressing an "ACT" button, the controller device will then tell the infusion pump what to do, e.g., deliver fluid to the user.
  • the controller device is a display only, used to show a BG value and/or graph.
  • the controller device embodies only a virtual keypad that may mimic exactly the buttons on the infusion device.
  • the controller device tells the infusion device what button was pressed — and the infusion device acts as if the button was pressed on the infusion device itself.
  • the controller device can range from a simple key fob with limited capabilities and with, for example, one or two keys to a complex device with memory, many keys and advanced graphing options.
  • the controller device may embody all or substantially all of the intelligence that is present in the infusion device. In this form, the controller device could do all calculations, graphing functions, and other data input, output, and manipulation at the controller device.
  • the controller device would then send data to the infusion device indicating what the controller device had done so that the infusion device could be put into the same state as the controller. It is possible for the controller device to have many different degrees of computing intelligence, so that few, none, many, or all computing may be done at the controller device. How much intelligence will be in the controller device may depend on battery life, size requirements, and so forth.
  • the processor of the controller device has unique identification information
  • the communication transmitted from the controller device to the infusion device further includes the unique identification information of the controller device processor such that the infusion device is capable of discerning whether the communication is intended for receipt by the infusion device.
  • the processor of the infusion device has unique identification information
  • the communication transmitted from the controller device to the infusion device further includes the unique identification information of the infusion device processor such that the infusion device is capable of discerning whether the communication is intended for receipt by the infusion device.
  • both the controller device and the BG meter may communicate over wireless networks. Some examples include RF, IR, Bluetooth, spread spectrum communication, and frequency hopping communication. In further embodiments, there may be a "Listen Before Talk" scheme where the system selects the cleanest of allotted channels through which to communicate. Further examples include giving the controller device cellular telephone or pager capabilities.
  • the communication may be wired, such as in hospital use. In a wired embodiment, there may be a tether physically connecting the infusion pump device to the controller device and/or BG meter.
  • the controller device and the infusion pump device could be both wired and wireless — when wired, the two components communicate by wire, and when disconnected, the two components could operate through wireless communication.
  • a transceiver may be used to facilitate data transfer between the PC and the infusion pump device. Such a communication may also be used by a party, other than the user, to control, suspend, and/or clear alarms. This embodiment could be very useful for a parent to monitor the infusion system of a child, or for a physician to monitor the infusion system of a patient.
  • the transceiver may allow patients at home or clinicians in a hospital setting to communicate with the various components of the infusion system via RF telemetry.
  • the transceiver may be used to download device information from the pump and sent to the PC when the transceiver is connected in to the serial port of the PC
  • the transceiver may derive its power from the PC when the two are connected. In this way, the transceiver conveniently does not require a separate power source.
  • a cellular phone may be used as a conduit for remote monitoring and programming.
  • the controller device with a BG meter may also act as a transceiver, which would eliminate an extra component.
  • the controller device communication system is capable of being deactivated and reactivated.
  • the controller device may include input devices, such as keys, buttons, and the like, for inputting commands, and the communication system of the controller device is capable of being deactivated in response to a first command from the user input device and being reactivated in response to a second command from the user input device.
  • the communication system of the controller device may be automatically reactivated after a predetermined amount of time has elapsed or at a predetermined time of day.
  • the processor of the infusion device uses power cycling such that power is periodically supplied to the communication system of the infusion device until a communication is received from the controller device.
  • the processor of the infusion device discontinues using power cycling so that the power is continuously supplied to the infusion device communication system.
  • the infusion device processor may then resume using power cycling upon completing the receipt of the communication including the data indicative of the determined concentration of the analyte in the user from a BG meter communication system.
  • the infusion system may include a bedside monitor.
  • the monitor could communicate through the same avenues as the BG meter, the controller device, and the infusion pump device.
  • the monitor could be used, as described above, to remotely alarm people other than the user, such as for example, parents, physicians, nurses, and the like. This would provide an extra layer of monitoring for the user, especially when the user is alone.
  • the system may be set up so that multiple devices are placed around the house. This would provide easy access to monitor the diabetic. Additionally, the parent will be able to obtain data to monitor a child user at home and when the parent is away.
  • Such home monitors could be set to any mode preferred, for example, flashing lights, warning sounds like beeping, vibration, and the like.
  • Other features may include a function that allows the remote user (parent, physician, nurse, etc.) to change and/or deliver a bolus from remote sites.
  • the controller device may be configured so as to have cellular telephone capabilities.
  • the cellular network could provide a conduit for remote monitoring and programming. Additionally, the cellular network could be used to notify parents, physicians, or emergency services of alarms or alert states.
  • a button may be included on the controller device and/or the infusion device to automatically alert a parent, physician, or emergency services when pressed.
  • a monitoring device may be built directly into a patient's cellular telephone so that in the case of a hypoglycemic event, an alarm or connection may be made to emergency services via the cellular telephone.
  • GPS technology may also be built into the cellular telephone to allow easy location of the patient. Alternatively, GPS technology may be included in the controller device without cellular telephone technology. In other embodiments, the GPS technology may also be built into the infusion pump, BG meter or controller device.
  • the infusion system may be part of a closed-loop system, such as an implantable infusion system with a sensor system or an external infusion device with a sensor system.
  • a closed-loop system such as an implantable infusion system with a sensor system or an external infusion device with a sensor system.
  • safety nets such as alarms and automatic shut-off s.
  • the alarms may be customized to specific user needs.
  • the alarm may be set to flashing lights for the hearing impaired, or warning sounds and/or vibration for the vision impaired.
  • headphones that can plug into the controller device for vision impaired to instruct the user on what to do in the case that an alarm goes off.
  • the headphones could also be plugged into a MPEG player or the like.
  • the alarms may be handled in a way where the user presses a button on the controller device. Alarms could also be included on the pump.
  • There may further be included a turn-off option where, if there is a need to communicate with the controller, the user can choose a selection to turn off the controller.
  • any of the devices including an alarm where when the device has sounded an alarm for a period of time and the user has not responded, the alarm will switch to a vibrate mode and/or will attempt to signal companion devices in the system to alarm the user.
  • the display and buttons or other input devices may be configured and adapted to the needs of a user with diminished visual and tactile abilities.
  • the high level module (and/or the low level module) may communicate to the user by audio signals, such as beeps, speech or the like.
  • Other display settings may be customizable, including, but not limited to, the background, sounds, fonts, and wallpaper. There may be a children's mode, with limited features available so that a child cannot dispense too much medication at once. Different display features may be included in the module and/or may be downloaded from a computer.
  • the high level module may have a memory with which to store customized settings or pump control.
  • the memory may be of any type that is known in the art, such as a volatile or non-volatile memory. Both a volatile and non-volatile memory may be used, which can speed up operation of the pump.
  • non-volatile memories that could be used in the invention include flash memories, thumb drives and/or memory sticks such as USB thumb drives, removable hard drives, and optical drives.
  • the language that the controller device operates in may comprise several different languages, ranging from 1 language to about 40 languages and potentially more.
  • data must be first initialized to modify the phrases and detail font that may be significantly different in one language as compared to another language.
  • some languages such as Chinese
  • One way to overcome this complication in using different languages is to have fonts built into the infusion pump device. Because fonts are now described in pen strokes (true-type fonts), rather than in pixels (bit-by-bit) this allows the infusion pump device to determine out how to display the different fonts.
  • a food library may be downloaded from a PC, or from the internet via a PC.
  • each food item will have some information associated with it, for example, carbohydrate count, fat count, proteins, serving size, and the like.
  • the food library may be built directly into the infusion pump device, or it may be downloaded from remote sources, as discussed above.
  • the food library may be downloaded through a transceiver embodied by the user's cellular telephone. Other options may include eliminating the need to bypass the transceiver every time a food item is selected, such as, downloading the food items from the PC and storing it until use.
  • the food library may also be input directly into the controller device rather than the infusion pump device. If the food library is contained in the infusion pump device, an associated food library menu could be dynamic. The user could select from different layers of the food library the items consumer or about to be consumed and the infusion pump device could calculate the appropriate amount of insulin to be delivered. Variable data could be included for a small food library with less than 50 food items. For example, there could be variable data for a food library dedicated to breakfast foods only. There could be a "breakfast" key or icon on the controller device that the user can select. There may also be “lunch” and “dinner” and “snack” icons.
  • Communications between the system components may be performed in a variety of manners.
  • RF options there could be employed a single frequency or a "spread spectrum" where a large range of RFs can be used to relay the communication.
  • changing frequencies can be used so as to pick up whatever frequency is present. This is known as “frequency hopping," where the frequency changes every millisecond or so to take advantage of all, or substantially all, frequencies available. In some cases, frequency hopping allows the system to find frequencies that are not being used by other nearby systems and thus avoid interference.
  • a system may operate in a manner where each component-to-component communication is on a different frequency, or where the delay for each communication is different.
  • Other types of RF that are not described, may also be used for communication, such as, translation frequency.
  • an infusion system includes a controller device, with a controller device display, and an infusion device, with an infusion device display, and a method for infusing a fluid into a body of a user.
  • the method includes the steps of: receiving data communication from a user, transmitting with the controller device the communication including data to an infusion device, receiving with the infusion device the communication, and displaying with the controller device display information regarding the fluid delivery, where the display on the controller device display shows information according to instructions or communications sent to the controller device from the infusion device.
  • the display of the infusion device may correspond with what is displayed on the infusion device display.
  • the method may further include the step of displaying a trends and graphs.
  • the method may include the step of inputting an estimate of a material to be ingested by the user, and the estimated amount of fluid to be infused into the body of the user is calculated further based upon the inputted estimate of the material to be ingested by the user.
  • a controller device as described herein could be used with any number of therapy/diagnostic devices.
  • a controller device may be used that can send commands to the therapy/diagnosis device and/or mimic the display on the therapy/diagnosis device.
  • Therapies other than infusion of fluids could include electrical therapy, such as electrical therapy for the brain and for conditions such as epilepsy. Diagnostics could include any number of diagnostics, such as information from cardiac and other sensors.
  • Electrical therapy devices include neurostimulation devices for epilepsy, similar devices for pain management, etc.
  • electro-acupuncture devices where a needle is inserted into the body much like acupuncture, but additional therapy is delivered by electrical impulses.
  • the structure of an electrical therapy device may include a needle that is inserted into appropriate areas of the body.
  • the architecture would be similar to that of the devices described above. The patient/user would use the controller device to deliver "dosages" of electrical impulses to alleviate pain and manage neurological symptoms on demand such as twitching, uncontrolled movement of limbs, spasms, and so forth.
  • devices such as those used in physical therapy clinics could be adapted for individual use.
  • a patch or other device placed on the body could be activated by the controller device to delivery said therapy, be it ultrasound, heat or some other media.
  • the architecture for these devices could be similar to the architecture of the devices already described, where a physiological characteristic sensor or infusion device is replaced by a therapy delivering device/mechanism.
  • the controller device is part of a time-telling device, for example, a watch.
  • a watch may be considered a more socially acceptable embodiment of a controller device, because it is common for people to wear watches, making it less noticeable that a user is using an infusion pump and/or analyte monitor.
  • Figs. 9A and 9B show an alternative embodiment of a combined watch and controller device 900 according to an embodiment of the present invention.
  • Fig. 9A shows a front view of a watch controller device and
  • Fig. 9B shows a rear view of a watch controller device.
  • the watch controller device 900 includes a housing 905 adapted to be worn or carried by the user and a communication system (not shown) contained in the housing 905 for transmitting a communication or command from the user to the infusion device or analyte monitor.
  • the housing 905 may include a transparent member 950 on the front side over a display 910.
  • the transparent member 950 may be made of any material, such as glass or plastic, that allows for viewing the display beneath the transparent member 950.
  • the housing may also include a cover 960 on the rear side that will allow for removal of a battery or other maintenance on the device.
  • the watch controller device may include one or more input devices 925a, 925b, 925c, 930 on the controller device housing, such as keys, buttons or the like, for the user to input data or commands.
  • input devices 925a, 925b, 925c, 930 on the controller device housing, such as keys, buttons or the like, for the user to input data or commands.
  • keys/buttons 925a, 925b, and 925c and scroll wheel 930 may also be the type of wheel that may be depressed or moved outward to input different types of commands.
  • the watch controller device 900 may include a wrist band 940 so that a user may wear the watch controller device 900 on his/her wrist.
  • the watch controller device 900 further includes a display 910 on the controller device housing 905 that is adapted to display a time 920.
  • the display of the time 920 may be digital or analog.
  • the time may be shown by an analog display using traditional watch hands.
  • the date may also be shown.
  • the time may be changed by the user using the keys/buttons 925a, 925b, 925c or scroll wheel 930, depending on the setup of the watch controller device.
  • the display 910 also may display at least a portion of whatever information and/or graph is being displayed on the infusion device display or on the analyte monitor display.
  • This display may also be digital or analog.
  • a traditional watch hand may be used to indicate levels of glucose.
  • the hand merely goes from low blood glucose values, through target blood glucose values, to high blood glucose values.
  • the target range could be set by the user.
  • the watch controller device 900 is interacting with a glucose sensor or an infusion pump that stores glucose values, the display may show just glucose values and optionally trending of glucose values.
  • the display 910 displays digital glucose values 915 and trending arrows 918. Trending may be shown by arrows, for example, if glucose values have been rising for a certain amount of time or measurements, an up arrow may be displayed.
  • the display is a touchscreen display that may be activated by a user's hand, stylus, or other implement.
  • the user may input commands by voice.
  • the display of the watch controller device may display data directly from a pump, with or without sensor augmentation, and/or analyte sensor monitors. Alternatively, data may received directly from a sensor transmitter on the patient's skin.
  • the display may show any number of representations of data from the infusion device and/or analyte sensor monitor, such as basal rate, whether or not a user is currently receiving a bolus, amount of the bolus, time left for the bolus, type of bolus (e.g., square wave), last alarm or last few alarms, time until the next bolus.
  • the display may display alerts to the user, such as "do you want to take a bolus?"
  • the display may display what the user is inputting to transmit to the infusion device or analyte sensor monitor. For example, if the user is changing the basal rate, the display may show the basal rate numbers being manipulated by the user. As discussed above, the display may also mimic the display on the infusion device.
  • the watch controller device 1010 includes a housing
  • a processor 1012 contained in the housing 1015 is adapted to process data and commands inputted by the user, and a transmitter/transceiver 1018 contained in the housing 1015 and coupled to the processor 1012 transmits such communications, including data indicative of the determined concentration of the BG in the user, to the infusion device 1050.
  • the processor 1012 is also in communication with a timer 1016, which is adapted to tell time so that the watch controller device 1010 may act as a watch.
  • the controller device 1010 may be integrated with a BG meter in one housing, which has a lancing device and receptacle for BG test strips, for obtaining a BG sample from the user.
  • the transceiver 1018 receives information from an analyte sensing device 1060.
  • the analyte sensing device 1060 may be adapted to receive data from a sensor, such as a transcutaneous sensor.
  • the electronics of the watch controller device 1010 are the same as the electronics described above with respect to the generic controller device.
  • the watch controller device 1010 may communicate with a remote station, such as a computer 1024, through a data transfer system, using a type of communication connector 1022, that couples the watch controller device 1010 to the computer 1024 and allows the data downloading.
  • communication may be by wireless methods, such as RF, IR, Bluetooth or other wireless methods.
  • Data may be downloaded via the RF telemetry in the same manner as data is transferred from the watch controller device 1010 to the infusion pump device 1050.
  • Data including software upgrades and diagnostic tools, may also be downloaded via RF telemetry, or any other wireless or wired method, from a remote station, such as the computer 1024, to the infusion device 1050.
  • a remote station such as the computer 1024
  • Other remote stations include, but are not limited to, a hospital database, a cellular telephone, a PDA, a smart phone or internet.
  • a cellular phone may be used as a conduit for remote monitoring and programming.
  • the watch controller device 1010 includes on the housing a display 1030 that may mimic the display on the infusion pump device 1050.
  • the controller device display 1030 shows information according to communications sent to the watch controller device 1010 from the infusion device 1050.
  • the display 1030 of the watch controller device also shows the current time, as a watch would show.
  • the display of the current time may be in digital format or analog format.
  • the display 1030 of the watch controller device may also display a timer, such as a stopwatch would display.
  • the controller device 1010 may include one or more input device(s) 1045, such as keys, buttons, and the like, on a keypad 1065 so that all, or substantially all, viewing and data entry may be performed on the same device without moving the infusion pump device 1050.
  • the watch controller device 1010 may include a memory 1014 to store data.
  • the memory 1014 may also store controller programs that may be processed by the processor to control the infusion pump 1050 and/or analyte sensing device 1060.
  • the memory may be of any type that is known in the art, such as a volatile or non- volatile memory.
  • the memory may be a semiconductor memory. Both a volatile and non-volatile memory may be used, which can speed up operation of the pump.
  • non- volatile memories that could be used in the invention include flash memories, thumb drives and/or memory sticks such as USB thumb drives, removable hard drives, and optical drives.
  • alarms may be provided for a number of desired conditions. For example, alarms or other alerts may be provided when a user's glucose level is approaching a predefined threshold, or has exceeded a predefined threshold, which may indicate that a user is approaching hypo- or hyper-glycemia.
  • An alarm may be triggered by change in trends of analyte levels or by the current value of an analyte leve.
  • the alarm may indicate that an occlusion has occurred in a pump or that the syringe portion of a syringe-type infusion pump is not seated properly.
  • the alarm may be an audio, visual, and/or tactile alarm. For an audible alarm, such as beeping, the alarm may get increasingly louder.
  • the alarm may get increasingly stronger and/or faster.
  • a visual alarm such as flashing or changing of color or indication of an alarm by an icon, the alarm may get increasingly brighter, faster, and/or larger.
  • the alarm is a personalized voice alarm, in which a parent, physician, caretaker, or other person may record a warning that plays upon activation (e.g. "your blood glucose is low,” “you need to take a bolus,” etc.)- [0093]
  • the watch controller device may be a display, an interface through which commands can be sent to an infusion device, sensing device, or other device, or both.
  • the controller device may be acting as an interface, the user may administer a bolus or may adjust other settings in the infusion pump or other device.
  • the controller device may be a conventional watch design, with one or more inputs, such as buttons, on the side and/or on the face of the watch.
  • the inputs could also be scroll wheels, multi-directional navigation inputs, such as 5-way inputs, and touch screens.
  • a BG meter may be integrated into the controller device housing, where the watch controller further includes a BG meter receptacle.
  • the watch controller device thus may receive and test the BG level from a blood sample of a user.
  • the controller device is adapted to receive additional information about a patient.
  • the controller device may monitor heart rate or and/or metabolic rate, as in an exercise monitor.
  • the heart rate or metabolic rate may be correlated to a level of exercise, such as low, medium or high, to store in the controller device memory, infusion pump memory, analyte monitor memory, and/or other device memory.
  • a controller device especially one that is worn on the skin, like a watch, may further be adapted to monitor the patient's temperature, salinity (from sweat), ketones, or other characteristic.
  • the controller device may be adapted to measure further characteristics, such as alcohol content of blood, as in a breathalyzer, ketones, and/or lactose. Further example characteristics that may be monitored by the controller device are discussed above.
  • the watch controller device may monitor analytes such as blood glucose levels.
  • a sensor needle may be adapted to couple to the watch controller device to sense blood glucose levels. The current detected in the sensor would be read by the watch controller device and could be converted to glucose measurements at the watch controller device or at another device.
  • the watch controller device may further be adapted to include cellular phone, PDA and/or smart phone capabilities.
  • the watch controller device may be adapted to store audio and visual files, such as mp3 files.
  • the watch controller device may include an earphone jack or other sound interface, such as a speaker, to allow sound output of alarms and/or for any media files that might be stored in embodiments allowing storage of media files.
  • the watch controller device may have internet capability, so that a user could browse the internet directly from the watch controller device.
  • a watch-type controller device may be adapted to be worn on another part of the body or clothing of a user.
  • the watch may be worn on a watch fob, key chain, necklace, belt, ankle, or in a pocket of a user.
  • the watch controller device is adapted to work as a traditional watch and tell time. However, it is not necessary that the watch controller device tell time.
  • the watch controller device may be configured to be a stopwatch as well.
  • the controller device may be synched to the global atomic clock to ensure that the time is accurate.
  • the controller device may have the master clock, by which all other devices are synched.
  • one of the other devices could have the master clock that synchs the controller device.
  • the synchronization could be transmitted by the same method that the one or more devices is connected to the controller device. It may also be by a pager network.
  • the controller device is adapted to alarm when times of devices are not in synch.
  • the battery in the watch controller device may be a single use or rechargeable battery.
  • the rechargeable battery may be removable for recharging outside the housing.
  • the battery may be a kinetically charged battery or a solar or quasi-solar cell battery. It may be a readily available battery, such as a coin cell battery.
  • transmission between the controller device and the infusion device, sensor, or other device may be wired or wireless, such as RF, infrared (IR), Bluetooth, ZigBee, and other 802.15 protocols, 802.11 WiFi, spread spectrum communication, and frequency hopping communication.
  • RF radio frequency
  • IR infrared
  • Bluetooth Bluetooth
  • ZigBee ZigBee
  • 802.15 protocols 802.11 WiFi
  • spread spectrum communication and frequency hopping communication.
  • the display of the watch controller device may be configured in any of the configurations discussed above. It may have a digital format, showing time and/or readings from the controlled/monitored devices in digital form. It may have graphical representations of time, etc.
  • the display may be color or black and white.
  • the display may have backgrounds that can be customized by the user (e.g., a number of displays are stored, among which the user may choose) and/or downloaded by the user.
  • the display may be icon-based so that it may be easily used by different language speakers.
  • the display may also be set up to use a variety of languages, which may be stored in the controller device, e.g. 3, 5, 10, 15, 17, 22 or any other number of languages to about 40 languages and potentially more.
  • Other display settings may be customizable, including, but not limited to, the background, sounds, fonts, and wallpaper. There may be a children's mode, with limited features available so that a child cannot dispense too much medication at once.
  • the sounds of the controller device may also be customizable, including, but not limited to sounds for alarms, key input, and alerts. Different audible features may be included in the module and/or may be downloaded from a computer.
  • a watch controller device there may be different aesthetic appearance options. For example, a watch controller device worn on a wrist, with a wrist band, may have different bands or different colors and/or materials, such as cloth or metal and plain or patterned colors. The watch itself may have a backlight or different colored lighting and/or displays. The different colors may be used to indicate different alerts or alarms. Configurable graphics may be included for the display, such as selectable font size (e.g., a larger font size for vision impaired users).
  • a watch band may have inputs, such as buttons, to expand the interface.
  • the watch controller device may also include an antenna, for example on a watch band.
  • the controller device may include a medical alert display on the display or a medical alert on another part of the housing, to indicate a condition, such as an allergy or disease, that should be alerted to medical professionals and others who may have to care for the user.
  • a condition such as an allergy or disease

Abstract

An infusion system that includes a watch controller device (900) and a communication system to transmit the communications from the watch controller device to an infusion device pump that controls delivery of fluids to the user's body. More particularly, these apparatuses and methods are for providing convenient monitoring and control of the infusion pump device in determining the appropriate amount of insulin to deliver.

Description

WATCH CONTROLLER FOR A MEDICAL DEVICE
RELATED APPLICATIONS
[0001] This patent application is a continuation-in-part of U.S. Patent Application
No. 11/204,583, filed on August 16, 2005 and a continuation-in-part of U.S. Application No. 11/204,667, filed on August 16, 2005, which are herein incorporated by reference.
FIELD OF THE INVENTION
[0002] Embodiments of this invention relate generally to infusion systems and methods for delivering fluids into an individual's body and monitoring systems and methods for monitoring analyte levels in an individual's body. More particularly, embodiments of this invention relate to apparatuses and methods for providing a convenient way in which to monitor and control the fluids delivered to the individual's body and to monitor the analyte levels in the individual's body.
DESCRIPTION OF THE RELATED ART
[0003] Patients with Type-1 diabetes and some patients with Type 2 diabetes use insulin to control their blood glucose (BG) level. Diabetics must modify their daily lifestyle to keep their body in balance. To do so, diabetics need to keep strict schedules, including ingesting timely nutritious meals, partaking in exercise, monitoring BG levels daily, and adjusting and administering insulin dosages accordingly. Testing of BG levels has been both painful and awkward for the patient. Traditionally, insulin dependent diabetics were required to monitor their BG levels by puncturing a finger tip with a needle. Due to the fact that many patients must conduct such a test multiple times throughout the day to regulate their BG levels, the procedure can be painful and inconvenient. [0004] Typically, patients may employ various calculations to determine the amount of insulin to inject. For example, bolus estimation software is available for calculating an insulin bolus. Patients may use these software programs on an electronic computing device, such as a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device. Insulin delivery devices include infusion pumps, injection pens, and implantable delivery systems. The better bolus estimation software takes into account the patient's present BG level. Presently, a patient must measure his/her blood glucose using a BG measurement device, such as a test strip meter, a continuous glucose measurement system, or a hospital hemacue. BG measurement devices use various methods to measure the BG level of a patient, such as a sample of the patient's blood, a sensor in contact with a bodily fluid, an optical sensor, an enzymatic sensor, or a fluorescent sensor. When the BG measurement device has generated a BG measurement, the measurement is displayed on the BG measurement device. Then the patient may visually read the BG measurement and physically enter the BG measurement into an electronic computing device to calculate a bolus estimate. Finally, once the bolus estimate is calculated, the patient must inject the insulin bolus or program an insulin delivery device to deliver the bolus into their body. Unfortunately, this process is also cumbersome and is subject to transcribing errors — for example, the patient may inaccurately enter the BG measurement that is displayed on the BG measurement device into the electronic computing device. Thus, if the BG measurement is not entered correctly, the bolus estimate is not accurate, which may lead to the delivery of an inappropriate insulin dose. In other devices, the measurement is transmitted to the electronic computing device. [0005] In infusion systems where a display is included for convenient viewing of selected information, such as that requested by the user or an instructed act that was undertaken by an infusion device or a sensing device, the display is generally located on the device. This may be inconvenient for the user to view information because infusion devices and sensors are typically secured to or near a site on the user's body. Thus, viewing may require the user to move or manipulate the infusion device or sensor to view the display which may lead to improper reading of the display.
BRIEF SUMMARY OF THE INVENTION
[0006] In accordance with embodiments of the invention, an infusion system is provided that allows for the control of the delivery of a fluid or medication. An embodiment of the present invention includes a controller device and a therapy/diagnostic device, such as an infusion device. The controller device may be a hand-held device, separate from the infusion device, that allows the user to communicate with the infusion device without actually handling the infusion device.
[0007] The controller device includes a housing adapted to be carried by the user and a communication system contained in the housing for transmitting a communication or command from the user to the infusion device. In alternative embodiments, the controller device may receive communications sent from the infusion device or other components of the infusion system, such as for example, a characteristic determining device. Further, the controller device may include a user input device on the controller device housing, such as keys, buttons, or the like, for the user to input data or commands. [0008] The controller device includes on the housing a display that may mimic the display on the infusion device. In certain embodiments, whatever is shown on the infusion device corresponds to that shown and reflected on the display of the controller device. The controller device display shows information according to communications sent to it from the infusion device. The user may more conveniently view what is being processed or acted upon in the infusion device without removing or adjusting the infusion device to view the display. In further embodiments, the controller device may be configured so that the input devices included allow all, or substantially all, viewing and data entry to be performed on the controller device without moving or referring to the infusion device. [0009] In further embodiments, the controller device may control an analyte sensing device such as a continuous glucose sensor. The controller device display shows information according to communications sent to it from the sensing device. In further embodiments, the controller device may control more than one device, for example, an infusion pump and an analyte sensor.
[0010] In further embodiments, the controller device may include time-telling functions. For example, the controller device may be a wrist-worn device, such as a watch. The controller device may also be a watch that can be carried on other parts of the body or clothing, such as the ankle, neck (e.g., on a chain), pocket, or ankle. [0011] Among other advantages, embodiments of the present invention may provide convenience and ease of use. For example, an embodiment with a user interface and display on the controller device may cater to the active lifestyles of many insulin dependent diabetics. A large and simple display minimizes the potential for error in reading and interpreting test data. A small overall size permits discretion during self- monitoring and makes it easy to carry. In another embodiment, the controller device may be integrated with a characteristic determining device into one housing and feature a large target area for strip insertion to make the monitoring procedure fast and accurate. In some embodiments, the controller device display may include a dedicated backlight to facilitate viewing.
[0012] The controller device also reflects the other functions that the particular infusion device may show, including a variety of other displays, for example, when the last bolus was administered, when the last alarm occurred, when the last finger stick was taken, past trends, all alarms that occurred in a time period, calibrations, meals, exercise, bolus schedules, temporary basal delivery, diagnostic information, and the like. Whenever a bolus is being delivered, the infusion device can send a message every time a tenth of a unit, or some specified amount, is delivered, to which the user may monitor via the controller device display.
[0013] In certain embodiments, the infusion device is the central hub with peripheral devices being the controller device and a characteristic determining device. The characteristic determining device being adapted to sense and determine the concentration of an analyte of a patient and directs the infusion device fluid delivery according to the measurements. While the term "analyte" is used herein, it is possible to determine and use other characteristics as well using the same type of system. The control is maintained in the central hub and the infusion device sends out most of the commands. The infusion device also sends requests to receive specific data from the controller device and the characteristic determining device, if one is included.
[0014] In particular embodiments, where the controller device is integrated with the characteristic determining device into one housing, the controller device may automatically transmit communications including the data indicative of the determined concentration of the analyte in the user to the infusion device. In other particular embodiments, the controller device further includes a user input device for inputting commands, and transmits the communications to the infusion device in response to a command from the user input device. In additional embodiments, the controller device further includes an indicator to indicate a status of the communication including the data indicative of the determined concentration of the analyte in the user being transmitted from the determining device communication system to the infusion device communication system. Data compression may be employed to speed up communications. [0015] In further embodiments, the infusion device may contain all or substantially all of the intelligence. The amount of time that the controller communicates with the infusion device or other components may be limited to save power in the controller device. For example, radio-frequency (RF) communications may be minimized, such that the marriage between the infusion device and controller occurs once until further communication is necessary to exchange data. The information regarding the screens displayed is sent to the controller, and when the infusion device needs to display a screen, it sends a screen number to the controller. In the case of screen displays, if the data being sent is fixed, then the screen can be simply displayed. If the data is variable, then the variable data is sent with the screen to the infusion device. Exchange IDs, strings to be displayed, and foreign languages are among data that may be sent from the controller. Further commands that may be sent from the infusion device include, among other commands, a command to show a specific screen on the controller device, a command for displaying requested information on the screen, a command for showing the rules for the input devices, a command for showing the intelligence about that screen type (e.g., menus, data entries, etc.), and the like.
[0016] The controller device and the infusion device may communicate to one another through wireless or non-wireless methods. Some examples of wireless methods include, by no way in limitation, RF, infrared (IR), Bluetooth, ZigBee, and other 802.15 protocols, 802.11 WiFi, spread spectrum communication, and frequency hopping communication. Further examples include giving the controller device cellular telephone or pager capabilities. In the alternative, the communication may be wired, such as in hospital use. In a wired embodiment, there may be a tether physically connecting the infusion device to the controller device. In yet another alternative, the controlling device and the infusion device could be both wired and wireless — when wired, the two components communicate by wire, and when disconnected, the two components could operate through wireless communication.
[0017] In another wireless example, if the user has access to a computer network or phone connection, the user can open communication via the internet to obtain communications from, and send communications to, a nurse, parent, or anyone so desired. A transceiver may be used to facilitate data transfer between the PC and the infusion device. Such a communication may also be used by a party, other than the user, to control, suspend, and/or clear alarms. This embodiment could be very useful for a parent to monitor the infusion system of a child, or for a physician to monitor the infusion system of a patient. As a non-limiting example, further description of a communication station may be found in U.S. Patent. No. 5,376,070, which is herein incorporated by reference. The transceiver may allow patients at home or clinicians in a hospital setting to communicate with the various components of the infusion system via RF telemetry. The transceiver may be used to download device information from the infusion device and sent to the PC when the transceiver is connected in to the serial port of the PC. In embodiments, the transceiver may derive its power from the PC when the two are connected. In this way, the transceiver conveniently does not require a separate power source. In another embodiment, a cellular phone may be used as a conduit for remote monitoring and programming. In yet other embodiments, the controller device may also act as a transceiver, which would eliminate an extra component.
[0018] In yet further embodiments, the infusion system includes an infusion device and/or a sensing device. The sensing device includes a sensor and a transmitter in communication with the infusion device. The transmission may occur via wire or wireless methods. The sensing device includes a sensor and a transmitter in communication with the infusion device. The sensing device may sense an analyte of a bodily fluid of the user and provide continuous monitoring of that analyte. The sensing device may be calibrated using data from the infusion device and/or from a characteristic determining device. In further embodiments, the sensing device senses additional physiological characteristics. In still further embodiments, the system is set up to automatically call for assistance when analytes reach a certain level. The system may be set up to notify others, for example, through a cellular network, hi such a manner, the patient's cellular telephone may be used to connect to emergency services. The call may include a global positioning system (GPS) location. GPS functions may be included separately from cellular telephone type functions.
[0019] Communications between the system components may be performed in a variety of manners. In an embodiment using RF options, there could be employed a "spread spectrum" where a large range of RFs can be used to relay the communication, hi another embodiment, changing frequencies can be used so as to pick up whatever frequency is present. This is known as frequency hopping, where the frequency changes periodically or so to take advantage of all, or substantially all, frequencies available. Another embodiment is one that uses adaptive frequency selection, or Listen Before Talk (LBT), where the devices select the cleanest available channel from those allotted prior to transmitting. In some cases, frequency hopping allows the system to find frequencies that are not being used by other nearby systems and thus avoid interference. In addition, a system may operate in a manner where each component-to-component communication is on a different frequency, or where the delay for each communication is different. Other types of RF, that are not described, may also be used for communication, such as, translation frequency. BRIEF DESCRIPTION OF THE DRAWINGS
[0020] A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the figures.
[0021] Fig. 1 is a front view of a controller device according to an embodiment of the invention.
[0022] Fig. 2 is a front view of a blood glucose meter integrated into a controller device housing according to an embodiment of the invention.
[0023] Fig. 3 is a front view of a blood glucose meter integrated into a controller device housing according to another embodiment of the invention. [0024] Fig. 4 is a front view of a blood glucose meter integrated into a controller device housing communicating with an infusion device according to an embodiment of the invention.
[0025] Fig. 5 is a block diagram of an RF communication system in the infusion device according to an embodiment of the invention.
[0026] Fig. 6A is a block diagram of a controller device according to an embodiment of the invention.
[0027] Fig. 6B is a block diagram of a controller device according to an embodiment of the invention.
[0028] Fig. 7 is a block diagram of different communication paths within the infusion system according to an embodiment of the invention.
[0029] Fig. 8 is a diagram of the electronics architecture of a controller device according to an embodiment of the invention with a custom integrated circuit. [0030] Fig. 9A is a front view of a combined watch and controller device according to an embodiment of the invention.
[0031] Fig. 9B is a rear view of a combined watch and controller device according to an embodiment of the invention.
[0032] Fig. 10 is a block diagram of a combined watch and controller device according to an embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION [0033] In the following description, reference is made to the accompanying drawings which form a part hereof and which illustrate several embodiments of the present inventions. It is understood that other embodiments may be utilized and structural and operational changes may be made without departing from the scope of the present inventions.
[0034] In one embodiment, the controller device is a hand-held device separate from the therapy/diagnostic device, such as an infusion device, that allows the user to communicate with the therapy/diagnostic device without actually handling the device. Other examples of therapy/diagnostic devices include electronic therapy devices and devices that receive diagnostic information from cardiac and other sensors. As illustrated in Fig. 1, the controller device 5 includes a housing 3 adapted to be carried by the user and a communication system (not shown) contained in the housing 3 for transmitting a communication or command from the user to the infusion device. In further embodiments, the controller device 5 may receive communications sent from the infusion device or other components of the infusion system, such as for example, a characteristic determining device. Further, the controller device may include one or more user input devices 2a and 2b on the controller device housing 3, such as keys, buttons, or the like, for the user to input data or commands. The controller device 5 includes a display 4 on the controller device housing 3 which simultaneously displays whatever information and/or graph is being displayed on the infusion device display at that moment. The display 4 allows a user to easily monitor and control what actions are taking place in, or being performed by, the infusion device. In some embodiments, the controller device 5 may further include a backlight 1 in the controller device display 4 for easier viewing. The backlight may be adapted to be in one or more colors, which can be user selectable for personalized use. In further embodiments, the backlight may be adapted to flash and/or turn to a color such as yellow or red when various alerts and alarms take place. In additional embodiments, the controller device 5 may include accessories such as hand straps 6 to provide convenient handling. In particular embodiments, the controller is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
[0035] In certain embodiments, a characteristic determining device that senses and determines the concentration of an analyte of a patient, for example blood glucose ("BG"), and controls the infusion device according to the measurements, may be included in an infusion system with the controller device and the infusion device. The characteristic determining device includes a housing, a receptacle coupled to the housing for receiving and testing an analyte from the user to determine a concentration of the analyte in the user, a processor contained in the housing and coupled to the receptacle for processing the determined concentration of the analyte from the receptacle, and a communication system contained in the housing and coupled to the processor for transmitting a communication including data indicative of the determined concentration of the analyte in the user. In particular embodiments, the characteristic determining device may also include a lancing device coupled to the receptacle for obtaining the analyte from the user. [0036] In embodiments, the infusion device includes a housing adapted to be carried by the user, a drive mechanism contained in the housing and operatively coupled with a reservoir containing the fluid for infusing the fluid into the body of the user, a communication system contained in the housing for receiving the communication including the data indicative of the determined concentration of an analyte in the user from a characteristic determining device, and a processor contained in the housing and coupled to the communication system for processing the data indicative of the determined concentration of the analyte in the user and controlling the infusion device. In particular embodiments, the infusion device is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
[0037] The infusion device may further include a bolus estimator used in conjunction with the processor for calculating an estimated amount of fluid to be infused into the body of the user based upon the received data indicative of the determined concentration of the analyte in the user and a target concentration of the analyte in the user, and an indicator to indicate when the estimated amount of fluid to be infused has been calculated. The system may determine the concentration of one of any variety of analyte types including, but not limited to, oxygen, blood, temperature, lactase, pH, implantable, and the like. Additionally, the infusion device may include a user input device, such as keys, buttons, or the like, for inputting an estimate of a material to be ingested by the user, and the bolus estimator may include the capability to calculate the estimated amount of fluid to be infused into the body of the user based upon the inputted estimate of the material to be ingested by the user. The infusion device may also include a memory for storing the data indicative of the determined concentration of the analyte in the user received by the infusion device communication system from the determining device communication system. [0038] In still further alternative embodiments, the characteristic determining device is a BG measurement device and may use samples from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like. In yet other alternative embodiments, other measurement devices may be utilized to determine the concentrations, levels, or quantities of other characteristics, analytes, or agents in the user, such as hormones, cholesterol, oxygen, pH, lactate, heart rate, respiratory rate, medication concentrations, viral loads (e.g., HIV), or the like. In still other alternative embodiments, other fluids may be delivered to the user, such as medication other than insulin (e.g., HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, and anti-cancer treatments), chemicals, enzymes, antigens, hormones, vitamins, or the like. Particular embodiments are directed towards the use in humans; however, in alternative embodiments, the infusion devices may be used in animals. For pain management, a bolus function may be set up as a Patient Controlled Analgesic (PCA) function for customized delivery or the user may press a preset bolus button several times. [0039] In other embodiments, the characteristic determining device is a BG meter that determines BG level and the infusion device is an insulin infusion pump. The BG meter communicates the measurement of BG to the infusion pump device to determine the amount of insulin for delivery to the user. In alternative embodiments, the BG measurement device may be a continuous glucose measurement system, a hospital hemacue, an automated intermittent blood glucose measurement system, and the like, and/or the BG measurement device may use other methods for measuring the user's BG level, such as a sensor in contact with a body fluid, an optical sensor, a RF sensor, an enzymatic sensor, a fluorescent sensor, a blood sample placed in a receptacle, or the like. The BG measurement device may generally be of the type and/or include features disclosed in U.S. Patent Applications Serial No. 09/377,472 filed August 19, 1999 and entitled 'Telemetered Characteristic Monitor System and Method of Using the Same," Serial No. 09/334,996 filed June 17, 1999 and entitled "Characteristic Monitor with a Characteristic Meter and Method of Using the Same," Serial No. 09/487,423 filed January 20, 2000 and entitled "Handheld Personal Data Assistant (PDA) with a Medical Device and Method of Using the Same," and Serial No. 09/935,827 filed August 23, 2001 and entitled "Handheld Personal Data Assistant (PDA) with a Medical Device and Method of Using the Same," which are herein incorporated by reference. Such BG measurement devices may be adapted to be carried by the user, for example, in the hand, on the body, in I l a clothing pocket, attached to clothing (e.g., using a clip, strap, adhesive, or fastener), and the like. In particular embodiments, the BG measurement device is sized smaller than 6 inches long by 4 inches wide by 1 inch thick.
[0040] In alternative embodiments of the invention, the BG meter may be integrated into the controller device housing, as shown in Fig. 2, where the controller device housing 15 includes a BG meter receptacle 20. The controller 10 includes a housing 15 adapted to be carried by the user, a BG meter receptacle 20 coupled to the housing 15 for receiving and testing BG level from the user to determine a concentration of the BG in the user. A BG test strip 25 that holds a use blood sample is inserted into the BG meter receptacle 20 for the testing by the controller device 10. In variations, the controller device 10 may have a cartridge-like mechanism which loads and presents the strip for testing and then ejects it. The controller device 10 has a display 30 on the housing 15 to show information requested by the user or an instructed act that was undertaken by the infusion device, such as for example, determined concentration of blood glucose levels, BG trends or graphs, such as described and disclosed in U.S. Patent Application Serial No. 10/624,177, entitled "System for Monitoring Physiological Characteristics," which is herein incorporated by reference. The display 30 may further include a dedicated backlight 35 to facilitate viewing. The backlight 35 may be a user programmable multi-color backlight that additionally performs the function of a visual indicator by flashing colors appropriate to the level of an alert or alarm. The backlight 35 may also have variable intensity (automatic or manual) to preserve the battery power and improved viewing. The controller 10 includes a keypad 40 on which various input devices, such as keys, buttons, or the like, are located. The keypad buttons 45a, 45b, 45c, and 45d are used by the user to select options and/or input information. [0041] The power of the controller device and of the other various devices discussed herein may be provided from a battery. The battery may be a single use or a rechargeable battery. Where the battery is rechargeable, there may be a connector or other interface on a device to attach the device to an electrical outlet, docking station, portable recharger, or so forth to recharge the battery while in the device. It is also possible that a rechargeable battery may be removable from the device for recharging outside of the device, however, in some cases, the rechargeable battery may be sealed into the housing of the device to create a more water resistant or waterproof housing. The devices may be adapted to accommodate various battery types and shapes. In further embodiments, the devices may be adapted to accommodate more than one type of battery. For example, a device may be adapted to accommodate a rechargeable battery and, in the event of battery failure or other need, also adapted to accommodate a readily available battery, such as a AA battery, AAA battery, or coin cell battery.
[0042] In Fig. 3, another embodiment of a controller device is shown. Again, the controller device 110 includes a housing 115 adapted to be carried by the user, and a BG meter receptacle 120 coupled to the housing 115 for receiving and testing BG level from the user to determine a concentration of the BG in the user. A BG test strip 125 that holds a user's blood sample is inserted into the BG meter receptacle 120 for the testing by the controller device 110. The controller device 110 has a display 130 on the housing 115 to show information requested by the user or an instructed act that was undertaken by the infusion device, such as for example, determined concentration of blood glucose levels, graphs of blood glucose level trends or fluid delivery information. The display 130 may include a dedicated backlight 135 to facilitate viewing. The controller device 110 includes a few input devices, such as keys, buttons, or the like, on the housing 115. The housing buttons 145a, 145b, and 145c are used by the user to select options and/or input information.
[0043] Fig. 4 illustrates an embodiment of an infusion system that includes an infusion device 50, and further includes a controller device integrated with a BG meter 10, where both share one housing. The controller device 10 communicates to the infusion pump device 50 through a wireless method, for example RF signals. The controller device 10 senses and determines the concentration of BG level of a patient and controls the infusion device 50 according to the measurements. This substantially reduces, if not eliminates, calculations on the part of the patient. In particular embodiments, the infusion device 50 includes a housing 55 adapted to be carried by the user. On the housing 55 there is included a display 60 that, like the BG meter display 30, shows information requested by the user or an instructed act that was undertaken by the infusion device 50. The infusion device 50 may not include a display, but in that case there should be a suspend/resume input and an action input for safety reasons. The BG meter display 30 shows information according to communications sent to the controller device 10 from the infusion device 50. At any moment, the display 60 of the infusion device 50 may show substantially the same information as shown on the controller device display 30. The two displays may mimic one another so that the user may choose to conveniently view the selected information from the controller device 10 rather than the infusion device 50, which is usually attached to the user's body through the infusion set 75. The infusion device 50 delivers fluid from within the housing 55, through tubing 80 and into the infusion set 75 into the user's body at an infusion site. Further included on the infusion device 50 is a keypad 65 with various input devices, such as the keypad buttons 70a, 70b, and 70c illustrated in the figure.
[0044] Fig. 5 provides a block diagram of the infusion device 150. The infusion device 150 includes a drive mechanism 152 contained in the housing 172 and operatively coupled with a reservoir 154 containing the fluid for infusing the fluid into the body of the user, a communication system 156 contained in the housing 172 for receiving the communication from the controller device including data indicative of the determined concentration of the BG in the user from the BG meter, and a processor 158 contained in the housing 172 and coupled to the communication system 156 for processing the received communications and controlling the infusion device 150. The fluid is delivered from the reservoir 154 through an outlet 168 in the housing 172 and into the user's body via the tubing 180 and infusion set 175. The infusion device 150 may further include an indicator displayed on the display 160 to indicate when the estimated amount of fluid to be infused has been calculated. Additionally, the infusion device 150 may include one or more user input device(s), such as keys, buttons, and the like, for inputting an estimate of a material to be ingested by the user, and the estimated amount of fluid to be infused into the body of the user may be based upon this inputted estimate of material to be ingested. A bolus estimator may be used in conjunction with the infusion device processor for estimating the appropriate amount of fluid to be infused into the body of the user. There may be included a keypad 165 on which the one or more input device(s) are located. The infusion device 150 may also include a memory 166 for storing the data received by the infusion device communication system 156 from the controller device communication system. [0045] In further embodiments, a speaker 164 is included to provide an alternative mode of communication. In an embodiment, the infusion device 150 may display a message that states "move nearer to pump" when the BG meter or controller device senses that the communication with the infusion device 150 is weak or interrupted. A similar message may be displayed if the BG meter or controller device senses some type of problem or malfunction. Alternatively, an alarm 162 may alert the user of any problem or malfunction by vibrating, emitting warning sounds, flashing light, and the like. In further embodiments, the infusion device 150 may provide other functions that show a variety of other displays, for example, when the last bolus was administered, when the last alarm occurred, when the last finger stick was taken, past trends, all alarms that occurred in a time period, calibrations, meals, exercise, bolus schedules, temporary basal delivery, and the like. Whenever a bolus is being delivered, the infusion device 150 can send a message every time a tenth of a unit, or some specified amount, is delivered. [0046] As seen in Fig. 6 A, the controller device 210, includes a housing 215 adapted to be carried by the user. A processor 212 contained in the housing 215 is adapted to process data and commands inputted by the user, and a transmitter 218 (or a transceiver 318 (as shown in Fig. 6B)) contained in the housing 215 and coupled to the processor 212 transmits such communications, including data indicative of the determined concentration of the BG in the user, to the infusion device 250. In further embodiments, the controller device 210 may be integrated with a BG meter in one housing, which has a lancing device and receptacle for BG test strips, for obtaining a BG sample from the user. [0047] The controller device 210 may communicate with a remote station, such as a computer 224, through a data transfer system, using a type of communication connector 222, that couples the controller device 210 to the computer 224 and allows the data downloading. Alternatively, communication may be by wireless methods, such as RF, ER, Bluetooth or other wireless methods. Data may be downloaded via the RF telemetry in the same manner as data is transferred from the controller device 210 to the infusion pump device 250. The transmitter 218 (or a transceiver 318 (as shown in Fig. 6B)) converts RF signals into compatible electrical pulses that may be subsequently sent through a serial port to a specified destination. Data, including software upgrades and diagnostic tools, may also be downloaded via RF telemetry, or any other wireless or wired method, from a remote station, such a's the computer 224, to the infusion device 250. Other remote stations include, but are not limited to, a hospital database, a cellular telephone, a PDA, a smart phone or internet. For example, a cellular phone may be used as a conduit for remote monitoring and programming. In one embodiment, the controller device may be configured so as to have cellular telephone capabilities. In further embodiments, the controller device and/or the other devices with display may be capable of providing PDA functions as well, removing the need for patients to carry separate PDA devices. [0048] The controller device 210 includes on the housing a display 230 that may mimic the display on the infusion pump device 250. The controller device display 230 shows information according to communications sent to the controller device 210 from the infusion device 250. At any moment, the display of the infusion device 250 may show substantially the same information as shown on the controller device display 230. In some embodiments, whatever is shown on the infusion device 250 corresponds to that shown and reflected on the display 230 of the controller device 210. In this manner, the user may more conveniently view what is being processed or acted upon in the infusion pump device 250 without removing or adjusting the infusion pump device 250 to view the display. Tn embodiments, the controller device 210 may include one or more input device(s) 245, such as keys, buttons, and the like, on a keypad 265 so that all, or substantially all, viewing and data entry may be performed on the same device without moving the infusion pump device 250.
[0049] The infusion pump device 250 and the controller device 210 need to have substantially the same resolution or else the screen may not be presented correctly on the display. Another difficulty may be in properly displaying the scaling of graphs. This issue may be addressed by having the infusion pump device talk in an "ideal" screen, and not necessarily in its actual screen format. As shown in Fig. 7, the potential communication paths within embodiments of the infusion system are illustrated. The controller device 410 may serve as a translator between the infusion device 450 and the other components of the infusion system 400, such as a BG meter 482. For example, the controller device 410 may have the ability to determine how best to translate the infusion device's 450 description to the screen of the two displays. As can be seen, the infusion device 450 may communicate directly with the BG meter 482. In alternative embodiments, the resolution need not be the same, and the infusion device and/or controller can compensate for the resolution difference so that one or the other may utilize enhanced displays or a simple display depending on the devices and the needs of the user. [0050] In some embodiments, the infusion system 400 may include multiple controllers that can communicate with one infusion device 450. In other embodiments, there is one controller 410 communicating to one infusion device 450. The controller may also be integrated into the infusion device in some embodiments. In yet another embodiment, the BG meter 482 may be integrated into the controller 410, sharing one housing, to both communicate with the infusion pump device 450. In this embodiment, the controller is separate from the infusion pump device. In this embodiment, the infusion device 450 serves as the central hub with most of the intelligence of the system 400. In yet another embodiment, the controller device 410 may be a key fob, in which case, the controller device 410 would serve simply as a virtual keyboard to input data and commands to the infusion device 450. Optional peripheral devices may include a physiological characteristic sensor device, such as a telemetered glucose monitoring system (TGMS) sensor. Alternatively, the sensor may be directly wired to a monitor/user interface. The TGMS sensor or physiological characteristic sensor 486 may provide for continuous BG monitoring. The physiological characteristic sensor 486 may also be linked to a bedside monitor 492 so that monitoring and programming of medication delivery may be performed remotely. In some embodiments, the infusion pump device does not include, nor need, a display. In this embodiment, a key fob may serve as a remote display. Other options for a remote display include, but are not limited to, cellular telephones, computer monitors, PDA's, smart phones, watch remotes, and the like. The infusion device 450 may further communicate with, and download data such as software upgrades and diagnostic tools from, a remote station like a computer 424 from a connector 422. Optionally, the infusion device 450 may also communicate with the controller device 410 through a station such as a cellular station 488 that includes GPS. In further embodiments, the connector 422 may have memory capability to transport data. [0051] In the above embodiment, the control is maintained in the central hub and the infusion pump device 450 sends out most of the commands. The infusion device 450 also sends requests to receive specific data from the controller device 410. The controller device 410 and the infusion pump device 450 may communicate to one another by a connector 422, other wired methods or by wireless methods, such as RF, IR, Bluetooth, or other wireless methods. In other embodiments, the infusion pump device 450 may contain all or substantially all of the intelligence. The controller device 410 may be limited in the amount of time that they communicate with one another to save power in the controller device 410. For example, RF communications may be minimized, such that the marriage between the infusion pump device 450 and controller device 410 occurs once. The information regarding the screens displayed is sent to the controller device 410, and when the infusion pump device 450 needs to display a screen, it sends a screen number to the controller device 410. In the case of screen displays, if the data being sent is fixed, then the screen can be simply displayed. If the data is variable, then the variable data is sent with the screen to the infusion pump device 450. The screen is then displayed based on a combination of the fixed screen information and the variable data. Exchange IDs, strings to be displayed, and foreign languages are among data that may be sent from the controller device 410. Further commands that may be sent from the infusion pump device 450 include, among other commands, a command to show a specific screen on the controller device 410, a command for displaying requested information on the screen, a command for showing the rules for the input devices, a command for showing the intelligence about that screen type (e.g., menus, data entries, etc.), and the like. The devices may all send diagnostic information to each other, and particularly to the controller device, so that the user may see if anything is going wrong with any of the devices.
[0052] Fig. 8 shows an electronics architecture according to an embodiment of the invention with a custom integrated circuit ("custom IC") 558 as the processor. This architecture can support many of the devices discussed herein, for example the controller device, the infusion device, the characteristic determining device, a BG meter, or any combination of the above. The custom IC 558 is in communication with a memory 566, keypad 565, audio devices 564 (such as speakers or audio electronic circuitry such as voice recognition, synthesis or other audio reproduction), and a display 560. Where there is a drive mechanism in a device that includes infusion functions, the custom IC 558 is in communication with a motor 552 or motor drive circuitry or other means of delivering fluids or therapy via an electro-mechanical means. Where there are one more sensors included in the device, or in communication with the device (such as a characteristic determining device or a device which includes a characteristic determining function), the custom IC 558 is in communication with the sensors 580. The electronics architecture further may include a communications block 595 in communication with the custom IC 558. The communications block 595 may be adapted to provide communication via one or more communications methods, such as RF 596, a USB 597, and IR 598. In further embodiments, die custom IC 558 may be replaced by electronic circuitry, discrete or other circuitry, with similar functions.
[0053] The electronics architecture may include a main battery 590 and a power control 592. The power control 592 may be adapted to give an end of battery warning to the user, which can be predicted based on the type of battery used or can be calculated from the power degradation of the battery being used. However, in certain embodiments it is not necessary to know the type of battery used to create an end of battery warning. Various battery types, such as rechargeable, lithium, alkaline, etc., can be accommodated by this design. In certain embodiments, the electronics architecture includes a removable battery and an internal backup battery. Whenever a new removable batter is inserted, the internal backup battery will be charged to full capacity and then disconnected. After the removable battery has been drained of most of its energy, it will be switched out of the circuit and the internal backup battery will be used to supply power to the device. A low battery warning may then be issued. The internal backup battery may be rechargeable. In further embodiments, a supercap, for example, is used to handle the peak loads that the rechargeable internal battery could not handle directly, because it has sufficient energy storage. This method also allows the use of any type of removable battery (alkaline, lithium, rechargeable, etc.) and partially drained batteries. Depending on use, the backup battery may allow the device to operate for at least one day after the removable battery has been drained or removed. In further embodiments, a microprocessor measures the charge states and control switches for removable and internal backup batteries. [0054] In certain embodiments, the controller device has no user settings and very little memory, because all, or substantially all, needed data and instructions will be sent to the controller device by the infusion pump device. Thus, the functions are all, or substantially all, contained on the infusion pump device in such embodiments. [0055] In alternative embodiments, the infusion pump device may include expanded capabilities, such as color on the display screens, and more graph options that can present more detailed graphs. For example, there may be included a graph called "mobile day" where the BG levels of the user for the past five days may be shown as overlapping graphs. The mobile day graph allows the user to see the trend in BG level changes during those days, and aids the user in better controlling the insulin delivery according to the trends that appear for specific times of each day.
[0056] The BG meter may also include expanded capabilities, such as for example, voice synthesis, voice activation, polyphonic speakers for the vision impaired, and plugs on the BG meter for headphones. Likewise, the controller device may also be configured to provide these expanded capabilities.
[0057] As described above, the controller device may be integrated with the BG meter in some embodiments. In those embodiments, the input keys and the display will all, or substantially all, be included on the controller device. The BG meter may also be separate from the controller device and may talk directly to a sensing device, such as a TGMS sensor. The TGMS sensor is inserted into the subcutaneous tissue of the user to read body fluids, and allows for continuous blood glucose monitoring. The readings are used in conjunction with the BG level determined by the BG meter to continuously monitor BG levels through extrapolating the BG measurements. This embodiment would be compatible with users that do not have an infusion pump device, in which case, there is a need for the ability to talk directly to the TGMS sensor without talking to the infusion pump device.
[0058] If the BG meter talks to the TGMS sensor then the TGMS sensor may broadcast the data received from the BG meter to the infusion pump device and the controller device. In some embodiments, the infusion pump device will always send the data to the controller device. In the case that the controller device does not receive the information from the infusion pump device, it will assume that the infusion pump device has not received the data and will communicate the value to infusion pump device, hi other embodiments, the infusion pump device, controller device and TGMS sensor maintain a three-way communication with one another, and have the ability to check the contacts between one another. In still further embodiments, the system is set up to automatically call for assistance when analytes reach a certain level. The call may include a GPS location.
[0059] In an embodiment of the present invention, the graph displayed on the controller device may display information regarding boluses, finger sticks, exercise, meals and the like. In one embodiment, the graph displayed has eight segments, representing different limits and an actual BG line. In other embodiments, the graphs may include additional time spans for which to show the varying BG levels. For example, the embodiments may include a 3 hour, 6, 12, and 24 hour graphs. Additional features of the graphs may include the ability to zoom in or out of the graph. There may be included an ESC key that will allow the user to return to the last scale. Other options may allow the user to focus on specific positions on a graph. In yet another feature, the user can select the resolution in which to view the graph.
[0060] In a situation where the infusion pump device and the controller device are out of sync, e.g., the graph on the pump and the graph on the controller device do not look substantially the same, there needs to be a way to resynchronize the two components if something goes wrong. For example, if finger stick values do not both have current finger stick values, then the graphs for the controller device and the infusion pump device would be different. [0061] There also may be some type of positive mechanism for the controller device if the communication between the controller device and the pump are interrupted. For example, the mechanism may have the controller device stop displaying its graph in a "time-out" phase for the time the infusion pump device screen is absent or no more data is entered by the user for a period of time. In this case, the infusion pump device operates on the last data that the infusion pump device sent to the controller device to display. In an embodiment, the controller device will display an idle screen during the time-out phase and while the communication between the infusion pump device and the controller device is re-established. The idle screen may remain until the next action is selected by the user. After the time-out phase, the user may press a key to start up the communication again. Once a key is pressed, the controller device will process the key data and the screen will be displayed. The controller device may periodically send signals to the pump to see if it is still active on the screen.
[0062] In alternative embodiments, there will be a positive confirmation requested prior to displaying graphs. For example, the graphs may be shown in bitmap packets (e.g., bit-by-bit), and if the user will be getting a large number of packets of data, for example 15 packets of data, to show the graph, the user may opt not to confirm. The data is passed from the controller device, which is programmed to display the data, to the infusion pump device. The controller device can operate in graphics description language where data is recognized by the controller device as instructing it on which position to put each line or color and the graphics display would handle determining the resolution that the graph would be displayed in. In some embodiments, the graph may be displayed in three- dimensional format.
[0063] The specific screens to be displayed may include fixed menus, partially variable menus, and variable menus, hi fixed menus, the menus do not change depending on data. Therefore, they will always look substantially the same on the screen, and the controller device may be programmed to display them when requested. The fixed menus may be described as screen numbers. In this way, the controller device can easily request "screen 1" or "screen 2." In fixed menus, the text is defined once. There may also be menus where menu items appear and disappear depending on the current settings of the infusion pump device. These menus are considered partially variable menus because some data appear and disappear, and are not all fixed. For example, a program for bolus setup allows a user to change current bolus settings. Bolus set up menus involve variable information as well as fixed information. The values may be variable, but the main menu items (title of variables, etc.) will stay the same. Variable menus contain information that is completely variable, e.g., bolus history screen. Variable data is sent at the time of the screen display, and there is generally no fixed text. What is displayed in variable menus depend on what bolus action the user selects. The history screens resemble the menu screens in that the user cannot select and input any information with the history screen. Data entry screens, on the other hand, include multiple fields on a screen and can accept data selection and input by the user.
[0064] Different units may need to be switched dynamically in depending on how the type of entry is communicated. The screens may also need to be able to display minimum and maximum values as well as time increments, to ensure precision of the display. The rules for this translation will be defined in the infusion pump device. Likewise, for a dual-wave bolus, there must be defined how the values interlock. Sensor high and low BG values also need to be interlocked (in some embodiments, these two values will be displayed in the same screen).
[0065] In one embodiment, communication between the infusion system components takes place when the user presses one or more keys to send data to the infusion pump device and, in response, the infusion pump device can relay to the controller device to instruct on what to display. Alternatively, the user may input data through scrolling down menus and selecting options. When the user prompts, the controller device, for example by pressing an "ACT" button, the controller device will then tell the infusion pump what to do, e.g., deliver fluid to the user. [0066] In its most simplest form, the controller device is a display only, used to show a BG value and/or graph. In another simple form, the controller device embodies only a virtual keypad that may mimic exactly the buttons on the infusion device. When the user presses a key on the controller device, the controller device tells the infusion device what button was pressed — and the infusion device acts as if the button was pressed on the infusion device itself. Each component of the infusion system may be of different degrees of sophistication. For example, the controller device can range from a simple key fob with limited capabilities and with, for example, one or two keys to a complex device with memory, many keys and advanced graphing options. In a complex form, the controller device may embody all or substantially all of the intelligence that is present in the infusion device. In this form, the controller device could do all calculations, graphing functions, and other data input, output, and manipulation at the controller device. The controller device would then send data to the infusion device indicating what the controller device had done so that the infusion device could be put into the same state as the controller. It is possible for the controller device to have many different degrees of computing intelligence, so that few, none, many, or all computing may be done at the controller device. How much intelligence will be in the controller device may depend on battery life, size requirements, and so forth.
[0067] In further embodiments, the processor of the controller device has unique identification information, and the communication transmitted from the controller device to the infusion device further includes the unique identification information of the controller device processor such that the infusion device is capable of discerning whether the communication is intended for receipt by the infusion device. In yet further embodiments, the processor of the infusion device has unique identification information, and the communication transmitted from the controller device to the infusion device further includes the unique identification information of the infusion device processor such that the infusion device is capable of discerning whether the communication is intended for receipt by the infusion device.
[0068] Additionally, both the controller device and the BG meter may communicate over wireless networks. Some examples include RF, IR, Bluetooth, spread spectrum communication, and frequency hopping communication. In further embodiments, there may be a "Listen Before Talk" scheme where the system selects the cleanest of allotted channels through which to communicate. Further examples include giving the controller device cellular telephone or pager capabilities. In the alternative, the communication may be wired, such as in hospital use. In a wired embodiment, there may be a tether physically connecting the infusion pump device to the controller device and/or BG meter. In yet another alternative, the controller device and the infusion pump device could be both wired and wireless — when wired, the two components communicate by wire, and when disconnected, the two components could operate through wireless communication.
[0069] In another wireless example, if the user has access to a computer network or phone connection, the user can open communication via the internet to obtain communications from, and send communications to, a nurse, parent, or anyone so desired. As discussed above, a transceiver may be used to facilitate data transfer between the PC and the infusion pump device. Such a communication may also be used by a party, other than the user, to control, suspend, and/or clear alarms. This embodiment could be very useful for a parent to monitor the infusion system of a child, or for a physician to monitor the infusion system of a patient. The transceiver may allow patients at home or clinicians in a hospital setting to communicate with the various components of the infusion system via RF telemetry. The transceiver may be used to download device information from the pump and sent to the PC when the transceiver is connected in to the serial port of the PC In embodiments, the transceiver may derive its power from the PC when the two are connected. In this way, the transceiver conveniently does not require a separate power source. In another embodiment, a cellular phone may be used as a conduit for remote monitoring and programming. In yet other embodiments, the controller device with a BG meter may also act as a transceiver, which would eliminate an extra component. [0070] In further embodiments, the controller device communication system is capable of being deactivated and reactivated. The controller device may include input devices, such as keys, buttons, and the like, for inputting commands, and the communication system of the controller device is capable of being deactivated in response to a first command from the user input device and being reactivated in response to a second command from the user input device. Alternatively, the communication system of the controller device may be automatically reactivated after a predetermined amount of time has elapsed or at a predetermined time of day.
[0071] In an embodiment of the present invention, the processor of the infusion device uses power cycling such that power is periodically supplied to the communication system of the infusion device until a communication is received from the controller device. When a communication is received from the controller device, the processor of the infusion device discontinues using power cycling so that the power is continuously supplied to the infusion device communication system. The infusion device processor may then resume using power cycling upon completing the receipt of the communication including the data indicative of the determined concentration of the analyte in the user from a BG meter communication system.
[0072] In yet another embodiment, the infusion system may include a bedside monitor. The monitor could communicate through the same avenues as the BG meter, the controller device, and the infusion pump device. The monitor could be used, as described above, to remotely alarm people other than the user, such as for example, parents, physicians, nurses, and the like. This would provide an extra layer of monitoring for the user, especially when the user is alone. In further embodiments, the system may be set up so that multiple devices are placed around the house. This would provide easy access to monitor the diabetic. Additionally, the parent will be able to obtain data to monitor a child user at home and when the parent is away. Such home monitors could be set to any mode preferred, for example, flashing lights, warning sounds like beeping, vibration, and the like. Other features may include a function that allows the remote user (parent, physician, nurse, etc.) to change and/or deliver a bolus from remote sites.
[0073] In an alternative, the controller device may be configured so as to have cellular telephone capabilities. The cellular network could provide a conduit for remote monitoring and programming. Additionally, the cellular network could be used to notify parents, physicians, or emergency services of alarms or alert states. A button may be included on the controller device and/or the infusion device to automatically alert a parent, physician, or emergency services when pressed. For example, a monitoring device may be built directly into a patient's cellular telephone so that in the case of a hypoglycemic event, an alarm or connection may be made to emergency services via the cellular telephone. In a further embodiment, GPS technology may also be built into the cellular telephone to allow easy location of the patient. Alternatively, GPS technology may be included in the controller device without cellular telephone technology. In other embodiments, the GPS technology may also be built into the infusion pump, BG meter or controller device.
[0074] The infusion system may be part of a closed-loop system, such as an implantable infusion system with a sensor system or an external infusion device with a sensor system. In such a system, there may be included safety nets, such as alarms and automatic shut-off s.
[0075] The alarms may be customized to specific user needs. The alarm may be set to flashing lights for the hearing impaired, or warning sounds and/or vibration for the vision impaired. There could further be included headphones that can plug into the controller device for vision impaired to instruct the user on what to do in the case that an alarm goes off. The headphones could also be plugged into a MPEG player or the like. To avoid having the pump broadcast information, the alarms may be handled in a way where the user presses a button on the controller device. Alarms could also be included on the pump. There may further be included a turn-off option where, if there is a need to communicate with the controller, the user can choose a selection to turn off the controller. In further embodiments, there may be included a feature in any of the devices including an alarm where when the device has sounded an alarm for a period of time and the user has not responded, the alarm will switch to a vibrate mode and/or will attempt to signal companion devices in the system to alarm the user.
[0076] It is noted that some users can be expected to have somewhat diminished visual and tactile abilities due to the complications from diabetes or other conditions. Thus, the display and buttons or other input devices may be configured and adapted to the needs of a user with diminished visual and tactile abilities. In alternative embodiments, the high level module (and/or the low level module) may communicate to the user by audio signals, such as beeps, speech or the like.
[0077] Other display settings may be customizable, including, but not limited to, the background, sounds, fonts, and wallpaper. There may be a children's mode, with limited features available so that a child cannot dispense too much medication at once. Different display features may be included in the module and/or may be downloaded from a computer. The high level module may have a memory with which to store customized settings or pump control. The memory may be of any type that is known in the art, such as a volatile or non-volatile memory. Both a volatile and non-volatile memory may be used, which can speed up operation of the pump. As an example, non-volatile memories that could be used in the invention include flash memories, thumb drives and/or memory sticks such as USB thumb drives, removable hard drives, and optical drives. [0078] In some embodiments, the language that the controller device operates in may comprise several different languages, ranging from 1 language to about 40 languages and potentially more. To set language, data must be first initialized to modify the phrases and detail font that may be significantly different in one language as compared to another language. For example, some languages, such as Chinese, are read in vertical columns, from the right to the left, and thus, needs to be displayed in such manner. One way to overcome this complication in using different languages is to have fonts built into the infusion pump device. Because fonts are now described in pen strokes (true-type fonts), rather than in pixels (bit-by-bit) this allows the infusion pump device to determine out how to display the different fonts. Another option could involve uploading the fonts in strings from various sources, such as the internet. [0079] If so desired, a food library may be downloaded from a PC, or from the internet via a PC. In the food library, each food item will have some information associated with it, for example, carbohydrate count, fat count, proteins, serving size, and the like. The food library may be built directly into the infusion pump device, or it may be downloaded from remote sources, as discussed above. For one example, the food library may be downloaded through a transceiver embodied by the user's cellular telephone. Other options may include eliminating the need to bypass the transceiver every time a food item is selected, such as, downloading the food items from the PC and storing it until use. The food library may also be input directly into the controller device rather than the infusion pump device. If the food library is contained in the infusion pump device, an associated food library menu could be dynamic. The user could select from different layers of the food library the items consumer or about to be consumed and the infusion pump device could calculate the appropriate amount of insulin to be delivered. Variable data could be included for a small food library with less than 50 food items. For example, there could be variable data for a food library dedicated to breakfast foods only. There could be a "breakfast" key or icon on the controller device that the user can select. There may also be "lunch" and "dinner" and "snack" icons.
[0080] Communications between the system components may be performed in a variety of manners. In an embodiment using RF options, there could be employed a single frequency or a "spread spectrum" where a large range of RFs can be used to relay the communication. In another embodiment, changing frequencies can be used so as to pick up whatever frequency is present. This is known as "frequency hopping," where the frequency changes every millisecond or so to take advantage of all, or substantially all, frequencies available. In some cases, frequency hopping allows the system to find frequencies that are not being used by other nearby systems and thus avoid interference. In addition, a system may operate in a manner where each component-to-component communication is on a different frequency, or where the delay for each communication is different. Other types of RF, that are not described, may also be used for communication, such as, translation frequency.
[0081] According to yet another embodiment of the present invention, an infusion system includes a controller device, with a controller device display, and an infusion device, with an infusion device display, and a method for infusing a fluid into a body of a user is provided. The method includes the steps of: receiving data communication from a user, transmitting with the controller device the communication including data to an infusion device, receiving with the infusion device the communication, and displaying with the controller device display information regarding the fluid delivery, where the display on the controller device display shows information according to instructions or communications sent to the controller device from the infusion device. At any moment, the display of the infusion device may correspond with what is displayed on the infusion device display. The method may further include the step of displaying a trends and graphs. Additionally, the method may include the step of inputting an estimate of a material to be ingested by the user, and the estimated amount of fluid to be infused into the body of the user is calculated further based upon the inputted estimate of the material to be ingested by the user.
[0082] Although the above description has been focused on use of a controller device with an infusion device, it is appreciated that a controller device as described herein could be used with any number of therapy/diagnostic devices. For example, in any case where a therapy/diagnostic device is tethered to the body, at least partially implanted in the body, or otherwise inconvenient for the user to manipulate while therapy or diagnosis is being performed, a controller device may be used that can send commands to the therapy/diagnosis device and/or mimic the display on the therapy/diagnosis device. Therapies other than infusion of fluids could include electrical therapy, such as electrical therapy for the brain and for conditions such as epilepsy. Diagnostics could include any number of diagnostics, such as information from cardiac and other sensors. [0083] Electrical therapy devices include neurostimulation devices for epilepsy, similar devices for pain management, etc. In addition, there are electro-acupuncture devices, where a needle is inserted into the body much like acupuncture, but additional therapy is delivered by electrical impulses. In certain embodiments, the structure of an electrical therapy device may include a needle that is inserted into appropriate areas of the body. The architecture would be similar to that of the devices described above. The patient/user would use the controller device to deliver "dosages" of electrical impulses to alleviate pain and manage neurological symptoms on demand such as twitching, uncontrolled movement of limbs, spasms, and so forth.
[0084] In further embodiments, devices such as those used in physical therapy clinics could be adapted for individual use. For example, a patch or other device placed on the body could be activated by the controller device to delivery said therapy, be it ultrasound, heat or some other media. The architecture for these devices could be similar to the architecture of the devices already described, where a physiological characteristic sensor or infusion device is replaced by a therapy delivering device/mechanism. [0085] In further embodiments, the controller device is part of a time-telling device, for example, a watch. A watch may be considered a more socially acceptable embodiment of a controller device, because it is common for people to wear watches, making it less noticeable that a user is using an infusion pump and/or analyte monitor. Because watches beep or otherwise alarm, it is less noticeable when a watch alarms to indicate high or low glucose, infusion pump occlusion, or other alarm occurrences. The watch controller device may have the same functionality as the embodiments discussed above. As discussed above, the watch controller device may interact with one or more devices, such as infusion pumps and analyte monitors. Figs. 9A and 9B show an alternative embodiment of a combined watch and controller device 900 according to an embodiment of the present invention. Fig. 9A shows a front view of a watch controller device and Fig. 9B shows a rear view of a watch controller device. The watch controller device 900 includes a housing 905 adapted to be worn or carried by the user and a communication system (not shown) contained in the housing 905 for transmitting a communication or command from the user to the infusion device or analyte monitor. The housing 905 may include a transparent member 950 on the front side over a display 910. The transparent member 950 may be made of any material, such as glass or plastic, that allows for viewing the display beneath the transparent member 950. The housing may also include a cover 960 on the rear side that will allow for removal of a battery or other maintenance on the device. The watch controller device may include one or more input devices 925a, 925b, 925c, 930 on the controller device housing, such as keys, buttons or the like, for the user to input data or commands. In the embodiment shown, there are keys/buttons 925a, 925b, and 925c and scroll wheel 930. The scroll wheel 930 may also be the type of wheel that may be depressed or moved outward to input different types of commands. The watch controller device 900 may include a wrist band 940 so that a user may wear the watch controller device 900 on his/her wrist.
[0086] The watch controller device 900 further includes a display 910 on the controller device housing 905 that is adapted to display a time 920. The display of the time 920 may be digital or analog. For example, the time may be shown by an analog display using traditional watch hands. In further embodiments, the date may also be shown. The time may be changed by the user using the keys/buttons 925a, 925b, 925c or scroll wheel 930, depending on the setup of the watch controller device. The display 910 also may display at least a portion of whatever information and/or graph is being displayed on the infusion device display or on the analyte monitor display. This display may also be digital or analog. For example, a traditional watch hand may be used to indicate levels of glucose. In a simplified version, the hand merely goes from low blood glucose values, through target blood glucose values, to high blood glucose values. The target range could be set by the user. There may be numbers to indicate the actual level of blood glucose and/or the hand could move through a red-yellow-green- yellow-red type color arc, where red indicates that the user has exceeded a blood glucose threshold (high or low), yellow indicates that the user is coming up on a blood glucose threshold, and green indicates that the user's blood glucose is within the target range. Other colors and numbers of colors could be used as well. If the watch controller device 900 is interacting with a glucose sensor or an infusion pump that stores glucose values, the display may show just glucose values and optionally trending of glucose values. In the embodiment shown in Figure 9, the display 910 displays digital glucose values 915 and trending arrows 918. Trending may be shown by arrows, for example, if glucose values have been rising for a certain amount of time or measurements, an up arrow may be displayed. In further embodiments, the display is a touchscreen display that may be activated by a user's hand, stylus, or other implement. In still further embodiments, the user may input commands by voice. [0087] The display of the watch controller device may display data directly from a pump, with or without sensor augmentation, and/or analyte sensor monitors. Alternatively, data may received directly from a sensor transmitter on the patient's skin. The display may show any number of representations of data from the infusion device and/or analyte sensor monitor, such as basal rate, whether or not a user is currently receiving a bolus, amount of the bolus, time left for the bolus, type of bolus (e.g., square wave), last alarm or last few alarms, time until the next bolus. The display may display alerts to the user, such as "do you want to take a bolus?" The display may display what the user is inputting to transmit to the infusion device or analyte sensor monitor. For example, if the user is changing the basal rate, the display may show the basal rate numbers being manipulated by the user. As discussed above, the display may also mimic the display on the infusion device. [0088] As seen in Fig. 10, the watch controller device 1010, includes a housing
1015 adapted to be carried by the user. A processor 1012 contained in the housing 1015 is adapted to process data and commands inputted by the user, and a transmitter/transceiver 1018 contained in the housing 1015 and coupled to the processor 1012 transmits such communications, including data indicative of the determined concentration of the BG in the user, to the infusion device 1050. The processor 1012 is also in communication with a timer 1016, which is adapted to tell time so that the watch controller device 1010 may act as a watch. In further embodiments, the controller device 1010 may be integrated with a BG meter in one housing, which has a lancing device and receptacle for BG test strips, for obtaining a BG sample from the user. In still further embodiments, the transceiver 1018 receives information from an analyte sensing device 1060. The analyte sensing device 1060 may be adapted to receive data from a sensor, such as a transcutaneous sensor. [0089] In general, the electronics of the watch controller device 1010 are the same as the electronics described above with respect to the generic controller device. For example, the watch controller device 1010 may communicate with a remote station, such as a computer 1024, through a data transfer system, using a type of communication connector 1022, that couples the watch controller device 1010 to the computer 1024 and allows the data downloading. Alternatively, communication may be by wireless methods, such as RF, IR, Bluetooth or other wireless methods. Data may be downloaded via the RF telemetry in the same manner as data is transferred from the watch controller device 1010 to the infusion pump device 1050. Data, including software upgrades and diagnostic tools, may also be downloaded via RF telemetry, or any other wireless or wired method, from a remote station, such as the computer 1024, to the infusion device 1050. Other remote stations include, but are not limited to, a hospital database, a cellular telephone, a PDA, a smart phone or internet. For example, a cellular phone may be used as a conduit for remote monitoring and programming.
[0090] The watch controller device 1010 includes on the housing a display 1030 that may mimic the display on the infusion pump device 1050. The controller device display 1030 shows information according to communications sent to the watch controller device 1010 from the infusion device 1050. The display 1030 of the watch controller device also shows the current time, as a watch would show. The display of the current time may be in digital format or analog format. The display 1030 of the watch controller device may also display a timer, such as a stopwatch would display. In embodiments, the controller device 1010 may include one or more input device(s) 1045, such as keys, buttons, and the like, on a keypad 1065 so that all, or substantially all, viewing and data entry may be performed on the same device without moving the infusion pump device 1050.
[0091] The watch controller device 1010 may include a memory 1014 to store data. The memory 1014 may also store controller programs that may be processed by the processor to control the infusion pump 1050 and/or analyte sensing device 1060. The memory may be of any type that is known in the art, such as a volatile or non- volatile memory. For example, the memory may be a semiconductor memory. Both a volatile and non-volatile memory may be used, which can speed up operation of the pump. As an example, non- volatile memories that could be used in the invention include flash memories, thumb drives and/or memory sticks such as USB thumb drives, removable hard drives, and optical drives.
[0092] As discussed above, alarms may be provided for a number of desired conditions. For example, alarms or other alerts may be provided when a user's glucose level is approaching a predefined threshold, or has exceeded a predefined threshold, which may indicate that a user is approaching hypo- or hyper-glycemia. An alarm may be triggered by change in trends of analyte levels or by the current value of an analyte leve. The alarm may indicate that an occlusion has occurred in a pump or that the syringe portion of a syringe-type infusion pump is not seated properly. The alarm may be an audio, visual, and/or tactile alarm. For an audible alarm, such as beeping, the alarm may get increasingly louder. For a tactile alarm, such as a vibration, the alarm may get increasingly stronger and/or faster. For a visual alarm, such as flashing or changing of color or indication of an alarm by an icon, the alarm may get increasingly brighter, faster, and/or larger. In further embodiments, the alarm is a personalized voice alarm, in which a parent, physician, caretaker, or other person may record a warning that plays upon activation (e.g. "your blood glucose is low," "you need to take a bolus," etc.)- [0093] Like the embodiments of the controller device discussed above, the watch controller device may be a display, an interface through which commands can be sent to an infusion device, sensing device, or other device, or both. For example, if the controller device is acting as an interface, the user may administer a bolus or may adjust other settings in the infusion pump or other device. The controller device may be a conventional watch design, with one or more inputs, such as buttons, on the side and/or on the face of the watch. The inputs could also be scroll wheels, multi-directional navigation inputs, such as 5-way inputs, and touch screens.
[0094] In further embodiments, as discussed above, a BG meter may be integrated into the controller device housing, where the watch controller further includes a BG meter receptacle. The watch controller device thus may receive and test the BG level from a blood sample of a user.
[0095] In further embodiments, the controller device is adapted to receive additional information about a patient. For example, the controller device may monitor heart rate or and/or metabolic rate, as in an exercise monitor. In further embodiments, the heart rate or metabolic rate may be correlated to a level of exercise, such as low, medium or high, to store in the controller device memory, infusion pump memory, analyte monitor memory, and/or other device memory. A controller device, especially one that is worn on the skin, like a watch, may further be adapted to monitor the patient's temperature, salinity (from sweat), ketones, or other characteristic. The controller device may be adapted to measure further characteristics, such as alcohol content of blood, as in a breathalyzer, ketones, and/or lactose. Further example characteristics that may be monitored by the controller device are discussed above.
[0096] The watch controller device may monitor analytes such as blood glucose levels. A sensor needle may be adapted to couple to the watch controller device to sense blood glucose levels. The current detected in the sensor would be read by the watch controller device and could be converted to glucose measurements at the watch controller device or at another device.
[0097] The watch controller device may further be adapted to include cellular phone, PDA and/or smart phone capabilities. The watch controller device may be adapted to store audio and visual files, such as mp3 files. The watch controller device may include an earphone jack or other sound interface, such as a speaker, to allow sound output of alarms and/or for any media files that might be stored in embodiments allowing storage of media files. The watch controller device may have internet capability, so that a user could browse the internet directly from the watch controller device.
[0098] While the embodiment shown in Figs. 9A and 9B shows a wrist-wom device as the watch-type controller device, a watch-type controller device may be adapted to be worn on another part of the body or clothing of a user. For example, the watch may be worn on a watch fob, key chain, necklace, belt, ankle, or in a pocket of a user. In certain embodiments, the watch controller device is adapted to work as a traditional watch and tell time. However, it is not necessary that the watch controller device tell time. The watch controller device may be configured to be a stopwatch as well. [0099] In embodiments in which the watch controller device tells time, the controller device may be synched to the global atomic clock to ensure that the time is accurate. It may be useful to have the controller device synched to the device(s) it is controlling and/or monitoring, for example an infusion pump or an analyte monitor. The controller device may have the master clock, by which all other devices are synched. Alternatively, one of the other devices could have the master clock that synchs the controller device. The synchronization could be transmitted by the same method that the one or more devices is connected to the controller device. It may also be by a pager network. By synching all devices, it is possible to reduce confusion on data reporting from potentially mismatched events in a database that contains information from the devices. For example, if an insulin infusion pump thinks the time is 12PM and glucose sensor thinks it is IPM, any glucose measurement will be an hour later than the corresponding infusion rates, which would make analysis of data inaccurate. In further embodiments the controller device is adapted to alarm when times of devices are not in synch.
[00100] As discussed above, the battery in the watch controller device may be a single use or rechargeable battery. There may a connector or other interface on the controller device to attach the device to an electrical outlet, docking station, portable recharger, or so forth to recharge the battery while in the device. It is also possible that the rechargeable battery may be removable for recharging outside the housing. The battery may be a kinetically charged battery or a solar or quasi-solar cell battery. It may be a readily available battery, such as a coin cell battery. In addition, there may be a rechargeable battery and an additional battery in case of battery failure or other need. [00101] As discussed above, transmission between the controller device and the infusion device, sensor, or other device may be wired or wireless, such as RF, infrared (IR), Bluetooth, ZigBee, and other 802.15 protocols, 802.11 WiFi, spread spectrum communication, and frequency hopping communication.
[00102] The display of the watch controller device may be configured in any of the configurations discussed above. It may have a digital format, showing time and/or readings from the controlled/monitored devices in digital form. It may have graphical representations of time, etc. The display may be color or black and white. The display may have backgrounds that can be customized by the user (e.g., a number of displays are stored, among which the user may choose) and/or downloaded by the user. The display may be icon-based so that it may be easily used by different language speakers. The display may also be set up to use a variety of languages, which may be stored in the controller device, e.g. 3, 5, 10, 15, 17, 22 or any other number of languages to about 40 languages and potentially more. Other display settings may be customizable, including, but not limited to, the background, sounds, fonts, and wallpaper. There may be a children's mode, with limited features available so that a child cannot dispense too much medication at once.
[00103] The sounds of the controller device may also be customizable, including, but not limited to sounds for alarms, key input, and alerts. Different audible features may be included in the module and/or may be downloaded from a computer. [00104] In a watch controller device, there may be different aesthetic appearance options. For example, a watch controller device worn on a wrist, with a wrist band, may have different bands or different colors and/or materials, such as cloth or metal and plain or patterned colors. The watch itself may have a backlight or different colored lighting and/or displays. The different colors may be used to indicate different alerts or alarms. Configurable graphics may be included for the display, such as selectable font size (e.g., a larger font size for vision impaired users).
[00105] While the input for the watch controller device, such as buttons, have been described as included on the watch housing, in further embodiments, a watch band may have inputs, such as buttons, to expand the interface. The watch controller device may also include an antenna, for example on a watch band.
[00106] In further embodiments the controller device may include a medical alert display on the display or a medical alert on another part of the housing, to indicate a condition, such as an allergy or disease, that should be alerted to medical professionals and others who may have to care for the user.
[00107] While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention. [00108] The presently disclosed embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description. All changes that come within the meaning of and range of equivalency of the claims are intended to be embraced therein.

Claims

WHAT IS CLAIMED IS:
1. A watch for controlling an infusion pump, comprising: a housing including a transparent member on the front side and a cover on the rear side; a display under the transparent member to display an indication of a time of day; a controller device within the housing, the controller device including: a transmitter adapted to transmit information to an infusion device; and a receiver adapted to receive information from the infusion device.
2. The watch of claim 1, wherein the display is constructed to display a digital representation of the time of day.
3. The watch of claim I, wherein the display is constructed to display an analog representation of the time of day.
4. The watch of claim 1, further comprising one or more input elements on the housing.
5. The watch of claim 4, wherein the one or more input elements are each independently selected from the group consisting of buttons, scroll wheels, touch screens, and voice input devices.
6. The watch of claim 1, further comprising a wrist band attached to the housing and adapted to be worn on the wrist of a user.
7. The watch of claim 6, further comprising one or more input elements on the wrist band for providing inputs to the watch.
8. The watch of claim 1, wherein the housing is adapted to be worn by the user in a configuration selected from the group consisting of on the clothing of the user and in the pocket of the user.
9. The watch of claim 1, wherein the controller device further includes a processor within the housing adapted to process the information from the infusion device.
10. The watch of claim 1, wherein the receiver and transmitter are integrated in a transceiver.
11. The watch of claim 1, wherein the information transmitted to the infusion device includes instructions for acts to be performed by the infusion device.
12. The watch of claim 1 , wherein the controller device includes a processor adapted to cause the display to display a representation of at least a portion of the information received from the infusion device.
13. The watch of claim 1, wherein the controller device includes a processor adapted to cause the display to display a screen corresponding to a screen displayed by the infusion device.
14. The watch of claim 1, wherein the receiver is further adapted to receive information from an analyte sensing device.
15. The watch of claim 14, wherein the analyte sensing device is a blood glucose meter.
16. The watch of claim 14, wherein the analyte sensing device is a continuous glucose sensor.
17. The watch of claim 14, wherein the information received from the analyte sensing device includes data representing an analyte level of the user.
18. The watch of claim 17, wherein the display is adapted to display a representation of the analyte level of the user.
19. The watch of claim 17, wherein the display is adapted to display a representation of a trend of the analyte level of the user.
20. The watch of claim 17, including an alarm adapted to activate when the analyte level of the user meets a predetermined threshold.
21. The watch of claim 20, wherein the alarm is at least one of a visual alarm, an audible alarm, and a tactile alarm.
22. The watch of claim 21, wherein the alarm is a personalized voice alarm.
23. The watch of claim 17, adapted to automatically contact an emergency response system if the determined concentration of the first analyte meets a predetermined threshold.
24. The watch of claim 23, further adapted to transmit a global positioning signal to the emergency response system.
25. The watch of claim 1 , wherein the receiver is adapted to receive information from a heart rate monitor.
26. The watch of claim 1, wherein the processor is adapted to correlate the information from the heart rate monitor to a level of exercise.
27. The watch of claim 1 , further comprising a characteristic sensor connected to the housing to measure one or more characteristics of the user.
28. The watch of claim 27, wherein the one or more characteristics are selected from the group consisting of blood alcohol level, ketone level, hormone level, cholesterol level, oxygen level, pH level, and lactate level.
29. The watch of claim 1, wherein the display includes a backlight.
30. The watch of claim 1 , wherein the display is constructed to display graphics configurable by the user.
31. The watch of claim 1, wherein the display is constructed to display words in one or more languages, selected from a number of languages stored in the combined watch and controller device.
32. The watch of claim 1, wherein a receptacle is formed in the housing and adapted to receive a fluid from a user, wherein the controller device includes a processor adapted to test the fluid to determine a concentration of a first analyte in the user.
33. The watch of claim 32, wherein the display is adapted to display a representation of the determined concentration of the first analyte.
34. The watch of claim 33, wherein the first analyte is blood glucose.
35. The watch of claim 1, wherein the infusion device is an insulin infusion pump.
36. The watch of claim 1, wherein the display switches to an idle screen when no communication is received from the infusion device for a period of time.
37. The watch of claim 1 , wherein at least one of the transmissions from the transmitter and to the receiver is a wireless transmission.
38. The watch of claim 37, wherein the wireless transmission is sent by a wireless method selected from the group consisting of radio frequency, infrared, ZigBee and Bluetooth.
39. The watch of claim 37, wherein the wireless transmission is sent by a wireless method selected from the group consisting of single frequency communication, spread spectrum communication, and frequency hopping communication.
40. The watch of claim 1, wherein the receiver is further adapted to receive information downloaded from a remote station.
41. The watch of claim 40, wherein the remote station is selected from the group consisting of a computer, a hospital database, a cellular telephone, a personal digital assistant, remote location over the Internet, and a smart phone.
42. The watch of claim 1, wherein the housing is water resistant.
43. The watch of claim 1, further including a memory for storing data.
44. The watch of claim 43, wherein the memory is a semiconductor memory.
45. The watch of claim 1, further including a memory for storing control programs and a processor for processing the stored control programs.
46. A method of controlling an infusion device comprising: transmitting information to an infusion device from a watch, wherein the watch includes: a housing including a transparent member on the front side and a cover on the rear side; a display under the transparent member to display an indication of a time of day; and a controller device within the housing, the controller device including: a transmitter adapted to transmit information to the infusion device, and a receiver adapted to receive information from the infusion device receiving information from the infusion device at the watch.
47. The method of claim 46, further comprising displaying a representation of at least a portion of the information received from the infusion device on the display.
48. The method of claim 46, wherein the information transmitted to the infusion device includes instructions for acts to be performed by the infusion device, whereby the infusion device acts in response to the instructions.
49. The method of claim 46, further comprising displaying a screen on the display in response to receiving the information from the infusion device, wherein the screen is substantially the same as a screen being displayed by the infusion device.
50. The. method of claim 46, comprising displaying a digital representation of the time of day on the display.
51. The method of claim 46, comprising displaying an analog representation of the time of day on the display.
52. The method of claim 46, wherein the watch further includes one or more input elements on the housing.
53. The method of claim 52, wherein the one or more input elements are each independently selected from the group consisting of buttons, scroll wheels, touch screens, and voice input devices.
54. The method of claim 52, further comprising receiving instructions from the input elements.
55. The method of claim 54, further comprising transmitting the instructions received from the input elements to the infusion device.
56. The method of claim 46, wherein the watch further includes a wrist band attached to the housing and adapted to be worn on the wrist of a user.
57. The method of claim 46, wherein the watch further comprising one or more input elements on the wrist band for providing inputs to the watch.
58. The method of claim 46, wherein the housing of the watch is adapted to be worn on the clothing of a user.
PCT/US2007/016199 2006-07-31 2007-07-17 Watch controller for a medical device WO2008016486A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/496,606 2006-07-31
US11/496,606 US20070093786A1 (en) 2005-08-16 2006-07-31 Watch controller for a medical device

Publications (2)

Publication Number Publication Date
WO2008016486A2 true WO2008016486A2 (en) 2008-02-07
WO2008016486A3 WO2008016486A3 (en) 2008-04-10

Family

ID=38834990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/016199 WO2008016486A2 (en) 2006-07-31 2007-07-17 Watch controller for a medical device

Country Status (2)

Country Link
US (1) US20070093786A1 (en)
WO (1) WO2008016486A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054042A1 (en) * 2009-11-04 2011-05-12 Aimedics Pty Ltd System and method for the integration of fused-data hypoglycaemia alarms into closed-loop glycaemic control systems
EP2799098A1 (en) * 2013-04-29 2014-11-05 F.Hoffmann-La Roche Ag Ambulatory infusion system including wireless earphone device
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
CN104977323A (en) * 2014-04-03 2015-10-14 江南大学 Multifunctional digital alcohol testing system
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
CN108525071A (en) * 2018-05-10 2018-09-14 五邑大学 A kind of liquid dropping wireless monitor
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8715177B2 (en) * 2000-10-06 2014-05-06 Ip Holdings, Inc. Intelligent drug delivery appliance
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US20080172026A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having a suspension bolus
US10607732B2 (en) * 2002-10-01 2020-03-31 Zhou Tian Xing Wearable digital device for personal health use for saliva, urine, and blood testing and mobile wrist watch powered by user body
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US20080312555A1 (en) * 2004-02-06 2008-12-18 Dirk Boecker Devices and methods for glucose measurement using rechargeable battery energy sources
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
WO2005119524A2 (en) 2004-06-04 2005-12-15 Therasense, Inc. Diabetes care host-client architecture and data management system
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7761127B2 (en) 2005-03-01 2010-07-20 Masimo Laboratories, Inc. Multiple wavelength sensor substrate
WO2006124936A2 (en) * 2005-05-17 2006-11-23 Infussafe Llc Infusion monitoring device, system and method
US20070060869A1 (en) * 2005-08-16 2007-03-15 Tolle Mike C V Controller device for an infusion pump
US20070060870A1 (en) * 2005-08-16 2007-03-15 Tolle Mike Charles V Controller device for an infusion pump
US20090227855A1 (en) * 2005-08-16 2009-09-10 Medtronic Minimed, Inc. Controller device for an infusion pump
US7737581B2 (en) * 2005-08-16 2010-06-15 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
DK1951340T4 (en) * 2005-11-08 2017-05-22 Bigfoot Biomedical Inc infusion pump
US7362221B2 (en) * 2005-11-09 2008-04-22 Honeywell International Inc. Touchscreen device for controlling a security system
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7981034B2 (en) * 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7920907B2 (en) * 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US7771320B2 (en) 2006-09-07 2010-08-10 Nike, Inc. Athletic performance sensing and/or tracking systems and methods
AU2007317669A1 (en) 2006-10-16 2008-05-15 Hospira, Inc. System and method for comparing and utilizing activity information and configuration information from mulitple device management systems
AU2007328233B2 (en) 2006-12-04 2012-09-13 Deka Products Limited Partnership Medical device including a slider assembly
US10426638B2 (en) 2007-02-06 2019-10-01 Deka Products Limited Partnership Arm prosthetic device
US9381099B2 (en) * 2007-02-06 2016-07-05 Deka Products Limited Partnership Arm prosthetic device
US11779476B2 (en) 2007-02-06 2023-10-10 Deka Products Limited Partnership Arm prosthetic device
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080228056A1 (en) 2007-03-13 2008-09-18 Michael Blomquist Basal rate testing using frequent blood glucose input
EP2146624B1 (en) 2007-04-14 2020-03-25 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683721C (en) 2007-04-14 2017-05-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US10111608B2 (en) 2007-04-14 2018-10-30 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2146625B1 (en) 2007-04-14 2019-08-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US20080269673A1 (en) * 2007-04-27 2008-10-30 Animas Corporation Cellular-Enabled Medical Monitoring and Infusion System
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008144616A1 (en) * 2007-05-18 2008-11-27 Heidi Kay Lipid raft, caveolin protein, and caveolar function modulation compounds and associated synthetic and therapeutic methods
US7751907B2 (en) 2007-05-24 2010-07-06 Smiths Medical Asd, Inc. Expert system for insulin pump therapy
US8221345B2 (en) 2007-05-30 2012-07-17 Smiths Medical Asd, Inc. Insulin pump based expert system
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8085151B2 (en) 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090036760A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090063402A1 (en) * 2007-08-31 2009-03-05 Abbott Diabetes Care, Inc. Method and System for Providing Medication Level Determination
US20090143725A1 (en) * 2007-08-31 2009-06-04 Abbott Diabetes Care, Inc. Method of Optimizing Efficacy of Therapeutic Agent
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
WO2009059203A1 (en) * 2007-11-02 2009-05-07 Edwards Lifesciences Corporation Analyte monitoring system having back-up power source for use in either transport of the system or primary power loss
US7875022B2 (en) * 2007-12-12 2011-01-25 Asante Solutions, Inc. Portable infusion pump and media player
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US8775201B2 (en) * 2007-12-31 2014-07-08 Enthermics Medical Systems, Inc. Data logger
US20090177147A1 (en) 2008-01-07 2009-07-09 Michael Blomquist Insulin pump with insulin therapy coaching
DK2100633T3 (en) * 2008-03-10 2011-04-26 Hoffmann La Roche Medical device and charging station for this purpose
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US8133197B2 (en) 2008-05-02 2012-03-13 Smiths Medical Asd, Inc. Display for pump
US9503526B2 (en) 2008-05-19 2016-11-22 Tandem Diabetes Care, Inc. Therapy management system
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
EP2281232A1 (en) * 2008-05-31 2011-02-09 Roche Diagnostics GmbH Handheld medical device
JP5642066B2 (en) 2008-06-06 2014-12-17 インテュイティ メディカル インコーポレイテッド Method and apparatus for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid
WO2009148626A1 (en) * 2008-06-06 2009-12-10 Intuity Medical, Inc. Medical diagnostic devices and methods
ES2391143T3 (en) * 2008-06-30 2012-11-21 Animas Corporation System to use status indicators in wireless communications with medical devices
US20100004518A1 (en) 2008-07-03 2010-01-07 Masimo Laboratories, Inc. Heat sink for noninvasive medical sensor
EP2294411A4 (en) 2008-07-07 2017-09-06 Agamatrix, Inc. Integrated blood glucose measurement device
WO2010009172A1 (en) 2008-07-14 2010-01-21 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8622988B2 (en) * 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US20100095229A1 (en) * 2008-09-18 2010-04-15 Abbott Diabetes Care, Inc. Graphical user interface for glucose monitoring system
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
EP3187105A1 (en) * 2008-10-02 2017-07-05 Roche Diabetes Care GmbH Appareil médical destiné à des patients
EP2177160B1 (en) * 2008-10-16 2011-05-11 Roche Diagnostics GmbH Analysis device with user friendly menu control
HUE061178T2 (en) * 2008-12-19 2023-05-28 Hoffmann La Roche Portable drug administration device switchable between two different administration modes
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8501093B2 (en) * 2009-06-11 2013-08-06 Roche Diagnostics Operations, Inc. Portable handheld medical diagnostic devices with color-changing indicatior
US8798934B2 (en) 2009-07-23 2014-08-05 Abbott Diabetes Care Inc. Real time management of data relating to physiological control of glucose levels
DK3689237T3 (en) 2009-07-23 2021-08-16 Abbott Diabetes Care Inc Method of preparation and system for continuous analyte measurement
CA2769030C (en) 2009-07-30 2016-05-10 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
ES2959131T3 (en) 2009-08-31 2024-02-20 Abbott Diabetes Care Inc Displays for a medical device
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8882701B2 (en) 2009-12-04 2014-11-11 Smiths Medical Asd, Inc. Advanced step therapy delivery for an ambulatory infusion pump and system
US20110178382A1 (en) * 2010-01-19 2011-07-21 Topp Claire H Blood glucose ignition interlock
WO2012170000A1 (en) * 2010-01-22 2012-12-13 Abbott Diabetes Care Inc. Method, device and system for providing analyte sensor calibration
US8423000B2 (en) * 2010-03-23 2013-04-16 Anil Dhuna Guardian system for a cognitively-impaired individual
JP5671824B2 (en) 2010-03-25 2015-02-18 セイコーエプソン株式会社 Fluid injection system
EP2400292A1 (en) * 2010-06-24 2011-12-28 Roche Diagnostics GmbH System for measuring the analyte concentration in a body fluid sample
CA2803797A1 (en) 2010-06-25 2011-12-29 Intuity Medical, Inc. Analyte monitoring methods and systems
CN102339117A (en) * 2010-07-23 2012-02-01 深圳富泰宏精密工业有限公司 Touch-control type portable electronic device
WO2012035726A1 (en) * 2010-09-16 2012-03-22 パナソニック株式会社 Biological sample measurement system
US11213226B2 (en) 2010-10-07 2022-01-04 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US8639335B2 (en) 2011-01-28 2014-01-28 Medtronic, Inc. Disabling an implanted medical device with another medical device
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US8560031B2 (en) 2011-03-16 2013-10-15 David B. Barnett Extending socket for portable media player
CA2831257C (en) * 2011-03-24 2021-05-04 Singapore Health Services Pte Ltd A method and a system for controlling discomfort level
KR101182733B1 (en) * 2011-04-13 2012-09-13 주식회사 필로시스 Method for syncronizing time measured from apparatus for analyzing diagnosis strip
JP5183778B2 (en) 2011-07-15 2013-04-17 三菱電機株式会社 Vehicle charging system
US11087868B2 (en) * 2011-09-28 2021-08-10 Abbott Diabetes Care Inc. Methods, devices and systems for analyte monitoring management
JP6033874B2 (en) 2011-10-21 2016-11-30 ホスピーラ インコーポレイテッド Medical device update system
AU2012335830B2 (en) 2011-11-07 2017-05-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods
KR101367261B1 (en) * 2011-11-11 2014-03-14 주식회사 아이센스 Wireless Module appling Time synchronization Embedded Blood Glucose Test Meter system
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9335910B2 (en) 2012-04-23 2016-05-10 Tandem Diabetes Care, Inc. System and method for reduction of inadvertent activation of medical device during manipulation
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9238100B2 (en) 2012-06-07 2016-01-19 Tandem Diabetes Care, Inc. Device and method for training users of ambulatory medical devices
US9715327B2 (en) 2012-06-07 2017-07-25 Tandem Diabetes Care, Inc. Preventing inadvertent changes in ambulatory medical devices
EP3395252A1 (en) 2012-08-30 2018-10-31 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
WO2014138446A1 (en) 2013-03-06 2014-09-12 Hospira,Inc. Medical device communication method
US10357606B2 (en) 2013-03-13 2019-07-23 Tandem Diabetes Care, Inc. System and method for integration of insulin pumps and continuous glucose monitoring
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10016561B2 (en) 2013-03-15 2018-07-10 Tandem Diabetes Care, Inc. Clinical variable determination
US9242043B2 (en) 2013-03-15 2016-01-26 Tandem Diabetes Care, Inc. Field update of an ambulatory infusion pump system
US9486171B2 (en) 2013-03-15 2016-11-08 Tandem Diabetes Care, Inc. Predictive calibration
US20140292527A1 (en) * 2013-03-27 2014-10-02 Rodney Alan Sisneros Remote lighting and security system
US10289280B2 (en) * 2013-06-07 2019-05-14 Medtronic, Inc. Determining vertical axis scale for implantable fluid delivery system
JP2016522070A (en) 2013-06-21 2016-07-28 インテュイティ メディカル インコーポレイテッド Analyte monitoring system using audible feedback
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
US20150066531A1 (en) 2013-08-30 2015-03-05 James D. Jacobson System and method of monitoring and managing a remote infusion regimen
EP3041528A4 (en) 2013-09-06 2017-04-26 Tandem Diabetes Care, Inc. System and method for mitigating risk in automated medicament dosing
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
EP3796332A1 (en) 2013-11-14 2021-03-24 Dexcom, Inc. Devices and methods for continuous analyte monitoring
AU2014353130B9 (en) 2013-11-19 2019-09-05 Icu Medical, Inc. Infusion pump automation system and method
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
US20150173674A1 (en) * 2013-12-20 2015-06-25 Diabetes Sentry Products Inc. Detecting and communicating health conditions
EP3086828B1 (en) 2013-12-26 2023-08-09 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
EP3087548A4 (en) 2013-12-26 2017-09-13 Tandem Diabetes Care, Inc. Safety processor for wireless control of a drug delivery device
JP6346749B2 (en) * 2014-01-27 2018-06-20 株式会社タニタ Defective physical condition determination apparatus, method, and program
US11030708B2 (en) 2014-02-28 2021-06-08 Christine E. Akutagawa Method of and device for implementing contagious illness analysis and tracking
US9704205B2 (en) * 2014-02-28 2017-07-11 Christine E. Akutagawa Device for implementing body fluid analysis and social networking event planning
CN103926395A (en) * 2014-04-21 2014-07-16 王秀明 Multifunctional clinical examination analyzer
WO2015168427A1 (en) 2014-04-30 2015-11-05 Hospira, Inc. Patient care system with conditional alarm forwarding
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
KR102186373B1 (en) * 2014-07-23 2020-12-03 삼성전자주식회사 Apparatas and method for measuring a blood sugar in an electronic device
EP3174577A4 (en) 2014-07-30 2018-04-18 Tandem Diabetes Care, Inc. Temporary suspension for closed-loop medicament therapy
US10987048B2 (en) 2014-08-13 2021-04-27 Elwha Llc Systems, methods, and devices to incentivize inhaler use
US10765817B2 (en) * 2014-08-13 2020-09-08 Elwha, Llc Methods, systems, and devices related to delivery of alcohol with an inhaler
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
WO2016187286A1 (en) * 2015-05-18 2016-11-24 Tandem Diabetes Care, Inc. Patch pump cartridge attachment
CN104784776A (en) * 2015-05-19 2015-07-22 京东方科技集团股份有限公司 Infusion system
WO2016189417A1 (en) 2015-05-26 2016-12-01 Hospira, Inc. Infusion pump system and method with multiple drug library editor source capability
US10016549B2 (en) * 2015-05-28 2018-07-10 Fresenius Medical Care Holdings, Inc. Alert on a dialysis machine
EP3111831A1 (en) * 2015-07-01 2017-01-04 Roche Diabetes Care GmbH A portable device and a method for processing continuous monitoring data indicative of an analyte in a bodily fluid, a medical system and a computer program product
CN108024765B (en) 2015-07-10 2021-06-11 雅培糖尿病护理公司 System, device and method for dynamic glucose curve response to physiological parameters
CN105169526B (en) * 2015-09-29 2019-04-30 青岛歌尔声学科技有限公司 A kind of transfusion control device
US9800703B2 (en) 2015-11-23 2017-10-24 TecTide Group, LLC Handling apparatus for portable electronic devices
US10194862B2 (en) * 2015-12-28 2019-02-05 Sensesemi Technologies Private Limited Smart wearable device for health watch
US10569016B2 (en) 2015-12-29 2020-02-25 Tandem Diabetes Care, Inc. System and method for switching between closed loop and open loop control of an ambulatory infusion pump
CN114053517A (en) 2016-01-05 2022-02-18 比格福特生物医药公司 Operating a multi-mode drug delivery system
CN105536103A (en) * 2016-02-17 2016-05-04 黄湘惠 Induction infusion alarm
EP3484541A4 (en) 2016-07-14 2020-03-25 ICU Medical, Inc. Multi-communication path selection and security system for a medical device
US10054259B2 (en) 2016-08-17 2018-08-21 Popsockets Llc Expanding socket accessory for mobile electronic device
AU2017375560B2 (en) * 2016-12-12 2023-07-06 Smith & Nephew Plc Pressure wound therapy status indication via external device
WO2018175489A1 (en) 2017-03-21 2018-09-27 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
WO2019018516A1 (en) * 2017-07-18 2019-01-24 Becton, Dickinson And Company Administration system, delivery device, and notification device for communicating status of a medical device
US11139058B2 (en) 2018-07-17 2021-10-05 Icu Medical, Inc. Reducing file transfer between cloud environment and infusion pumps
NZ793485A (en) 2018-07-17 2023-06-30 Icu Medical Inc Systems and methods for facilitating clinical messaging in a network environment
US10964428B2 (en) 2018-07-17 2021-03-30 Icu Medical, Inc. Merging messages into cache and generating user interface using the cache
CA3106516C (en) 2018-07-17 2023-07-25 Icu Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
WO2020023231A1 (en) 2018-07-26 2020-01-30 Icu Medical, Inc. Drug library management system
US10736037B2 (en) 2018-12-26 2020-08-04 Tandem Diabetes Care, Inc. Methods of wireless communication in an infusion pump system
USD928771S1 (en) 2019-01-07 2021-08-24 Popsockets Llc Grip and stand accessory for personal electronic device
US11464908B2 (en) 2019-02-18 2022-10-11 Tandem Diabetes Care, Inc. Methods and apparatus for monitoring infusion sites for ambulatory infusion pumps
WO2021092965A1 (en) * 2019-11-16 2021-05-20 柏兆(吉安)电子有限责任公司 Community health and medical system based on electronic product
CN112169070A (en) * 2020-11-02 2021-01-05 华中科技大学同济医学院附属协和医院 High-precision infusion device and infusion method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028878A1 (en) * 1994-04-25 1995-11-02 Minimed Inc. Infusion pump and glucose sensor assembly
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
WO2000047109A1 (en) * 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
WO2006001929A1 (en) * 2004-06-14 2006-01-05 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444064A1 (en) * 1978-12-15 1980-07-11 Sodip Sa MIXTURE OF VINYL CHLORIDE POLYMER AND POLYETHERURETHANE WITH A TERTIARY AND / OR AMMONIUM AMINE GROUP, IN PARTICULAR FOR A CONFORMED OBJECT FOR MEDICAL USE
CA1169323A (en) * 1980-06-03 1984-06-19 Anthony M. Albisser Insulin infusion device
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4685903A (en) * 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4562751A (en) * 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4678408A (en) * 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
CA1254091A (en) * 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4671288A (en) * 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5108819A (en) * 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5080653A (en) * 1990-04-16 1992-01-14 Pacesetter Infusion, Ltd. Infusion pump with dual position syringe locator
US5097122A (en) * 1990-04-16 1992-03-17 Pacesetter Infusion, Ltd. Medication infusion system having optical motion sensor to detect drive mechanism malfunction
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
JPH04278450A (en) * 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5284140A (en) * 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
ZA938555B (en) * 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5543326A (en) * 1994-03-04 1996-08-06 Heller; Adam Biosensor including chemically modified enzymes
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5665065A (en) * 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5750926A (en) * 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US6689265B2 (en) * 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US5972199A (en) * 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5665222A (en) * 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US6043437A (en) * 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
JP3394262B2 (en) * 1997-02-06 2003-04-07 セラセンス、インク. Small volume in vitro analyte sensor
US5779665A (en) * 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US5917346A (en) * 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
US6259937B1 (en) * 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US6071391A (en) * 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US6119028A (en) * 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6088608A (en) * 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6081736A (en) * 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6579690B1 (en) * 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) * 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
WO1999047190A1 (en) * 1998-03-16 1999-09-23 Medtronic, Inc. Hemostatic system and components for extracorporeal circuit
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
CA2666434A1 (en) * 1998-10-08 2000-04-13 Medtronic Minimed, Inc. Telemetered characteristic monitor system
US6591125B1 (en) * 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6560741B1 (en) * 1999-02-24 2003-05-06 Datastrip (Iom) Limited Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same
WO2000078992A2 (en) * 1999-06-18 2000-12-28 Therasense, Inc. Mass transport limited in vivo analyte sensor
US6804558B2 (en) * 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6616819B1 (en) * 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
AU1607801A (en) * 1999-11-15 2001-05-30 Therasense, Inc. Transition metal complexes with bidentate ligand having an imidazole ring
US6564105B2 (en) * 2000-01-21 2003-05-13 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
US20030060765A1 (en) * 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US6895263B2 (en) * 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6623501B2 (en) * 2000-04-05 2003-09-23 Therasense, Inc. Reusable ceramic skin-piercing device
US6570503B1 (en) * 2000-04-21 2003-05-27 Izaak A. Ulert Emergency signaling device
WO2001088524A1 (en) * 2000-05-12 2001-11-22 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US7041468B2 (en) * 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US6932894B2 (en) * 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
US7025760B2 (en) * 2001-09-07 2006-04-11 Medtronic Minimed, Inc. Method and system for non-vascular sensor implantation
US20030061232A1 (en) * 2001-09-21 2003-03-27 Dun & Bradstreet Inc. Method and system for processing business data
US7052591B2 (en) * 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US20030061234A1 (en) * 2001-09-25 2003-03-27 Ali Mohammed Zamshed Application location register routing
DE10226580B4 (en) * 2002-06-14 2012-11-29 Lre Technology Partner Gmbh Wristwatch with measuring function
US7736309B2 (en) * 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US7162289B2 (en) * 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
DK1552146T3 (en) * 2002-10-09 2011-08-15 Abbott Diabetes Care Inc Device for administering fluid, system and method
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US6931328B2 (en) * 2002-11-08 2005-08-16 Optiscan Biomedical Corp. Analyte detection system with software download capabilities
US7201977B2 (en) * 2004-03-23 2007-04-10 Seagate Technology Llc Anti-ferromagnetically coupled granular-continuous magnetic recording media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028878A1 (en) * 1994-04-25 1995-11-02 Minimed Inc. Infusion pump and glucose sensor assembly
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
WO2000047109A1 (en) * 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
WO2006001929A1 (en) * 2004-06-14 2006-01-05 Medtronic Minimed, Inc. System for providing blood glucose measurements to an infusion device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813576B2 (en) 2004-07-13 2020-10-27 Dexcom, Inc. Analyte sensor
US11883164B2 (en) 2004-07-13 2024-01-30 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11064917B2 (en) 2004-07-13 2021-07-20 Dexcom, Inc. Analyte sensor
US11045120B2 (en) 2004-07-13 2021-06-29 Dexcom, Inc. Analyte sensor
US11026605B1 (en) 2004-07-13 2021-06-08 Dexcom, Inc. Analyte sensor
US9414777B2 (en) 2004-07-13 2016-08-16 Dexcom, Inc. Transcutaneous analyte sensor
US9986942B2 (en) 2004-07-13 2018-06-05 Dexcom, Inc. Analyte sensor
US10993641B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10524703B2 (en) 2004-07-13 2020-01-07 Dexcom, Inc. Transcutaneous analyte sensor
US10993642B2 (en) 2004-07-13 2021-05-04 Dexcom, Inc. Analyte sensor
US10980452B2 (en) 2004-07-13 2021-04-20 Dexcom, Inc. Analyte sensor
US10932700B2 (en) 2004-07-13 2021-03-02 Dexcom, Inc. Analyte sensor
US10918315B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10709363B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10709362B2 (en) 2004-07-13 2020-07-14 Dexcom, Inc. Analyte sensor
US10918313B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10918314B2 (en) 2004-07-13 2021-02-16 Dexcom, Inc. Analyte sensor
US10722152B2 (en) 2004-07-13 2020-07-28 Dexcom, Inc. Analyte sensor
US10827956B2 (en) 2004-07-13 2020-11-10 Dexcom, Inc. Analyte sensor
US10799159B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10799158B2 (en) 2004-07-13 2020-10-13 Dexcom, Inc. Analyte sensor
US10610136B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10925524B2 (en) 2005-03-10 2021-02-23 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10743801B2 (en) 2005-03-10 2020-08-18 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10856787B2 (en) 2005-03-10 2020-12-08 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10898114B2 (en) 2005-03-10 2021-01-26 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918317B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918318B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10716498B2 (en) 2005-03-10 2020-07-21 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10918316B2 (en) 2005-03-10 2021-02-16 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10709364B2 (en) 2005-03-10 2020-07-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10617336B2 (en) 2005-03-10 2020-04-14 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11051726B2 (en) 2005-03-10 2021-07-06 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US11000213B2 (en) 2005-03-10 2021-05-11 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610135B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10610137B2 (en) 2005-03-10 2020-04-07 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US10813577B2 (en) 2005-06-21 2020-10-27 Dexcom, Inc. Analyte sensor
US9143569B2 (en) 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US9020572B2 (en) 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US11102306B2 (en) 2008-02-21 2021-08-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
WO2011054042A1 (en) * 2009-11-04 2011-05-12 Aimedics Pty Ltd System and method for the integration of fused-data hypoglycaemia alarms into closed-loop glycaemic control systems
EP2799098A1 (en) * 2013-04-29 2014-11-05 F.Hoffmann-La Roche Ag Ambulatory infusion system including wireless earphone device
CN104977323A (en) * 2014-04-03 2015-10-14 江南大学 Multifunctional digital alcohol testing system
CN108525071A (en) * 2018-05-10 2018-09-14 五邑大学 A kind of liquid dropping wireless monitor

Also Published As

Publication number Publication date
US20070093786A1 (en) 2007-04-26
WO2008016486A3 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US20070093786A1 (en) Watch controller for a medical device
EP1924307B1 (en) Hand-held controller device for an infusion pump
US8663201B2 (en) Infusion device
US20070060870A1 (en) Controller device for an infusion pump
US20080139910A1 (en) Analyte sensor and method of using the same
CA2669294C (en) Analyte sensing apparatus for hospital use
EP2033068B1 (en) Method and apparatus for providing power to a portable electronic device
US8622954B2 (en) Relay device for transferring information between a sensor system and a fluid delivery system
CA2667386C (en) Systems and methods for diabetes management using consumer electronic devices
US20080228057A1 (en) Method and system for controlling data information between two portable apparatuses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07796909

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU