WO2008007428A1 - Radio transmitting apparatus and transmission power control method - Google Patents

Radio transmitting apparatus and transmission power control method Download PDF

Info

Publication number
WO2008007428A1
WO2008007428A1 PCT/JP2006/313888 JP2006313888W WO2008007428A1 WO 2008007428 A1 WO2008007428 A1 WO 2008007428A1 JP 2006313888 W JP2006313888 W JP 2006313888W WO 2008007428 A1 WO2008007428 A1 WO 2008007428A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
value
average
signal
transmission level
Prior art date
Application number
PCT/JP2006/313888
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Sato
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/313888 priority Critical patent/WO2008007428A1/en
Publication of WO2008007428A1 publication Critical patent/WO2008007428A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo

Definitions

  • the present invention relates to a radio transmission apparatus that performs transmission power control and a transmission power control method thereof.
  • FIG. 15 is a block diagram showing a functional configuration of a conventional wireless transmission device.
  • a conventional wireless transmission apparatus includes a signal processing unit 300, a digital Z analog conversion unit (hereinafter referred to as a DZA conversion unit) 301 and 302, a TPC (Transmit Power Control) amplification unit 303, a power amplifier. (Power Amplifier) 304, coupler 305, transmission level monitor circuit 306, analog / digital converter (hereinafter referred to as AZD converter) 307, antenna 320, and the like.
  • a signal processing unit 300 includes a signal processing unit 300, a digital Z analog conversion unit (hereinafter referred to as a DZA conversion unit) 301 and 302, a TPC (Transmit Power Control) amplification unit 303, a power amplifier. (Power Amplifier) 304, coupler 305, transmission level monitor circuit 306, analog / digital converter (hereinafter referred to as AZD converter) 307, antenna 320, and the like.
  • the main signal generated by the signal processing unit 300 is converted into an analog signal by the DZA conversion unit 301 and sent to the TPC amplification unit 303.
  • This analog signal is quadrature modulated by the TPC amplifier 303 (orthogonal modulator 311), converted to a radio frequency (frequency converter 31 2), amplified by the power amplifier 304, and then via the coupler 305. Transmitted from antenna 320.
  • the transmission level of the signal transmitted from antenna 320 may not be the power level expected by signal processing unit 300. This is because the main signal is subjected to gain fluctuations from the analog circuit that constitutes the wireless transmission device. In order to eliminate such a phenomenon, the wireless transmission device performs the following automatic gain correction.
  • Transmission level monitor circuit 306 receives a signal obtained by branching modulated wave signal to be transmitted from antenna 320 by cutter 305, and sequentially generates a transmission level feedback signal indicating the transmission level of this signal. .
  • the transmission level monitor circuit 306 includes a diode detection circuit and the like for detecting the transmission level, and outputs a transmission level feedback signal according to the characteristics shown in FIG. 16 of the detection circuit.
  • Figure 16 shows the transmission level mode. The relationship between the transmission level of the signal input to the Utah circuit 306 (dBm (absolute power with 1 milliwatt (mW) as the reference (0))) and the transmission level feedback signal output from the transmission level monitor circuit 306 is shown.
  • the transmission level feedback signal output from the transmission level monitor circuit 306 is converted into a digital signal by the AZD conversion unit 307 and fed back to the signal processing unit 300. Since the transmission level monitor circuit 306 is configured so that the gain fluctuation due to the operating environment conditions is extremely small, a transmission level feedback signal based on a transmission level substantially the same as the transmission level at the actual antenna end is used. Can be generated.
  • the signal processing unit 300 includes a signal generation unit 330, an automatic gain correction unit 331, and the like.
  • the automatic gain correction unit 331 receives this transmission level feedback signal and checks whether the transmission signal has a desired transmission level (output power setting value). In this inspection, automatic gain correction section 331 obtains the average transmission power from the transmission level feedback signal received within a predetermined time according to the characteristics shown in FIG. 16, and compares this average transmission power with the output power setting value. .
  • the automatic gain correction unit 331 outputs a predetermined TPC signal for controlling the variable attenuator 313 according to the inspection result.
  • the variable attenuator 313 adjusts the signal level output from the power amplifier 304 (gain correction) according to the analog signal (control voltage) obtained by converting the TPC signal by the DZ A conversion unit 302. As a result, the signal output from the power amplifier 304 becomes a signal having a desired transmission level and is transmitted from the antenna 320.
  • the automatic gain correction unit 331 described above when the average transmission power obtained from the transmission level feedback signal is smaller than the output power setting value, the gain (analog gain) of the TPC amplification unit 303 ) Is increased, and when the average transmission power obtained from the transmission level feedback signal is larger than the output power setting value, a TPC signal is generated so that the gain of the TPC amplification section 303 is decreased.
  • the automatic gain correction unit 331 generates a TPC signal based on the feedback signal from the transmission level motor circuit 306 so that the transmission level of the signal to which the antenna force is transmitted becomes a desired power level.
  • the transmission level feed generated from the main signal gain-corrected by the TPC signal The expected value of the transmission level indicated by the back signal changes according to the average power (DZA input power) of the main signal input to the DZA converter 301. This is apparent from the fact that the average output power at the antenna 320 end changes according to the average power of the main signal input to the D ZA converter 301 even when the analog circuit such as the variable attenuator 313 has a constant gain. It is.
  • each frame consists of one reference channel and five data channels.
  • the reference channel is time-multiplexed with the data channel at regular intervals, and is used for channel estimation and channel quality information measurement.
  • the signal generation unit 330 of the signal processing unit 300 generates such a radio frame and sends it to the DZA conversion unit 301 as a main signal.
  • a conventional radio transmission apparatus may set the analog gain update cycle, that is, the TPC signal update cycle to one frame interval. is there.
  • FIG. 18 is a conceptual diagram when one frame interval is set as the TPC signal update period.
  • the above-described wireless transmission device calculates the average transmission power from the transmission level feedback signal during the update period, and executes gain correction according to the average transmission power.
  • the power level of the transmission signal is set to an appropriate power by the automatic gain correction function. Can keep.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-221700
  • the transmission power is often varied for each channel in the frame.
  • the TPC signal is updated at the update cycle shown in Fig. 18, so the TPC signal is not generated based on the power value approximating the actual transmission level. Because.
  • the conventional wireless transmission device needs to prevent the automatic gain correction function from operating. That is, it is necessary to switch whether or not to operate the gain correction function depending on whether the transmission power is constant or varied in a frame.
  • An object of the present invention is to provide a radio transmission apparatus that performs highly accurate transmission power control and a transmission power control method thereof.
  • the present invention adopts the following configuration in order to solve the above-described problems. That is, the present invention relates to a wireless transmission apparatus that transmits a transmission signal by varying the transmission level of the transmission signal, and a detection means for detecting the transmission level of the transmission signal and an expectation of the transmission level of the transmission levels detected by the detection means.
  • a calculation unit that calculates a gain correction value using a transmission level in a section in which the value is constant; and a correction unit that performs gain correction of a transmission signal based on the gain correction value.
  • a transmission level for example, transmission power or transmission voltage
  • the expected value of the transmission level is constant among the detected transmission levels.
  • the gain correction value is calculated using the transmission level of the signal. Then, the gain correction of the transmission signal is executed based on the gain correction value.
  • the expected value of the transmission level is a value that can be obtained by a signal processing unit or the like that determines the fluctuation of the transmission level, and is an ideal value when there is no gain fluctuation of an analog circuit or the like.
  • the present invention provides at least a reference channel and a control channel among the plurality of channels when the transmission signal is multiplexed with a plurality of channels as a section in which the expected value of the transmission level is constant. One section may be used.
  • the transmission level of the reference channel and the control channel is often kept constant. Therefore, using the transmission level of such a channel makes it appropriate even if the transmission level fluctuates. Automatic gain correction can be performed.
  • the calculation means includes an average calculation means for calculating an average transmission level in a section in which an expected value of the transmission level is constant, and a transmission level in a section in which the expected value of the transmission level is constant. Holding means for holding an average expected value; comparing means for calculating a difference between the average transmission level and the average expected value; and correcting means for correcting the gain correction value using the difference obtained by the comparing means as a change amount; Even if it is realized to be equipped with. Further, the correction means may use a predetermined correction value corresponding to the difference obtained by the comparison means as the change amount.
  • the average calculating means may use a symbol time as a section for calculating the average transmission level. This makes it possible to calculate a substantially uniform average transmission level even when the frame configuration includes a guard interval or the like in the multiplexed channel.
  • the present invention may be a method for causing a computer to realize any one of the functions described above. Further, the present invention may be a program or a circuit for realizing any of the above functions. In the present invention, such a program may be recorded on a computer-readable storage medium.
  • FIG. 1 is a functional configuration diagram of a signal processing unit in the first embodiment.
  • FIG. 2 is a diagram showing a radio frame format in the first embodiment.
  • FIG. 3 is a diagram showing an example of output power setting values in the first embodiment.
  • FIG. 4 is a diagram showing an example of the DZA input power value of the main signal in the first embodiment.
  • FIG. 5 is a data transition diagram showing gain correction in the first embodiment.
  • FIG. 6 is a diagram illustrating a functional configuration example of a signal processing unit in the second embodiment.
  • FIG. 7 is a diagram showing an example of output power setting values in the second embodiment.
  • FIG. 8 is a diagram showing an example of the DZA input power value of the main signal in the second embodiment.
  • FIG. 9 is a data transition diagram showing gain correction in the second embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of a signal processing unit in the third embodiment.
  • FIG. 11 is a diagram showing an example of the DZA input power value of the main signal.
  • FIG. 12 is a diagram showing a radio frame format.
  • FIG. 13 is a diagram showing an average feedback value calculation interval.
  • FIG. 14 is a data transition diagram showing gain correction in the third modified example.
  • FIG. 15 is a diagram showing a functional configuration of a conventional wireless transmission device.
  • FIG. 16 is a diagram showing a correlation characteristic between a transmission level and a transmission level feedback signal.
  • FIG. 17 is a diagram showing a radio frame format.
  • FIG. 18 is a conceptual diagram in which one frame interval is set as a TPC signal update period.
  • FIG. 19 is a diagram showing average transmission power that does not vary within a frame.
  • FIG. 20 is a diagram showing average transmission power that fluctuates within a frame.
  • the wireless transmission device in the first embodiment includes the same functional units as those of the conventional wireless transmission device shown in FIG. That is, the radio transmission apparatus according to the first embodiment includes a signal processing unit 300, DZ A conversion units 301 and 302, a TPC amplification unit 303, a power amplifier 304, a coupler 305, and a transmission level monitor circuit 306 (in the detection means of the present invention). Equivalent), AZD converter 307, antenna 320, etc.
  • the TPC amplification unit 303 includes an orthogonal modulation unit 311, a frequency conversion unit 312, and a variable attenuator 313.
  • the signal processing unit 300 executes a program stored in the memory with a DSP (Digital Signal Processor). It is a functional unit that realizes digital signal processing by being executed on a processor such as.
  • FIG. 1 is a diagram illustrating a functional configuration example of a signal processing unit in the first embodiment.
  • the signal processing unit 300 in the first embodiment includes a signal generation unit 330 and an automatic gain correction unit 331.
  • the automatic gain correction unit 331 includes an expected value calculation unit 101, buffers 103 and 111. , Average transmission power calculation section 113, correction value calculation section 120, addition sections 121 and 123, and the like.
  • each of these functional units will be described.
  • the signal generator 330 generates a main signal having the radio frame format shown in FIG. 2, for example.
  • FIG. 2 is a diagram showing a radio frame format in the first embodiment. In the format shown in Fig. 2, reference channels are arranged at two locations in one frame.
  • the signal generation unit 330 sends the generated main signal to the DZA conversion unit 301.
  • the signal generation unit 330 notifies the automatic gain correction unit 331 of the sending timing.
  • the reference signal is a signal arranged in the reference channel in the format shown in FIG.
  • the signal generation unit 330 notifies the automatic gain correction unit 331 of the transmission timing of the reference signal arranged at the head of each frame. Note that the signal generator 330 may notify the transmission timing of the other reference signal!
  • the power of using the radio frame format shown in Fig. 2 as an example is not limited to such a radio frame format.
  • a radio frame format such as the example shown in FIG. 17 may be used.
  • the signal generation unit 330 further notifies the automatic gain correction unit 331 of the power level (hereinafter referred to as DZA input power value) and the output power setting value of the main signal sent to the DZA conversion unit 301.
  • the output power setting value is an expected value of the transmission level of the signal transmitted from the antenna 320.
  • the expected value calculation unit 101 receives the output power setting value from the signal generation unit 330 and calculates an expected value of the transmission level feedback signal corresponding to the output power setting value related to the reference signal.
  • the expected value calculation unit 101 obtains an expected value of the transmission level feedback signal using the correlation characteristic (see FIG. 16) between the transmission level and the transmission level feedback signal.
  • the calculated expected value is sent to the buffer 103.
  • the expected value calculation unit 101 corresponds to the holding means of the present invention.
  • the nofers 103 and 111 are holding units for delaying received data for a predetermined time and sending them to other functional units.
  • the nofer 103 delays the expected value of the transmission level feedback signal sent from the expected value calculation unit 101 by a predetermined time and sends it to the correction value calculation unit 120.
  • the notch 111 delays the reference signal transmission timing notification sent from the signal generation unit 330 by a predetermined time and sends it to the average transmission power calculation unit 113.
  • the delay time given by each buffer is the time from when the main signal is transmitted from the signal processing unit 300 until the transmission level feedback signal corresponding to the main signal reaches the automatic gain correction unit 331. Feedback time. With this delay time, the correction value calculation unit 120 (to be described later) can compare the transmission level related to the main signal at the time of output from the signal processing unit 300 with the transmission level at the end of the antenna 320. .
  • the average transmission power calculation unit 113 receives the transmission level feedback signal generated by the transmission level monitor circuit 306 and digitized by the AZD conversion unit 307, and the transmission timing of the reference signal delayed by the feedback time by the buffer 111. .
  • the average transmission power calculation unit 113 extracts a feedback value related to the reference signal for the transmission level feedback signal power that is sequentially input based on the transmission timing of the reference signal.
  • Average transmission power calculation section 113 calculates an average feedback value by averaging the feedback values related to the extracted reference signal in the reference channel section.
  • the calculated average feedback value corresponds to the average transmission power of the reference signal.
  • the average feedback value is sent to the correction value calculation unit 120.
  • Average transmission power calculator 11 3 corresponds to the average calculating means of the present invention.
  • the average feedback value is calculated by referring to only the reference signal portion of the feedback signal sent from the transmission level monitor circuit 306.
  • the reference channel is a channel in which data used for demodulating and decoding data in other channels (data channel, etc.) is placed and is often maintained at a constant transmission level. is there.
  • the present invention is not limited to the use of only the reference channel (described later as a modification).
  • Correction value calculation section 120 compares the expected value of the transmission level feedback signal sent from notch 103 with the average feedback value sent from average transmission power calculation section 113 to calculate a correction value.
  • the correction value calculation unit 120 corresponds to the calculation means, comparison means, and correction means of the present invention.
  • the correction value calculation unit 120 adds a value obtained by subtracting the average feedback value to the expected value force to the previously calculated correction value, thereby obtaining a new correction value.
  • the correction value calculated in this way is converted into a power value corresponding to the value and sent to the adding unit 123.
  • the correlation characteristic between the transmission level and the transmission level feedback signal shown in FIG. 16 is used.
  • the adding unit 121 also subtracts the DZA input power value from the output power set value power, and sends the calculated power value to the adding unit 123.
  • Adder 123 adds the power value sent from adder 121 and the correction value sent from correction value calculator 120, and outputs a TPC signal corresponding to the calculated power value.
  • This output TPC signal is used for gain control of the TPC amplifier 303. Thereafter, the signal whose power has been corrected according to the TPC signal is branched by the coupler 305, and a transmission level feedback signal is generated by the transmission level monitor circuit 306 according to the branched signal and fed back to the signal processing unit 300. Is done.
  • the adder 123 corresponds to the correcting means of the present invention.
  • FIGS. 3, 4 and 5 are used for the operation example of the wireless transmission device in the first embodiment. And explain.
  • FIG. 3 is a diagram showing an example of the output power setting value in the first embodiment
  • FIG. 4 is a diagram showing an example of the DZA input power value of the main signal in the first embodiment
  • FIG. It is a data transition figure showing gain correction in one embodiment.
  • the output power set value and the DZA input power value are determined so that the analog gain in the frame is constant in the configuration.
  • each broken line shown in the vertical axis direction in FIGS. 3 and 4 indicates each channel section of the radio frame format shown in FIG.
  • the data transition shown in Fig. 5 is an example when the update cycle of the analog gain, that is, the update cycle of the TPC signal is set to one frame interval as shown in Fig. 18.
  • the signal generation unit 330 outputs the main signal to the DZA conversion unit 301, and sends the DZA input power value of the reference signal arranged in the first reference channel of each frame of the main signal to the addition unit 121. Then, the output power set value of the reference signal is sent to the adding unit 121 and the expected value calculating unit 101, and the output timing of the reference signal is notified to the buffer 111. At this time, 20 (dBm) is sent as the output power setting value for the first reference channel of the leftmost frame in FIG. In addition, 3 (dB) is sent as the DZA input power value for the first reference channel in the leftmost frame in Fig. 4.
  • FIG. 5 shows a state in which the data calculated by each function unit in the automatic gain correction unit 331 is controlled and transitioned according to the average feedback value calculated by the average transmission power calculation unit 113 (from the upper part of the figure to the lower part of the figure). Showing the transition).
  • Each section delimited by a dashed line shown in FIG. 5 represents one frame interval (analog gain update cycle) in FIGS.
  • the numerical values represented as “DZA input power value” and “output power set value” in FIG. 5 indicate data sent from the signal generation unit 330 as described above, and “expected value”.
  • the numerical value indicated as “” indicates the power value corresponding to the expected value of the transmission level feedback signal calculated by the expected value calculation unit 101, and the numerical value expressed as “correction value” is calculated by the correction value calculation unit 120.
  • the numerical value indicated as “TPC set value” indicates the set power value corresponding to the TPC signal to be output from the adder 123.
  • the numerical value represented as “average transmission power” indicates a power value corresponding to the average feedback value of only the reference signal calculated by the average transmission power calculation unit 113.
  • the correction value output from the correction value calculation unit 120 is O (dB) as the initial value.
  • the TPC signal output from the adder 123 corresponds to a power value (no correction) obtained by subtracting the DZA input power value (3 (dB)) from the output power setting value (20 (dBm)) ( 17 (dB)).
  • a signal whose gain is controlled by the TPC amplification section 303 is transmitted from the antenna by this TPC signal, while a transmission level feedback signal indicating the transmission power of the signal is sequentially fed back to the average transmission power calculation section 113.
  • the expected value calculation unit 101 calculates the expected value of the transmission level feedback signal as 20 (dBm) based on the output power setting value (20 (dBm)) and is delayed by the buffer 103.
  • average transmission power calculation section 113 calculates the average feedback value of the reference signal among the fed back transmission level feedback signals.
  • the power value (average transmission power) corresponding to this average feedback value is calculated as 18 (dBm).
  • the calculated average transmission power is sent to the correction value calculation unit 120.
  • Correction value calculation section 120 calculates the expected value (20
  • the correction value calculation unit 120 subtracts the average transmission power (18 (d Bm)) from the expected value (20 (dBm)) of the transmission level feedback signal, and further obtains the obtained power value (2 (dB)). It is added to the previous correction value (here, 0 as the initial value) to obtain a new correction value (2 (dB)).
  • This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121.
  • a TPC signal corresponding to the calculated power value (19 (dB)) is generated and sent to the TPC amplifier 303.
  • TPC signal corresponding to the previously calculated power value (19 (dB)) is output during
  • correction value calculation section 120 a value obtained by subtracting the average transmission power (21 (dBm)) from the expected value (20 (dBm)) of the previously calculated transmission level feedback signal (-1 (dB) ) Is added to the previous correction value (2 (dB)) to obtain the correction value (1 (dB)).
  • This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121.
  • a TPC signal corresponding to the calculated power value (18 (dB)) is generated and sent to the TPC amplifier 303.
  • a value (0) obtained by subtracting the average transmission power (20 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously is the previous value.
  • the correction value (l (dB)) is added to obtain the correction value (l (dB)).
  • This correction value is added by the adder 123 with the power value (11 (dB)) sent from the adder 121.
  • a TPC signal corresponding to the power value (12 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
  • the automatic gain correction device adjusts the transmission level (power or voltage) of the signal transmitted from the antenna 320 to an appropriate power level.
  • the function is executed.
  • the signal level to be transmitted from the antenna 320 is also detected by the transmission level monitor circuit 306, and a transmission level feedback signal indicating the transmission level is fed back to the signal processing unit 300.
  • the signal processing unit 300 calculates an average feedback value obtained by averaging the transmission level feedback signals related to the reference signal, and determines a transmission power correction value based on the average feedback value related to the reference signal. In this determination, a new correction value is obtained by using the difference between the expected value of the transmission level feedback signal corresponding to the output power setting value, which is the expected value of the transmission level of the signal at the antenna end, and the average feedback value of the reference signal as a change amount. It is determined. Thereafter, the TPC signal reflecting this correction value is sent to the TPC amplifying unit 303, and the transmission level of the main signal is adjusted according to this TPC signal.
  • the average transmission power of only the reference signal transmitted at a constant transmission power among the transmission signals is calculated, and the transmission power is calculated based on the average transmission power.
  • the correction value is determined, and the transmission level of the main signal is adjusted based on the correction value.
  • FIG. 6 is a diagram illustrating a functional configuration example of the signal processing unit in the second embodiment.
  • the wireless transmission device in the second embodiment is obtained by modifying the automatic gain correction unit 331 of the signal processing unit 300 in the first embodiment.
  • Other than the modified automatic gain correction unit 331 is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • the expected value calculation unit 101 In the automatic gain correction unit 331 in the first embodiment, the expected value calculation unit 101 expects the transmission level feedback signal based on the output power setting value related to the reference signal.
  • the expected value calculation unit 101 in the second embodiment calculates the expected value based on the power value obtained by adding the output power setting value and the DZA input power value with respect to the reference signal.
  • the adding unit 123 adds the output power setting value and the correction value sent from the correction value calculating unit 120, and generates a TPC signal corresponding to the obtained power value.
  • FIG. 7 is a diagram showing an example of the output power setting value in the second embodiment
  • FIG. 8 is a diagram showing an example of the DZA input power value of the main signal in the second embodiment
  • FIG. It is a data transition diagram showing gain correction in two embodiments.
  • Each broken line shown in the vertical axis direction in FIGS. 7 and 8 indicates a section of each channel in the radio frame format shown in FIG.
  • the data transition shown in FIG. 9 is an example when the analog gain update cycle, that is, the TPC signal update cycle is set to one frame interval as shown in FIG.
  • FIG. 9 shows a state of transition controlled (transition from the upper part of the figure to the lower part of the figure) according to the average feedback value calculated by the average transmission power calculation unit 113.
  • the meanings of the numerical values in FIG. 9 are the same as those in FIG.
  • the DZA input power value (+3 (dB)) and the output power setting value (1) for the reference signal placed at the beginning of the leftmost frame in FIGS. 7 (dBm)) is input to the automatic gain correction unit 331. Also, the correction value output from the correction value calculation unit 120 is 0 (dB) as an initial value.
  • the TPC signal output from the adding unit 123 becomes (17 (dBm)) corresponding to the output power setting value (17 (dBm)).
  • a signal whose gain is controlled by the TPC amplification unit 303 is transmitted from the antenna by the TPC signal, while a transmission level feedback signal corresponding to the transmission power of the signal is sequentially fed back to the average transmission power calculation unit 3.
  • the expected value calculation unit 101 determines the expected value of the transmission level feedback signal based on the added power value of the output power setting value (17 (dBm)) and the DZA input power value (+3 (dB)). Calculated as 20 (dBm) and delayed by the buffer 103.
  • the DZA input power value (+3 (dB)) and the output power setting value (17 (dBm)) related to the reference signal arranged at the head of the second frame from the left are input to the automatic gain correction unit 331.
  • Average transmission power calculation section 113 calculates the average feedback value of the reference signal among the fed back transmission level feedback signals. Here, it is assumed that the power value (average transmission power) corresponding to this average feedback value is calculated as 18 (dBm). The calculated average transmission power is sent to the correction value calculation unit 120.
  • Correction value calculation section 120 calculates the expected value (20
  • the correction value calculation unit 120 subtracts the average transmission power (18 (d Bm)) from the expected value (20 (dBm)) of the transmission level feedback signal, and further obtains the obtained power value (2 (dB)). It is added to the previous correction value (here, 0 as the initial value) to obtain a new correction value (+2 (dB)). This correction value is added to the output power setting value (17 (dBm)) by the adding unit 123.
  • a TPC signal corresponding to the power value (19 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
  • correction value calculation section 120 a value obtained by subtracting the average transmission power (21 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously ( ⁇ 1 (dB) ) Is added to the previous correction value (2 (dB)) to obtain the correction value (+ l (dB)).
  • This correction value is added to the output power set value (17 (dBm)) by the adding unit 123.
  • a TPC signal corresponding to the power value (18 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
  • correction value calculation unit 120 a value (0) obtained by subtracting the average transmission power (20 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously is the previous value.
  • the correction value (l (dB)) is added to obtain the correction value (+ l (dB)).
  • This correction value is added to the output power set value (11 (dBm)) by the adding unit 123.
  • a TPC signal corresponding to the power value (12 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
  • the TPC signal is generated based on the power value obtained by correcting the output power set value by the correction value calculated by the correction value calculation unit 120;
  • the expected value calculation unit 101 is different from the first embodiment in that the expected value calculation unit 101 calculates the expected value of the transmission level feedback signal corresponding to the added value of the output power setting value and the DZA input power value.
  • a transmission power correction value is determined based on the average transmission power of only the reference signal, and the main value is determined based on the correction value. Since the signal transmission level is adjusted, automatic gain correction can be appropriately operated even when the transmission power is varied within the frame.
  • FIG. 10 is a diagram illustrating a functional configuration example of the signal processing unit in the third embodiment.
  • the wireless transmission device in the third embodiment is obtained by further modifying the automatic gain correction unit 331 in the second embodiment. Since components other than the modified automatic gain correction unit 331 are the same as those in the first embodiment and the second embodiment, description thereof is omitted here.
  • the reference The correction value of the transmission power was determined by comparing the average transmission power fed back for the signal with the expected value of the transmission level of the reference signal.
  • a transmission power correction value is determined based on a power value calculated by a predetermined weighted average for a predetermined section regardless of the channel configuration in the frame. Is done.
  • a functional unit different from the second embodiment in the automatic gain correction unit 331 in the third embodiment will be described.
  • the expected value calculation unit 101 receives the output power setting value and the DZA input power value from the signal generation unit 330. At this time, it is assumed that the DZA input power value received by the expected value calculation unit 101 changes as shown in FIG. FIG. 11 is a graph showing an example of the DZA input power value of the main signal. In addition, the expected value calculation unit 101 receives a predetermined timing notification from the signal generation unit 330 together with the above-described data. The vertical broken lines in the graph of FIG. 11 indicate the time for receiving the timing notification. This may indicate each channel section or may indicate other timing.
  • Expected value calculation section 101 calculates the weighted average depending on the DZA input power value and its transmission time in a predetermined time (between time T1 and time T7 shown in FIG. 11) according to the timing notification.
  • the expected value is calculated by adding the output power value to the output power setting value.
  • the output power setting value a constant 20 (dBm) is input, and the time interval of timing notification is constant.
  • the expected value calculation unit 101 receives the timing notification and the DZA input power value at the following times.
  • Timing T1 DZ A input power value (0 (dB))
  • Timing T2 DZ A input power value (6 (dB))
  • Timing T3 DZ A input power value (6 (dB))
  • Timing T5 DZ A input power value (3 (dB))
  • Timing T6 DZ A input power value (3 (dB)
  • the expected value calculation unit 101 calculates the expected value V based on the weighted average between the timing notification at time T1 and the timing notification at time T7 as follows.
  • the timing interval (1: T1) is weighted with respect to the DZ A input power value (O (dB)), and the timing interval (2: T2 and T3) with respect to the DZA input power value (one 6 (dB)).
  • the timing interval (3: (4— ⁇ 7) is weighted to the DZA input power value (-3 (dB)).
  • the calculated expected value is delayed by the buffer 103 and then sent to the correction value calculating unit 120.
  • the average transmission power calculation unit 113 averages the sequentially input transmission level feedback signals within a predetermined time (between time T1 and time T7 shown in FIG. 11) according to the timing notification. Calculate the value.
  • the calculated average feedback value is sent to the correction value calculation unit 120.
  • the average feedback value is calculated with reference to the signal within a predetermined time among the feedback signals sent from the transmission level monitor circuit 306.
  • an expected value obtained by weighted average of the DZA input power value and its transmission time within a predetermined time and the average of the transmission level feedback signal within the predetermined time Correct the transmit power correction value by comparing it with the feedback value. This is to perform weighting calculation processing so as to be able to cope with fluctuations in transmission power within a predetermined time.
  • automatic gain correction can be appropriately operated even in a configuration in which transmission power is varied within a frame. Further, according to the wireless transmission device in the third embodiment, an appropriate transmission power correction value can be calculated from data within a predetermined time regardless of the channel configuration in the frame, etc. Design becomes possible.
  • the average transmission power calculation unit 113 transmits data related to the reference signal among the transmission level feedback signals.
  • the force reference signal that was used to calculate the average feedback value using only the control signal only the control signal placed in the control channel may be used, or a combination of both may be used. May be.
  • a radio frame as shown in FIG. 12 is used.
  • FIG. 12 is a diagram showing a radio frame format composed of a reference channel, a control channel, and a data channel.
  • the signal generation unit 330 sends the generated main signal to the DZA conversion unit 301, and sets the transmission timing of the control signal of the main signal.
  • the automatic gain correction unit 331 may be notified.
  • average transmission power calculation section 113 extracts the feedback value related to the control signal for the transmission level feedback signal power that is sequentially input at the transmission timing of this control signal. If the feedback value for the extracted control signal is averaged over the control channel interval, the average feedback value corresponding to the average transmission power of the control signal should be calculated.
  • a reference signal and a control signal may be used in combination.
  • the signal generation unit 330 may notify the automatic gain correction unit 331 of the transmission timing of the reference signal and the control signal of the main signal. Then, the correction value is corrected by calculating the expected value and the average feedback value within the time of the combination.
  • correction value calculation section 120 changes the difference between the expected value of the transmission level feedback signal calculated by expected value calculation section 101 and the average feedback value sent from average transmission power calculation section 113 as it is.
  • a new correction value was calculated by adding it to the previously calculated correction value as an amount, but a predetermined change amount corresponding to the difference value may be determined in advance.
  • the amount of change is set to 0.5 (dB), and the expected value of the transmission level feedback signal is averaged.
  • the change amount is set to 10.5 (dB)
  • the change amount is set to O (dB).
  • Such a definition may be held in advance by the correction value calculation unit 120.
  • this definition table held by the correction value calculation unit 120 is referred to as a correction value change amount table.
  • FIG. 14 is a data transition diagram showing gain correction in the third modification.
  • the correction value calculation unit 120 receives the expected value (20 (dBm)) of the transmission level feedback signal calculated earlier and the average transmission power (18 (d Bm)), and compares them. The correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal is larger than the average transmission power (18 (dBm))! / The amount of change in the correction value corresponding to this is determined as 0.5 (dB). The correction value calculation unit 120 calculates the change amount to the previous correction value (here, 0 as an initial value) to obtain a new correction value (0.5 (dB)). This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121. A TPC signal corresponding to the power value (17.5 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
  • the correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal is smaller than the average transmission power (21 (dBm)), and the correction value change amount table power is determined accordingly. Determine the amount of change in the correction value—0.5 (dB). The correction value calculation unit 120 adds the amount of change to the previous correction value (0.5 (dB)) to obtain a new correction value (0). As a result, a TPC signal output from the adder 123 is generated as a TPC signal corresponding to the power value (17 (dB)) (no correction) sent from the adder 121 and sent to the TPC amplifier 303. .
  • the correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal calculated previously and the average transmission power (20 (dBm)) are the same value, and the correction value Change amount table power Change amount 0 (no change) is determined accordingly. The Since it has been determined that there is no change amount, the correction value calculation unit 120 uses the previous correction value (0) as the new correction value (0).
  • the definition in the correction value change amount table held by the correction value calculation unit 120 is not limited to the above example.
  • the expected value of the transmission level feedback signal is also obtained by subtracting the average feedback value (difference value) greater than the upper limit value (l (dB)). )), The difference value is smaller than the lower limit value (-1 (dB)), V, and the amount of change (-1 (dB)), the difference value is less than the upper limit value (+1 (dB)) and If the value is lower than the lower limit (1 1 (dB)), it may be defined that there is no change.
  • the amount of change, the upper limit value, and the lower limit value in this example may be variable values according to the circuits constituting the device.
  • the average transmission power calculation unit 113 in the above-described embodiment receives a reference signal transmission timing, and extracts the feedback value related to the reference signal from the transmission level feedback signal sequentially input according to the timing shown in FIG. In this way, even if CP (Cyclic Prefix) is added in the reference channel, it is possible to cope with it.
  • CP Cyclic Prefix
  • the signal after the CP is added can be any time point within the CP time. Even if the original symbol time length is extracted, a substantially similar average feedback value can be calculated. For example, even if the average transmission power calculation unit 113 averages the feedback value in the time interval (1), (2), and (3) shown in FIG. Can be calculated.
  • FIG. 13 is a diagram showing an average feedback value calculation interval.
  • the average feedback value production section in the average transmission power calculation unit 113 does not need to be strictly adjusted, and can be realized with a simple circuit configuration.

Abstract

A radio transmitting apparatus and a transmission power control method thereof wherein the transmission power control is performed with high accuracy. A radio transmitting apparatus, which varies the transmission levels of transport signals for transmission, comprises a determining means that determines the transmission levels of transport signals; a calculating means that uses a part, for which the expected value of the transmission level is constant, of the transmission levels determined by the determining means to calculate a gain correction value; and a correcting means that performs, based on the gain correction value, a gain correction of the transport signal.

Description

明 細 書  Specification
無線送信装置及び送信電力制御方法  Radio transmission apparatus and transmission power control method
技術分野  Technical field
[0001] 本発明は、送信電力制御を行う無線送信装置及びその送信電力制御方法に関す る。  The present invention relates to a radio transmission apparatus that performs transmission power control and a transmission power control method thereof.
背景技術  Background art
[0002] 無線送信装置には、アンテナから送出される信号の送信レベルを所定の電カレべ ルに保っために自動利得補正機能を備えているものがある。図 15は、従来の無線送 信装置の機能構成を示すブロック図である。従来の無線送信装置は、図 15に示すよ うに、信号処理部 300、デジタル Zアナログ変換部(以降、 DZA変換部と表記する) 301及び 302、 TPC (Transmit Power Control)増幅部 303、パワーアンプ(Power A mplifier) 304、カップラ 305、送信レベルモニタ回路 306、アナログ/デジタル変換 部(以降、 AZD変換部と表記する) 307、アンテナ 320等を備えている。  [0002] Some wireless transmission devices have an automatic gain correction function in order to maintain a transmission level of a signal transmitted from an antenna at a predetermined power level. FIG. 15 is a block diagram showing a functional configuration of a conventional wireless transmission device. As shown in FIG. 15, a conventional wireless transmission apparatus includes a signal processing unit 300, a digital Z analog conversion unit (hereinafter referred to as a DZA conversion unit) 301 and 302, a TPC (Transmit Power Control) amplification unit 303, a power amplifier. (Power Amplifier) 304, coupler 305, transmission level monitor circuit 306, analog / digital converter (hereinafter referred to as AZD converter) 307, antenna 320, and the like.
[0003] 信号処理部 300で生成された主信号は、 DZA変換部 301によりアナログ信号に 変換され、 TPC増幅部 303へ送られる。このアナログ信号は、 TPC増幅部 303により 直交変調され (直交変調部 311)、無線周波数へ周波数変換され (周波数変換部 31 2)、パワーアンプ 304により増幅された後、カップラ 305を経由して、アンテナ 320か ら送出される。  [0003] The main signal generated by the signal processing unit 300 is converted into an analog signal by the DZA conversion unit 301 and sent to the TPC amplification unit 303. This analog signal is quadrature modulated by the TPC amplifier 303 (orthogonal modulator 311), converted to a radio frequency (frequency converter 31 2), amplified by the power amplifier 304, and then via the coupler 305. Transmitted from antenna 320.
[0004] このとき、アンテナ 320から送出される信号の送信レベルは、信号処理部 300が予 定する電力レベルとならない場合がある。これは、主信号が当該無線送信装置を構 成するアナログ回路から利得変動を受けるからである。このような現象を解消するた めに、当該無線送信装置は、以下のような自動利得補正を実行する。  At this time, the transmission level of the signal transmitted from antenna 320 may not be the power level expected by signal processing unit 300. This is because the main signal is subjected to gain fluctuations from the analog circuit that constitutes the wireless transmission device. In order to eliminate such a phenomenon, the wireless transmission device performs the following automatic gain correction.
[0005] 送信レベルモニタ回路 306は、アンテナ 320から送出されるべき変調波信号がカツ ブラ 305により分岐された信号を受け、逐次、この信号の送信レベルを示す送信レべ ルフィードバック信号を生成する。送信レベルモニタ回路 306は、送信レベルを検出 するためのダイオード検波回路等を備えており、当該検波回路の有する図 16に示す ような特性により送信レベルフィードバック信号を出力する。図 16は、送信レベルモ ユタ回路 306に入力される信号の送信レベル (dBm (lミリワット (mW)を基準 (0)とし た絶対電力) )と送信レベルモニタ回路 306から出力される送信レベルフィードバック 信号との関係を示した図である。送信レベルモニタ回路 306から出力された送信レ ベルフィードバック信号は、 AZD変換部 307によりデジタル信号に変換され、信号 処理部 300へフィードバックされる。なお、この送信レベルモニタ回路 306は、動作環 境条件による利得変動が極めて小さくなるように構成されるため、実際のアンテナ端 における送信レベルと略同一の送信レベルに基づいた送信レベルフィードバック信 号を生成することができる。 [0005] Transmission level monitor circuit 306 receives a signal obtained by branching modulated wave signal to be transmitted from antenna 320 by cutter 305, and sequentially generates a transmission level feedback signal indicating the transmission level of this signal. . The transmission level monitor circuit 306 includes a diode detection circuit and the like for detecting the transmission level, and outputs a transmission level feedback signal according to the characteristics shown in FIG. 16 of the detection circuit. Figure 16 shows the transmission level mode. The relationship between the transmission level of the signal input to the Utah circuit 306 (dBm (absolute power with 1 milliwatt (mW) as the reference (0))) and the transmission level feedback signal output from the transmission level monitor circuit 306 is shown. FIG. The transmission level feedback signal output from the transmission level monitor circuit 306 is converted into a digital signal by the AZD conversion unit 307 and fed back to the signal processing unit 300. Since the transmission level monitor circuit 306 is configured so that the gain fluctuation due to the operating environment conditions is extremely small, a transmission level feedback signal based on a transmission level substantially the same as the transmission level at the actual antenna end is used. Can be generated.
[0006] 信号処理部 300は、信号生成部 330及び自動利得補正部 331等を備える。この自 動利得補正部 331は、この送信レベルフィードバック信号を受け、送信信号が所望 の送信レベル(出力電力設定値)を有しているカゝ否かを検査する。この検査では、自 動利得補正部 331は、所定時間内に受けた送信レベルフィードバック信号から図 16 に示す特性に応じて平均送信電力を求め、この平均送信電力と出力電力設定値と を比較する。 [0006] The signal processing unit 300 includes a signal generation unit 330, an automatic gain correction unit 331, and the like. The automatic gain correction unit 331 receives this transmission level feedback signal and checks whether the transmission signal has a desired transmission level (output power setting value). In this inspection, automatic gain correction section 331 obtains the average transmission power from the transmission level feedback signal received within a predetermined time according to the characteristics shown in FIG. 16, and compares this average transmission power with the output power setting value. .
[0007] 自動利得補正部 331は、この検査結果に応じて、可変アツテネータ 313を制御する ための所定の TPC信号を出力する。可変アツテネータ 313は、この TPC信号が DZ A変換部 302により変換されたアナログ信号 (制御電圧)に応じて、パワーアンプ 304 から出力される信号レベルを調整する (利得補正する)。これにより、パワーアンプ 30 4から出力される信号は、所望の送信レベルを持つ信号となりアンテナ 320から送出 される。  [0007] The automatic gain correction unit 331 outputs a predetermined TPC signal for controlling the variable attenuator 313 according to the inspection result. The variable attenuator 313 adjusts the signal level output from the power amplifier 304 (gain correction) according to the analog signal (control voltage) obtained by converting the TPC signal by the DZ A conversion unit 302. As a result, the signal output from the power amplifier 304 becomes a signal having a desired transmission level and is transmitted from the antenna 320.
[0008] 上述の自動利得補正部 331は、具体的には、送信レベルフィードバック信号から求 められた平均送信電力が出力電力設定値よりも小さい場合には、 TPC増幅部 303 の利得 (アナログゲイン)を上げ、送信レベルフィードバック信号から求められた平均 送信電力が出力電力設定値よりも大きい場合には、 TPC増幅部 303の利得を下げ るように TPC信号を生成する。すなわち、自動利得補正部 331は、送信レベルモ- タ回路 306からのフィードバック信号に基づき、アンテナ力も送出される信号の送信 レベルが所望の電力レベルとなるように TPC信号を追従生成する。  [0008] Specifically, the automatic gain correction unit 331 described above, when the average transmission power obtained from the transmission level feedback signal is smaller than the output power setting value, the gain (analog gain) of the TPC amplification unit 303 ) Is increased, and when the average transmission power obtained from the transmission level feedback signal is larger than the output power setting value, a TPC signal is generated so that the gain of the TPC amplification section 303 is decreased. In other words, the automatic gain correction unit 331 generates a TPC signal based on the feedback signal from the transmission level motor circuit 306 so that the transmission level of the signal to which the antenna force is transmitted becomes a desired power level.
[0009] ここで、 TPC信号により利得補正された主信号から生成された送信レベルフィード バック信号が示す送信レベルの期待値は、 DZA変換部 301へ入力される主信号の 平均電力(DZA入力電力)に応じて変化する。これは、可変アツテネータ 313等の アナログ回路が一定の利得である場合でも、アンテナ 320端での出力平均電力が D ZA変換部 301に入力される主信号の平均電力に応じて変化することから明らかで ある。 [0009] Here, the transmission level feed generated from the main signal gain-corrected by the TPC signal The expected value of the transmission level indicated by the back signal changes according to the average power (DZA input power) of the main signal input to the DZA converter 301. This is apparent from the fact that the average output power at the antenna 320 end changes according to the average power of the main signal input to the D ZA converter 301 even when the analog circuit such as the variable attenuator 313 has a constant gain. It is.
[0010] ところで、従来の無線送信装置は、図 17に示すような無線フレームのフォーマットを 用いて無線通信する。図 17に示す例では、各フレームは、 1つのリファレンスチヤネ ルと 5つのデータチャネルからそれぞれ構成される。リファレンスチャネルは、データ チャネルに対して一定間隔で時間多重されており、チャネル推定やチャネル品質情 報測定に用いられる。信号処理部 300の信号生成部 330は、このような無線フレーム を生成し、主信号として DZA変換部 301へ送る。  [0010] Meanwhile, the conventional radio transmitting apparatus performs radio communication using a radio frame format as shown in FIG. In the example shown in Fig. 17, each frame consists of one reference channel and five data channels. The reference channel is time-multiplexed with the data channel at regular intervals, and is used for channel estimation and channel quality information measurement. The signal generation unit 330 of the signal processing unit 300 generates such a radio frame and sends it to the DZA conversion unit 301 as a main signal.
[0011] 従来の無線送信装置は、上述の自動利得補正を行いながらこのような無線フレー ムを送信する場合に、アナログゲインの更新周期、すなわち TPC信号の更新周期を 1フレーム間隔とする場合がある。図 18は、 1フレーム間隔を TPC信号の更新周期と した場合の概念図である。この場合に、上述の無線送信装置は、当該更新周期の間 の送信レベルフィードバック信号から平均送信電力を算出し、その平均送信電力に 応じた利得補正を実行する。  [0011] When transmitting such a radio frame while performing the automatic gain correction described above, a conventional radio transmission apparatus may set the analog gain update cycle, that is, the TPC signal update cycle to one frame interval. is there. FIG. 18 is a conceptual diagram when one frame interval is set as the TPC signal update period. In this case, the above-described wireless transmission device calculates the average transmission power from the transmission level feedback signal during the update period, and executes gain correction according to the average transmission power.
[0012] これにより、従来の無線送信装置は、フレーム内の各チャネルにおいて送信電力を 一定とする構成においては(図 19参照)、当該自動利得補正機能により送信信号の 電力レベルを適正な電力に保つことができる。  [0012] With this, in the configuration in which the conventional radio transmission apparatus has a constant transmission power in each channel in the frame (see FIG. 19), the power level of the transmission signal is set to an appropriate power by the automatic gain correction function. Can keep.
[0013] なお、本願発明に係る先行技術は、以下の文献で開示されているものがある。  [0013] There are some prior arts according to the present invention disclosed in the following documents.
特許文献 1:特開平 7— 221700号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-221700
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] しかしながら、現状では、図 20に示すように、フレーム内のチャネル毎に送信電力 を変動させる場合が多い。このような場合に、従来の無線送信装置では、実際の出 力信号の送信レベルを推定することが難しいため、当該自動利得補正機能が期待 通り動作しな 、と!/、う問題がある。図 20に示すようにフレーム内の各チャネルにお ヽ て送信電力が変動するにも関わらず、図 18に示すような更新周期で TPC信号を更 新することから、 TPC信号が実際の送信レベルに近似した電力値に基づ 、て生成さ れないからである。 However, at present, as shown in FIG. 20, the transmission power is often varied for each channel in the frame. In such a case, it is difficult for the conventional wireless transmission apparatus to estimate the transmission level of the actual output signal, and there is a problem that the automatic gain correction function does not operate as expected! For each channel in the frame as shown in Figure 20. Even though the transmission power fluctuates, the TPC signal is updated at the update cycle shown in Fig. 18, so the TPC signal is not generated based on the power value approximating the actual transmission level. Because.
[0015] よって、従来の無線送信装置では、このような場合には、自動利得補正機能を動作 させないようにする必要がある。すなわち、フレーム内で送信電力を一定とする場合 と変動させる場合とで当該利得補正機能を動作させるか否かを切り替える必要が生 ずる。  [0015] Therefore, in such a case, the conventional wireless transmission device needs to prevent the automatic gain correction function from operating. That is, it is necessary to switch whether or not to operate the gain correction function depending on whether the transmission power is constant or varied in a frame.
[0016] し力しながら、このようにフレーム内で送信電力を変動させる場合において利得補 正機能を動作させない場合には、アナログ回路等の利得変動を補正するものがない ため、送信電力精度が劣化するという問題が生じる。  However, if the gain correction function is not operated when the transmission power is varied in the frame in this way, there is no one that corrects the gain variation of the analog circuit or the like, and therefore the transmission power accuracy is improved. The problem of deterioration arises.
[0017] 本発明の目的は、高精度な送信電力制御を行う無線送信装置及びその送信電力 制御方法を提供することである。  An object of the present invention is to provide a radio transmission apparatus that performs highly accurate transmission power control and a transmission power control method thereof.
課題を解決するための手段  Means for solving the problem
[0018] 本発明は、上述した課題を解決するために以下の構成を採用する。即ち、本発明 は、送信信号の送信レベルを変動させて送信する無線送信装置に関し、送信信号 の送信レベルを検出する検出手段と、この検出手段により検出される送信レベルのう ち送信レベルの期待値が一定となる区間の送信レベルを用いて利得補正値を算出 する算出手段と、当該利得補正値に基づいて送信信号の利得補正を行う補正手段 とを備えるというものである。  The present invention adopts the following configuration in order to solve the above-described problems. That is, the present invention relates to a wireless transmission apparatus that transmits a transmission signal by varying the transmission level of the transmission signal, and a detection means for detecting the transmission level of the transmission signal and an expectation of the transmission level of the transmission levels detected by the detection means. A calculation unit that calculates a gain correction value using a transmission level in a section in which the value is constant; and a correction unit that performs gain correction of a transmission signal based on the gain correction value.
[0019] 本発明では、実際に送信される信号に関する送信レベル (例えば送信電力若しく は送信電圧)が検出され、その検出された送信レベルのうち送信レベルの期待値が 一定となる信号区間内の信号の送信レベルを用いて利得補正値が算出される。そし て、この利得補正値に基づいて送信信号の利得補正が実行される。ここで、送信レ ベルの期待値とは、送信レベルの変動を決定する信号処理部等にぉ 、て求め得る 値であり、アナログ回路等の利得変動を受けない場合の理想値である。  In the present invention, a transmission level (for example, transmission power or transmission voltage) relating to a signal that is actually transmitted is detected, and the expected value of the transmission level is constant among the detected transmission levels. The gain correction value is calculated using the transmission level of the signal. Then, the gain correction of the transmission signal is executed based on the gain correction value. Here, the expected value of the transmission level is a value that can be obtained by a signal processing unit or the like that determines the fluctuation of the transmission level, and is an ideal value when there is no gain fluctuation of an analog circuit or the like.
[0020] 従って、本発明によれば、無線フレーム内で送信レベルが変動される場合であって も、適切な自動利得補正を行うことができ、ひいては精度の高い送信電力制御を行う ことが可能となる。 [0021] また、本発明は、上記送信レベルの期待値が一定となる区間として送信信号が複 数のチャネルで多重化されている場合にそれら複数のチャネルのうちのリファレンス チャネル及びコントロールチャネルの少なくとも 1つの区間を用いるようにしてもよい。 [0020] Therefore, according to the present invention, even when the transmission level varies within a radio frame, it is possible to perform appropriate automatic gain correction, and thus to perform highly accurate transmission power control. It becomes. [0021] In addition, the present invention provides at least a reference channel and a control channel among the plurality of channels when the transmission signal is multiplexed with a plurality of channels as a section in which the expected value of the transmission level is constant. One section may be used.
[0022] 一般的に、リファレンスチャネルやコントロールチャネルは送信レベルが一定に保た れることが多いため、このようなチャネルの送信レベルを利用することで、送信レベル の変動が行われても適切な自動利得補正を行うことができる。  [0022] In general, the transmission level of the reference channel and the control channel is often kept constant. Therefore, using the transmission level of such a channel makes it appropriate even if the transmission level fluctuates. Automatic gain correction can be performed.
[0023] 本発明に係る上記算出手段は、送信レベルの期待値が一定となる区間の平均送 信レベルを算出する平均算出手段と、当該送信レベルの期待値が一定となる区間の 送信レベルの平均期待値を保持する保持手段と、当該平均送信レベルと前記平均 期待値との差を求める比較手段と、この比較手段により求められた差を変化量として 当該利得補正値を修正する修正手段とを備えるように実現するようにしてもょ 、。また 、この修正手段が、上記比較手段により求められた差に対応する所定の修正値を前 記変化量とするようにしてもよ 、。  [0023] The calculation means according to the present invention includes an average calculation means for calculating an average transmission level in a section in which an expected value of the transmission level is constant, and a transmission level in a section in which the expected value of the transmission level is constant. Holding means for holding an average expected value; comparing means for calculating a difference between the average transmission level and the average expected value; and correcting means for correcting the gain correction value using the difference obtained by the comparing means as a change amount; Even if it is realized to be equipped with. Further, the correction means may use a predetermined correction value corresponding to the difference obtained by the comparison means as the change amount.
[0024] また、上記平均算出手段は、上記平均送信レベルを算出する区間としてシンボル 時間を用いるようにしてもよい。これにより、多重化されるチャネル内にガードインター バル等を含むフレーム構成とした場合においても、略均一の平均送信レベルを算出 することができる。 [0024] The average calculating means may use a symbol time as a section for calculating the average transmission level. This makes it possible to calculate a substantially uniform average transmission level even when the frame configuration includes a guard interval or the like in the multiplexed channel.
[0025] なお、本発明は、以上の何れかの機能をコンピュータに実現させる方法であっても よい。また、本発明は、以上の何れかの機能を実現させるプログラムであってもよいし 、回路であってもよい。また、本発明は、そのようなプログラムをコンピュータが読み取 り可能な記憶媒体に記録してもよ 、。  Note that the present invention may be a method for causing a computer to realize any one of the functions described above. Further, the present invention may be a program or a circuit for realizing any of the above functions. In the present invention, such a program may be recorded on a computer-readable storage medium.
発明の効果  The invention's effect
[0026] 本発明によれば、高精度な送信電力制御を行う無線送信装置及びその送信電力 制御方法を実現することができる。  [0026] According to the present invention, it is possible to realize a radio transmission apparatus that performs highly accurate transmission power control and a transmission power control method thereof.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は第一実施形態における信号処理部の機能構成図である。 FIG. 1 is a functional configuration diagram of a signal processing unit in the first embodiment.
[図 2]図 2は第一実施形態における無線フレームフォーマットを示す図である。  FIG. 2 is a diagram showing a radio frame format in the first embodiment.
[図 3]図 3は第一実施形態における出力電力設定値の例を示す図である。 圆 4]図 4は第一実施形態における主信号の DZA入力電力値の例を示す図である FIG. 3 is a diagram showing an example of output power setting values in the first embodiment. [4] FIG. 4 is a diagram showing an example of the DZA input power value of the main signal in the first embodiment.
[図 5]図 5は第一実施形態における利得補正を示すデータ遷移図である。 FIG. 5 is a data transition diagram showing gain correction in the first embodiment.
[図 6]図 6は第二実施形態における信号処理部の機能構成例を示す図である。  FIG. 6 is a diagram illustrating a functional configuration example of a signal processing unit in the second embodiment.
[図 7]図 7は第二実施形態における出力電力設定値の例を示す図である。  FIG. 7 is a diagram showing an example of output power setting values in the second embodiment.
[図 8]図 8は第二実施形態における主信号の DZA入力電力値の例を示す図である  FIG. 8 is a diagram showing an example of the DZA input power value of the main signal in the second embodiment.
[図 9]図 9は第二実施形態における利得補正を示すデータ遷移図である。 FIG. 9 is a data transition diagram showing gain correction in the second embodiment.
[図 10]図 10は第三実施形態における信号処理部の機能構成例を示す図である。  FIG. 10 is a diagram illustrating a functional configuration example of a signal processing unit in the third embodiment.
[図 11]図 11は主信号の DZA入力電力値の例を示す図である。  FIG. 11 is a diagram showing an example of the DZA input power value of the main signal.
[図 12]図 12は無線フレームフォーマットを示す図である。  FIG. 12 is a diagram showing a radio frame format.
[図 13]図 13は平均フィードバック値算出区間を示す図である。  FIG. 13 is a diagram showing an average feedback value calculation interval.
[図 14]図 14は第三変形例における利得補正を示すデータ遷移図である。  FIG. 14 is a data transition diagram showing gain correction in the third modified example.
[図 15]図 15は従来の無線送信装置の機能構成を示す図である。  FIG. 15 is a diagram showing a functional configuration of a conventional wireless transmission device.
[図 16]図 16は送信レベルと送信レベルフィードバック信号との相関特性を示す図で ある。  FIG. 16 is a diagram showing a correlation characteristic between a transmission level and a transmission level feedback signal.
[図 17]図 17は無線フレームフォーマットを示す図である。  FIG. 17 is a diagram showing a radio frame format.
[図 18]図 18は 1フレーム間隔を TPC信号の更新周期とした場合の概念図である。  [FIG. 18] FIG. 18 is a conceptual diagram in which one frame interval is set as a TPC signal update period.
[図 19]図 19はフレーム内で変動しない平均送信電力を示す図である。 FIG. 19 is a diagram showing average transmission power that does not vary within a frame.
[図 20]図 20はフレーム内で変動する平均送信電力を示す図である。 FIG. 20 is a diagram showing average transmission power that fluctuates within a frame.
符号の説明 Explanation of symbols
300 信号処理部  300 Signal processor
301、 302 デジタル Zアナログ変換部(DZA変換部)  301, 302 Digital Z analog converter (DZA converter)
303 TPC増幅部  303 TPC amplifier
311 変調部  311 Modulator
312 周波数変換部  312 Frequency converter
323 可変アツテネータ  323 variable attenuator
304 パワーアンプ 305 カップラ 304 power amplifier 305 Coupler
306 送信レベルモニタ回路  306 Transmission level monitor circuit
307 アナログ Zデジタル変換部 (AZD変換部)  307 Analog Z digital converter (AZD converter)
320 アンテナ  320 antenna
330 信号生成部  330 Signal generator
331 自動利得補正部  331 Automatic gain correction unit
101 期待値算出部  101 Expected value calculator
103、 111 ノ ッファ  103, 111 noffer
120 補正値算出部  120 Correction value calculator
113 平均送信電力算出部  113 Average transmission power calculator
121、 123 加算部  121, 123 Adder
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面を参照して、本発明を実施するための最良の形態 (以下、実施形態とい う)に係る無線送信装置について説明する。以下の各実施形態の構成は例示であり 、本発明は以下の各実施形態の構成に限定されない。  Hereinafter, a radio transmission apparatus according to the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. The configuration of each of the following embodiments is an exemplification, and the present invention is not limited to the configuration of each of the following embodiments.
[0030] [第一実施形態]  [0030] [First embodiment]
本発明の第一実施形態における無線送信装置について、図面を参照して以下に 説明する。第一実施形態における無線送信装置は、図 15に示す従来の無線送信装 置と同様の機能部を備える。すなわち、第一実施形態における無線送信装置は、信 号処理部 300、 DZ A変換部 301及び 302、 TPC増幅部 303、パワーアンプ 304、 カップラ 305、送信レベルモニタ回路 306 (本発明の検出手段に相当する)、 AZD 変換部 307、アンテナ 320等を備える。また、 TPC増幅部 303は、直交変調部 311、 周波数変換部 312、可変アツテネータ 313を備える。  A wireless transmission device according to a first embodiment of the present invention will be described below with reference to the drawings. The wireless transmission device in the first embodiment includes the same functional units as those of the conventional wireless transmission device shown in FIG. That is, the radio transmission apparatus according to the first embodiment includes a signal processing unit 300, DZ A conversion units 301 and 302, a TPC amplification unit 303, a power amplifier 304, a coupler 305, and a transmission level monitor circuit 306 (in the detection means of the present invention). Equivalent), AZD converter 307, antenna 320, etc. The TPC amplification unit 303 includes an orthogonal modulation unit 311, a frequency conversion unit 312, and a variable attenuator 313.
[0031] 第一実施形態における無線送信装置は、信号処理部 300の構成が従来の無線送 信装置とは異なるため、以下に、信号処理部 300の構成について詳細説明する。他 の機能部については、背景技術の項で述べたとおりであるため、ここでは説明を省略 する。  [0031] Since the configuration of the signal processing unit 300 in the wireless transmission device in the first embodiment is different from that of the conventional wireless transmission device, the configuration of the signal processing unit 300 will be described in detail below. The other functional units are as described in the background art section, so the explanation is omitted here.
[0032] 信号処理部 300は、メモリに記憶されるプログラムを DSP (Digital Signal Processor) 等のプロセッサ上で実行させることにより、デジタル信号処理を実現する機能部であ る。図 1は、第一実施形態における信号処理部の機能構成例を示す図である。図 1 に示すように、第一実施形態における信号処理部 300は、信号生成部 330及び自 動利得補正部 331を備え、自動利得補正部 331は、期待値算出部 101、バッファ 10 3及び 111、平均送信電力算出部 113、補正値算出部 120、加算部 121及び 123等 を備えている。以下、これら各機能部についてそれぞれ説明する。 [0032] The signal processing unit 300 executes a program stored in the memory with a DSP (Digital Signal Processor). It is a functional unit that realizes digital signal processing by being executed on a processor such as. FIG. 1 is a diagram illustrating a functional configuration example of a signal processing unit in the first embodiment. As shown in FIG. 1, the signal processing unit 300 in the first embodiment includes a signal generation unit 330 and an automatic gain correction unit 331. The automatic gain correction unit 331 includes an expected value calculation unit 101, buffers 103 and 111. , Average transmission power calculation section 113, correction value calculation section 120, addition sections 121 and 123, and the like. Hereinafter, each of these functional units will be described.
[0033] 〔信号生成部〕 [Signal generator]
信号生成部 330は、例えば図 2に示す無線フレームフォーマットを持つ主信号を生 成する。図 2は、第一実施形態における無線フレームフォーマットを示す図である。こ の図 2に示すフォーマットでは、リファレンスチャネルが 1フレーム内で 2箇所に配置さ れている。  The signal generator 330 generates a main signal having the radio frame format shown in FIG. 2, for example. FIG. 2 is a diagram showing a radio frame format in the first embodiment. In the format shown in Fig. 2, reference channels are arranged at two locations in one frame.
[0034] 信号生成部 330は、生成された主信号を DZA変換部 301へ送る。このとき、信号 生成部 330は、 DZA変換部 301へ送り出される主信号がリファレンス信号である際 には、その送出タイミングを自動利得補正部 331へ通知する。ここで、リファレンス信 号とは、図 2に示すフォーマットのうちリファレンスチャネルに配置される信号をいう。 本実施形態では、信号生成部 330は、各フレームの先頭に配置されるリファレンス信 号の送出タイミングを自動利得補正部 331へ通知するものとする。なお、信号生成部 330は、もう一方のリファレンス信号の送出タイミングを通知するようにしてもよ!、。  The signal generation unit 330 sends the generated main signal to the DZA conversion unit 301. At this time, when the main signal sent to the DZA conversion unit 301 is a reference signal, the signal generation unit 330 notifies the automatic gain correction unit 331 of the sending timing. Here, the reference signal is a signal arranged in the reference channel in the format shown in FIG. In the present embodiment, the signal generation unit 330 notifies the automatic gain correction unit 331 of the transmission timing of the reference signal arranged at the head of each frame. Note that the signal generator 330 may notify the transmission timing of the other reference signal!
[0035] また、本実施形態では、図 2に示す無線フレームフォーマットを利用する場合を例 に挙げる力 本発明はこのような無線フレームフォーマットに限定するものではなく図 [0035] Further, in the present embodiment, the power of using the radio frame format shown in Fig. 2 as an example. The present invention is not limited to such a radio frame format.
17に示す例のような無線フレームフォーマットを利用するようにしてもよい。 A radio frame format such as the example shown in FIG. 17 may be used.
[0036] 信号生成部 330は、更に、 DZA変換部 301へ送り出される主信号の持つ電力レ ベル (以降、 DZA入力電力値と表記する)及び出力電力設定値を自動利得補正部 331へ通知する。ここで、出力電力設定値とは、アンテナ 320から送出される信号の 送信レベルの期待値である。 The signal generation unit 330 further notifies the automatic gain correction unit 331 of the power level (hereinafter referred to as DZA input power value) and the output power setting value of the main signal sent to the DZA conversion unit 301. . Here, the output power setting value is an expected value of the transmission level of the signal transmitted from the antenna 320.
[0037] 〔自動利得補正部〕  [Automatic Gain Correction Unit]
以下、自動利得補正部 331の各機能部についてそれぞれ説明する。  Hereinafter, each functional unit of the automatic gain correction unit 331 will be described.
[0038] 〈期待値算出部 101〉 期待値算出部 101は、信号生成部 330から出力電力設定値を受け、リファレンス信 号に関する出力電力設定値に相当する送信レベルフィードバック信号の期待値を算 出する。期待値算出部 101は、送信レベルと送信レベルフィードバック信号との相関 特性(図 16参照)を利用して送信レベルフィードバック信号の期待値を求める。算出 された期待値は、バッファ 103へ送られる。期待値算出部 101は、本発明の保持手 段に相当する。 <Expected value calculation unit 101> The expected value calculation unit 101 receives the output power setting value from the signal generation unit 330 and calculates an expected value of the transmission level feedback signal corresponding to the output power setting value related to the reference signal. The expected value calculation unit 101 obtains an expected value of the transmission level feedback signal using the correlation characteristic (see FIG. 16) between the transmission level and the transmission level feedback signal. The calculated expected value is sent to the buffer 103. The expected value calculation unit 101 corresponds to the holding means of the present invention.
[0039] 〈バッファ 103及び 111〉 <Buffer 103 and 111>
ノッファ 103及び 111は、受けたデータを所定時間遅延させて、他の機能部へ送る ための保持部である。ノ ッファ 103は、期待値算出部 101から送られてくる送信レべ ルフィードバック信号の期待値を所定時間遅延させて、補正値算出部 120へ送る。 ノ ッファ 111は、信号生成部 330から送られてくるリファレンス信号の送出タイミング 通知を所定時間遅延させて、平均送信電力算出部 113へ送る。ここで、各バッファに より与えられる遅延時間は、信号処理部 300から主信号が送出されてから、その主信 号に対応する送信レベルフィードバック信号が自動利得補正部 331へ到達するまで の間のフィードバック時間である。この遅延時間により、後述する補正値算出部 120 において、信号処理部 300から出力される時点での主信号に関する送信レベルとァ ンテナ 320端での送信レベルとの比較を行うことができるようになる。  The nofers 103 and 111 are holding units for delaying received data for a predetermined time and sending them to other functional units. The nofer 103 delays the expected value of the transmission level feedback signal sent from the expected value calculation unit 101 by a predetermined time and sends it to the correction value calculation unit 120. The notch 111 delays the reference signal transmission timing notification sent from the signal generation unit 330 by a predetermined time and sends it to the average transmission power calculation unit 113. Here, the delay time given by each buffer is the time from when the main signal is transmitted from the signal processing unit 300 until the transmission level feedback signal corresponding to the main signal reaches the automatic gain correction unit 331. Feedback time. With this delay time, the correction value calculation unit 120 (to be described later) can compare the transmission level related to the main signal at the time of output from the signal processing unit 300 with the transmission level at the end of the antenna 320. .
[0040] 〈平均送信電力算出部〉 <Average transmission power calculation unit>
平均送信電力算出部 113は、送信レベルモニタ回路 306により生成され、 AZD変 換部 307によりデジタル化された送信レベルフィードバック信号、及びバッファ 111に よりフィードバック時間分遅延されたリファレンス信号の送出タイミングを受ける。平均 送信電力算出部 113は、このリファレンス信号の送出タイミングにより、逐次入力され る送信レベルフィードバック信号力もリファレンス信号に関するフィードバック値を抽 出する。  The average transmission power calculation unit 113 receives the transmission level feedback signal generated by the transmission level monitor circuit 306 and digitized by the AZD conversion unit 307, and the transmission timing of the reference signal delayed by the feedback time by the buffer 111. . The average transmission power calculation unit 113 extracts a feedback value related to the reference signal for the transmission level feedback signal power that is sequentially input based on the transmission timing of the reference signal.
[0041] 平均送信電力算出部 113は、抽出されたリファレンス信号に関するフィードバック値 をリファレンスチャネル区間で平均することにより、平均フィードバック値を算出する。 算出された平均フィードバック値は、リファレンス信号の平均送信電力に相当する。こ の平均フィードバック値は、補正値算出部 120へ送られる。平均送信電力算出部 11 3は、本発明の平均算出手段に相当する。 [0041] Average transmission power calculation section 113 calculates an average feedback value by averaging the feedback values related to the extracted reference signal in the reference channel section. The calculated average feedback value corresponds to the average transmission power of the reference signal. The average feedback value is sent to the correction value calculation unit 120. Average transmission power calculator 11 3 corresponds to the average calculating means of the present invention.
[0042] このように、本実施形態では、送信レベルモニタ回路 306から送られるフィードバッ ク信号のうちリファレンス信号の部分のみを参照して、平均フィードバック値を算出す る。これは、リファレンスチャネルは、他のチャネル(データチャネル等)内のデータを 復調、復号等するために用いられるデータが配置されるチャネルであるため一定の 送信レベルに維持される場合が多いからである。なお、本発明は、リファレンスチヤネ ルのみの利用に限定するものではな ヽ(変形例として後述する)。 Thus, in the present embodiment, the average feedback value is calculated by referring to only the reference signal portion of the feedback signal sent from the transmission level monitor circuit 306. This is because the reference channel is a channel in which data used for demodulating and decoding data in other channels (data channel, etc.) is placed and is often maintained at a constant transmission level. is there. The present invention is not limited to the use of only the reference channel (described later as a modification).
[0043] 〈補正値算出部〉 <Correction value calculation unit>
補正値算出部 120は、ノ ッファ 103から送られる送信レベルフィードバック信号の 期待値と平均送信電力算出部 113から送られる平均フィードバック値とを比較して補 正値を算出する。補正値算出部 120は、本発明の算出手段、比較手段及び修正手 段に相当する。  Correction value calculation section 120 compares the expected value of the transmission level feedback signal sent from notch 103 with the average feedback value sent from average transmission power calculation section 113 to calculate a correction value. The correction value calculation unit 120 corresponds to the calculation means, comparison means, and correction means of the present invention.
[0044] 具体的には、補正値算出部 120は、当該期待値力も平均フィードバック値を引いた 値を、保持されている前回算出された補正値に加算することにより、新たな補正値と する。このように算出された補正値は、その値に相当する電力値に変換され、加算部 123へ送られる。この変換には、図 16に示される送信レベルと送信レベルフィードバ ック信号との相関特性が用いられる。  [0044] Specifically, the correction value calculation unit 120 adds a value obtained by subtracting the average feedback value to the expected value force to the previously calculated correction value, thereby obtaining a new correction value. . The correction value calculated in this way is converted into a power value corresponding to the value and sent to the adding unit 123. For this conversion, the correlation characteristic between the transmission level and the transmission level feedback signal shown in FIG. 16 is used.
[0045] 〈加算部 121及び 123〉  <Adding units 121 and 123>
加算部 121は、出力電力設定値力も DZA入力電力値を減算し、算出された電力 値を加算部 123へ送る。加算部 123は、加算部 121から送られてくる電力値と補正 値算出部 120から送られてくる補正値とを加算し、その算出された電力値に対応する TPC信号を出力する。この出力された TPC信号は、 TPC増幅部 303の利得制御に 利用される。その後、この TPC信号に応じて電力補正された信号がカップラ 305で分 岐され、その分岐された信号に応じて送信レベルモニタ回路 306により送信レベルフ イードバック信号が生成され、信号処理部 300へフィードバックされる。加算部 123は 、 TPC増幅部 303とともに、本発明の補正手段に相当する。  The adding unit 121 also subtracts the DZA input power value from the output power set value power, and sends the calculated power value to the adding unit 123. Adder 123 adds the power value sent from adder 121 and the correction value sent from correction value calculator 120, and outputs a TPC signal corresponding to the calculated power value. This output TPC signal is used for gain control of the TPC amplifier 303. Thereafter, the signal whose power has been corrected according to the TPC signal is branched by the coupler 305, and a transmission level feedback signal is generated by the transmission level monitor circuit 306 according to the branched signal and fed back to the signal processing unit 300. Is done. Together with the TPC amplifier 303, the adder 123 corresponds to the correcting means of the present invention.
[0046] 〔動作例〕  [Operation Example]
次に、第一実施形態における無線送信装置の動作例について図 3、 4及び 5を用 いて説明する。図 3は、第一実施形態における出力電力設定値の例を示す図であり 、図 4は、第一実施形態における主信号の DZA入力電力値の例を示す図であり、 図 5は、第一実施形態における利得補正を示すデータ遷移図である。図 3及び 4に 示すように、本実施形態では、構成上、フレーム内のアナログゲインが一定となるよう に出力電力設定値と DZA入力電力値とが決定される。また、図 3及び 4の縦軸方向 に示される各破線は、それぞれ図 2に示される無線フレームフォーマットの各チヤネ ルの区間を示すものである。図 5に示されるデータ遷移は、図 18に示すようにアナ口 グゲインの更新周期、すなわち TPC信号の更新周期を 1フレーム間隔とした場合の 例である。 Next, FIGS. 3, 4 and 5 are used for the operation example of the wireless transmission device in the first embodiment. And explain. FIG. 3 is a diagram showing an example of the output power setting value in the first embodiment, FIG. 4 is a diagram showing an example of the DZA input power value of the main signal in the first embodiment, and FIG. It is a data transition figure showing gain correction in one embodiment. As shown in FIGS. 3 and 4, in the present embodiment, the output power set value and the DZA input power value are determined so that the analog gain in the frame is constant in the configuration. In addition, each broken line shown in the vertical axis direction in FIGS. 3 and 4 indicates each channel section of the radio frame format shown in FIG. The data transition shown in Fig. 5 is an example when the update cycle of the analog gain, that is, the update cycle of the TPC signal is set to one frame interval as shown in Fig. 18.
[0047] 信号生成部 330は、主信号を DZA変換部 301へ出力しつつ、その主信号のうち の各フレームの先頭リファレンスチャネルに配置されるリファレンス信号の DZA入力 電力値を加算部 121へ送り、そのリファレンス信号の出力電力設定値を加算部 121 及び期待値算出部 101へ送り、そのリファレンス信号の出力タイミングをバッファ 111 へ通知する。このとき、出力電力設定値として、図 3の左端のフレームの先頭のリファ レンスチャネルについて 20 (dBm)が送られる。また、 DZA入力電力値として、図 4 の左端のフレームの先頭のリファレンスチャネルにつ 、て 3 (dB)が送られる。  [0047] The signal generation unit 330 outputs the main signal to the DZA conversion unit 301, and sends the DZA input power value of the reference signal arranged in the first reference channel of each frame of the main signal to the addition unit 121. Then, the output power set value of the reference signal is sent to the adding unit 121 and the expected value calculating unit 101, and the output timing of the reference signal is notified to the buffer 111. At this time, 20 (dBm) is sent as the output power setting value for the first reference channel of the leftmost frame in FIG. In addition, 3 (dB) is sent as the DZA input power value for the first reference channel in the leftmost frame in Fig. 4.
[0048] 以下、このようなデータを受けた自動利得補正部 331内の各機能部の動作につい て図 5を用いて説明する。図 5は、自動利得補正部 331内の各機能部がそれぞれ算 出するデータが、平均送信電力算出部 113により算出される平均フィードバック値に 応じて制御され遷移する様子(図上部から図下部への遷移)を示して 、る。そして、 図 5に示される一点破線で区切られる各区間は、図 3及び 4における 1フレーム間隔( アナログゲイン更新周期)を示すものである。  [0048] Hereinafter, the operation of each functional unit in the automatic gain correction unit 331 that has received such data will be described with reference to FIG. FIG. 5 shows a state in which the data calculated by each function unit in the automatic gain correction unit 331 is controlled and transitioned according to the average feedback value calculated by the average transmission power calculation unit 113 (from the upper part of the figure to the lower part of the figure). Showing the transition). Each section delimited by a dashed line shown in FIG. 5 represents one frame interval (analog gain update cycle) in FIGS.
[0049] また、図 5中の「DZA入力電力値」及び「出力電力設定値」として表記される数値 は、上述のように信号生成部 330から送られてくるデータを示し、「期待値」として表 記される数値は、期待値算出部 101により算出された送信レベルフィードバック信号 の期待値に対応する電力値を示し、「補正値」として表記される数値は、補正値算出 部 120により算出される補正値に対応する電力値を示し、「TPC設定値」として表記 される数値は、加算部 123から出力されるべき TPC信号に対応する設定電力値を示 し、「平均送信電力」として表記される数値は、平均送信電力算出部 113により算出 されるリファレンス信号のみの平均フィードバック値に対応する電力値を示す。 In addition, the numerical values represented as “DZA input power value” and “output power set value” in FIG. 5 indicate data sent from the signal generation unit 330 as described above, and “expected value”. The numerical value indicated as “” indicates the power value corresponding to the expected value of the transmission level feedback signal calculated by the expected value calculation unit 101, and the numerical value expressed as “correction value” is calculated by the correction value calculation unit 120. The numerical value indicated as “TPC set value” indicates the set power value corresponding to the TPC signal to be output from the adder 123. The numerical value represented as “average transmission power” indicates a power value corresponding to the average feedback value of only the reference signal calculated by the average transmission power calculation unit 113.
[0050] 図 5に示す最上部 (初期状態)では、補正値算出部 120から出力される補正値は初 期値として O (dB)となる。これにより、加算部 123から出力される TPC信号は、出力 電力設定値 (20 (dBm) )から DZA入力電力値 (3 (dB) )が減算された電力値 (補正 なし)に対応するもの(17 (dB) )となる。この TPC信号により TPC増幅部 303で利得 制御された信号がアンテナから送出される一方で、その信号の送信電力を示す送信 レベルフィードバック信号が平均送信電力算出部 113へ逐次フィードバックされる。こ のとき期待値算出部 101では、出力電力設定値(20 (dBm) )に基づき、送信レベル フィードバック信号の期待値が 20 (dBm)として算出され、バッファ 103で遅延されて いる。 In the uppermost part (initial state) shown in FIG. 5, the correction value output from the correction value calculation unit 120 is O (dB) as the initial value. As a result, the TPC signal output from the adder 123 corresponds to a power value (no correction) obtained by subtracting the DZA input power value (3 (dB)) from the output power setting value (20 (dBm)) ( 17 (dB)). A signal whose gain is controlled by the TPC amplification section 303 is transmitted from the antenna by this TPC signal, while a transmission level feedback signal indicating the transmission power of the signal is sequentially fed back to the average transmission power calculation section 113. At this time, the expected value calculation unit 101 calculates the expected value of the transmission level feedback signal as 20 (dBm) based on the output power setting value (20 (dBm)) and is delayed by the buffer 103.
[0051] 次に、図 5の上から 2段目のデータ状態について説明する。このとき、図 3及び 4の 左から 2つ目のフレーム内の先頭に配置されるリファレンス信号に関する出力電力設 定値 (20 (dBm) )及び DZA入力電力値( + 3 (dB) )が加算部 121へ送られる。これ により加算部 121からは電力値(17 (dB) )が出力される。  Next, the data state in the second stage from the top in FIG. 5 will be described. At this time, the output power setting value (20 (dBm)) and DZA input power value (+3 (dB)) related to the reference signal placed at the beginning of the second frame from the left in FIGS. Sent to 121. As a result, the adder 121 outputs a power value (17 (dB)).
[0052] 一方、平均送信電力算出部 113では、フィードバックされた送信レベルフィードバッ ク信号のうちリファレンス信号の平均フィードバック値が算出される。ここでは、この平 均フィードバック値に相当する電力値 (平均送信電力)が 18 (dBm)として算出された ものと仮定する。算出された平均送信電力は、補正値算出部 120へ送られる。  On the other hand, average transmission power calculation section 113 calculates the average feedback value of the reference signal among the fed back transmission level feedback signals. Here, it is assumed that the power value (average transmission power) corresponding to this average feedback value is calculated as 18 (dBm). The calculated average transmission power is sent to the correction value calculation unit 120.
[0053] 補正値算出部 120は、先に算出された送信レベルフィードバック信号の期待値(20  [0053] Correction value calculation section 120 calculates the expected value (20
(dBm) )と当該平均送信電力(18 (dBm) )を受ける。補正値算出部 120では、この 送信レベルフィードバック信号の期待値(20 (dBm) )から当該平均送信電力(18 (d Bm) )が減算され、得られた電力値 (2 (dB) )が更に前回の補正値 (ここでは初期値 として 0)に加算され、新たな補正値 (2 (dB) )とされる。  (dBm)) and the average transmission power (18 (dBm)). The correction value calculation unit 120 subtracts the average transmission power (18 (d Bm)) from the expected value (20 (dBm)) of the transmission level feedback signal, and further obtains the obtained power value (2 (dB)). It is added to the previous correction value (here, 0 as the initial value) to obtain a new correction value (2 (dB)).
[0054] この補正値は、加算部 121から送られる電力値(17 (dB) )と加算部 123により加算 される。このように算出された電力値(19 (dB) )に対応する TPC信号が生成され、 T PC増幅部 303へ送られる。  This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121. A TPC signal corresponding to the calculated power value (19 (dB)) is generated and sent to the TPC amplifier 303.
[0055] 以降、図 5の上から 3段目に推移するまでの間(次フレームのリファレンスチャネルま での区間)は、先に算出された電力値(19 (dB) )に対応する TPC信号が出力される [0055] Thereafter, until the transition to the third stage from the top of FIG. 5 (from the reference frame of the next frame) TPC signal corresponding to the previously calculated power value (19 (dB)) is output during
[0056] 次に、図 5の上から 3段目のデータ状態について説明する。このとき、図 3及び 4の 左から 3つ目のフレーム内の先頭に配置されるリファレンス信号に関する出力電力設 定値 (20 (dBm) )及び DZ A入力電力値( + 3 (dB) )が加算部 121へ送られる。これ により加算部 121からは電力値(17 (dB) )が出力される。平均送信電力算出部 113 では、このとき、平均送信電力として 21 (dBm)が算出されたものと仮定する。 Next, the data state in the third row from the top in FIG. 5 will be described. At this time, the output power setting value (20 (dBm)) and DZA input power value (+3 (dB)) related to the reference signal placed at the beginning of the third frame from the left in FIGS. 3 and 4 are added. Sent to part 121. As a result, the adder 121 outputs a power value (17 (dB)). At this time, it is assumed that average transmission power calculation section 113 calculates 21 (dBm) as the average transmission power.
[0057] 補正値算出部 120では、先に算出された送信レベルフィードバック信号の期待値( 20 (dBm) )から当該平均送信電力(21 (dBm) )が減算された値 ( - 1 (dB) )が、前 回の補正値 (2 (dB) )と加算され、補正値( 1 (dB) )とされる。  [0057] In correction value calculation section 120, a value obtained by subtracting the average transmission power (21 (dBm)) from the expected value (20 (dBm)) of the previously calculated transmission level feedback signal (-1 (dB) ) Is added to the previous correction value (2 (dB)) to obtain the correction value (1 (dB)).
[0058] この補正値は、加算部 121から送られる電力値(17 (dB) )と加算部 123により加算 される。このように算出された電力値(18 (dB) )に対応する TPC信号が生成され、 T PC増幅部 303へ送られる。  This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121. A TPC signal corresponding to the calculated power value (18 (dB)) is generated and sent to the TPC amplifier 303.
[0059] 最後に、図 5の最下部のデータ状態について説明する。これは、図 3及び 4に示さ れる右端のフレームのリファレンス信号が入力された場合の例、すなわち、リファレン ス信号の出力電力設定値及び DZA入力電力値が変動した場合の例を示している。 自動利得補正部 331へ入力される出力電力設定値及び DZA入力電力値がそれぞ れ 14 (dBm)、 + 3 (dB)となり、これにより期待値は 14 (dBm)とされる。このとき、平 均送信電力が 20 (dBm)と算出されたものと仮定する。  [0059] Finally, the data state at the bottom of FIG. 5 will be described. This is an example when the reference signal of the rightmost frame shown in FIGS. 3 and 4 is input, that is, an example when the output power setting value of the reference signal and the DZA input power value fluctuate. The output power setting value and DZA input power value input to the automatic gain correction unit 331 are 14 (dBm) and +3 (dB), respectively, and the expected value is 14 (dBm). At this time, it is assumed that the average transmission power is calculated as 20 (dBm).
[0060] 補正値算出部 120では、先に算出された送信レベルフィードバック信号の期待値( 20 (dBm) )から当該平均送信電力(20 (dBm) )が減算された値 (0)が前回の補正 値(l (dB) )と加算され、補正値(l (dB) )とされる。この補正値は、加算部 121から送 られる電力値 ( 11 (dB) )と加算部 123により加算される。このように算出された電力値 (12 (dB) )に対応する TPC信号が生成され、 TPC増幅部 303へ送られる。  [0060] In the correction value calculation unit 120, a value (0) obtained by subtracting the average transmission power (20 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously is the previous value. The correction value (l (dB)) is added to obtain the correction value (l (dB)). This correction value is added by the adder 123 with the power value (11 (dB)) sent from the adder 121. A TPC signal corresponding to the power value (12 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
[0061] 〈第一実施形態における作用及び効果〉  <Operation and Effect in First Embodiment>
以下、上述した第一実施形態における無線送信装置の作用及び効果について述 ベる。第一実施形態における無線送信装置では、アンテナ 320から送出される信号 の送信レベル (電力或 ヽは電圧)が適切な電力レベルとなるように自動利得補正機 能が実行される。 The operation and effect of the wireless transmission device in the first embodiment described above will be described below. In the wireless transmission device according to the first embodiment, the automatic gain correction device adjusts the transmission level (power or voltage) of the signal transmitted from the antenna 320 to an appropriate power level. The function is executed.
[0062] アンテナ 320より送出されるべき信号力も送信レベルモニタ回路 306によって送信 レベルが検出され、その送信レベルを示す送信レベルフィードバック信号が信号処 理部 300へフィードバックされる。信号処理部 300では、この送信レベルフィードバッ ク信号のうちリファレンス信号に関するものを平均した平均フィードバック値が算出さ れ、このリファレンス信号に関する平均フィードバック値に基づき、送信電力の補正値 が決定される。この決定では、アンテナ端での信号の送信レベル期待値である出力 電力設定値に相当する送信レベルフィードバック信号の期待値とリファレンス信号に 関する平均フィードバック値との差を変化量として新たな補正値が決定される。以降 、この補正値が反映された TPC信号が TPC増幅部 303へ送られ、この TPC信号に 応じて主信号の送信レベルが調整される。  [0062] The signal level to be transmitted from the antenna 320 is also detected by the transmission level monitor circuit 306, and a transmission level feedback signal indicating the transmission level is fed back to the signal processing unit 300. The signal processing unit 300 calculates an average feedback value obtained by averaging the transmission level feedback signals related to the reference signal, and determines a transmission power correction value based on the average feedback value related to the reference signal. In this determination, a new correction value is obtained by using the difference between the expected value of the transmission level feedback signal corresponding to the output power setting value, which is the expected value of the transmission level of the signal at the antenna end, and the average feedback value of the reference signal as a change amount. It is determined. Thereafter, the TPC signal reflecting this correction value is sent to the TPC amplifying unit 303, and the transmission level of the main signal is adjusted according to this TPC signal.
[0063] このように第一実施形態における自動利得補正機能では、送信信号のうち一定の 送信電力で送信されるリファレンス信号のみの平均送信電力が算出され、この平均 送信電力に基づいて、送信電力の補正値が決定され、その補正値に基づいて主信 号の送信レベルが調整される。  As described above, in the automatic gain correction function in the first embodiment, the average transmission power of only the reference signal transmitted at a constant transmission power among the transmission signals is calculated, and the transmission power is calculated based on the average transmission power. The correction value is determined, and the transmission level of the main signal is adjusted based on the correction value.
[0064] これにより、図 3及び 4に示すようなフレーム内で送信電力を変動させるシステムに おいても、 1フレーム時間よりも短い区間でかつ送信電力が一定に保たれる区間(リ ファレンスチャネル)にお 、て検出された送信電力に基づ 、て補正値を決定するた め、その他のチャネルにおいて送信電力が変動する場合においても自動利得補正 を適切に動作させることが可能となる。  [0064] As a result, even in a system in which transmission power is varied within a frame as shown in Figs. 3 and 4, a section (reference channel) in which transmission power is kept constant in a section shorter than one frame time. Since the correction value is determined based on the detected transmission power, automatic gain correction can be appropriately operated even when the transmission power fluctuates in other channels.
[0065] [第二実施形態]  [0065] [Second Embodiment]
次に、本発明の第二実施形態における無線送信装置について図 6を用いて説明 する。図 6は、第二実施形態における信号処理部の機能構成例を示す図である。第 二実施形態における無線送信装置は、第一実施形態における信号処理部 300の自 動利得補正部 331を変形させたものである。変形された自動利得補正部 331以外に ついては第一実施形態と同様であるため、ここでは説明を省略する。  Next, a radio transmission apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram illustrating a functional configuration example of the signal processing unit in the second embodiment. The wireless transmission device in the second embodiment is obtained by modifying the automatic gain correction unit 331 of the signal processing unit 300 in the first embodiment. Other than the modified automatic gain correction unit 331 is the same as that of the first embodiment, and thus the description thereof is omitted here.
[0066] 第一実施形態における自動利得補正部 331では、期待値算出部 101は、リファレ ンス信号に関する出力電力設定値に基づいて送信レベルフィードバック信号の期待 値を算出していたが、第二実施形態における期待値算出部 101は、リファレンス信号 に関し当該出力電力設定値と DZA入力電力値とを加算した電力値に基づいて当 該期待値を算出する。このとき、加算部 123は、当該出力電力設定値と補正値算出 部 120から送られる補正値とを加算し、得られた電力値に対応する TPC信号を生成 する。 In the automatic gain correction unit 331 in the first embodiment, the expected value calculation unit 101 expects the transmission level feedback signal based on the output power setting value related to the reference signal. The expected value calculation unit 101 in the second embodiment calculates the expected value based on the power value obtained by adding the output power setting value and the DZA input power value with respect to the reference signal. At this time, the adding unit 123 adds the output power setting value and the correction value sent from the correction value calculating unit 120, and generates a TPC signal corresponding to the obtained power value.
[0067] 〔動作例〕 [Operation example]
以下、第二実施形態における自動利得補正部 331の各機能部の動作例について 、図 7、 8及び 9を用いて説明する。図 7は、第二実施形態における出力電力設定値 の例を示す図であり、図 8は、第二実施形態における主信号の DZA入力電力値の 例を示す図であり、図 9は、第二実施形態における利得補正を示すデータ遷移図で ある。図 7及び 8の縦軸方向に示される各破線は、それぞれ図 2に示される無線フレ ームフォーマットの各チャネルの区間を示すものである。図 9に示されるデータ遷移 は、図 18に示すようにアナログゲインの更新周期、すなわち TPC信号の更新周期を 1フレーム間隔とした場合の例である。図 9は、平均送信電力算出部 113により算出 される平均フィードバック値に応じて制御され遷移する様子(図上部から図下部への 遷移)を示している。図 9中の数値の意味は、上述の図 5と同様である。  Hereinafter, an operation example of each functional unit of the automatic gain correction unit 331 in the second embodiment will be described with reference to FIGS. FIG. 7 is a diagram showing an example of the output power setting value in the second embodiment, FIG. 8 is a diagram showing an example of the DZA input power value of the main signal in the second embodiment, and FIG. It is a data transition diagram showing gain correction in two embodiments. Each broken line shown in the vertical axis direction in FIGS. 7 and 8 indicates a section of each channel in the radio frame format shown in FIG. The data transition shown in FIG. 9 is an example when the analog gain update cycle, that is, the TPC signal update cycle is set to one frame interval as shown in FIG. FIG. 9 shows a state of transition controlled (transition from the upper part of the figure to the lower part of the figure) according to the average feedback value calculated by the average transmission power calculation unit 113. The meanings of the numerical values in FIG. 9 are the same as those in FIG.
[0068] 図 9に示す最上部(初期状態)では、図 7及び 8の左端のフレームの先頭に配置さ れるリファレンス信号に関する DZA入力電力値( + 3 (dB) )及び出力電力設定値 ( 1 7 (dBm) )が自動利得補正部 331へ入力される。また、補正値算出部 120から出力 される補正値は初期値として 0 (dB)となる。  [0068] In the uppermost part (initial state) shown in FIG. 9, the DZA input power value (+3 (dB)) and the output power setting value (1) for the reference signal placed at the beginning of the leftmost frame in FIGS. 7 (dBm)) is input to the automatic gain correction unit 331. Also, the correction value output from the correction value calculation unit 120 is 0 (dB) as an initial value.
[0069] これにより、加算部 123から出力される TPC信号は、出力電力設定値(17 (dBm) ) に対応するもの(17 (dBm) )となる。この TPC信号により TPC増幅部 303で利得制 御された信号がアンテナから送出される一方で、その信号の送信電力に対応する送 信レベルフィードバック信号が平均送信電力算出部丄丄 3へ逐次フィードバックされる [0069] Thereby, the TPC signal output from the adding unit 123 becomes (17 (dBm)) corresponding to the output power setting value (17 (dBm)). A signal whose gain is controlled by the TPC amplification unit 303 is transmitted from the antenna by the TPC signal, while a transmission level feedback signal corresponding to the transmission power of the signal is sequentially fed back to the average transmission power calculation unit 3. Ru
。このとき期待値算出部 101では、出力電力設定値(17 (dBm) )と DZA入力電力 値(+ 3 (dB) )との加算された電力値に基づき、送信レベルフィードバック信号の期 待値が 20 (dBm)として算出され、バッファ 103で遅延される。 . At this time, the expected value calculation unit 101 determines the expected value of the transmission level feedback signal based on the added power value of the output power setting value (17 (dBm)) and the DZA input power value (+3 (dB)). Calculated as 20 (dBm) and delayed by the buffer 103.
[0070] 次に、図 9の上から 2段目のデータ状態について説明する。このとき、図 7及び 8の 左から 2つ目のフレームの先頭に配置されるリファレンス信号に関する DZA入力電 力値( + 3 (dB) )及び出力電力設定値 ( 17 (dBm) )が自動利得補正部 331へ入力さ れる。 Next, the data state in the second row from the top in FIG. 9 will be described. At this time, The DZA input power value (+3 (dB)) and the output power setting value (17 (dBm)) related to the reference signal arranged at the head of the second frame from the left are input to the automatic gain correction unit 331.
[0071] 平均送信電力算出部 113では、フィードバックされた送信レベルフィードバック信号 のうちリファレンス信号の平均フィードバック値が算出される。ここでは、この平均フィ ードバック値に相当する電力値 (平均送信電力)が 18 (dBm)と算出されたものと仮 定する。算出された平均送信電力は、補正値算出部 120へ送られる。  [0071] Average transmission power calculation section 113 calculates the average feedback value of the reference signal among the fed back transmission level feedback signals. Here, it is assumed that the power value (average transmission power) corresponding to this average feedback value is calculated as 18 (dBm). The calculated average transmission power is sent to the correction value calculation unit 120.
[0072] 補正値算出部 120は、先に算出された送信レベルフィードバック信号の期待値(20  [0072] Correction value calculation section 120 calculates the expected value (20
(dBm) )と当該平均送信電力(18 (dBm) )を受ける。補正値算出部 120では、この 送信レベルフィードバック信号の期待値(20 (dBm) )から当該平均送信電力(18 (d Bm) )が減算され、得られた電力値 (2 (dB) )が更に前回の補正値 (ここでは初期値 として 0)と加算され、新たな補正値(+ 2 (dB) )とされる。この補正値は、出力電力設 定値( 17 (dBm) )と加算部 123により加算される。このように算出された電力値( 19 ( dB) )に対応する TPC信号が生成され、 TPC増幅部 303へ送られる。  (dBm)) and the average transmission power (18 (dBm)). The correction value calculation unit 120 subtracts the average transmission power (18 (d Bm)) from the expected value (20 (dBm)) of the transmission level feedback signal, and further obtains the obtained power value (2 (dB)). It is added to the previous correction value (here, 0 as the initial value) to obtain a new correction value (+2 (dB)). This correction value is added to the output power setting value (17 (dBm)) by the adding unit 123. A TPC signal corresponding to the power value (19 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
[0073] 以降、図 9の上から 3段目に推移するまでの間(次フレームのリファレンスチャネルま での区間)は、先に算出された TPC設定値(19 (dB) )に対応する TPC信号が出力さ れる。  [0073] Thereafter, until the transition to the third stage from the top of Fig. 9 (interval until the reference channel of the next frame), the TPC corresponding to the previously calculated TPC setting value (19 (dB)) A signal is output.
[0074] 次に、図 9の上から 3段目のデータ状態について説明する。このとき、図 7及び 8の 左から 3つ目のフレームの先頭に配置されるリファレンス信号に関する DZA入力電 力値( + 3 (dB) )及び出力電力設定値 ( 17 (dBm) )が自動利得補正部 331へ入力さ れる。平均送信電力算出部 113では、このとき、送信平均電力として 21 (dBm)が算 出されたものと仮定する。  Next, the data state in the third row from the top in FIG. 9 will be described. At this time, the DZA input power value (+3 (dB)) and output power setting value (17 (dBm)) related to the reference signal placed at the beginning of the third frame from the left in Figs. Input to correction unit 331. At this time, it is assumed that average transmission power calculation section 113 calculates 21 (dBm) as the transmission average power.
[0075] 補正値算出部 120では、先に算出された送信レベルフィードバック信号の期待値( 20 (dBm) )から当該平均送信電力(21 (dBm) )が減算された値 ( - 1 (dB) )が、前 回の補正値 (2 (dB) )と加算され、補正値( + l (dB) )とされる。この補正値は、出力 電力設定値 ( 17 (dBm) )と加算部 123により加算される。このように算出された電力 値(18 (dB) )に対応する TPC信号が生成され、 TPC増幅部 303へ送られる。  In correction value calculation section 120, a value obtained by subtracting the average transmission power (21 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously (−1 (dB) ) Is added to the previous correction value (2 (dB)) to obtain the correction value (+ l (dB)). This correction value is added to the output power set value (17 (dBm)) by the adding unit 123. A TPC signal corresponding to the power value (18 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
[0076] 最後に、図 9の最下部のデータ状態について説明する。これは、図 7及び 8に示さ れる右端のフレームのリファレンス信号が入力された場合の例、すなわち、リファレン ス信号の出力電力設定値が変動した場合の例を示している。すなわち、自動利得補 正部 331へ入力される出力電力設定値及び DZA入力電力値がそれぞれ 11 (dBm ) , + 3 (dB)となり、これにより期待値は 14 (dBm)とされる。このとき、平均送信電力 が 20 (dBm)と算出されたものと仮定する。 [0076] Finally, the data state at the bottom of FIG. 9 will be described. This is shown in Figures 7 and 8. In this example, the reference signal of the rightmost frame is input, that is, the output power setting value of the reference signal fluctuates. That is, the output power setting value and DZA input power value input to the automatic gain correction unit 331 are 11 (dBm) and +3 (dB), respectively, and the expected value is 14 (dBm). At this time, it is assumed that the average transmission power is calculated as 20 (dBm).
[0077] 補正値算出部 120では、先に算出された送信レベルフィードバック信号の期待値( 20 (dBm) )から当該平均送信電力(20 (dBm) )が減算された値 (0)が前回の補正 値 (l (dB) )と加算され、補正値( + l (dB) )とされる。この補正値は、出力電力設定 値( 11 (dBm) )と加算部 123により加算される。このように算出された電力値( 12 (dB ) )に対応する TPC信号が生成され、 TPC増幅部 303へ送られる。  [0077] In the correction value calculation unit 120, a value (0) obtained by subtracting the average transmission power (20 (dBm)) from the expected value (20 (dBm)) of the transmission level feedback signal calculated previously is the previous value. The correction value (l (dB)) is added to obtain the correction value (+ l (dB)). This correction value is added to the output power set value (11 (dBm)) by the adding unit 123. A TPC signal corresponding to the power value (12 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
[0078] 〈第二実施形態における作用及び効果〉  <Operation and Effect in Second Embodiment>
第二実施形態における無線送信装置では、自動利得補正機能において、 TPC信 号が出力電力設定値を補正値算出部 120により算出される補正値により補正された 電力値に基づいて生成されること、期待値算出部 101が出力電力設定値と DZA入 力電力値との加算値に相当する送信レベルフィードバック信号の期待値を算出する ことにおいて第一実施形態とは相違する。  In the wireless transmission device in the second embodiment, in the automatic gain correction function, the TPC signal is generated based on the power value obtained by correcting the output power set value by the correction value calculated by the correction value calculation unit 120; The expected value calculation unit 101 is different from the first embodiment in that the expected value calculation unit 101 calculates the expected value of the transmission level feedback signal corresponding to the added value of the output power setting value and the DZA input power value.
[0079] しかしながら、第二実施形態における無線送信装置においても、第一実施形態と 同様に、リファレンス信号のみの平均送信電力に基づいて送信電力の補正値が決定 され、その補正値に基づいて主信号の送信レベルが調整されるため、フレーム内で 送信電力を変動させる構成を採る場合においても自動利得補正を適切に動作させる ことが可能となる。  However, in the wireless transmission device in the second embodiment, similarly to the first embodiment, a transmission power correction value is determined based on the average transmission power of only the reference signal, and the main value is determined based on the correction value. Since the signal transmission level is adjusted, automatic gain correction can be appropriately operated even when the transmission power is varied within the frame.
[0080] [第三実施形態]  [0080] [Third embodiment]
次に、本発明の第三実施形態における無線送信装置について図 10を用いて説明 する。図 10は、第三実施形態における信号処理部の機能構成例を示す図である。 第三実施形態における無線送信装置は、第二実施形態における自動利得補正部 3 31を更に変形させたものである。変形された自動利得補正部 331以外については 第一実施形態及び第二実施形態と同様であるため、ここでは説明を省略する。  Next, a radio transmission apparatus according to the third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a diagram illustrating a functional configuration example of the signal processing unit in the third embodiment. The wireless transmission device in the third embodiment is obtained by further modifying the automatic gain correction unit 331 in the second embodiment. Since components other than the modified automatic gain correction unit 331 are the same as those in the first embodiment and the second embodiment, description thereof is omitted here.
[0081] 第一実施形態及び第二実施形態における自動利得補正部 331では、リファレンス 信号に関してフィードバックされた平均送信電力とそのリファレンス信号の送信レべ ルの期待値との比較により送信電力の補正値が決定されていた。 [0081] In the automatic gain correction unit 331 in the first embodiment and the second embodiment, the reference The correction value of the transmission power was determined by comparing the average transmission power fed back for the signal with the expected value of the transmission level of the reference signal.
[0082] 第三実施形態における自動利得補正部 331では、フレーム内のチャネル構成に関 わらず所定の区間についての所定の重み付け平均により算出される電力値に基づ いて送信電力の補正値が決定される。以下、第三実施形態における自動利得補正 部 331のうち第二実施形態とは異なる機能部について説明する。  [0082] In automatic gain correction section 331 in the third embodiment, a transmission power correction value is determined based on a power value calculated by a predetermined weighted average for a predetermined section regardless of the channel configuration in the frame. Is done. Hereinafter, a functional unit different from the second embodiment in the automatic gain correction unit 331 in the third embodiment will be described.
[0083] 〈期待値算出部 101〉 <Expected Value Calculation Unit 101>
期待値算出部 101は、信号生成部 330から出力電力設定値及び DZA入力電力 値を受ける。このとき、期待値算出部 101が受ける DZA入力電力値は、図 11のよう に変化するものとする。図 11は、主信号の DZA入力電力値の例を示すグラフである 。また、期待値算出部 101は、上述のデータとともに信号生成部 330から所定のタイ ミング通知を受ける。図 11のグラフにおける縦の破線は、タイミング通知を受ける時 間を示している力 これは各チャネル区間を示すものであってもよいし、それ以外の タイミングを示すものであってもよ 、。  The expected value calculation unit 101 receives the output power setting value and the DZA input power value from the signal generation unit 330. At this time, it is assumed that the DZA input power value received by the expected value calculation unit 101 changes as shown in FIG. FIG. 11 is a graph showing an example of the DZA input power value of the main signal. In addition, the expected value calculation unit 101 receives a predetermined timing notification from the signal generation unit 330 together with the above-described data. The vertical broken lines in the graph of FIG. 11 indicate the time for receiving the timing notification. This may indicate each channel section or may indicate other timing.
[0084] 期待値算出部 101は、タイミング通知に応じた所定の時間(図 11に示す時間 T1か ら時間 T7までの間)における当該 DZA入力電力値及びその送信時間に依存した 重み付け平均により算出される電力値を、当該出力電力設定値に加算することにより 当該期待値を算出する。 [0084] Expected value calculation section 101 calculates the weighted average depending on the DZA input power value and its transmission time in a predetermined time (between time T1 and time T7 shown in FIG. 11) according to the timing notification. The expected value is calculated by adding the output power value to the output power setting value.
[0085] 以下、図 11の例において、時間 T1から時間 T7までの間における期待値の算出例 について説明する。なお、出力電力設定値については一定の 20 (dBm)が入力され るものとし、タイミング通知の時間間隔は一定とする。期待値算出部 101は、次のよう な時間でタイミング通知と DZA入力電力値を受ける。 Hereinafter, in the example of FIG. 11, an example of calculating expected values from time T1 to time T7 will be described. As for the output power setting value, a constant 20 (dBm) is input, and the time interval of timing notification is constant. The expected value calculation unit 101 receives the timing notification and the DZA input power value at the following times.
[0086] タイミング T1: DZ A入力電力値 (0 (dB) ) [0086] Timing T1: DZ A input power value (0 (dB))
タイミング T2: DZ A入力電力値( 6 (dB) )  Timing T2: DZ A input power value (6 (dB))
タイミング T3: DZ A入力電力値( 6 (dB) )  Timing T3: DZ A input power value (6 (dB))
タイミング T4: DZA入力電力値( 3 (dB) )  Timing T4: DZA input power value (3 (dB))
タイミング T5: DZ A入力電力値( 3 (dB) )  Timing T5: DZ A input power value (3 (dB))
タイミング T6: DZ A入力電力値( 3 (dB) ) これにより、期待値算出部 101は、時間 T1のタイミング通知から時間 T7のタイミン グ通知の間に、以下のように重み付け平均による期待値 Vを算出する。このとき、 DZ A入力電力値 (O (dB) )に対してタイミング間隔(1: T1)が重み付けされ、 DZA入力 電力値(一 6 (dB) )に対してタイミング間隔(2:T2と T3)が重み付けされ、 DZA入力 電力値(-3 (dB) )に対してタイミング間隔 (3 :Τ4— Τ7)が重み付けされる。算出さ れた期待値は、バッファ 103で遅延された後、補正値算出部 120へ送られる。 Timing T6: DZ A input power value (3 (dB)) As a result, the expected value calculation unit 101 calculates the expected value V based on the weighted average between the timing notification at time T1 and the timing notification at time T7 as follows. At this time, the timing interval (1: T1) is weighted with respect to the DZ A input power value (O (dB)), and the timing interval (2: T2 and T3) with respect to the DZA input power value (one 6 (dB)). ) Is weighted, and the timing interval (3: (4—Τ7) is weighted to the DZA input power value (-3 (dB)). The calculated expected value is delayed by the buffer 103 and then sent to the correction value calculating unit 120.
[0087] V = +20(dBm) + 10*log{(10° 10*l+l 0"6 10*2+ 10"3 10*3)/(1+2+3)}=+ 17(dBm) [0087] V = +20 (dBm) + 10 * log {(10 ° 10 * l + l 0 " 6 10 * 2 + 10" 3 10 * 3) / (1 + 2 + 3)} = + 17 ( dBm)
〈平均送信電力算出部〉  <Average transmission power calculation unit>
平均送信電力算出部 113は、逐次入力される送信レベルフィードバック信号をタイ ミング通知に応じた所定の時間(図 11に示す時間 T1から時間 T7までの間)内で平 均することで、平均フィードバック値を算出する。算出された平均フィードバック値は、 補正値算出部 120へ送られる。このように、第三実施形態では、送信レベルモニタ回 路 306から送られるフィードバック信号のうち所定の時間内の信号を参照して、平均 フィードバック値を算出する。  The average transmission power calculation unit 113 averages the sequentially input transmission level feedback signals within a predetermined time (between time T1 and time T7 shown in FIG. 11) according to the timing notification. Calculate the value. The calculated average feedback value is sent to the correction value calculation unit 120. Thus, in the third embodiment, the average feedback value is calculated with reference to the signal within a predetermined time among the feedback signals sent from the transmission level monitor circuit 306.
[0088] 〈第三実施形態における作用及び効果〉  <Operation and Effect in Third Embodiment>
第三実施形態における無線送信装置では、自動利得補正機能において、所定時 間内で DZA入力電力値とその送信時間との重み付け平均により求められる期待値 とその所定時間内の送信レベルフィードバック信号の平均フィードバック値との比較 により、送信電力の補正値を修正する。これは、所定時間内での送信電力の変動に 対応可能とするために重み付け算出処理を行うものである。  In the wireless transmission device in the third embodiment, in the automatic gain correction function, an expected value obtained by weighted average of the DZA input power value and its transmission time within a predetermined time and the average of the transmission level feedback signal within the predetermined time Correct the transmit power correction value by comparing it with the feedback value. This is to perform weighting calculation processing so as to be able to cope with fluctuations in transmission power within a predetermined time.
[0089] これにより、第三実施形態における無線送信装置によれば、フレーム内で送信電力 を変動させる構成においても、自動利得補正を適切に動作させることが可能となる。 また、第三実施形態における無線送信装置によれば、フレーム内のチャネル構成等 によらず所定時間内のデータにより適切な送信電力の補正値を算出することができ るため、自由度の高い装置設計が可能となる。  Thus, according to the wireless transmission device in the third embodiment, automatic gain correction can be appropriately operated even in a configuration in which transmission power is varied within a frame. Further, according to the wireless transmission device in the third embodiment, an appropriate transmission power correction value can be calculated from data within a predetermined time regardless of the channel configuration in the frame, etc. Design becomes possible.
[0090] [上述の実施形態における第一変形例]  [0090] [First modification in the above-described embodiment]
上述の第一実施形態及び第二実施形態における無線送信装置では、平均送信電 力算出部 113が送信レベルフィードバック信号のうちリファレンス信号に係るデータの みを利用して平均フィードバック値を算出していた力 リファレンス信号に代え、コント ロールチャネルに配置されるコントロール信号のみを利用するようにしてもよいし、ま た、双方を組み合わせて利用するようにしてもよい。このような第一変形例における無 線送信装置では、図 12に示されるような無線フレームが利用される。図 12は、リファ レンスチャネル、コントロールチャネル及びデータチャネルから構成される無線フレー ムフォーマットを示す図である。 In the wireless transmission devices according to the first embodiment and the second embodiment described above, the average transmission power calculation unit 113 transmits data related to the reference signal among the transmission level feedback signals. Instead of the force reference signal that was used to calculate the average feedback value using only the control signal, only the control signal placed in the control channel may be used, or a combination of both may be used. May be. In the radio transmitting apparatus in such a first modification, a radio frame as shown in FIG. 12 is used. FIG. 12 is a diagram showing a radio frame format composed of a reference channel, a control channel, and a data channel.
[0091] リファレンスチャネルに代えコントロールチャネルのみを利用する場合には、信号生 成部 330は、生成された主信号を DZA変換部 301へ送るとともに、その主信号のう ちのコントロール信号の送出タイミングを自動利得補正部 331へ通知するようにすれ ばよい。 [0091] When only the control channel is used instead of the reference channel, the signal generation unit 330 sends the generated main signal to the DZA conversion unit 301, and sets the transmission timing of the control signal of the main signal. The automatic gain correction unit 331 may be notified.
[0092] これにより、平均送信電力算出部 113は、このコントロール信号の送出タイミングに より、逐次入力される送信レベルフィードバック信号力もコントロール信号に関するフ イードバック値を抽出する。抽出されたコントロール信号に関するフィードバック値をコ ントロールチャネル区間で平均し、コントロール信号の平均送信電力に相当する平均 フィードバック値を算出するようにすればょ 、。  Thus, average transmission power calculation section 113 extracts the feedback value related to the control signal for the transmission level feedback signal power that is sequentially input at the transmission timing of this control signal. If the feedback value for the extracted control signal is averaged over the control channel interval, the average feedback value corresponding to the average transmission power of the control signal should be calculated.
[0093] 同様に、リファレンス信号及びコントロール信号を組み合わせて利用するようにして もよい。この場合には、信号生成部 330は、主信号のうちのリファレンス信号及びコン トロール信号の送出タイミングをそれぞれ自動利得補正部 331へ通知するようにすれ ばよい。そして、その組み合わせの時間内において期待値及び平均フィードバック値 を算出することにより補正値が修正される。  Similarly, a reference signal and a control signal may be used in combination. In this case, the signal generation unit 330 may notify the automatic gain correction unit 331 of the transmission timing of the reference signal and the control signal of the main signal. Then, the correction value is corrected by calculating the expected value and the average feedback value within the time of the combination.
[0094] 〔上述の実施形態における第二変形例〕  [Second Modification of the above-described Embodiment]
上述の無線送信装置では、補正値算出部 120は期待値算出部 101により算出さ れた送信レベルフィードバック信号の期待値と平均送信電力算出部 113から送られ る平均フィードバック値との差をそのまま変化量として前回算出された補正値に加算 することにより新たな補正値を算出していたが、当該差の値に応じた所定の変化量を 予め決めておくようにしてもょ 、。  In the wireless transmission device described above, correction value calculation section 120 changes the difference between the expected value of the transmission level feedback signal calculated by expected value calculation section 101 and the average feedback value sent from average transmission power calculation section 113 as it is. A new correction value was calculated by adding it to the previously calculated correction value as an amount, but a predetermined change amount corresponding to the difference value may be determined in advance.
[0095] 例えば、送信レベルフィードバック信号の期待値が平均フィードバック値よりも大き い場合には変化量を 0. 5 (dB)とし、送信レベルフィードバック信号の期待値が平均 フィードバック値よりも小さい場合には変化量を一 0. 5 (dB)とし、送信レベルフィード ノック信号の期待値と平均フィードバック値とが同じである場合には変化量を O (dB) とするというように決めておく。このような定義は、補正値算出部 120により予め保持 するようにしてもよい。以下、補正値算出部 120が保持するこの定義テーブルを補正 値変化量テーブルと表記する。図 14は、この第三変形例における利得補正を示す データ遷移図である。 [0095] For example, when the expected value of the transmission level feedback signal is larger than the average feedback value, the amount of change is set to 0.5 (dB), and the expected value of the transmission level feedback signal is averaged. When the feedback value is smaller, the change amount is set to 10.5 (dB), and when the expected value of the transmission level feed knock signal is the same as the average feedback value, the change amount is set to O (dB). Decide as follows. Such a definition may be held in advance by the correction value calculation unit 120. Hereinafter, this definition table held by the correction value calculation unit 120 is referred to as a correction value change amount table. FIG. 14 is a data transition diagram showing gain correction in the third modification.
[0096] 図 14の上力も 2段目のデータ状態では、平均送信電力算出部 113により平均送信 電力が 18 (dBm)と算出されたものと仮定する。補正値算出部 120は、先に算出され た送信レベルフィードバック信号の期待値 (20 (dBm) )と当該平均送信電力(18 (d Bm) )を受け、これらを比較する。補正値算出部 120は、この送信レベルフィードバッ ク信号の期待値 (20 (dBm) )が当該平均送信電力(18 (dBm) )より大き!/、と判断し、 当該補正値変化量テーブル力 これに応じた補正値の変化量 0. 5 (dB)が決定され る。補正値算出部 120は、この変化量を前回の補正値 (ここでは初期値として 0)にカロ 算し、新たな補正値 (0. 5 (dB) )とする。この補正値は、加算部 121から送られる電 力値(17 (dB) )と加算部 123により加算される。このように算出された電力値(17. 5 ( dB) )に対応する TPC信号が生成され、 TPC増幅部 303へ送られる。  [0096] It is assumed that the upper force in FIG. 14 is also calculated as 18 (dBm) by the average transmission power calculation unit 113 in the second-stage data state. The correction value calculation unit 120 receives the expected value (20 (dBm)) of the transmission level feedback signal calculated earlier and the average transmission power (18 (d Bm)), and compares them. The correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal is larger than the average transmission power (18 (dBm))! / The amount of change in the correction value corresponding to this is determined as 0.5 (dB). The correction value calculation unit 120 calculates the change amount to the previous correction value (here, 0 as an initial value) to obtain a new correction value (0.5 (dB)). This correction value is added by the adder 123 with the power value (17 (dB)) sent from the adder 121. A TPC signal corresponding to the power value (17.5 (dB)) calculated in this way is generated and sent to the TPC amplifier 303.
[0097] 次に、図 14の上から 3段目のデータ状態では、送信平均電力として 21 (dBm)が算 出されたものと仮定する。補正値算出部 120は、送信レベルフィードバック信号の期 待値 (20 (dBm) )が当該平均送信電力(21 (dBm) )より小さ 、と判断し、当該補正 値変化量テーブル力 これに応じた補正値の変化量—0. 5 (dB)を決定する。補正 値算出部 120は、この変化量を前回の補正値 (0. 5 (dB) )に加算し、新たな補正値 ( 0)とする。これにより、加算部 123から出力される TPC信号は、加算部 121から送ら れた電力値(17 (dB) ) (補正なし)に対応する TPC信号が生成され、 TPC増幅部 30 3へ送られる。  Next, it is assumed that 21 (dBm) is calculated as the transmission average power in the data state in the third row from the top in FIG. The correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal is smaller than the average transmission power (21 (dBm)), and the correction value change amount table power is determined accordingly. Determine the amount of change in the correction value—0.5 (dB). The correction value calculation unit 120 adds the amount of change to the previous correction value (0.5 (dB)) to obtain a new correction value (0). As a result, a TPC signal output from the adder 123 is generated as a TPC signal corresponding to the power value (17 (dB)) (no correction) sent from the adder 121 and sent to the TPC amplifier 303. .
[0098] 最後に、図 14の最下部のデータ状態では、平均送信電力が 20 (dBm)と算出され たものと仮定する。補正値算出部 120は、先に算出された送信レベルフィードバック 信号の期待値 (20 (dBm) )と当該平均送信電力(20 (dBm) )とが同じ値であると判 断し、当該補正値変化量テーブル力 これに応じた変化量 0 (変化なし)が決定され る。補正値算出部 120は、変化量なしと決定されたため、前回の補正値 (0)をそのま ま新たな補正値 (0)とする。 [0098] Finally, it is assumed that the average transmission power is calculated as 20 (dBm) in the lowermost data state in FIG. The correction value calculation unit 120 determines that the expected value (20 (dBm)) of the transmission level feedback signal calculated previously and the average transmission power (20 (dBm)) are the same value, and the correction value Change amount table power Change amount 0 (no change) is determined accordingly. The Since it has been determined that there is no change amount, the correction value calculation unit 120 uses the previous correction value (0) as the new correction value (0).
[0099] なお、補正値算出部 120が保持する上述の補正値変化量テーブル内の定義は、 上述の例に限定されるものではない。上述の例の他、例えば、送信レベルフィードバ ック信号の期待値力も平均フィードバック値を引いた値 (差分値)が上限値(l (dB) ) より大き 、場合に変化量( + 1 (dB) )とし、当該差分値が下限値 ( - 1 (dB) )より小さ V、場合に変化量(― 1 (dB) )とし、当該差分値が上限値 ( + 1 (dB) )以下でかつ下限 値(一 1 (dB) )以上である場合に変化量なしと定義するようにしてもよい。この例にお ける変化量、上限値及び下限値はそれぞれその装置を構成する回路等に応じて可 変な値としてもよい。  Note that the definition in the correction value change amount table held by the correction value calculation unit 120 is not limited to the above example. In addition to the above example, for example, the expected value of the transmission level feedback signal is also obtained by subtracting the average feedback value (difference value) greater than the upper limit value (l (dB)). )), The difference value is smaller than the lower limit value (-1 (dB)), V, and the amount of change (-1 (dB)), the difference value is less than the upper limit value (+1 (dB)) and If the value is lower than the lower limit (1 1 (dB)), it may be defined that there is no change. The amount of change, the upper limit value, and the lower limit value in this example may be variable values according to the circuits constituting the device.
[0100] 〔上述の実施形態における補足事項〕  [Supplementary items in the above embodiment]
上述の実施形態における平均送信電力算出部 113は、リファレンス信号の送出タ イミングを受け、そのタイミングに応じて逐次入力される送信レベルフィードバック信 号からリファレンス信号に関するフィードバック値を抽出する力 図 2に示すようにリフ アレンスチャネル内に CP (Cyclic Prefix)が付加されて 、る場合にぉ 、ても対応可能 である。  The average transmission power calculation unit 113 in the above-described embodiment receives a reference signal transmission timing, and extracts the feedback value related to the reference signal from the transmission level feedback signal sequentially input according to the timing shown in FIG. In this way, even if CP (Cyclic Prefix) is added in the reference channel, it is possible to cope with it.
[0101] すなわち、 CPが時間軸信号における最後尾の一部をコピーしてシンボルの先頭に 付加することで実現されるものであるため、 CP付加後の信号は CP時間内のいずれ の時点カゝら元のシンボル時間長を抽出したとしても、略同様の平均フィードバック値 を算出することができる。平均送信電力算出部 113は、例えば、図 13に示す時間(1 )、 (2)及び(3)の 、ずれの区間にお 、て当該フィードバック値を平均したとしても、 略同様の平均フィードバック値を算出することができる。図 13は、平均フィードバック 値算出区間を示す図である。  [0101] In other words, since the CP is realized by copying a part of the end of the time-axis signal and adding it to the head of the symbol, the signal after the CP is added can be any time point within the CP time. Even if the original symbol time length is extracted, a substantially similar average feedback value can be calculated. For example, even if the average transmission power calculation unit 113 averages the feedback value in the time interval (1), (2), and (3) shown in FIG. Can be calculated. FIG. 13 is a diagram showing an average feedback value calculation interval.
[0102] このように、平均送信電力算出部 113における平均フィードバック値の産出区間は 、厳密に調整する必要がないため、簡単な回路構成により実現することができる。  As described above, the average feedback value production section in the average transmission power calculation unit 113 does not need to be strictly adjusted, and can be realized with a simple circuit configuration.

Claims

請求の範囲 The scope of the claims
[1] 送信信号の送信レベルを変動させて送信する無線送信装置であって、  [1] A wireless transmission device that transmits by changing the transmission level of a transmission signal,
前記送信信号の送信レベルを検出する検出手段と、  Detecting means for detecting a transmission level of the transmission signal;
前記検出手段により検出される送信レベルのうち送信レベルの期待値が一定となる 区間の送信レベルを用いて利得補正値を算出する算出手段と、  Calculating means for calculating a gain correction value using a transmission level of a section in which an expected value of the transmission level is constant among transmission levels detected by the detecting means;
前記利得補正値に基づいて前記送信信号の利得補正を行う補正手段と、 を備える無線送信装置。  A wireless transmission apparatus comprising: correction means for performing gain correction of the transmission signal based on the gain correction value.
[2] 前記算出手段は、送信レベルの期待値が一定の区間として前記送信信号が複数 のチャネルで多重化されている場合にそれら複数のチャネルのうちのリファレンスチ ャネル及びコントロールチャネルの少なくとも 1つの区間を用いる請求項 1に記載の 無線送信装置。  [2] When the transmission signal is multiplexed with a plurality of channels as a section where the expected value of the transmission level is constant, the calculation means is at least one of a reference channel and a control channel among the plurality of channels. The wireless transmission device according to claim 1, wherein a section is used.
[3] 前記算出手段は、  [3] The calculation means includes:
前記送信レベルの期待値が一定となる区間の平均送信レベルを算出する平均算 出手段と、  An average calculating means for calculating an average transmission level in a section where the expected value of the transmission level is constant;
前記送信レベルの期待値が一定となる区間の送信レベルの平均期待値を保持 する保持手段と、  Holding means for holding an average expected value of transmission levels in a section where the expected value of the transmission level is constant;
前記平均送信レベルと前記平均期待値との差を求める比較手段と、 前記比較手段により求められた差を変化量として前記利得補正値を修正する修 正手段と、  A comparison means for obtaining a difference between the average transmission level and the average expected value; a correction means for correcting the gain correction value using the difference obtained by the comparison means as a change amount;
を有する請求項 1に記載の無線送信装置。  The wireless transmission device according to claim 1, comprising:
[4] 前記修正手段は、前記比較手段により求められた差に対応する所定の修正値を前 記変化量とする請求項 3に記載の無線送信装置。 4. The radio transmitting apparatus according to claim 3, wherein the correction means uses a predetermined correction value corresponding to the difference obtained by the comparison means as the change amount.
[5] 前記平均算出手段は、前記平均送信レベルを算出する区間としてシンボル時間を 用いる請求項 3に記載の無線送信装置。 5. The radio transmission apparatus according to claim 3, wherein the average calculation means uses a symbol time as a section for calculating the average transmission level.
[6] 送信信号の送信レベルを変動させて送信する無線送信装置であって、 [6] A wireless transmission device that transmits by changing the transmission level of a transmission signal,
前記送信信号の送信レベルを検出する検出手段と、  Detecting means for detecting a transmission level of the transmission signal;
前記検出手段により検出される送信レベルの所定区間の平均送信レベルを算出す る平均算出手段と、 前記所定の区間内における、送信電力値とその送信時間に基づく重み付け平均 により送信レベルの期待値を算出する期待値算出手段と、 Average calculating means for calculating an average transmission level of a predetermined section of the transmission level detected by the detecting means; Expected value calculating means for calculating an expected value of the transmission level by a weighted average based on the transmission power value and the transmission time in the predetermined section;
前記平均送信レベルと前記送信レベルの期待値とを用いて利得補正値を算出す る算出手段と、  Calculating means for calculating a gain correction value using the average transmission level and an expected value of the transmission level;
前記利得補正値に基づいて前記送信信号の利得補正を行う補正手段と、 を備える無線送信装置。  A wireless transmission apparatus comprising: correction means for performing gain correction of the transmission signal based on the gain correction value.
[7] 送信信号の送信レベルを変動させて送信する無線送信装置における送信電力制 御方法において、 [7] In a transmission power control method in a wireless transmission device that transmits by changing the transmission level of a transmission signal,
前記送信信号の送信レベルを検出する検出ステップと、  A detection step of detecting a transmission level of the transmission signal;
前記検出された送信レベルのうち送信レベルの期待値が一定となる区間の送信レ ベルを用いて利得補正値を算出する算出ステップと、  A calculating step of calculating a gain correction value using a transmission level in a section in which an expected value of the transmission level is constant among the detected transmission levels;
前記利得補正値に基づいて前記送信信号の利得補正を行う利得補正ステップと、 を備える送信電力制御方法。  A transmission power control method comprising: a gain correction step of performing gain correction of the transmission signal based on the gain correction value.
[8] 前記算出ステップは、送信レベルの期待値が一定の区間として前記送信信号が複 数のチャネルで多重化されている場合にそれら複数のチャネルのうちのリファレンス チャネル及びコントロールチャネルの少なくとも 1つの区間を用いる請求項 7に記載 の送信電力制御方法。 [8] In the calculation step, when the transmission signal is multiplexed with a plurality of channels as a section where the expected value of the transmission level is constant, at least one of the reference channel and the control channel among the plurality of channels is used. The transmission power control method according to claim 7, wherein a section is used.
[9] 前記算出ステップは、 [9] The calculation step includes:
前記送信レベルの期待値が一定となる区間の平均送信レベルを算出する平均算 出ステップと、  An average calculating step for calculating an average transmission level in a section where the expected value of the transmission level is constant;
前記送信レベルの期待値が一定となる区間の送信レベルの平均期待値を保持 する保持ステップと、  A holding step for holding an average expected value of the transmission level in a section in which the expected value of the transmission level is constant;
前記平均送信レベルと前記平均期待値との差を求める比較ステップと、 前記比較ステップにより求められた差を変化量として前記利得補正値を修正する 修正ステップと、  A comparison step for obtaining a difference between the average transmission level and the average expected value; and a correction step for correcting the gain correction value using the difference obtained by the comparison step as a change amount;
を有する請求項 8に記載の送信電力制御方法。  The transmission power control method according to claim 8, comprising:
[10] 前記修正ステップは、前記比較ステップにより求められた差に対応する所定の修正 値を前記変化量とする請求項 9に記載の送信電力制御方法。 前記平均算出ステップは、前記平均送信レベルを算出する区間としてシンボル時 間を用いる請求項 9に記載の送信電力制御方法。 10. The transmission power control method according to claim 9, wherein the correction step uses a predetermined correction value corresponding to the difference obtained in the comparison step as the amount of change. 10. The transmission power control method according to claim 9, wherein the average calculation step uses a symbol time as a section for calculating the average transmission level.
PCT/JP2006/313888 2006-07-12 2006-07-12 Radio transmitting apparatus and transmission power control method WO2008007428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313888 WO2008007428A1 (en) 2006-07-12 2006-07-12 Radio transmitting apparatus and transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313888 WO2008007428A1 (en) 2006-07-12 2006-07-12 Radio transmitting apparatus and transmission power control method

Publications (1)

Publication Number Publication Date
WO2008007428A1 true WO2008007428A1 (en) 2008-01-17

Family

ID=38922999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313888 WO2008007428A1 (en) 2006-07-12 2006-07-12 Radio transmitting apparatus and transmission power control method

Country Status (1)

Country Link
WO (1) WO2008007428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520005A (en) * 2009-03-03 2012-08-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Base station and method for scheduler control setting of output power of base station power amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022756A (en) * 1996-07-04 1998-01-23 Mitsubishi Electric Corp Radio transmitter and its transmission control method
JP2004166245A (en) * 2002-10-23 2004-06-10 Hitachi Kokusai Electric Inc Transmitter
JP2005236572A (en) * 2004-02-18 2005-09-02 Sony Ericsson Mobilecommunications Japan Inc Communication terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022756A (en) * 1996-07-04 1998-01-23 Mitsubishi Electric Corp Radio transmitter and its transmission control method
JP2004166245A (en) * 2002-10-23 2004-06-10 Hitachi Kokusai Electric Inc Transmitter
JP2005236572A (en) * 2004-02-18 2005-09-02 Sony Ericsson Mobilecommunications Japan Inc Communication terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520005A (en) * 2009-03-03 2012-08-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Base station and method for scheduler control setting of output power of base station power amplifier
US9113430B2 (en) 2009-03-03 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Base station and method for scheduler controlled setting of the output power of a base station power amplifier

Similar Documents

Publication Publication Date Title
EP2202879B1 (en) A predistortion apparatus and predistortion method
US8022763B2 (en) Amplifier failure detection apparatus
US8514019B2 (en) Distortion compensation amplifier
JPWO2008129645A1 (en) Peak suppression method
US9059671B2 (en) Automatic gain control device
JP5136143B2 (en) OFDM signal transmitter
KR20100105487A (en) Power amplifying device and power amplifying method
KR101244548B1 (en) Transmission device and adjustment value measurement method
JP5441817B2 (en) Transmission circuit and transmission method
JP3978433B2 (en) Transmission power control device
WO2008007428A1 (en) Radio transmitting apparatus and transmission power control method
JP4649302B2 (en) Distortion compensator
JP3669497B2 (en) Transmitting apparatus and automatic gain control method thereof
JP5316325B2 (en) Distortion compensation circuit, radio transmitter using the same, and distortion compensation method
JP3197467B2 (en) Transmission output control device
JP4828971B2 (en) Wireless device
JP2012199716A (en) Amplifier, transmission apparatus and gate voltage decision method
KR101201560B1 (en) Transmission device and transmission method
JPWO2008090613A1 (en) Distortion compensation device
JP2010057109A (en) Transmission circuit and communications equipment
JP2006033205A (en) Distortion compensation circuit and compensation method thereof
KR100652566B1 (en) Auto gain control apparatus
US20040253971A1 (en) Filter device and transmission power control apparatus
KR100591336B1 (en) Gain Control Method for Mobile Telecommunication Terminal
WO2007144958A1 (en) Power amplifier control device, power amplifier control program, and power amplifier control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06768152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06768152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP